
Abstracting and Counting Synchronizing
Processes

(extended abstract)

Zeinab Ganjei, Ahmed Rezine?, Petru Eles, and Zebo Peng

Linköping University, Sweden

Abstract. We address the problem of automatically establishing syn-
chronization dependent correctness (e.g. due to using barriers or ensur-
ing absence of deadlocks) of programs generating an arbitrary number of
concurrent processes and manipulating variables ranging over an infinite
domain. Automatically checking such properties for these programs is
beyond the capabilities of current verification techniques. For this pur-
pose, we describe an original logic that mixes two sorts of variables: those
shared and manipulated by the concurrent processes, and ghost variables
refering to the number of processes satisfying predicates on shared and
local program variables. We then combine existing works on counter,
predicate, and constrained monotonic abstraction and nest two cooper-
ating counter example based refinement loops for establishing correctness
(safety expressed as non reachability of configurations satisfying formu-
las in our logic). We have implemented a tool (Pacman, for predicated
constrained monotonic abstraction) and used it to perform parameter-
ized verification for several programs whose correctness crucially depends
on precisely capturing the number of synchronizing processes.

Key words: parameterized verification, counting logic, barrier synchro-
nization, deadlock freedom, multithreaded programs, counter abstrac-
tion, predicate abstraction, constrained monotonic abstraction

1 Introduction

We address the problem of automatic and parameterized verification for concur-
rent multithreaded programs. We focus on synchronization related correctness
as in the usage by programs of barriers or integer shared variables for counting
the number of processes at different stages of the computation. Such synchro-
nizations orchestrate the different phases of the executions of possibly arbitrary
many processes spawned during runs of multithreaded programs. Correctness is
stated in terms of a new counting logic that we introduce. The counting logic
makes it possible to express statements about program variables and variables
counting the number of processes satisfying some properties on the program vari-
ables. Such statements can capture both individual properties, such as assertion

? In part supported by the 12.04 CENIIT project.

2 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

violations, and global properties such as deadlocks or relations between the num-
bers of of processes (e.g., the total number of spawner processes is smaller or
equal to the number of spawned processes).

Synchronization among concurrent processes is central to the correctness of
many shared memory based concurrent programs. This is particularly true in
certain applications such as scientific computing where a number of processes,
parameterized by the size of the problem or the number of cores, is spawned
in order to perform heavy computations in phases. For this reason, when not
implemented individually using shared variables, constructs such as (dynamic)
barriers are made available in mainstream libraries and programming languages
such as Pthreads, java.util.concurrent or OpenMP.

Automatically taking into account the different phases by which arbitrary
many processes can pass is already tricky for concurrent boolean programs with
barriers. It is now folklore that concurrent boolean programs can be encoded
using counter machines where counters track the number of processes at each
program location. In case the concurent processes can only read, test and write
shared boolean variables, or spawn and join other processes, the obtained counter
machine is essentially a Vector Addition System (VAS) for which state reacha-
bility is decidable [3, 13]. For instance, works such as [6, 8, 9] build on this idea.
Such translations cannot faithfully capture behaviours enforced by the barriers,
e.g., there is no process still in the reading phase when some process crossed the
barrier to the writing phase. The reason is that VASs are inherently monotonic
(more processes can do more things). However, a counter machine transition that
models a barrier will need to test that all processes are finished with the current
phase and are waiting to cross the barrier. In other words, that the number of
processes not waiting for the barrier is zero. This makes it possible to encode
counter machines for which reachability is undecidable.

To make the problem more difficult, barriers may be implicitely implemented
using integer program variables that count the number of processes at certain
locations. Still, program correctness might depend on the fact that these pro-
gram variables do implement a barrier. Existing techniques, such as symmetric
predicate abstraction [8, 9], generate (broadcast) concurrent boolean programs
for integer manipulating concurrent programs. The obtained transition systems
are monotonic and cannot exclude behaviors forbidden by the implicit barriers.
In this work, we build on such methods and strengthen the obtained transi-
tion systems using automatically generated invariants in order to obtain counter
machines that over-approximate the concurrent program behavior and still faith-
fully capture the barriers semantics. We then build on our work on constrained
monotonic abstraction [4] in order to decide state reahability by automatically
generating and refining monotonic over-approximations for such systems.

Our approach consists in nesting two counter example guided abstraction
refinement loops. We summarize our contributions in the following points.

1. We define a counting logic that allows us to express statements about pro-
gram variables and about the number of processes satisfying certain predi-
cates on the program variables.

