
Abstracting and Counting Synchronizing
Processes

Zeinab Ganjei, Ahmed Rezine?, Petru Eles, and Zebo Peng

Linköping University, Sweden

Abstract. We address the problem of automatically establishing syn-
chronization dependent correctness (e.g. due to using barriers or ensur-
ing absence of deadlocks) of programs generating an arbitrary number of
concurrent processes and manipulating variables ranging over an infinite
domain. This is beyond the capabilities of current automatic verification
techniques. For this purpose, we define an original logic that mixes vari-
ables refering to the number of processes satisfying certain properties
and variables directly manipulated by the concurrent processes. We then
combine existing works on counter, predicate, and constrained monotonic
abstraction and build an original nested counter example based refine-
ment scheme for establishing correctness (expressed as non reachability
of configurations satisfying formulas in our logic). We have implemented
a tool (Pacman, for predicated constrained monotonic abstraction) and
used it to perform parameterized verification for several programs whose
correctness crucially depends on precisely capturing the number of pro-
cesses synchronizing using shared variables.

Key words: parameterized verification, counting logic, barrier synchro-
nization, deadlock freedom, multithreaded programs, counter abstrac-
tion, predicate abstraction, constrained monotonic abstraction

1 Introduction

We address the problem of automatic and parameterized verification for concur-
rent multithreaded programs. We focus on synchronization related correctness
as in the usage of barriers or integer shared variables for counting the number of
processes at different stages of the computation. Such synchronizations orches-
trate the different phases of the executions of possibly arbitrary many processes
spawned during runs of multithreaded programs. Correctness is stated in terms
of a new counting logic that we introduce. The counting logic makes it possi-
ble to express statements about program variables and variables counting the
number of processes satisfying some properties on the program variables. Such
statements can capture both individual properties, such as assertion violations,
and global properties such as deadlocks or relations between the numbers of
processes satisfying certain properties.

? In part supported by the 12.04 CENIIT project.

2 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

Synchronization among concurrent processes is central to the correctness of
many shared memory based concurrent programs. This is particularly true in
certain applications such as scientific computing where a number of processes,
parameterized by the size of the problem or the number of cores, is spawned
in order to perform heavy computations in phases. For this reason, when not
implemented individually using shared variables, constructs such as (dynamic)
barriers are made available in mainstream libraries and programming languages
such as Pthreads, java.util.concurrent or OpenMP.

Automatically taking into account the different phases by which arbitrary
many processes can pass is beyond the capabilities of current automatic verifi-
cation techniques. Indeed, and as an example, handling programs with barriers
of arbitrary sizes is a non trivial task even in the case where all processes only
manipulate boolean variables. To enforce the correct behaviour of a barrier, a
verification procedure needs to capture relations between the number of pro-
cesses satisfying certain properties, for instance that there are no processes that
are not waiting for the barrier before any process can cross it. This amounts to
testing that the number of processes at certain locations is zero. Checking viola-
tions of program assertions is then tantamount to checking state reachability of
a counter machine where counters track the number of processes satisfying pred-
icates such as being at some program location. No sound verification techniques
can therefore be complete for such systems.

Our approach to get around this problem builds on the following observation.
In case there are no tests for the number of processes satisfying certain properties
(e.g. being in specific programs locations for barriers), symmetric boolean con-
current programs can be exactly encoded as counter machines without tests, i.e.,
essentially vector addition systems (VASS). For such systems, state reachability
can be decided using a backwards exploration that only manipulates sets that
are upward closed with respect to the component wise ordering [2, 7]. The ap-
proach is exact because of monotonicity of the induced transition system (more
processes can fire more transitions since there are no tests on the numbers of
processes). Termination is guaranteed by well quasi ordering of the component
wise ordering on the natural numbers. The induced transition system is no more
monotonic in the presence of tests on the number of processes. The idea in mono-
tonic abstraction [10] is to modify the semantics of the entailed tests (e.g., tests
for zero for barriers), such that processes not satisfying the tests are removed
(e.g., tests for zero are replaced by resets). This results in a monotonic over-
approximation of the original transition system and spurious traces are possible.
This is also true for verification approaches that generate (broadcast) concurrent
boolean programs as abstractions of concurrent programs manipulating integer
variables. Such boolean approximations are monotonic even when the original
program (before abstraction) can encode tests on the number of processes and
is therefore not monotonic. Indeed, having more processes while respecting im-
portant relations between their numbers and certain variables in the original
programs does not necessarily allow to fire more transitions (which is what ab-
stracted programs do in such approaches).

Abstracting and Counting Synchronizing Processes 3

Our approach consists in two nested counter example guided abstraction
refinement loops. We summarize our contributions in the following points.

1. We propose an original counting logic that allows to express statements about
program variables and about the number of processes satisfying certain pred-
icates on the program variables.

2. We implement the outer loop by leveraging on existing symmetric predicate
abstraction techniques. We encode resulting boolean programs in terms of a
monotonic counter machine where reachability of configurations satisfying a
counting property from our logic is captured as a state reachability problem.

3. We explain how to strengthen the counter machine using counting invariants,
i.e. properties from our logic that hold on all runs. these can be automatically
generated using classical thread modular analysis techniques.

4. We leverage on existing constrained monotonic abstraction techniques to
implement the inner loop and to address the state reachability problem.

5. We have implemented both loops, together with automatic counting invari-
ants generation, in a prototype (Pacman) that allowed us to automatically
establish or refute counting properties such as deadlock freedom and asser-
tions. All programs we report on may generate arbitrary many processes.

Related work . Several works consider parameterized verification for concurrent
programs. In [9] the authors use counter abstraction and truncate the counters to
obtain a finite state system. Environment abstraction [4] combines predicate and
counter abstraction. Both [9, 4] can require considerable interaction and human
ingenuity to find the right predicates. The works in [8, 1] explore finite instances
and automatically check for cutoff conditions. Except for checking larger in-
stances, it is unclear how to refine entailed abstractions. The closest works to
ours are [10, 3, 5]. We introduced (constrained) monotonic abstraction in [10, 3].
Monotonic abstraction was not combined with predicate abstraction, nor did it
explicitly target counting properties or dynamic barrier based synchronization.
In [5], the authors propose a predicate abstraction framework for concurrent
multithreaded programs. As explained earlier such abstractions cannot exclude
behaviours forbidden by synchronization mechanisms such as barriers. In our
work, we build on [5] in order to handle shared and local integer variables. To
the best of our knowledge, our work is the first automatic verification approach
that specifically targets parameterized correctness of programs involving con-
structs where the number of processes are kept track of (e.g, using barriers).

Outline. We start by illustrating our approach using an example in Sec. 2 and
introduce some preliminaries in Sec. 3. We then define concurrent programs and
describe our counting logic in Sec. 4. Next, we explain the different phases of
our nested loop in Sec. 5 and report on our experimental results in Sec. 6. We
finally conclude in Sec. 7.

4 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

2 A Motivating Example

Consider the concurrent program described in Fig. 1. In this example, a main
process spawns (transition t1) an arbitrary number (count) of proc processes (at
location proc@lcent). All processes share four integer variables (namely max,
prev, wait and count) and a single boolean variable proceed. Initially, the vari-
ables wait and count are 0 while proceed is false. The other variables may assume
any value belonging to their respective domains. Each proc process possesses a
local integer variable val that can only be read or written by its owner. Each
proc process assigns to max the value of its local variable val (may be any in-
teger value) in case the later is larger than the former. Transitions t6 and t7
essentially implement a barrier in the sense that all proc processes must have
reached proc@lc3 in order for any of them to move to location proc@lc4. After
the barrier, the max value should be larger or equal to any previous local val
value stored in the shared prev (i.e., prev ≤ max should hold). Violation of
this assertion can be captured with the countingpredicate (introduced in Sec
4) (proc@lc4 ∧ ¬(prev ≤ max))# ≥ 1 stating that the number of processes at
location proc@lc4 and witnessing that prev > max is larger or equal than 1.

int max, prev, wait, count := ∗, ∗, 0, 0
bool proceed := ff
main :
t1 : lcent I lcent : count := count+ 1;

spawn(proc)
t2 : lcent I lc1 : proceed := tt
...

proc :
int val := ∗
t3 : lcent I lc1 : prev := val
t4 : lc1 I lc2 : max ≥ val
t5 : lc1 I lc2 : max < val; max := val
t6 : lc2 I lc3 : wait := wait+ 1
t7 : lc3 I lc4 : proceed ∧ (wait = count)
t8 : lc4 I ...

