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Abstract 1

Thermal safety has become a major challenge to the 
testing of systems-on-chip with deep sub-micron 
technologies. In order to avoid overheating the devices 
under test while reducing test application times, new 
techniques are needed. In this paper, we propose a test 
scheduling technique to minimize the test application time 
such that the temperatures of individual cores are kept 
below a given limit. The proposed approach takes into 
account thermal influences between cores, and thus 
accurate temperature evolution information of all cores in 
a system-on-chip is needed for the test scheduling. In 
order to avoid overheating, we have employed a thermal 
simulation driven scheduling algorithm, in which 
instantaneous thermal simulation results are used to 
guide the partitioning of test sets into test sub-sequences 
and to determine cooling periods inserted between the 
partitions. Furthermore, the partitioned test sets for 
different cores are interleaved such that a cooling period 
reserved for one core can be utilized for the test-data 
transportations and test applications for other cores. 
Experimental results have shown that by using the 
proposed technique, the test application time is minimized 
and the temperatures of cores under test are kept below 
the temperature limit during the entire test process. 

1. Introduction and related work 
Nanoscale technology has become the mainstream in the 
design and production of integrated circuits (ICs). In the 
latest generation of IC designs, the power density has 
been substantially increased [1], [2]. As a consequence of 
the elevated power density, high temperature in the chip 
becomes a critical challenge [3], [4]. In particular, 
compared to the normal functional mode, testing has been 
expected to consume more power [5], [6], which leads to 
an even higher temperature on silicon dies. Therefore, 
rigid temperature control during test is required in order to 
prevent possible damages to the circuits under test. Some 
advanced cooling techniques are proposed to reduce the 
temperature in the chips, but they substantially increase 
the overall cost. Other techniques such as lower frequency 
and reduced speed can partly solve the high temperature 
problem, while making them inapplicable to at-speed test 
and leading to longer test application time. 

In the case of system-on-chip (SoC) test, the problems 
of long test time and high temperature become more 
severe. Due to the high power consumption and high 
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temperature in the latest generation of SoCs, novel 
techniques are proposed to tackle the test time 
minimization problem in the new context. In [7], [8], low 
power test techniques are proposed to reduce the power 
consumption during tests. Some other works focus on 
power-constrained test scheduling [9], [10], [11], [12], 
targeting test time minimization restricted in a fixed 
power envelope. However, only using the power-aware 
techniques cannot fully avoid the overheating problem 
because of the complex thermal phenomenon in modern 
electronic chips [13]. 

Thus, thermal-aware test techniques have been 
proposed in order to solve the overheating problem during 
SoC test. Rosinger et al. proposed an approach [13] to 
generate thermal-safe test schedules with minimized test 
application time (TAT). Information about the 
neighborhood relationship of the cores under test (CUTs) 
is used to generate shortest test schedules which also 
reduce the temperature variances among cores. In [14], 
Yu et al. proposed a thermal-safe TAM/wrapper co-
optimization and test scheduling approach, in which the 
thermal influences between cores are taken into account 
and a thermal cost model is improved from [13] to 
generate more accurate results. Despite obtaining 
substantial reduction in test time, these approaches make 
the strong and simplifying assumption that one test can 
never produce overheating on the CUT. In our previous 
works [15], [16], a test set partitioning and interleaving 
technique was proposed to avoid high temperature and 
minimize the TAT, assuming that continuously applying a 
single test set may burn the CUT. In these works, it was 
assumed that the circuit layout and the employed 
technology are such that the thermal influence between 
cores can be neglected. However, in many other SoC 
designs, especially those which have a relatively large 
contact area between cores, the lateral thermal influences 
cannot be ignored.  

Thus, in this paper, we address the thermal-safe test 
scheduling issue in the context that continuous application 
of tests for a core can lead to excessively high temperature 
and that the lateral thermal influence between cores is not 
negligible. Due to the temporal and spatial thermal 
interdependencies [17], [18], coarse grained thermal 
models cannot solve the problem. Thus, we have 
employed a fast thermal simulator, ISAC [19], to obtain 
accurate instantaneous temperature values and have used 
them to guide the partitioning and interleaving of test sets 
during the test scheduling. A finite state machine (FSM) 
model has been developed to control the partitioning and 
interleaving process, based on which a heuristic has been 
developed to generate the shortest thermal-safe test 
schedules. 