Abstracting and Counting Synchronizing Processes (extended abstract) 3

2. We implement the outer loop by leveraging on existing symmetric predi-
cate abstraction techniques [8, 9]. We encode resulting boolean programs in
terms of a counter machine where reachability of the concurrent program
configurations satisfying a counting property from our logic is captured as a
reachability problem for a target state of the counter machine.

3. We explain how to strengthen the counter machine using counting invari-
ants, i.e. properties from our logic that hold on all runs. We generate these
invariants using classical thread modular analysis techniques [14].

4. We leverage on existing constrained monotonic abstraction techniques [17, 4]
to implement the inner loop and to address the state reachability problem.

5. We have implemented both loops, together with automatic counting invari-
ants generation, in a prototype (Pacman) that automatically establishs or
refutes counting properties such as deadlock freedom and assertions.

Related work. Several works consider automatic parameterized verification for
concurrent programs. The works in [15, 1] automatically check for cutoff condi-
tions. Except for checking larger instances, it is unclear how to refine entailed
abstractions. Similar to [2], we combine auxiliary invariants obtained on certain
variables in order to strengthen a reachability analysis. In [12], the authors pro-
pose an approach to synthetise counters in order to automatically build correct-
ness proofs from program traces. The approach repeatedly builds safe counting
automata and tries to establish that their language includes traces of a program
given as a monotonic control flow net. In order to be precise, we need to over-
approximate our concurrent programs with non-monotonic transition systems.
In [6], the authors present a highly optimized coverability checking approach for
VASs with broadcasts. We need more than coverability of monotonic systems.
In [16], the authors adopt symbolic representations that can track inter-thread
predicates. This yields a non monotonic system and the authors force mono-
tonicity as in [17, 4]. They however do not explain how to refine the obtained
decidable monotonic abstraction for an undecidable problem. In [5], the authors
prove termination for depth-bounded systems by instrumenting a given over-
approximation with counters and sending the numerical abstraction to existing
termination provers. We automatically generate the abstractions on which we
establish safety properties. In addition, and as stated earlier, over-approximating
the concurrent programs we target with (monotonic) well structured transition
systems would result in spurious runs. The works that seem most closely re-
lated are [4, 10]. We introduced (constrained) monotonic abstraction in [17, 4].
Monotonic abstraction was not combined with predicate abstraction, nor did it
explicitly target counting properties or dynamic barrier based synchronization.
In [10, 9], the authors propose a predicate abstraction framework for concurrent
multithreaded programs. As explained earlier such abstractions cannot exclude
runs forbidden by synchronization mechanisms such as barriers. In our work, we
build on [10, 9] in order to handle shared and local integer variables.

Outline. We start by illustrating our approach using an example in Sec. 2 and
introduce some preliminaries in Sec. 3. We then define concurrent programs and

4 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

describe our counting logic in Sec. 4. Next, we explain the different phases of
our nested loops in Sec. 5 and report on our experimental results in Sec. 6. We
finally conclude in Sec. 7. Proofs and examples are available in the Appendix.

2 A Motivating Example

Consider the concurrent program described in Fig. 1. In this example, a main
process spawns (transition t1) an arbitrary number (count) of proc processes (at
location proc@lcent). All processes share four integer variables (namely max,
prev, wait and count) and a single boolean variable proceed. Initially, the vari-
ables wait and count are 0 while proceed is false. The other variables may assume
non-deterministic values. Each proc process possesses a local integer variable val
that can only be read or written by its owner. Each proc process assigns to max
the value of its local variable val in case the later is larger than the former.
Transitions t6 and t7 essentially implement a barrier in the sense that all proc
processes must have reached proc@lc3 in order for any of them to move to lo-
cation proc@lc4. After the barrier, the max value should be larger or equal to
any previous local val value stored in the shared prev (i.e., prev ≤ max should
hold). Observe that prev is essentially a ghost variable we add to check that
max is indeed larger than any initial value of the local, and possibly modified,
val. Violation of this assertion can be captured with the counting predicate (in-
troduced in Sec. 4) (proc@lc4 ∧ ¬(prev ≤ max))# ≥ 1 stating that the number
of processes at location proc@lc4 and witnessing that prev > max is larger or
equal than 1. Observe that we could have used an error state to capture asser-
tion violations. However, our counting logic (see Sec. 4) also allows us to express
global properties (such as that there are more processes with flag = tt than
those with flag = ff). Reachability of such global configurations is easier to
express with counting properties that anyhow can capture assertion violations.