(3, 7, 0, 0, ff) {(main@lcent)}

(3, 7, 0, 1, ff) {(main@lcent)(proc@lcent, 9)}

(3, 7, 0, 2, ff)
{
(main@lcent)(proc@lcent, 9)

2
}

(3, 9, 0, 2, ff)
{
(main@lc1)(proc@lcent, 9)(proc@lc1, 9)

}

...

t1

t1

t3

t2

Fig. 1. The max example (left) and a possible run (right). The assertion (proc@lc4 ∧
¬(prev ≤ max))# ≥ 1 cannot be violated when starting with a single main process.

A possible run of the concurrent program is depicted to the right of Fig. 1.
Observe that we write (proc@lcent, 9)2 to mean that there are two proc processes
at location lcent s.t. their local val are both equal to 9. In other words, we use
counter abstraction since the processes are symmetric, i.e., processes running
the same lines of code with equal local variables are interchangeable and we do
not need to differentiate them. The initial configuration of this run is given in
terms of the values of max, prev, wait, count and proceed, here (3, 7, 0, 0, ff),
and of the main process being at location lcent. The main process starts by
incrementing the count variable and by spawning a proc process twice.

Abstracting and Counting Synchronizing Processes 5

The assertion (proc@lc4 ∧ ¬(prev ≤ max))# ≥ 1 is never violated under
any run starting from a single main process. In order to establish this fact, any
verification procedure needs to take into account the barrier in t7 in addition to
the two sources of infinitness; namely, the infinite domain of the shared and local
variables and the number of procs that may participate in the run. Until now,
the closest works to ours deal with these two sources of infinitness separately
and cannot capture facts that relate them, namely, the values of the program
variables and the number of generated processes. Any sound analysis that does
not take into account that the count variable holds the number of spawned proc
processes and that wait represents the number of proc processes at locations
lc3 or later will not be able to discard scenarios were a proc process executes
prev := val although one of them is at proc@lc4. Such an analysis will therefore
fail to show that prev ≤ max each time a process is at line proc@lc4.

Our original nested CEGAR loop, called Predicated Constrained Monotonic
Abstraction and depicted in Fig. 2, systematically leverages on simple facts that
relate numbers of processes to the variables manipulated in the program. This
allows us to verify or refute safety properties (e.g., assertions, deadlock freedom)
depending on complex behaviors induced by constructs such as dynamic barriers.
We illustrate our approach in the remaining on the max example of Fig. 1.

Fig. 2. Predicated Constrained Monotonic Abstraction

From concurrent programs to boolean concurrent programs. We build on the re-
cent predicate abstraction techniques for concurrent programs. Such techniques
would discard all variables and predicates and only keep the control flow to-
gether with the spawn and join statements. This leads to a number of counter
example guided abstraction refinement steps (the outer CEGAR loop in Fig.
2) that require the addition of new predicates. Our implementation adds the

6 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

predicates proceed, prev ≤ val, prev ≤ max, wait ≤ count, count ≤ wait. It is
worth noticing that all variables of the obtained concurrent program are finite
state (in fact booleans). Hence, one would need a finite number of counters in
order to faithfully capture the behavior of the abstracted program using counter
abstraction. In addition, some of the transitions of the program, such as t3 where
a shared variable is updated, are abstracted using a broadcast transition.

From concurrent boolean programs to counter machines. Given a concurrent
boolean program, we generate a counter machine that essentially boils down to
a vector addition system with transfers. Each counter in the machine counts the
number of processes at some location and with some local variables combination.
One state in the counter machine represents reaching a configuration satisfying
the counting property we want to verify. The other states correspond to the
possible combinations of the global variables. The transfers represent broadcast
transitions. Such a machine cannot relate the number of processes in certain
locations (for instance the number of spawned processes proc so far) to the
predicates that are valid at certain states (for instance that count = wait). In
order to remedy to this fact, we make use of counting invariants that relate
program variables, count and wait in the following invariants, to the number of
processes at certain locations.

count = (proc@lcent)
+

∑
i≥1(proc@lci)

wait =
∑
i≥3(proc@lci)

#

We automatically generate such invariants using a simple thread modular anal-
ysis that tracks the number of processes at each location. Given such counting
invariants, we constrain the counter machine and generate a more precise ma-
chine for which state reachability may now be undecidable.

Constrained monotonic abstraction. We monotonically abstract the resulting
counter machine in order to answer the state reachability problem. Spurious
traces are now possible. For instance, we remove processes violating the con-
straint imposed by the barrier in Fig.1. This example illustrates a situation
where such approximations yield false positives. To see this, suppose two pro-
cesses are spawned and proceed is set to tt. A first process gets to lc3 and waits.
The second process moves to lc1. Removing the second process opens the bar-
rier for the first process. However, the assertion can now be violated because
the removed process did not have time to update the variable max. Constrained
monotonic abstraction eliminates spurious traces by refining the preorder used
in monotonic abstraction. For the example of Fig.1, if the number of processes
at lc1 is zero, then closing upwards will not alter this fact. By doing so, the pro-
cess that was removed in forward at lc1 is not allowed to be there to start with,
and the assertion is automatically established for any number of processes. The
inner loop of our approach can automatically add more elaborate refinements
such as comparing the number of processes at different locations. Exact traces of
the counter machine are sent to the next step and unreachability of the control
location establishes safety of the concurrent program.

Abstracting and Counting Synchronizing Processes 7

Trace Simulation. Traces obtained in the counter machine are real traces as far
as the concurrent boolean program is concerned. Those traces can be simulated
on the original program to find new predicates (e.g., using Craig interpolation)
and use them in the next iteration of the outer loop.

3 Preliminaries

We write N to mean the set of natural numbers and Z to mean the one of integer
numbers. We write k to mean a constant in Z and b to mean a boolean value in
{tt, ff}. We use v, s, l, c, a to mean integer variables and ṽ, s̃, l̃ to mean boolean
variables. We let V, S, L,C and A (resp. Ṽ , S̃ and L̃) denote sets of integer vari-
ables (resp. sets of boolean variables). We let ∼ be an element in {<,≤,=,≥, >}.
An expression e (resp. predicate π) belonging to the set exprsOf(V) (resp.
predsOf(Ṽ , E)) of arithmetic expressions (resp. boolean predicates) over integer
variables V (resp. boolean variables Ṽ and arithmetic expressions E) is defined
as follows.

e ::= k || v || (e + e) || (e − e) || k e v ∈ V
π ::= b || ṽ || (e ∼ e) || ¬π || π ∧ π || π ∨ π ṽ ∈ Ṽ , e ∈ E

We write vars(e) to mean all variables v appearing in e, and vars(π) to mean
all variables ṽ and v appearing in π or in e in π. We also write atoms(π) (the
set of atomic predicates) to mean all boolean variables ṽ and all comparisons
(e ∼ e) appearing in π. We use the letters σ, η, θ, ν (resp. σ̃, η̃, ν̃) to mean map-
pings from sets of variables to Z (resp. B). Given n mappings νi : Vi → Z such
that Vi ∩Vj = ∅ for each i, j : 1 ≤ i 6= j ≤ n, and an expression e ∈ exprsOf(V),
we write valν1,...,νn (e) to mean the expression obtained by replacing each oc-
currence of a variable v appearing in some Vi by the corresponding νi(v). In a
similar manner, we write valν,ν̃,... (π) to mean the predicate obtained by replac-
ing the occurrence of integer and boolean variables as stated by the mappings
ν, ν̃, etc. Given a mapping ν : V → Z and a set subst = {vi ← ki|1 ≤ i ≤ n}
where variables v1, . . . vn are pairwise different, we write ν [subst] to mean the
mapping ν′ such that ν′(vi) = ki for each 1 ≤ i ≤ n and ν′(v) = ν(v) oth-
erwise. We abuse notation and write ν [{vi ← v′i|1 ≤ i ≤ n}], for ν : V → Z
where variables v1, . . . vn are in V and pairwise different, to mean the mapping
ν′ : (V \{vi|1 ≤ i ≤ n})∪{v′i|1 ≤ i ≤ n} → Z and such that ν′(v′) = ν(v) for each
v ∈ {vi|1 ≤ i ≤ n} and ν′(v) = ν(v) otherwise. We define ν̃ [{ṽi ← bi|1 ≤ i ≤ n}]
and ν̃ [{ṽi ← ṽ′i|1 ≤ i ≤ n}] in a similar manner.