 



The rest of this paper is organized as follows. The next 
section presents the assumed basic test architecture. In 
Section 3, the motivation for the thermal-safe test 
scheduling problem is demonstrated. Section 4 gives the 
problem formulation, and Section 5 illustrates the 
proposed heuristic for the thermal-safe test scheduling. 
Experimental results are presented in Section 6 and the 
paper is concluded in Section 7. 
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2. Basic test architecture 
We have assumed that the tester employed for a SoC test 
is either an automatic test equipment (ATE) or an 
embedded tester in the chip. In the tester, a memory is 
used to store the generated test patterns and a test 
schedule. A test controller integrated in the tester controls 
the transportation of test data and the application of test 
patterns according to the test schedule. A test bus is 
employed for the test data transportation between the 
tester and the CUTs, and each core is connected to the test 
bus through dedicated TAM wires. Through the test bus 
and TAM wires, the test controller sends test patterns to 
the destination cores and receives test responses from the 
cores when the test patterns have been applied.  

3. Motivation 
The state of the art of SoC test has shown that the large 
test data volume and the long test application time 
substantially increase the testing cost. When considering 
SoC test in a thermal safe context, a very long test process 
applied to a core may lead to a very high temperature 
even before the test is completed. This means that the 
CUT may be damaged if its temperature goes beyond a 
certain limit and the test is not interrupted in time. Thus, 
in order to prevent overheating, an individual test has to 
be stopped when the temperature of the core reaches the 
temperature limit, denoted with TL, and a cooling period 
is needed before the test can be continued. In this paper, 
we refer to the cooling as a passive cooling, meaning that 
the core is not activated and does not consume dynamic 
power. Thus, by partitioning an individual test set into a 
number of test sub-sequences and inserting cooling 
periods between them, we can avoid overheating during 
the entire test process.  

When test set partitioning is employed to avoid 
overheating, the efficiency of the utilization of the test bus 
should also be considered for test scheduling. It is obvious 
that introducing long cooling periods between test sub-
sequences of a core can substantially increase the test 
application time. On the other hand, during the cooling 
periods of a core, the bandwidth of the test bus previously 
allocated to this core is not utilized. Thus we can release 
the bus bandwidth reserved for a core during its cooling 
periods, and allocate the released bus bandwidth to other 
cores for their test-data transportations and test 
applications. In this way, the test sets of different cores 
are interleaved and thus the TAT can be reduced. Figure 1 
gives an example where two partitioned test sets are 
interleaved such that both the bandwidth limit and 
temperature limit are satisfied. 

 
Figure 1. An example of test set partitioning and interleaving 

In our previous work [16], it is assumed that lateral 
heat flows between cores can be neglected. This 
assumption fits a category of SoCs that have relatively 
large area size and small thickness of the silicon die. 
However, when the technology scales, the area size 
decreases while the die thickness is not reduced in the 
same order of magnitude. For such a category of SoCs, 
the lateral heat flow takes a larger portion in the overall 
thermal flows, and therefore cannot be ignored. Thus, in 
this paper, we take into account the thermal influences 
between cores and develop a new test scheduling 
technique in order to guarantee the thermal safety in this 
new context.  

Figure 2 depicts a result of thermal simulation 
performed for a SoC design with the die thickness equal 
to 200 micrometers. The SoC consists of two adjacent 
cores, both of which have an equal area size. In this 
experiment, only Core 1 is applied with test patterns. It 
can be seen that Core 2 is passively heated by Core 1 and 
the temperature rise is about 19 degrees. This example 
confirms our concerns that for this category of SoCs, the 
lateral thermal influences should not be ignored. 
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Figure 2. An example illustrating lateral thermal influence 

A direct impact due to the thermal influence between 
cores is that an inactive core at a lower temperature can be 
passively heated by its neighbors which have a higher 
temperature. In such cases, the temperature of the inactive 
core can be elevated (see Figure 2). The temperature 
elevation effect becomes more significant when the 
inactive core is passively heated by a larger number of 
high-temperature neighbors at the same time. Another 
factor that affects the extent of the temperature elevation 
is the time duration of tests applied on the neighboring 

 



cores: the longer test time, the higher degree of 
temperature elevation.  