The assertion (proc@lc5 ∧ ¬(prev ≤ max))# ≥ 1 is never violated when
starting from a single main process. In order to establish this fact, any verification
procedure needs to take into account the barrier in t7 in addition to the two
sources of infinitness; namely, the infinite domain of the variables and the number
of procs that may participate in the run. Any sound analysis that does not take
into account that the count variable holds the number of spawned proc processes
and that wait represents the number of proc processes at locations lc3 or later
will not be able to discard scenarios were a proc process executes prev := val
(possibly violating the assertion) although one of them is at proc@lc5.

Our nested CEGAR, called Predicated Constrained Monotonic Abstraction
and depicted in Fig. 2, systematically leverages on simple facts that relate num-
bers of processes to the variables manipulated in the program. This allows us
to verify or refute safety properties (e.g., assertions, deadlock freedom) depend-
ing on complex behaviors induced by constructs such as dynamic barriers. We
illustrate our approach on the max example of Fig. 1.

From concurrent programs to boolean concurrent programs. We build on recent
predicate abstraction techniques for concurrent programs [10]. Such techniques

Abstracting and Counting Synchronizing Processes (extended abstract) 5

int max, prev, wait, count := ∗, ∗, 0, 0
bool proceed := ff
main :
t1 : lcent I lcent : count := count+ 1;

spawn(proc)
t2 : lcent I lc1 : proceed := tt
...

proc :
int val := ∗
t3 : lcent I lc1 : prev := val
t4 : lc1 I lc2 : max ≥ val
t5 : lc1 I lc2 : max < val; max := val
t5 : lc2 I lc3 : val := ∗
t6 : lc3 I lc4 : wait := wait+ 1
t7 : lc4 I lc5 : proceed ∧ (wait = count)
t8 : lc5 I ...

(3, 7, 0, 0, ff) {(main@lcent)}

(3, 7, 0, 1, ff) {(main@lcent)(proc@lcent, 9)}

(3, 7, 0, 2, ff)
{
(main@lcent)(proc@lcent, 9)

2
}

(3, 9, 0, 2, ff)
{
(main@lc1)(proc@lcent, 9)(proc@lc1, 9)

}

(3, 9, 0, 2, tt)
{
(main@lc1)(proc@lcent, 9)(proc@lc1, 9)

}

...

(9, 9, 2, 2, tt)
{
(main@lc1)(proc@lc5, 9)

2
}

...

t1

t1

t3

t2

...

t7

...

Fig. 1. The max example (left) and a possible run (right). The run starts with the main
process being at location lcent where (max, prev, wait, count, proceed) = (3, 7, 0, 0, ff).

Fig. 2. Predicated Constrained Monotonic Abstraction

6 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

would initially discard all variables and predicates and only keep the control
flow together with the spawn and join statements. This leads to a number of
counter example guided abstraction refinement steps (the outer CEGAR loop
in Fig. 2) that require the addition of new predicates. Our implementation adds
the predicates proceed, prev ≤ val, prev ≤ max, wait ≤ count, count ≤ wait.
It is worth noticing that all variables of the obtained concurrent program are
booleans. Hence, one would need a finite number of counters in order to faithfully
capture the behavior of the abstracted program using counter abstraction.

From concurrent boolean programs to counter machines. Given a concurrent
boolean program, we generate a monotonic counter machine for which state
reachability is equivalent to the violation of the assertion by the boolen program.
Each counter in the machine counts the number of processes at some location
with a given valuation of the local variables. One state in the counter machine
represents reaching a configuration violating the assertion. State reachability is
here decidable [3, 13]. Such a machine cannot relate the number of processes
in certain locations (e.g., the number of spawned processes proc so far) to the
shared predicates that hold at a machine state (e.g., that count = wait). For
this reason, we make use of the auxiliary invariants [2]:

count =
∑
lc∈proc@Loc(lc)

wait =
∑
i≥3(proc@lci)

#

We automatically generate such invariants using a simple thread modular
analysis [14] that tracks the number of processes at each location. We then
strengthen the counter machine using such invariants. This results in a more
precise machine for which state reachability is undecidable in general.