A multiset m over a set X is a mapping X → Z. We write x ∈ m to mean
m(x) ≥ 1. The size |m| of a multiset m is

∑
x∈X m(x). We sometimes view a

multiset m as a sequence x1, x2, . . . , x|m| where each element x appears m(x)
times. We write x⊕m to mean the multiset m′ such that m′(y) equals m(y) + 1
if x = y and m(y) otherwise.

8 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

4 Concurrent Programs and Counting Logic

To simplify the presentation, we assume a concurrent program (or program for
short) to consist in a single non-recursive procedure manipulating integer vari-
ables. Arguments and return values are passed using shared variables. Programs
where arbitrary many processes run a finite number of procedures can be en-
coded by having the processes choose a procedure at the beginning.

Syntax. A procedure in a program (S,L, T) is given in terms of a set T of tran-
sitions (lc1 I lc′1 : stmt1) , (lc2 I lc′2 : stmt2) , . . . operating on two finite sets of
integer variables, namely a set S of shared variables (denoted s1, s2, . . .) and a set
L of local variables (denoted l1, l2 . . .). Each transition (lc I lc′ : stmt) involves
two locations lc and lc′ and a statement stmt. We write Loc to mean the set
of all locations appearing in T . We always distinguish two locations, namely an
entry location lcent and an exit location lcext. In any transition, location lcext
may appear as the source location only if the destination is also lcext (i.e., a
sink location). Program syntax is given in terms of pairwise different v1, . . . vn
in S ∪ L, e1, . . . en in exprsOf(S ∪ L) and π is in predsOf(exprsOf(S ∪ L)).

prog ::= (s := (k || ∗))∗ proc : (l := (k || ∗))∗ (lc I lc : stmt)
+

stmt ::= spawn || join || π || v1, . . . , vn := e1, . . . , en || stmt; stmt

Semantics. Initially, a single process starts executing the procedure with both
local and shared variables initialized as stated in their definitions. Executions
might involve an arbitrary number of spawned processes. The execution of any
process (whether initial or spawned with the statement spawn) starts at the
entry location lcent. Any process at an exit point lcext can be eliminated by
a process executing a join statement. An assume π statement blocks if the
predicate π over local and shared variables does not evaluate to true. Each
transition is executed atomically without interruption from other processes.

More formally, a configuration is given in terms of a pair (σ,m) where the
shared state σ : S → N is a mapping that associates a natural number to each
variable in S. An initial shared state (written σinit) is a mapping that complies
with the initial constraints for the shared variables. The multiset m contains
process configurations, i.e., pairs (lc, η) where the location lc belongs to Loc and
the process state η : L → N maps each local variable to a natural number.
We also write ηinit to mean an initial process state. An initial multiset (written
minit) maps all (lc, η) to 0 except for a single (lcent, ηinit) mapped to 1. We

introduce a relation
stmt
�P in order to define statements semantics (Fig. 3). We

write (σ, η,m)
stmt
�P (σ′, η′,m′), where σ, σ′ are shared states, η, η′ are process

states, and m,m′ are multisets of process configurations, in order to mean that
a process at process state η when the shared state is σ and the other process
configurations are represented by m, can execute the statement stmt and take
the program to a configuration where the process is at state η′, the shared

Abstracting and Counting Synchronizing Processes 9

state is σ′ and the configurations of the other processes are captured by m′.
For instance, a process can always execute a join if there is another process at
location lcext (rule join). A process executing a multiple assignment atomically
updates shared and local variables values according to the values taken by the
expressions of the assignment before the execution (rule assign).

(σ, η,m)
stmt
�P (σ′, η′,m′)

(σ, (lc, η)⊕m)
(lcIlc′:stmt)
−→P (σ′, (lc′, η′)⊕m′)

: trans valσ,η (π)

(σ, η,m)
π
�P (σ, η,m)

: assume

(σ, η,m)
stmt
�P (σ′, η′,m′) (σ′, η′,m′)

stmt′
�P (σ′′, η′′,m′′)

(σ, η,m)
stmt;stmt′
�P (σ′′, η′′,m′′)

: seq
m =

(
(lcext, η

′)⊕m′
)

(σ, η,m)
join
�P (σ, η,m′)

: join

substA =
{
vi ← valσ′,η′ (ei) |vi ∈ A

}
(σ, η,m)

v1,...vn,:=e1,...en
�P (σ[substS], η[substL],m)

: assign
m′ = (lcent, ηinit)⊕m

(σ, η,m)
spawn
�P (σ, η,m′)

: spawn

Fig. 3. Semantics of concurrent programs.

We write (σ,m) −→P (σ′,m′) if (σ,m)
t−→P (σ′,m′) for a transition t.

A P run ρ is a sequence (σ0,m0), t1, ..., tn, (σn,mn). The run is P feasible if

(σi,mi)
ti+1−→P (σi+1,mi+1) for each i : 0 ≤ i < n and σ0 and m0 are ini-

tial. We say that a configuration (σ,m) is reachable if there is a feasible P run
(σ0,m0), t1, ..., tn, (σn,mn) s.t. (σ,m) = (σn,mn).

Counting Logic. We use @Loc to mean the set {@lc | lc ∈ Loc} of boolean vari-
ables. Intuitively, @lc evaluates to tt exactly when the process evaluating it
is at location lc. We associate a counting variable (π)# to each predicate π in
predsOf(@Loc, exprsOf(S ∪ L)). Intuitively, in a given program configuration,
the variable (π)# counts the number of processes for which the predicate π holds.
We let Ω mean the set

{
(π)#|π ∈ predsOf(@Loc, exprsOf(S ∪ L))

}
of counting

variables. A counting predicate is a predicate in predsOf(@Loc, exprsOf(S ∪Ω)).
Elements in exprsOf(S ∪ L) and predsOf(@Loc, exprsOf(S ∪ L)) are eval-

uated wrt. a shared configuration σ and a process configuration (lc, η). For in-
stance, valσ,(lc,η) (v) is σ(v) if v ∈ S and η(v) if v ∈ L and valσ,(lc,η) (@lc′) =
(lc = lc′). We abuse notation and write valσ,m (ω) to mean the evaluation of the
counting predicate ω wrt. a configuration (σ,m). More precisely, valσ,m

(
(π)#

)
=∑

(lc,η) s.t. valσ,(lc,η)(π)
m((lc, η)) and valσ,m (v) = σ(v) for v ∈ S.

Our counting logic is quite expressive as we can capture assertion violations
and deadlocks. For location lc, we let enabled(lc) in predsOf(exprsOf(S ∪ L))
define when a process can fire some transition from lc. We capture the violation
of an assert(π) at some location lc and the deadlock configurations using the
following two counting predicates.

ωassert = (@lc ∧ ¬π)# ≥ 1 ωdeadlock =
∧
lc∈Loc(@lc ∧ enabled(lc))# = 0

10 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

5 Relating layers of abstractions

We formally describe in the following the four steps involved in our predicated
constrained monotonic abstraction approach (see Fig. 2).

5.1 Predicate abstraction

Given a program P = (S,L, T) and a number of predicates Π on the variables
S ∪ L, we leverage on existing techniques (such as [5]) in order to generate an

abstraction in the form of a boolean program P̃ =
(
S̃, L̃, T̃

)
where all shared

and local variables take boolean values. To achieve this, Π is partitioned into
three sets Πshr, Πloc and Πmix. Predicates in Πshr only mention variables in S
and those in Πloc only mention variables in L. Predicates in Πmix mention both
shared and local variables of P . A one to one mapping associates a predicate
origPredOf(ṽ) in Πshr (resp. Πmix ∪Πloc) to each ṽ in S̃ (resp. L̃).