When taking into account the lateral thermal influence 
and the resulted temperature elevation effect for test 
scheduling, the spatial distribution of cores and their 
temperatures, as well as the temporal relations between 
individual test applications are critically important. They 
make the thermal-safe test scheduling problem highly 
complex. In [16], we proposed an approach, denoted with 
ALG0, which determines the initial test-set partitioning 
schemes according to the thermal simulation results of 
individual cores, and thereafter generates the test schedule 
with minimized TAT. However, ALG0 cannot be directly 
used to solve the thermal-safe test scheduling problem 
when lateral thermal influence is taken into account. 
Figure 3 depicts thermal simulation results for a test 
schedule generated by ALG0. It can be seen that the 
temperature curves of the CUTs exceed the temperature 
limit at several points. This example illustrates that ALG0 
no longer guarantees the thermal safety in the new context 
where the lateral thermal influence becomes significant. 

 
Figure 3. An example showing that ALG0 cannot guarantee 
thermal safety when lateral thermal influence is significant 

In this paper, we aim to minimize test application times 
by generating efficient test schedules with temperature 
and bandwidth constraints. We have proposed a thermal-
simulation driven test scheduling technique. During the 
test scheduling, test sets are partitioned and interleaved 
on-the-fly according to instantaneous thermal simulation 
results.  

As shown in Figure 1, when the temperature of a core 
reaches the temperature limit, the test for this core is 
interrupted and a cooling period is started. The 
temperature of the core decreases until reaching a lower 
temperature level, and thereafter the test for the core can 
be resumed. In this paper, such a lower temperature level 
is called the stop-cooling temperature, denoted with CL. 
The distance between CL and TL has a large impact on the 
length of cooling periods and test sub-sequences. Cooling 
periods are usually started at TL, and last until the core 
temperature deceases to CL. Test sub-sequences, except 
the first one, usually are started from CL and stopped at 
TL.  

Figure 4 illustrates a scenario where the individual test 
schedule for one of the cores in a SoC changes when 
various stop-cooling temperatures are used for test 
scheduling. When making a comparison between test 
schedules 1 and 3, we can see that test schedule 1 uses a 

lower CL which leads to longer but fewer test sub-
sequences and cooling periods. Test schedule 3 uses a 
higher CL which results in shorter but more test sub-
sequences and cooling periods. Both test schedules have a 
longer TAT than test schedule 2 with a CL between those 
used for test schedules 1 and 3.  

The main reason why a higher CL may lead to a longer 
test schedule is the time overhead [20], [12] needed when 
the test controller stops one test and starts or resumes 
another. When a higher CL is employed, a larger amount 
of time overhead is more likely to appear, because a larger 
number of test sub-sequences are to be interleaved with 
test sets for other cores. On the other hand, a lower CL 
does not necessarily result in a shorter test schedule, 
though the reduced number of test sub-sequences should 
lead to less time overhead due to the switchings among 
different cores. This is because the temperature of a core 
decreases slower at lower temperature levels and the 
increased cooling period may not be sufficiently 
compensated by the benefits from having reduced number 
of cooling periods and less time overhead. Thus, the 
different stop-cooling temperatures should be explored 
together with the test set partitioning and interleaving 
schemes, in order to obtain efficient test schedules. 