Constrained monotonic abstraction. We monotonically abstract the resulting
counter machine in order to answer the state reachability problem. Spurious
runs are now possible. Indeed, forcing monotonicity amounts to removing [17,
4] processes violating the constraint imposed by the barrier in Fig.1. Suppose
now that two processes are spawned and proceed is set to tt. A first process
gets to lc3 and waits for the second process that moves to lc1. Removing the
second process (because it violates the barrier constraint) opens the barrier for
the first process waiting at lc3. The assertion can now be violated because the
removed process did not have time to update the variable max. Constrained
monotonic abstraction eliminates spurious traces by refining the preorder used
in monotonic abstraction. For the example of Fig.1, if the number of processes at
lc1 is zero, then closing upwards will not alter this fact. By doing so, the process
that was removed in forward at lc1 is not allowed to be there to start with,
and the assertion is automatically established for any number of processes. The
inner loop of our approach (i.e., the constrained monotonic abstraction loop) can
automatically add more elaborate refinements such as comparing the number of
processes at different locations. Unreachability of the control location establishes
safety of the concurrent program.

Abstracting and Counting Synchronizing Processes (extended abstract) 7

Trace Simulation. Counter examples obtained in the counter machine corre-
spond to feasible runs as far as the concurrent boolean program is concerned.
Such runs can be simulated on the original program to find new predicates (e.g.,
using Craig interpolation) and use them in the next iteration of the outer loop.

3 Preliminaries

We use N and Z to mean the sets of natural and integer numbers respectively.
We let k denote a constant in Z. Unless otherwise stated, we use lower case
letters such as v, s, l to mean integer variables and ṽ, s̃, l̃ to mean boolean vari-
ables with values in B. We use upper case letters such as V, S, L (resp. Ṽ , S̃
and L̃) to mean sets of integer (resp. boolean) variables. We let ∼ be an ele-
ment in {<,≤,=,≥, >}. An arithmetic expression e (resp. boolean expression
π) belonging to the set exprs(V) (resp. preds(Ṽ , E)) of arithmetic expressions
(resp. boolean predicates) over integer variables V (resp. boolean variables Ṽ
and arithmetic expressions E) is defined as follows.

e ::= k || v || (e + e) || (e − e) || k e v ∈ V
π ::= b || ṽ || (e ∼ e) || ¬π || π ∧ π || π ∨ π ṽ ∈ Ṽ , e ∈ E

We write vars(e) to mean all variables v appearing in e, and vars(π) to mean
all variables ṽ and v appearing in π or in e in π. We also write atoms(π) (the set of
atomic predicates) to mean all comparisons (e ∼ e) appearing in π. We use greek
lower case letters such as σ, η, ν (resp. σ̃, η̃, ν̃) to mean mappings from variables
to Z (resp. B). Given n mappings νi : Vi → Z such that Vi ∩ Vj = ∅ for each
i, j : 1 ≤ i 6= j ≤ n, and an expression e ∈ exprs(V), we write valν1,...,νn (e)
to mean the expression obtained by replacing each occurrence of a variable v
appearing in some Vi by the corresponding νi(v). In a similar manner, we write
valν,ν̃,... (π) to mean the predicate obtained by replacing the occurrence of integer
and boolean variables as stated by the mappings ν, ν̃, etc. Given a mapping
ν : V → Z and a set subst = {vi ← ki|1 ≤ i ≤ n} where variables v1, . . . vn are
pairwise different, we write ν [subst] to mean the mapping ν′ such that ν′(vi) = ki
for each 1 ≤ i ≤ n and ν′(v) = ν(v) otherwise. We abuse notation and write
ν [{vi ← v′i|1 ≤ i ≤ n}], for ν : V → Z where variables v1, . . . vn are in V and
pairwise different and variables v′1, . . . v

′
n are pairwise different and not in V , to

mean the mapping ν′ : (V \ {vi|1 ≤ i ≤ n}) ∪ {v′i|1 ≤ i ≤ n} → Z and such that
ν′(v′i) = ν(vi) for each i : 1 ≤ i ≤ n, and ν′(v) = ν(v) otherwise. We define
ν̃ [{ṽi ← bi|1 ≤ i ≤ n}] and ν̃ [{ṽi ← ṽ′i|1 ≤ i ≤ n}] in a similar manner.

A multiset m over a set X is a mapping X → N. We write x ∈ m to mean
m(x) ≥ 1. The size |m| of a multiset m is

∑
x∈X m(x). We sometimes view a

multiset m as a sequence x1, x2, . . . , x|m| where each element x appears m(x)
times. We write x⊕m to mean the multiset m′ such that m′(y) equals m(y) + 1
if x = y and m(y) otherwise.