In addition, there are as many transitions in T as in T̃ . For each (lc I lc′ : stmt)
in T there is a corresponding (lc I lc′ : abstOf(stmt)) with the same source and
destination locations lc, lc′, but with an abstracted statement abstOf(stmt) that
may operate on the variables S̃∪L̃. For instance, the statement (count := count+
1) in Fig. 1 is abstracted with the multiple assignment:

(
wait leq count,
count leq wait

)
:=

(
choose (wait leq count, ff) ,
choose (¬wait leq count ∧ count leq wait, wait leq count)

)
(1)

The value of the variable count leq wait after execution of the multiple as-
signment 1 is tt if ¬wait leq count∧ count leq wait holds, ff if wait leq count
holds, and is equal to a non deterministically chosen boolean value otherwise.
In addition, abstracted statements can mention the local variables of passive
processes, i.e., processes other than the one executing the transition. For this,

we make use of the variables L̃p =
{
l̃p|l̃ in L̃

}
where each l̃p denotes the lo-

cal variable l̃ of passive processes. For instance, the statement prev := val in
Fig. 1 is abstracted with the multiple assignment 2. Here, the local variable
prev leq val of each process other than the one executing the statement (writ-
ten prev leq valp) is separately updated. This corresponds to a broadcast where
the local variables of all passive processes need to be updated.

 prev leq val,
prev leq max,
prev leq valp

 :=


tt,

choose

(
¬prev leq val

∧ prev leq max ,
prev leq val

∧ ¬prev leq max

)
,

choose

(
¬prev leq val

∧ prev leq valp
,

prev leq val
∧ ¬prev leq valp

)
 (2)

Syntax and semantics of boolean programs. The syntax of boolean programs
is described below. Variables ṽ1, . . . , ṽn are in S̃ ∪ L̃ ∪ L̃p. Predicate π is in

Abstracting and Counting Synchronizing Processes 11

predsOf(S̃ ∪ L̃), and predicates π1, . . . , πn are in predsOf(S̃ ∪ L̃ ∪ L̃p). We fur-

ther require for the multiple assignment that if ṽi ∈ S̃∪ L̃ then vars(πi) ⊆ S̃∪ L̃.

prog ::= (s̃ := (tt || ff || ∗))∗ proc : (l̃ := (tt || ff || ∗))∗ (lc I lc : stmt)
+

stmt ::= spawn || join || π || ṽ1, . . . , ṽn := π1, . . . , πn || stmt; stmt

Apart from the fact that all variables are now boolean, the main difference of

Fig. 4 with Fig. 3 is the assign statement. For this, we write (σ̃, η̃, η̃p)
ṽ1,...ṽn:=π1,...πn7→P̃

(σ̃′, η̃′, η̃′p) to mean that η̃′p is obtained in the following way. First, we change the

domain of η̃p from L̃ to L̃p and obtain the mapping η̃p,1 = η̃p

[{
l̃← l̃p|l̃ ∈ L̃

}]
,

then we let η̃p,2 = η̃p,1

[{
ṽi ← valσ̃,η̃,η̃p,1 (πi) |ṽi ∈ L̃p in lhs of the assignment

}]
.

Finally, we obtain η̃′p = η̃p,2

[{
l̃p ← l̃|l̃ ∈ L̃

}]
. This step corresponds to a broad-

cast. We write (σ̃, m̃) −→P̃ (σ̃′, m̃′) if (σ̃, m̃)
t̃−→P̃ (σ̃′, m̃′) for some t̃. A P̃ run

ρ̃ is a sequence (σ̃0, m̃0), t̃1, ..., t̃n, (σ̃n, m̃n). The run is feasible if (σ̃i, m̃i)
t̃i+1−→P̃

(σ̃i+1, m̃i+1) for each i : 0 ≤ i < n and both σ̃0 and m̃0 are initial.

(σ̃, η̃, m̃)
stmt
�P̃ (σ̃′, η̃′, m̃′)

(σ̃, (lc, η̃)⊕ m̃)
(lcIlc′:stmt)
−→P̃ (σ̃′, (lc′, η̃′)⊕ m̃′)

: trans valσ̃,η̃ (π)

(σ̃, η̃, m̃)
π
�P̃ (σ̃, η̃, m̃)

: assume

(σ̃, η̃, m̃)
stmt
�P̃ (σ̃′, η̃′, m̃′) and (σ̃′, η̃′, m̃′)

stmt′
�P̃ (σ̃′′, η̃′′, m̃′′)

(σ̃, η̃, m̃)
stmt;stmt′
�P̃ (σ̃′′, η̃′′, m̃′′)

: sequence

m̃′ = (lcent, η̃init)⊕ m̃

(σ̃, η̃, m̃)
spawn
�P̃ (σ̃, η̃, m̃′)

: spawn
m̃ =

(
(lcext, η̃

′)⊕ m̃′
)

(σ̃, η̃, m̃)
join
�P̃ (σ̃, η̃, m̃′)

: join

σ̃′ = σ̃[
{
ṽi ← valσ̃,η̃ (πi) |ṽi ∈ S̃

}
]

η̃′ = η̃[
{
ṽi ← valσ̃,η̃ (πi) |ṽi ∈ L̃

}
]

h : m̃→ m̃′ a bijection with h((lcp, η̃p)) = (lcp, η̃
′
p)

for some η̃′ s.t. (σ̃, η̃, η̃p)
ṽ1,...ṽn,:=π1,...πn7→P̃ (σ̃′, η̃′, η̃′p)

(σ̃, η̃, m̃)
ṽ1,...ṽn:=π1,...πn

�P̃ (σ̃′, η̃′, m̃′)

: assign

Fig. 4. Semantics of boolean concurrent programs.

Relation between P and P̃ . Given a shared configuration σ̃, we write origPredOf(σ̃)
to mean the predicate

∧
s̃∈S̃(σ̃(s̃) ⇔ origPredOf(s̃)). In a similar manner, we

write origPredOf(η̃) to mean the predicate
∧
l̃∈L̃(η̃(l̃) ⇔ origPredOf(l̃)). Ob-

serve vars(origPredOf(σ̃)) ⊆ S and vars(origPredOf(η̃)) ⊆ S ∪ L. We abuse
notation and write valσ (σ̃) (resp. valη (η̃)) to mean that valσ (origPredOf(σ̃))

12 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

(resp. valη (origPredOf(η̃))) holds. We also write valσ̃,η̃ (π), for a boolean com-
bination π of predicates in Π, to mean the predicate obtained by replacing each
π′ in Πmix∪Πloc (resp. Πshr) with η̃(ṽ) (resp. σ̃(ṽ)) where origPredOf(ṽ) = π′.
We let valm (m̃) mean there is a bijection h : |m| → |m̃| s.t. we can as-
sociate to each (lc, η)i in m an (lc, η̃)h(i) in m̃ such that valη (η̃) for each

i : 1 ≤ i ≤ |m|. To each P̃ configuration (σ̃, m̃) corresponds a set γ ((σ̃, m̃)) =
{(σ,m)|valσ (σ̃) ∧ valm (m̃)}, and to each P̃ configuration (σ,m) a singleton
α ((σ,m)) = {(σ̃, m̃)|valσ (σ̃) ∧ valm (m̃)}. We initialize the P̃ variables s.t. for
each σinit,minit there are σ̃init, m̃init s.t. α ((σinit,minit)) = {(σ̃init, m̃init)}. To
each P̃ run ρ̃ = (σ̃0, m̃0), t̃1, ...(σ̃n, m̃n) corresponds a set of P runs γ (ρ̃) ={

(σ0,m0), t1, ...(σn,mn)|(σi,mi) ∈ γ ((σ̃, m̃)) , t̃i = abstOf(ti)
}

, and to each P

run ρ = (σ0,m0), t1, ...tn, (σn,mn) corresponds a set of P̃ runs α (ρ) defined as{
α ((σ0,m0)) , t̃1, ...t̃n, α ((σn,mn)) |ti = abstOf(ti)

}
.