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  0.0001  0.0002  0.0003  0.0004
 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

T
e
m
p
e
r
a
t
u
r
e
 
(
C
)

Test Application Time (sec)

Temperature Profiles

TL
Core 1
Core 2
Core 3
Core 4

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  5e-05 0.0001 0.00015 0.0002 0.00025
 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

T
e
m
p
e
r
a
t
u
r
e
 
(
C
)

Test Application Time (sec)

Temperature Profiles

TAT 1 = 2.4897E-4

TAT 2 = 1.9513E-4

TAT 3 = 2.0216E-4

TL
TAT 1 w CL 1
TAT 2 w CL 2
TAT 3 w CL 3

 
Figure 4. Alternative test schedules w.r.t. various CLs 

4. Problem formulation 
Suppose that a system-on-chip, denoted with S, consists of 
n cores, denoted with C1, C2, ... , Cn, respectively, which 
are placed according to a floorplan, denoted with FLP. In 
order to test core Ci (1 ≤ i ≤ n), li test patterns are 
generated, and the test set is denoted with TSi. The test 
patterns/responses are transported through the test bus and 
the dedicated TAM wires to/from core Ci, and the amount 
of required test-bus bandwidth is denoted with Wi. The 
test bus is designed to transport test data for different 
cores in parallel and the bandwidth limit is denoted with 
BL (BL ≥ Wi, i = 1, 2, ... , n). We assume that continuously 
applying test patterns belonging to TSi increases the 
temperature of core Ci, approaching a temperature limit, 
denoted with TL. If the temperature of core Ci goes 
beyond TL, the core is likely to be damaged.  

In order to prevent overheating during tests, a test set 
needs to be partitioned into a number of shorter test sub-
sequences and a cooling period needs to be inserted 
between two partitioned test sub-sequences. The problem 
that we address in this paper is to generate a test schedule 

 



for a SoC such that the test application time is minimized 
while the required amount of test-bus bandwidth of the 
concurrently applied tests is constrained by the bandwidth 
limit and the temperature of each core is kept below the 
temperature limit. Figure 5 gives the problem formulation. 

ActiveInactive

Finished

TEM = TL

TEM <= CL & 
start_test = 1

TEM <= TL

test completed

TEM >= CL || 
start_test = 0

Input: 
SoC floorplan FLP 
Set of test set for each core {TSi | i = 1, 2, ... , n},  
Set of required test-bus bandwidth for each test {Wi | i = 1, 2, ... , n},  
Test-bus bandwidth limit BL,  
Temperature limit TL 
 
Output: 
Test schedule with the minimized test application time (TAT) 
 
Subject to the following two constraints: 
1. At any time moment t before the test is completed, total amount of 
allocated test-bus bandwidth BW(t) is less than or equal to bandwidth 
limit BL, i.e. ∀t, BW(t) ≤ BL where BW(t) ::= ΣjBWj(t); 
2. At any time moment t before the test is completed, instantaneous 
temperature TEMi(t) of every core Ci is less than or equal to  
temperature limit TL, i.e. ∀t, ∀i, TEMi(t) ≤ TL. 

 
Figure 5. Problem formulation 

5. Heuristic for thermal-safe test scheduling 
As mentioned in previous sections, the lateral thermal 
influence and the corresponding temperature elevation 
effect make the thermal-safe test scheduling problem 
highly complex. Thus, we have proposed a simulation 
driven test scheduling approach, in which instantaneous 
thermal simulation is employed to guide the test set 
partitioning and interleaving. For thermal simulation, we 
use the ISAC system [19]. ISAC takes the floorplan of a 
chip and the power consumption profiles of cores as 
inputs, and calculates the temperature values of cores 
cycle by cycle. 

We have developed a finite state machine model to 
control the test set partitioning and interleaving during the 
thermal-simulation driven test scheduling process, as 
illustrated in Figure 6. There are three states for a core, 
namely inactive, active, and finished, which correspond to 
the cases that the core is not being tested, the core is being 
tested, and the test application is completed on the core, 
respectively. When the test scheduling process starts, we 
assume that all cores are at the inactive state and their 
temperatures are equal to the ambient temperature. When 
a core is selected for test and the required test-bus 
bandwidth is allocated for the test, a flag start_test is set 
to 1 and the state of the core moves from inactive to active. 
While test patterns are applied to the core, the temperature 
of the core, denoted with TEM, increases, and the state of 
the core remains active until the temperature reaches 
temperature limit TL or the test is completed. As soon as 
the test is completed, the state of the core moves from 
active to finished. Otherwise, when the core temperature 
reaches TL, the core state moves from active to inactive 
and remains unchanged until the core temperature 
decreases to stop-cooling temperature CL, from which a 
new round of state transitions between active and inactive 
is repeated until the test is completed. The test scheduling 
process terminates when all cores are at the finished state. 
Figure 7 depicts the thermal simulation result of a test 
schedule generated by using the FSM model for a SoC 
with 4 cores.  