8 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

4 Concurrent Programs and Counting Logic

To simplify the presentation, we assume a concurrent program (or program for
short) to consist in a single non-recursive procedure manipulating integer vari-
ables. Arguments and return values are passed using shared variables. Programs
where arbitrary many processes run a finite number of procedures can be en-
coded by having the processes choose a procedure at the beginning.

Syntax. A procedure in a program (S,L, T) is given in terms of a set T of tran-
sitions (lc1 I lc′1 : stmt1) , (lc2 I lc′2 : stmt2) , . . . operating on two finite sets of
integer variables, namely a set S = {s1, s2, . . .} of shared variables and a set
L = {l1, l2 . . .} of local variables. Each transition (lc I lc′ : stmt) involves two
locations lc and lc′ and a statement stmt. We let Loc mean the set of all locations
appearing in T . We always distinguish two locations, namely an entry location
lcent and an exit location lcext. Program syntax is given in terms of pairwise
different variables v1, . . . vn in S ∪ L, expressions e1, . . . en in exprs(S ∪ L) and
predicate π in preds(exprs(S ∪ L)).

prog ::= (s := (k || ∗))∗ proc : (l := (k || ∗))∗ (lc I lc : stmt)
+

stmt ::= spawn || join || π || v1, . . . , vn := e1, . . . , en || stmt; stmt

Semantics. Initially, a single process starts executing the procedure with both
local and shared variables initialized as stated in their definitions. Executions
might involve an arbitrary number of spawned processes. The execution of any
process (whether initial or spawned with the statement spawn) starts at the
entry location lcent. Any process at an exit point lcext can be eliminated by
a process executing a join statement. An assume π statement blocks if the
predicate π over local and shared variables does not evaluate to true. Each
transition is executed atomically without interruption from other processes.

More formally, a configuration is given in terms of a pair (σ,m) where the
shared state σ : S → Z is a mapping that associates an integer value to each
variable in S. An initial shared state (written σinit) is a mapping that complies
with the initial constraints for the shared variables. The multiset m contains
process configurations, i.e., pairs (lc, η) where the location lc belongs to Loc
and the process state η : L → Z maps each local variable to an integer value.
We also write ηinit to mean an initial process state. An initial multiset (written
minit) maps all (lc, η) to 0 except for a single (lcent, ηinit) mapped to 1. We

introduce a relation
stmt
�−−→
P

in order to define statements semantics (Fig. 3). We

write (σ, η,m)
stmt
�−−→
P

(σ′, η′,m′), where σ, σ′ are shared states, η, η′ are process

states, and m,m′ are multisets of process configurations, in order to mean that
a process at process state η when the shared state is σ and the other process
configurations are represented by m, can execute the statement stmt and take
the program to a configuration where the process is at state η′, the shared

Abstracting and Counting Synchronizing Processes (extended abstract) 9

state is σ′ and the configurations of the other processes are captured by m′.
For instance, a process can always execute a join if there is another process at
location lcext (rule join). A process executing a multiple assignment atomically
updates shared and local variables values according to the values taken by the
expressions of the assignment before the execution (rule assign).

(σ, η,m)
stmt
�−−−→
P

(σ′, η′,m′)

(σ, (lc, η)⊕m)
(lcIlc′:stmt)
−−−−−−−−−−→

P
(σ′, (lc′, η′)⊕m′)

: trans
valσ,η (π)

(σ, η,m)
π
�−→
P

(σ, η,m)

: assume

(σ, η,m)
stmt
�−−−→
P

(σ′, η′,m′) (σ′, η′,m′)
stmt′
�−−−→

P
(σ′′, η′′,m′′)

(σ, η,m)
stmt;stmt′
�−−−−−−−→

P
(σ′′, η′′,m′′)

: seq
m =

(
(lcext, η

′)⊕m′
)

(σ, η,m)
join
�−−−→
P

(σ, η,m′)

: join

substA = {vi ← valσ,η (ei) |vi ∈ A}

(σ, η,m)
v1,...vn,:=e1,...en
�−−−−−−−−−−−−−→

P
(σ[substS], η[substL],m)

: assign
m′ = (lcent, ηinit)⊕m

(σ, η,m)
spawn
�−−−−→

P
(σ, η,m′)

: spawn

Fig. 3. Semantics of concurrent programs.