Definition 1 (predicate abstraction). Let P = (S,L, T) be a program and

P̃ =
(
S̃, L̃, T̃

)
be its abstraction wrt. Π as described in this Section. The ab-

straction is said to be effective and sound if P̃ can be effectively computed and
to each feasible P run ρ corresponds a non empty set α (ρ) of feasible P̃ runs.

5.2 Translation into an extended counter machine

Assume a program P = (S,L, T), a set Π ⊆ predsOf(exprsOf(S ∪ L)) of pred-
icates and two counting predicates in predsOf(@Loc, exprsOf(S ∪Ω)): an in-

variant ωinv and a target ωtrgt. We write P̃ =
(
S̃, L̃, T̃

)
to mean the boolean

abstraction of P wrt. Π∪atoms(ωtrgt)∪atoms(ωinv). Intuitively, this step results
in the state reachability problem of an extended counter machine MP,Π,ωinv,ωtrgt

that captures reachability of P̃ configurations (abstracting ωtrgt P configura-

tions) with P̃ runs that are strengthened wrt. the P counting invariant ωinv.

An extended counter machine M is a tuple (Q,C,∆,QInit, ΘInit, qtrgt) where
Q is a finite set of states, C is a finite set of counters (i.e., variables ranging over
N), ∆ is a finite set of transitions, QInit ⊆ Q is a set of initial states, ΘInit is an
initial set of counters valuations, (i.e., mappings from C to N) and qtrgt is a state
in Q. A transition δ in ∆ is of the form [q : op : q′] where the operation op is either
the identity operation nop, a guarded command grd ⇒ cmd, or a sequential
composition of operations. We use a set A of auxiliary variables ranging over
N. These are meant to be existentially quantified when firing the transitions as
explained in Fig. 5. A guard grd is a predicate in predsOf(exprsOf(A ∪ C)) and
a command cmd is a multiple assignment c1, . . . , cn := e1, . . . , en that involves
e1, . . . en in exprsOf(A ∪ C) and pairwise different c1, . . . cn.

A machine configuration is a pair (q, θ) where q is a state in Q and θ is a
mapping C → N. Semantics are given in Fig. 5. A configuration (q, θ) is initial
if q ∈ QInit and θ ∈ ΘInit. An M run ρM is a sequence (q0, θ0); δ1; . . . (qn, θn). It

is feasible if (q0, θ0) is initial and (qi, θi)
δi+1−→M (qi+1, θi+1) for i : 0 ≤ i < n. We

Abstracting and Counting Synchronizing Processes 13

write −→M to mean ∪δ∈∆
δ−→M . The machine state reachability problem is to

decide whether there is an M feasible run (q0, θ0); δ1; . . . (qn, θn) s.t. qn = qtrgt.

δ = [q : op : q′] and θ
op
�M θ′

(q, θ)
δ−→M (q′, θ′)

: transition

θ
nop
�M θ

: nop θ
op
�M θ′ and θ′

op′
�M θ′′

θ
op;op′
�M θ′′

: seq

∃A.valθ (grd) ∧ ∀i : 1 ≤ i ≤ n.θ′(ci) = valθ (ei)

θ
grd⇒cmd
�M θ′

: gcmd

Fig. 5. Semantics of an extended counter machine

Translation. We describe a machine (Q,C,∆,QInit, ΘInit, qtrgt) that captures

the behaviour of the program P̃ and encodes reaching abstractions of P config-
urations satisfying ωtrgt in terms of a machine state reachability problem. Each
state in Q is either the target state qtrgt or is associated to a shared configuration
σ̃. We write qσ̃ to make the association explicit. There is a one to one mapping
that associates a process configuration (lc, η̃) to each counter c(lc,η̃) in C. Transi-
tions are generated as described in Fig. 7. We associate a program configuration
(σ̃, m̃) to each machine configuration encM ((σ̃, m̃)) = (qσ̃, θ). Intuitively, states
in Q encode values of the shared variables while each counter c(lc,η̃) counts the
number of processes at location lc and satisfying η̃. In other words m̃((lc, η̃)) =
c(lc,η̃) for each (lc, η̃). The encoding of a P̃ run ρP̃ = (σ̃0, m̃0); t̃1; . . . (σ̃n, m̃n)

is the set
{

(q0, θ0); δ1 . . . ; (qn, θn)|(qi, θi) = encM ((σ̃i, m̃i)) and δi ∈ ∆t̃i

}
. The

machine encodes the behaviour of the boolean program as specified in Lem. 1.

Lemma 1 (monotonic translation). Any P̃ configuration (σ̃, m̃) such that

ωtrgt [origPredOf(s̃)/σ̃(s̃)]
[
(π)#/

∑
{(lc,η̃)|val(lc,η̃)(π)} m̃((lc, η̃))

]
holds is P̃ reach-

able iff qtrgt is M reachable.

Let us write θ � θ′ if θ(c) ≤ θ′(c) for each c ∈ C. Observe that all machine

transitions of Fig. 7 are monotonic in that if (q1, θ1)
δ−→M (q2, θ2) for some δ ∈

∆, and if θ1 � θ3, then there is a θ4 such that θ2 � θ4 and (q1, θ3)
δ−→M (q2, θ4).

Combined with the fact that � is a well quasi ordering over N|C|, we get that:

Lemma 2 (monotonic decidability). State reachability of any monotonic
translation is decidable.

However, monotonic translations correspond to coarse over-approximations
that are incapable of dealing with statements of our counting logic (Sec. 4). Intu-
itively, bad configurations (such as those where a deadlock occurs) are no more

14 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

[qσ̃ : op : qσ̃′] ∈ ∆
strongωinv (σ̃) = ∃S.origPredOf(σ̃) ∧ ωinv

[
(π)#/

∑
{(lc,η̃)|val(lc,η̃)(π)} c(lc,η̃)

]
[qσ̃ : strongωinv (σ̃); op; strongωinv (σ̃′) : qσ̃′] ∈ ∆′

strengthen

Fig. 6. Strengthening of counter transitions given a counting invariant ωinv.

upward closed wrt. �. This loss of precision makes the verification of such prop-
erties out of the reach of techniques solely based on monotonic translations. To
regain some of the lost precision, we constrain the runs using counting invariants.

Lemma 3 (strengthened soundness). Any feasible P run ρP has a P̃ feasible
run ρP̃ in α (ρP) with an M feasible run in encM (ρP̃), where M is any machine
strengthened as described in Fig. 7 and Fig. 6.

(
lc I lc′ : stmt

)
and

[
(σ̃, η̃) : op : (σ̃′, η̃′)

]
stmt

(qσ̃ : c(lc,η̃) ≥ 1; (c(lc,η̃))
−−; op; (c(lc′,η̃′))

++ : qσ̃′) ∈ ∆(lcIlc′:stmt)

: transition

(
lc I lc′ : stmt

)
and

[
(σ̃, η̃) : op : (σ̃′, η̃′)

]
stmt

(qσ̃ : ωtrgt [s̃/σ̃(s̃)]
[
(π)#/

∑
(lc,η̃)|=π c(lc,η̃)

]
: qtrgt) ∈ ∆trgt

: target

valσ̃,η̃ (π)

[(σ̃, η̃) : nop : (σ̃, η̃)]π
: assume [

(σ̃, η̃) : (c(lcent,η̃init))
++ : (σ̃, η̃)

]
spawn

: spawn

[
(σ̃, η̃) : op : (σ̃′, η̃′)

]
stmt

and
[
(σ̃′, η̃′) : op′ : (σ̃′′, η̃′′)

]
stmt′[

(σ̃, η̃) : op; op′ : (σ̃′′, η̃′′)
]
stmt;stmt′

: sequence

[
(σ̃, η̃) : c(lcext,η̃′) ≥ 1; (c(lcext,η̃′))

−− : (σ̃, η̃)
]
join

: join

σ̃′ = σ̃[
{
ṽi ← valσ̃,η̃ (πi) |ṽi ∈ S̃

}
] η̃′ = η̃[

{
ṽi ← valσ̃,η̃ (πi) |ṽi ∈ L̃

}
]

E =

{
a(lc,η̃p),(lc,η̃′p)

|(σ̃, η̃, η̃p)
ṽ1,...ṽn,:=π1,...πn−→M (σ̃′, η̃′, η̃′p), a ∈ A

}
DomE =

{
(lc, η̃p)|a(lc,η̃p),(lc,η̃′p) ∈ E

}
ImgE =

{
(lc, η̃′p)|a(lc,η̃p),(lc,η̃′p) ∈ E

}
(σ̃, η̃) :

 {
c(d) =

∑
i∈ImgE

ad,i|d ∈ DomE
}

∪
{
c(i) :=

∑
d∈DomE

ad,i|i ∈ ImgE
} : (σ̃′, η̃′)


ṽ1,...ṽn,:=π1,...πn

: assign

Fig. 7. Translation of the transitions of a boolean program
(
S̃, L̃, T̃

)
, given a counting

target ωtrgt, to the transitions ∆ = ∪t∈T̃∆t ∪∆trgt of a counter machine.