 
Figure 6. Finite state machine to control temperature 
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Figure 7. An example of test schedule for a SoC with 4 cores 

Using the FSM model to control test set partitioning 
can generate thermal-safe test schedules. However, the 
scheduling of test sub-sequences should also take the test-
bus bandwidth constraint into account. This is solved by 
the heuristic given in Figure 8.  

ALG1. ACTIVATE(Queue of inactive cores ready for test :: Q) 
01    if (IsNotEmpty(Q) then 
02        Sort Q decreasingly according to the ratio of the remaining 
                number of test patterns to the current temperature; 
03        while (GetRemainingBandwidth() > 0 & IsNotEmpty(Q)) loop 
04            CurrentCore = GetFirstElement(Q); 
05            ReqBwd = GetBandwidthRequirement(CurrentCore); 
06            if (ReqBwd <= GetRemainingBandwidth()) then 
07                Transit the state of CurrentCore to active; 
08                ReduceRemainingBandwidth(ReqBwd); 
09                Remove(CurrentCore, Q); 
10            else 
11                break loop; 
12            end if-then-else 
13        end while 
14    end if 

 
Figure 8. Pseudo-code of the heuristic that allocates 

bandwidth to and activates the cores ready to be tested 

The heuristic takes a queue of all inactive cores that are 
ready for test as input and allocates the bus bandwidth to 
some of the cores and change their states to active. The 
heuristic first sorts the queue decreasingly according to 
the ratio of the remaining number of test patterns to the 
current temperature of the core (Line 2). This means that a 
higher priority is given to a core which has a larger 
number of remaining test patterns and a lower temperature. 
Then the heuristic allocates all the currently available 
bandwidth to the cores according to their priorities in the 
queue (Lines 3 to 13). 

The overall strategy to solve the test time minimization 
problem is illustrated in Figure 9. The test scheduling 
algorithm iteratively explores alternative solutions by 
using different stop-cooling temperatures. Within one 

 



iterative step, the test-set partitioning and interleaving 
scheme is determined according to the result of the 
instantaneous thermal simulation with the imposed TL and 
CL, and a test schedule is generated by using ALG1. We 
have used a counter, denoted with CNT, to count the 
number of consecutive iteration steps in which no TAT 
reduction is larger than a small positive number, denoted 
with e. If the TAT of the newly generated test schedule is 
smaller than the minimal TAT of the best solution 
obtained through previous iteration steps, the current 
solution is recorded as the best solution. Furthermore, if 
the reduction in TAT is larger than e, counter CNT is reset 
to 0. In the cases that the current TAT is larger than the 
minimal TAT or the reduction is smaller than e, CNT is 
incremented by 1. This procedure repeats until CNT is 
larger than a given threshold, denoted with THD, and 
thereafter the optimized test schedule is output and the 
test scheduling process terminates. 

 
Figure 9. Illustration of the overall solution strategy 

During test scheduling, the thermal simulation results 
are checked at every cycle such that the temperature of 
core Ci (1 ≤ i ≤ n) should be restricted between stop-
cooling temperature CL and temperature limit TL, except 
for the first test sub-sequences. By using different CL, 
various test partitioning schemes are generated and 
consequently alternative test schedules are explored. 
Figure 10 shows experimental results for a SoC with four 
cores. The TATs with respect to the stop-cooling 
temperatures used for test scheduling are depicted. The 
optimal CL is 84.065°C and the corresponding minimal 
TAT is 2.4629×10-4 seconds. 