A P run ρ is a sequence (σ0,m0), t1, ..., tn, (σn,mn). The run is P feasible if

(σi,mi)
ti+1−−→
P

(σi+1,mi+1) for each i : 0 ≤ i < n and σ0 and m0 are initial. Each

of the configurations (σi,mi), for i : 0 ≤ i ≤ n, is then said to be reachable.

Counting Logic. We use @Loc to mean the set {@lc | lc ∈ Loc} of boolean vari-
ables. Intuitively, @lc evaluates to tt exactly when the process evaluating it
is at location lc. We associate a counting variable (π)# to each predicate π in
preds(@Loc, exprs(S ∪ L)). Intuitively, in a given program configuration, the
variable (π)# counts the number of processes for which the predicate π holds. We
let ΩLoc,S,L be the set

{
(π)#|π ∈ preds(@Loc, exprs(S ∪ L))

}
. A counting pred-

icate is any predicate in preds(exprs(S ∪ΩLoc,S,L)). Elements in exprs(S ∪ L)
and preds(@Loc, exprs(S ∪ L)) are evaluated wrt. a shared configuration σ and
a process configuration (lc, η). For instance, valσ,(lc,η) (v) is σ(v) if v ∈ S and
η(v) if v ∈ L and valσ,(lc,η) (@lc′) = (lc = lc′). We abuse notation and write
valσ,m (ω) to mean the evaluation of the counting predicate ω wrt. a configura-
tion (σ,m). More precisely, valσ,m

(
(π)#

)
=
∑

(lc,η) s.t. valσ,(lc,η)(π)
m((lc, η)) and

the valuation valσ,m (v) = σ(v) for v ∈ S. Our counting logic is quite expressive.
For instance, we can capture assertion violations, deadlocks or program invari-
ants. For location lc, we let enabled(lc) in preds(exprs(S ∪ L)) define when
a process can fire some transition from lc. The following counting predicates
capture sets of configurations from Fig. 1.

ωassert = (proc@lc4 ∧ ¬(prev ≤ max))# ≥ 1 ωinv = (count =
∑
lc∈proc@Loc(lc)

#)

ωdeadlock =
∧
lc∈proc@Loc∪main@Loc(lc ∧ enabled(lc))# = 0

10 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

5 Relating layers of abstractions

We formally describe in the following the four steps involved in our predicated
constrained monotonic abstraction approach (see Fig. 2).

5.1 Predicate abstraction

Given a program P = (S,L, T) and a number of predicates Π on the variables
S ∪L, we leverage on existing techniques (such as [8, 9]) in order to generate an

abstraction in the form of a boolean program abstOfΠ(P) =
(
S̃, L̃, T̃

)
where all

shared and local variables take boolean values. To achieve this, Π is partitioned
into three sets Πshr, Πloc and Πmix. Predicates in Πshr only mention variables
in S and those in Πloc only mention variables in L. Predicates in Πmix mention
both shared and local variables of P . A bijection associates a predicate predOf(ṽ)
in Πshr (resp. Πmix ∪Πloc) to each ṽ in S̃ (resp. L̃).

In addition, there are as many transitions in T as in T̃ . For each (lc I lc′ : stmt)
in T there is a corresponding (lc I lc′ : abstOfΠ(stmt)) with the same source
and destination locations lc, lc′, but with an abstracted statement abstOfΠ(stmt)
that may operate on the variables S̃∪L̃. For instance, statement (count := count+
1) in Fig. 1 is abstracted with the multiple assignment:

(
wait leq count,
count leq wait

)
:=

(
choose (wait leq count, ff) ,
choose (¬wait leq count ∧ count leq wait, wait leq count)

)
(1)

The value of the variable count leq wait after execution of the multiple as-
signment (1) is tt if ¬wait leq count∧count leq wait holds, ff if wait leq count
holds, and is equal to a non deterministically chosen boolean value otherwise.
In addition, abstracted statements can mention the local variables of passive
processes, i.e., processes other than the one executing the transition. For this,

we make use of the variables L̃p =
{
l̃p|l̃ in L̃

}
where each l̃p denotes the lo-

cal variable l̃ of passive processes. For instance, the statement prev := val in
Fig. 1 is abstracted with the multiple assignment (2). Here, the local variable
prev leq val of each process other than the one executing the statement (written
prev leq valp) is separately updated. This corresponds to a broadcast where the
local variables of all passive processes need to be updated.

 prev leq val,
prev leq max,
prev leq valp

 :=

tt,

choose

(
¬prev leq val

∧ prev leq max ,
prev leq val

∧ ¬prev leq max

)
,

choose

(
¬prev leq val

∧ prev leq valp
,

prev leq val
∧ ¬prev leq valp

)
 (2)