The resulting machine is not monotonic in general and we can encode the
state reachability of a two counter machine.

Abstracting and Counting Synchronizing Processes 15

Lemma 4 (strengthened undecidability). State reachability is in general
undecidable after strengthening.

5.3 Constrained monotonic abstraction and preorder refinement

This step addresses the state reachability problem for an extended counter ma-
chine M = (Q,C,∆,QInit, ΘInit, qtrgt). As stated in Lem. 4, this problem is
in general undecidable for strengthened translations. The idea here [10] is to
force monotonicity with respect to a well-quasi ordering � on the set of its
configurations. This is apparent at line 7 of the classical working list algorithm
Alg. 1. We start with the natural component wise preorder θ � θ′ defined as
∧c∈Cθ(c) ≤ θ′(c). Intuitively, θ � θ′ holds if θ′ can be obtained by “adding more
processes to” θ. The algorithm requires that we can compute membership (line
5), upward closure (line 7), minimal elements (line 7) and entailment (lines 9,
13, 15) wrt. to preorder �, and predecessor computations of an upward closed
set (line 7).

If no run is found, then not reachable is returned. Otherwise a run is
obtained and simulated on M. If the run is possible, it is sent to the fourth
step of our approach (described in Sect. 5.4). Otherwise, the upward closure
step Up�((q, θ)) responsible for the spurious trace is identified and an inter-
polant I (with vars(I) ⊆ C) is used to refine the preorder as follows: �i+1:=
{(θ, θ′)|θ �i θ′ ∧ (θ |= I ⇔ θ′ |= I)}. Although stronger, the new preorder is again
a well quasi ordering and the trace is guaranteed to be eliminated in the next
round. We refer the reader to [3] for more details.

Lemma 5 (CMA [3]). All steps involved in Alg. 1 are effectively computable
and each instantiation of Alg. 1 is sound and terminates given the preorder is a
well quasi ordering.

5.4 Simulation on the original concurrent program

A given run of the extended counter machine (Q,C,∆,QInit, ΘInit, qtrgt) is sim-
ulated by this step on the original concurrent program P = (S,L, T). This is
possible because to each step of the counter machine run corresponds a unique
and concrete transition of P . This step is classical in counter example guided
abstraction refinement approaches. In our case, we need to differentiate the vari-
ables belonging to different processes during the simulation. As usual in such
frameworks, if the trace turns out to be possible then we have captured a con-
crete run of P that violates an assertion and we report it. Otherwise, we deduce
predicates that make the run infeasible and send them to step 1 (Sect. 5.1).

Theorem 1 (predicated constrained monotonic abstraction). Assume
an effective and sound predicate abstraction. If the constrained monotonic ab-
straction step returns not reachable, then no configuration satisfying ωtrgt is

16 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

input : A machine (Q,C,∆,QInit, ΘInit, qtrgt) and a preorder �
output: not reachable or a run (q1, θ1); δ1; (q2, θ2); δ2; . . . δn; (qtrgt, θ)

1 Working := ∪e∈Min�(N|C|) {((qtrgt, e), (qtrgt, e))}, Visited := {};
2 while Working 6= {} do
3 ((q, θ), ρ) =pick a member from Working;
4 Visited ∪ = {((q, θ), ρ)};
5 if (q, θ) ∈ QInit ×ΘInit then return ρ;
6 foreach δ ∈ ∆ do
7 pre = Min�(Preδ(Up�((q, θ))));

8 foreach (q′, θ′) ∈ pre do
9 if θ′′ � θ′ for some ((q′, θ′′),) in Working ∪ Visited then

10 continue;
11 else
12 foreach ((q′, θ′′),) ∈Working do
13 if θ′ � θ′′ then Working = Working \ {((q′, θ′),)};
14 foreach ((q′, θ′′),) ∈ Visited do
15 if θ′ � θ′′ then Visited = Visited \ {((q′, θ′),)};
16 Working ∪ = {((q′, θ′), (q′, θ′); δ; ρ)}
17 return not reachable;

Algorithm 1: Constrained monotonic abstraction

reachable in P . If a P run is returned by the simulation step, then it reaches
a configuration where ωtrgt holds. Every iteration of the outer loop terminates
given the inner loop terminates. Every iteration of the inner loop terminates.

Notice that there is no general guaranty that we establish or refute the safety
property. For instance, it may be the case that one of the loops does not termi-
nate (although each one of their iterations does) or that we need to add predi-
cates relating local variables of two different processes (something the predicate
abstraction framework we use cannot express).

6 Experimental results

We report on experiments with our prototype Pacman(for predicated constrained
monotonic abstraction). We have conducted our experiments on an Intel Xeon
2.67GHz processor with 8GB of RAM. To the best of our knowledge, the reported
examples which need refinement of monotonic abstraction’s preorder cannot be
verified by previous techniques; either because the examples require stronger
orderings than the usual preorder, or because they involve counting target pred-
icates that are not expressed in terms of violations of program assertions.

All predicate abstraction predicates and counting invariants have been de-
rived automatically. For the counting invariants, we implemented a thread modu-
lar analysis operating on the polyhedra numerical domain. This took less than 11
seconds for all the examples we report here. For each example, we report on the

Abstracting and Counting Synchronizing Processes 17

Table 1. Checking assertion violation with Pacman

outer loop inner loop results
example P ECM num. preds. num. preds. time(s) output

max 5:2:8 18:16:104 4 5 6 2 192 correct

max-bug 5:2:8 18:8:55 3 4 5 2 106 trace

max-nobar 5:2:8 18:4:51 3 3 3 0 24 trace

readers-writers 3:3:10 9:64:121 5 6 5 0 38 correct

readers-writers-bug 3:3:10 9:7:77 3 3 3 0 11 trace

parent-child 2:3:10 9:16:48 3 4 5 2 73 correct

parent-child -nobar 2:3:10 9:1:16 2 1 2 0 3 trace

simp-bar 5:2:9 8:16:123 3 3 5 2 93 correct

simp-nobar 5:2:9 8:7:67 3 2 3 0 13 trace

dynamic-barrier 5:2:8 8:8:44 3 3 3 0 8 correct

dynamic-barrier-bug 5:2:8 8:1:14 2 1 2 0 3 trace

as-many 3:2:6 8:4:33 3 2 6 3 62 correct

as-many-bug 3:2:6 8:1:9 2 1 2 0 2 trace

number of transitions and variables both in P and in the resulting counter ma-
chine. We also state the number of refinement steps and predicates automatically
obtained in both refinement loops. We made use of several optimizations. For
instance, we discarded boolean mappings corresponding to unsatisfiable com-
binations of predicates, we used automatically generated invariants (such as
(wait ≤ count) ∧ (wait ≥ 0) for the max example in Fig.1) to filter the state
space. Such heuristics dramatically helps our state space exploration algorithms.