 
Figure 10. Test application time vs. stop-cooling temperature 

6. Experimental results 
We have performed experiments for SoC designs 
consisting of cores randomly selected from the ISCAS’89 
benchmarks. The numbers of cores in these designs varies 
from 4 to 36. The amount of power consumption of a test 
is obtained through a cycle accurate method proposed in 
[21] which takes the amount of switching activity as an 
input and calculates the power consumption in watt. With 
the obtained power consumption values, the thermal 
simulator ISAC has been used to calculate instantaneous 
temperatures at every cycle during test. The imposed 
temperature limit (TL) is 90°C and the assumed frequency 
of test application is 100MHz. Thermal simulation results 
have confirmed that the temperatures of all cores under 
test are below the imposed temperature limit.  

We compare our heuristic with a straight-forward 
approach, in short SFA, which is based on ALG0. The 
basic idea of the SFA is the following. Since ALG0 
ignores lateral thermal influence and directly applying 
ALG0 cannot generate thermal safe test schedules, we 
need to compensate the high temperature by reducing the 
originally imposed temperature limit, denoted with TLorig, 
to a lower level. We assume that the reduction from TLorig 
is corresponding to the heating during test. By running the 
thermal simulation with generated test schedules, we can 
obtain the maximum temperature, denoted with MAXTEM. 
The degree of the temperature-limit reduction, denoted 
with D, should equal MAXTEM – TLorig. Thereafter, ALG0 
is invoked again with the newly imposed temperature 
limit, denoted with TLnew, and the new test schedule is 
check by thermal simulation in order to ensure the thermal 
safety. This procedure is repeated until the first thermal-
safe test schedule is generated. However, the thermal-safe 
test schedule generated in this way can be pessimistically 
long because the adjusted temperature limit may be lower 
than needed. In order to reduce the pessimism in terms of 
the TAT, we use the same procedure to increase the 
temperature limit until MAXTEM is sufficiently close to 
but still below TLorig. Figure 11 depicts the flowchart of 
SFA, where d, CNT, THD denotes the given limit for D, 
the number of iteration steps, and the threshold for the 
total number of iteration steps, respectively. It should be 
noted that D can be either a positive or negative number, 
corresponding to cases that MAXTEM is higher or lower 
than TLorig, respectively. 

TATcurr < TATmin

Thermal-simulation driven test scheduling

Record current solution as the best solution

End

Begin

Set a new stop-cooling temperature CLnew
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Figure 11. Illustration of the straight-forward approach (SFA) 

 



Experimental results are shown in Table 1. The first 
column in the table lists the number of cores used in the 
designs. Columns 2 and 4 show the test application times 
of the generated test schedules for the corresponding 
designs, by using the SFA and the proposed heuristic, 
respectively. Columns 3, 5 list the CPU times needed for 
executing the corresponding algorithms. Column 6 shows 
the percentage of TAT reduction by using our heuristic 
against the SFA. It can be seen that by using our heuristic, 
the TAT is reduced by about 25% to 61% for different 
designs. The CPU times of the proposed heuristic are 
usually shorter than those of the SFA. This is because, in 
the SFA, each time when ALG0 is invoked, a thermal 
simulation is performed for every core in order to 
generate the initial partitioning schemes according to the 
new temperature limit. 

Table 1. Proposed heuristic vs. SFA 

SFA Proposed Heuristic 
# of Cores 

TAT (s) CPU Time 
(s) TAT (s) CPU Time 

(s) 
TAT Gain

6 3.9129E-4 1078 2.1013E-4 1118 46.298% 
8 3.2827E-4 4122 2.4474E-4 1222 25.446% 
12 4.4911E-4 3118 2.3117E-4 1265 48.527% 
18 3.6927E-4 7458 2.0832E-4 1193 43.586% 
24 4.5970E-4 6681 2.1004E-4 1259 54.309% 
30 5.4901E-4 12705 2.2601E-4 1357 58.833% 
36 5.7715E-4 11760 2.2360E-4 1400 61.258% 

7. Conclusions 
In this paper, we have proposed a thermal-safe technique 
to minimize test application times for systems-on-chip 
while taking into account thermal influences between 
cores. The test scheduling employs a thermal simulation 
to partition and interleave test sets on-the-fly and a 
heuristic is developed to control the scheduling procedure 
such that the test application time is minimized and both 
the temperature limit and test-bus bandwidth limit are not 
violated. Experimental results have shown the efficiency 
of the proposed technique.  
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