Abstracting and Counting Synchronizing Processes (extended abstract) 11

Syntax and semantics of boolean programs. We describe the syntax of boolean
programs. Variables ṽ1, . . . , ṽn are in S̃ ∪ L̃∪ L̃p. Predicate π is in preds(S̃ ∪ L̃),

and predicates π1, . . . , πn are in preds(S̃ ∪ L̃ ∪ L̃p). We further require for the

multiple assignment that if ṽi ∈ S̃ ∪ L̃ then vars(πi) ⊆ S̃ ∪ L̃.

prog ::= (s̃ := (tt || ff || ∗))∗ proc : (l̃ := (tt || ff || ∗))∗ (lc I lc : stmt)
+

stmt ::= spawn || join || π || ṽ1, . . . , ṽn := π1, . . . , πn || stmt; stmt

Apart from the variables being now boolean, the main difference between Fig.

4 and Fig. 3 is the assign statement. For this, we write (σ̃, η̃, η̃p)
ṽ1,...ṽn:=π1,...πn7−−−−−−−−−−−→

abstOfΠ(P)

(σ̃′, η̃′, η̃′p) and mean that η̃′p is obtained in the following way. First, we change

the domain of η̃p from L̃ to L̃p and obtain η̃p,1 = η̃p

[{
l̃← l̃p|l̃ ∈ L̃

}]
, then

we let η̃p,2 = η̃p,1

[{
ṽi ← valσ̃,η̃,η̃p,1 (πi) |ṽi ∈ L̃p in lhs of the assignment

}]
. Fi-

nally, we obtain η̃′p = η̃p,2

[{
l̃p ← l̃|l̃ ∈ L̃

}]
. This step corresponds to a broad-

cast. An abstOfΠ(P) run is a sequence (σ̃0, m̃0), t̃1, ..., t̃n, (σ̃n, m̃n). It is feasible

if (σ̃i, m̃i)
t̃i+1−−−−−−−→

abstOfΠ(P)
(σ̃i+1, m̃i+1) for each i : 0 ≤ i < n and σ̃0, m̃0 are initial.

Configurations (σ̃i, m̃i), for i : 0 ≤ i ≤ n, are then said to be reachable.

(σ̃, η̃, m̃)
stmt

�−−−−−−−→
abstOfΠ (P)

(σ̃′, η̃′, m̃′)

(σ̃, (lc, η̃)⊕ m̃)
(lcIlc′:stmt)
−−−−−−−−−−→

abstOfΠ (P)
(σ̃′, (lc′, η̃′)⊕ m̃′)

: trans
valσ̃,η̃ (π)

(σ̃, η̃, m̃)
π

�−−−−−−−→
abstOfΠ (P)

(σ̃, η̃, m̃)

: assume

(σ̃, η̃, m̃)
stmt

�−−−−−−−→
abstOfΠ (P)

(σ̃′, η̃′, m̃′) and (σ̃′, η̃′, m̃′)
stmt′

�−−−−−−−→
abstOfΠ (P)

(σ̃′′, η̃′′, m̃′′)

(σ̃, η̃, m̃)
stmt;stmt′
�−−−−−−−→
abstOfΠ (P)

(σ̃′′, η̃′′, m̃′′)

: sequence

m̃′ = (lcent, η̃init)⊕ m̃

(σ̃, η̃, m̃)
spawn

�−−−−−−−→
abstOfΠ (P)

(σ̃, η̃, m̃′)

: spawn
m̃ =

(
(lcext, η̃

′)⊕ m̃′
)

(σ̃, η̃, m̃)
join

�−−−−−−−→
abstOfΠ (P)

(σ̃, η̃, m̃′)

: join

σ̃′ = σ̃[
{
ṽi ← valσ̃,η̃ (πi) |ṽi ∈ S̃

}
]

η̃′ = η̃[
{
ṽi ← valσ̃,η̃ (πi) |ṽi ∈ L̃

}
]

h : {1, ...|m̃|} → {1, ...|m̃′|} some bijection associating each (lcp, η̃p)i ∈ m̃
to some (lcp, η̃

′
p)h(i) ∈ m̃

′ s.t. (σ̃, η̃, η̃p)
ṽ1,...ṽn,:=π1,...πn7−−−−−−−−−−−−−−→

abstOfΠ (P)
(σ̃′, η̃′, η̃′p)

(σ̃, η̃, m̃)
ṽ1,...ṽn:=π1,...πn
�−−−−−−−−−−−−−→

abstOfΠ (P)
(σ̃′, η̃′, m̃′)

: assign

Fig. 4. Semantics of boolean concurrent programs.