We report on experiments checking assertion violations in Tab.1 and deadlock
freedom in Tab.2. For both cases we consider correct and buggy (by removing
the barriers for instance) programs. Pacman establishes correctness and exhibits
faluty runs as expected. The tuples under the P column respectively refer to the
number of variables, procedures and transitions in the origirnal program. The
tuples under the ECM column refer to the number of counters, states and
transitions in the extended counter machine.

Table 2. Checking deadlock with Pacman

outer loop inner loop results
example P ECM num. preds. num. preds. time(s) output

bar-bug-no.1 4:2:7 7:16:66 4 4 6 2 27 trace

bar-bug-no.2 4:3:8 9:16:95 4 3 4 0 33 trace

bar-bug-no.3 3:2:6 6:16:78 5 4 6 1 21 trace

correct-bar 4:2:7 7:16:62 4 4 6 2 18 correct

ddlck bar-loop 4:2:10 8:8:63 3 2 3 0 16 trace

no-ddlck bar-loop 4:2:9 7:16:78 4 3 4 0 19 correct

18 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

7 Conclusions and Future Work

We have presented a technique, predicated constrained monotonic abstraction,
for the automated verification of concurrent programs whose correctness depends
on synchronization between arbitrary many processes, for example by means of
barriers implemented using integer counters and tests. We have introduced a new
logic and an iterative method based on combination of predicate, counter and
monotonic abstraction. Our prototype implementation gave encouraging results
and managed to automatically establish or refute program assertions deadlock
freedom. To the best of our knowledge, this is beyond the capabilities of current
automatic verification techniques. Our current priority is to improve scalability
by leveraging on techniques such as cartesian and lazy abstraction, partial order
reduction, or combining forward and backward explorations. We are also aim to
generalize to richer variable types.

References

1. P. Abdulla, F. Haziza, and L. Holk. All for the price of few. In R. Giacobazzi,
J. Berdine, and I. Mastroeni, editors, Verification, Model Checking, and Abstract
Interpretation, volume 7737 of Lecture Notes in Computer Science, pages 476–495.
Springer Berlin Heidelberg, 2013.

2. P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay. Algorithmic analysis of pro-
grams with well quasi-ordered domains. Information and Computation, 160:109–
127, 2000.

3. P. A. Abdulla, Y.-F. Chen, G. Delzanno, F. Haziza, C.-D. Hong, and A. Rezine.
Constrained monotonic abstraction: A cegar for parameterized verification. In
Proc. CONCUR 2010, 21th Int. Conf. on Concurrency Theory, pages 86–101, 2010.

4. E. Clarke, M. Talupur, and H. Veith. Environment abstraction for parameterized
verification. In Proc. VMCAI ’06, 7th Int. Conf. on Verification, Model Checking,
and Abstract Interpretation, volume 3855 of Lecture Notes in Computer Science,
pages 126–141, 2006.

5. A. F. Donaldson, A. Kaiser, D. Kroening, M. Tautschnig, and T. Wahl.
Counterexample-guided abstraction refinement for symmetric concurrent pro-
grams. Formal Methods in System Design, 41(1):25–44, 2012.

6. A. Downey. The Little Book of SEMAPHORES (2nd Edition): The Ins and Outs
of Concurrency Control and Common Mistakes. Createspace Independent Pub,
2009.

7. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1-2):63–92, 2001.

8. A. Kaiser, D. Kroening, and T. Wahl. Dynamic cutoff detection in parameterized
concurrent programs. In Proceedings of CAV, volume 6174 of LNCS, pages 654–
659. Springer, 2010.

9. A. Pnueli, J. Xu, and L. Zuck. Liveness with (0,1,infinity)-counter abstraction.
In Proc. 14th Int. Conf. on Computer Aided Verification, volume 2404 of Lecture
Notes in Computer Science, 2002.

10. A. Rezine. Parameterized Systems: Generalizing and Simplifying Automatic Veri-
fication. PhD thesis, Uppsala University, 2008.

Abstracting and Counting Synchronizing Processes 19

A Appendix

In this section the examples of Sec.6 are demonstrated. For simplicity the prop-
erty which is going to be checked in the input program is reformulated as a
statement that goes to lcerr which denotes the error location.

A.1 Readers and Writers

int readcount := 0
bool lock := tt, writing := ff

main :
lcent I lcent : spawn(writer)
lcent I lcent : readcount = 0 ∧ lock; spawn(reader); readcount := readcount+ 1
lcent I lcent : readcount! = 0; spawn(reader); readcount := readcount+ 1

reader :
lcent I lcerr : writing
lcent I lcext : readcount = 1; readcount := readcount− 1; lock := tt

lcent I lcext : readcount! = 1; readcount := readcount− 1

writer :
lcent I lc1 : lock; lock := ff

lc1 I lc2 : writing := tt

lc2 I lc3 : writing := ff

lc3 I lcext : lock := tt

Fig. 8. The readers and writers example.

The readers and writers problem is a classical problem. In this problem there
is a resource which is shared between several processes. There are two type of
processes, one that only read from the resource reader and one that read and
write to it writer. At each time there can either exist several readers or only
one writer. readers and writers can not exist at the same time.

In Fig.8 a solution to the readers and writers problem with preference to
readers is shown. In this approach readers wait until there is no writer in the
critical section and then get the lock that protects that section. We simulate a
lock with a boolean variable lock. Considering the fact that in our model the
transitions are atomic, such simulation is sound. When a writer wants to access
the critical section, it first waits for the lock and then gets it (buy setting it to
ff). Before starting writing, a writer sets a flag writing that we check later on
in a reader process. At the end a writer unsets writing and frees lock.

An arbitrary number of reader processes can also be spawned. The number of
readers is being kept track of by the variable readcount. When the first reader

20 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

is going to be spawned (i.e. readcount = 0) flag lock must hold. readcount is
incremented after spawning each reader. Whenever a reader starts execution,
it checks flag writing and goes to error if it is set, because it shows that at the
same time a writer is writing to the shared resource. When a reader wants to
exit, it decrements the readcount. The last reader frees the lock.

In this example we need a counting invariant to capture the relation between
number of readers, i.e. readcount and the number of processes in different loca-
tions of process reader.

A.2 Parent and Child

int i := 0
bool allocated := ff

main :
lcent I lcent : spawn(parent); i := i+ 1
lcent I lcent : join(parent); i := i− 1

parent :

lcent I lc1 : allocated := tt

lc1 I lc2 : spawn(child)
lc2 I lc3 : join(child)
lc3 I lcext : i = 1; allocated := ff

lc1 I lc3 : tt

child :
lcent I lcext : allocated
lcent I lcerr : ¬allocated

Fig. 9. The Parent and Child example.

In the example of Fig.9 a sample nested spawn/join is demonstrated. In
this example two types of processes exist. One is parent which is spawned by
main and the other one is called child which is spawned by parent. The shared
variable i is initially 0 and is incremented and decremented respectively when
a parent process is spawned and joined. A parent process first sets the shared
flag allocated and then either spawns and joins a child process or just moves
from lc1 to lc3 without doing anything. The parent that sees i = 1 unsets the
flag allocated. A child process goes to error if allocated is not set. This example
is error free because one can see that allocated is unset when only one parent
exists and that parent has already joined its child or did not spawn any child,
i.e. no child exists. Such relation between number of child and parent processes
as well as variable i can only be captured by appropriate counting invariants
and predicate abstraction is incapable of that.

Abstracting and Counting Synchronizing Processes 21

A.3 Simple Barrier

int wait := 0, count := 0
bool enough := ff, f lag := ∗, barrierOpen := ff

main :
lcent I lc1 : ¬enough; spawn(proc); count := count+ 1
lc1 I lcent : enough := ff

lc1 I lcent : enough := tt

proc :

lcent I lc1 : flag := tt

lc1 I lc2 : flag := ff

lc2 I lc3 : wait := wait+ 1
lc3 I lc4 : (enough ∧ wait = count); barrierOpen := tt : wait := wait− 1
lc3 I lc4 : barrierOpen;wait := wait− 1
lc4 I lcerr : flag

Fig. 10. Simple Barrier example.

In the example of Fig.10 a simple application of a barrier is shown. main
process spawns an arbitrary number of procs and increments a shared variable
count that is initially zero and counts the number of procs in the program before
shared flag enough is set. Each proc first sets and then unsets shared flag flag.
The statements in lc2 to lc4 simulate a barrier. Each proc first increments a
shared variable wait which is initially zero. Then the first proc that finds out that
the condition (enough∧wait = count) holds, sets a shared flag barrierOpen and
goes to lc4. Other procs that want to traverse the barrier can the transition lc3 I
lc4 : barrierOpen. After the barrier a proc goes to error if flag is unset.One can
see that the error state is not reachable in this program because all procs have
to unset flag before any of them can traverse the barrier. To prove that this
example is error free, it must be shown that the barrier implementation does not
let any process be in locations lcent, lc1 or lc2 where there are processes after
barrier, i.e. in locations lc4 and lcerr. Proving such property requires the relation
between number of processes in program locations and variables wait and count
be kept. This is possible when we use counting invariants as introduced in this
paper.

A.4 Dynamic Barrier

In a dynamic barrier the number of processes that have to wait at a barrier
can change. The way we implemented barriers in this paper makes it easy to
capture characteristics of such barriers. In the example of Fig.11 the variables

22 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

int N := ∗, wait := ∗, count := ∗, i := 0
bool done := ff

main :
lcent I lc1 : count, wait := N, 0
lc1 I lc1 : i! = N, spawn(proc); i := i+ 1
lc2 I lc3 : i = N ∧ wait = count
lc3 I lc3 : join(proc); i := i− 1
lc3 I lc4 : i = 0; done := tt

proc :

lcent I lcext : count := count− 1
lcent I lcerr : done

Fig. 11. dynamic barrier

corresponding to barrier i.e. count and wait are respectively set to N and 0 in
the main’s first statement. Then procs are spawned as long as the counter i is
not equal to N which denotes the total number of procs in the system. Each
created proc decrements count and by doing so it decrements the number of
processes that have to wait at the barrier. In this example the barrier is in lc2
of main and can be traversed as usual when wait = count holds and no more
proc is going to be spawned, i.e. i = N . Then main can non-deterministically
join a proc or set flag done if no more proc exists.

A.5 As Many

int count1 := 0, count2 := 0
bool enough := ff

main :
lcent I lc1 : spawn(proc1); count1 := count1 + 1
lc1 I lcent : spawn(proc2); count2 := count2 + 1
lcent I lc2 : enough := tt

proc1 :

lcent I lc1 : enough
lc1 I lcerr : count1 6= count2

proc2 :

lcent I lc1 : enough

Fig. 12. As Many

Abstracting and Counting Synchronizing Processes 23

In the example of Fig.12 process main spawns as many processes proc1 as
proc2 and it increments their corresponding counters count1 and count2 ac-
cordingly. At some point main sets flag enough and does not spawn any other
processes. Processes in proc1 and proc2 start execution after enough is set. A
process in proc1 goes to error location if count1 6= count2. One can see that error
is not reachable because the numbers of processes in the two groups are the same
and respective counter variables are initially zero and are incremented with each
spawn to represent the number of processes. To verify this example obviously the
relation between count1, count2 and number of processes in different locations
of proc1 and proc2 must be captured.

A.6 Barriers causing deadlock

int wait := 0, count := 0, open := 0
bool proceed := ff

main :
lcent I lcent : spawn(proc); count := count+ 1
lcent I lc1 : proceed := tt

proc :

lcent I lc1 : wait := wait+ 1
lc1 I lc2 : proceed ∧ wait = count; open := open+ 1
lc1 I lc2 : proceed ∧ wait 6= count
lc2 I lc3 : open > 0; open := open− 1

lc2 I lcerr : open = 0 ∧ (proc@lcent)
= 0 ∧ (proc@lc1)# = 0

Fig. 13. Buggy Barrier No.1

In Fig.13 a buggy implementation of barrier is demonstrated. This example is
based on an example in [6]. The barrier implementation in the book is based on
semaphores and in our example the shared variable open which is initialized to
zero plays the role of a semaphore. A buggy barrier is implemented in program
locations lcent to lc3. First process main spawns a number of process proc,
increments the shared variable count which is supposed to count the number of
procs and at the end sets flag proceed. A proc increments shared variable wait
which is aimed to count the number of procs accumulated at the barrier. procs
must wait for the flag proceed to be set before they can proceed to lc2. Each
proc that finds out that condition proceed ∧ wait = count holds increments
open. This lets another process which is waiting at lc2 to take the transition
lc2 I lc3, i.e. traverse the barrier. A deadlock situation is possible to happen in
this implementation and that is when one or more processes are waiting for the
condition open > 0 to hold, but there is no process left at lcent or lc1 of process
which may eventually increment open. In this case a process goes to error state.

24 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

int wait := 0, count := 0
bool proceed := ff

main :
lcent I lcent : spawn(proc1); count := count+ 1
lcent I lcent : spawn(proc2)
lcent I lcext : proceed := tt

proc1 :

lcent I lc1 : wait := wait+ 1
lc1 I lc2 : proceed ∧ wait = count

lc1 I lcerr : proceed ∧ wait 6= count ∧ (proc1@lcent)
= 0

proc2 :

lcent I lc1 : wait > 0;wait := wait− 1

Fig. 14. Buggy Barrier No.2

In Fig.14 another buggy implementation of a barrier is demonstrated which
makes deadlock possible. Process main non-deterministically either spawns a
proc1 and increments count or spawns a proc2 or sets flag proceed. proc1 contains
a barrier. Each process in proc1 increments wait and then waits at lc1 for the
barrier condition to hold. A proc2 decrements wait if wait > 0. A deadlock
happens when at least a proc2 decrements wait which causes the condition in
lc1 I lc2 of proc1 to never hold. We check a deadlock situation in lc1 I lcerr
of proc1 which is equivalent to the situation where proceed∧wait 6= count does
not hold but there exists no process in lcent of proc1 that can increment wait.

int wait := 0, count := 0
bool proceed := ff

main :
lcent I lcent : spawn(proc); count := count+ 1
lcent I lc1 : proceed := tt

proc :

lcent I lc1 : wait := wait+ 1
lcent I lc1 : wait > 0;wait := wait− 1
lc1 I lc2 : proceed ∧ wait = count

lc1 I lcerr : proceed ∧ wait 6= count ∧ (proc@lcent)
= 0

Fig. 15. Buggy Barrier No.3

The buggy implementation of a barrier in Fig.15 is similar to Fig.14, just
that this time the proc itself may decrement the wait and thus make the barrier

Abstracting and Counting Synchronizing Processes 25

condition proceed ∧ wait = count never hold. A deadlock situation is detected
similar to the Fig.14.

int wait := 0, count := 0, open := 0
bool proceed := ff

main :
lcent I lcent : spawn(proc); count := count+ 1
lcent I lc1 : proceed := tt

proc :

lcent I lc1 : wait := wait+ 1
lc1 I lc2 : proceed ∧ wait = count; open := open+ 1
lc1 I lc2 : proceed ∧ wait 6= count
lc2 I lc3 : open >= 1
lc3 I lc4 : wait := wait− 1;
lc4 I lcerr : wait = 0 ∧ open = 0
lc4 I lcent : wait = 0 ∧ open >= 1; open := open− 1
lc4 I lcent : wait 6= 0

Fig. 16. Buggy Barrier in Loop

The example in Fig.16 is based on an example in [6]. It demonstrates a
buggy implementation of a reusable barrier. Reusable barriers are needed when
a barrier is inside a loop. In Fig.16 the loop is formed by backward edges from lc3
to lcent. Process main spawns proc and increments count accordingly. Program
locations lcent to lc3 in proc correspond the barrier implementation and are
similar to example in Fig.13 and the other transitions make the barrier ready to
be reused in the next loop iteration. The example is buggy first because deadlock
is possible and second because a processes can continue to next loop iteration
while others are still in previous iterations. Deadlock will happen when processes
are not able to proceed from lc4 because wait = 0 but open = 0, thus they can
never take any of the lc4 I lcent edges. For detecting such a deadlock scenario
it is essential to capture the relation between shared variables count and wait
with number of procs in different locations.