12 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

Relation between P and abstOfΠ(P). Given a shared configuration σ̃, we let
predOf(σ̃) denote the predicate

∧
s̃∈S̃(σ̃(s̃)⇔ predOf(s̃)). In a similar manner,

we let predOf(η̃) denote
∧
l̃∈L̃(η̃(l̃)⇔ predOf(l̃)). Notice that vars(predOf(σ̃)) ⊆

S and vars(predOf(η̃)) ⊆ S ∪ L. We abuse notation and use valσ (σ̃) (resp.
valσ,η (η̃)) to mean that valσ (predOf(σ̃)) (resp. valσ,η (predOf(η̃))) holds. We
also use valσ̃,η̃ (π), for a boolean combination π of predicates in Π, to mean the
predicate obtained by replacing each π′ in Πmix ∪ Πloc (resp. Πshr) with η̃(ṽ)
(resp. σ̃(ṽ)) where predOf(ṽ) = π′. We let valσ,m (m̃) mean there is a bijection
h : {1, ...|m̃|} → {1, ...|m̃′|} s.t. we can associate to each (lc, η)i in m an (lc, η̃)h(i)
in m̃ such that valσ,η (η̃) for each i : 1 ≤ i ≤ |m|. The concretization of an
abstOfΠ(P) configuration (σ̃, m̃) is γ ((σ̃, m̃)) = {(σ,m)|valσ (σ̃) ∧ valσ,m (m̃)}.
The abstraction of (σ,m) is α ((σ,m)) = {(σ̃, m̃)|valσ (σ̃) ∧ valσ,m (m̃)}. We ini-
tialize the abstOfΠ(P) variables such that for each initial σinit,minit of P ,
there are σ̃init, m̃init with α ((σinit,minit)) = {(σ̃init, m̃init)}. The abstraction
α (ρ) of a P run ρ = (σ0,m0), t1, ...tn, (σn,mn) is the singleton set of P runs{

(σ̃0, m̃0), t̃1, ...t̃n, (σ̃n, m̃n)|α ((σi,mi)) = {(σ̃i, m̃i)} and t̃i = abstOfΠ(ti)
}

.

Definition 1 (predicate abstraction). Let P = (S,L, T) be a program and

abstOfΠ(P) =
(
S̃, L̃, T̃

)
be its abstraction wrt. Π. The abstraction is said to

be effective and sound if abstOfΠ(P) can be effectively computed and to each
feasible P run ρ corresponds a non empty set α (ρ) of feasible abstOfΠ(P) runs.

5.2 Encoding into a counter machine

Assume a program P = (S,L, T), a set Π0 ⊆ preds(exprs(S ∪ L)) of predicates
and two counting predicates, an invariant ωinv in preds(exprs(S ∪ΩLoc,S,L))

and a target ωtrgt in preds(exprs(ΩLoc,S,L)). We write abstOfΠ(P) =
(
S̃, L̃, T̃

)
to mean the abstraction of P wrt. Π = ∪(π)#∈vars(ωinv)∪vars(ωtrgt)atoms(π)∪Π0.
Intuitively, this step results in the formulation of a state reachability problem of
a counter machine enc (abstOfΠ(P)) that captures reachability of abstractions
of ωtrgt configurations with abstOfΠ(P) runs that are strengthened wrt. ωinv.

A counter machine M is a tuple (Q,C,∆,QInit, ΘInit, qtrgt) where Q is a
finite set of states, C is a finite set of counters (i.e., variables ranging over N),
∆ is a finite set of transitions, QInit ⊆ Q is a set of initial states, ΘInit is a set
of initial counters valuations (i.e., mappings from C to N) and qtrgt is a state in
Q. A transition δ in ∆ is of the form [q : op : q′] where the operation op is either
the identity operation nop, a guarded command grd ⇒ cmd, or a sequential
composition of operations. We use a set A of auxiliary variables ranging over
N. These are meant to be existentially quantified when firing the transitions as
explained in Fig. 5. A guard grd is a predicate in preds(exprs(A ∪ C)) and a
command cmd is a multiple assignment c1, . . . , cn := e1, . . . , en that involves
e1, . . . en in exprs(A ∪ C) and pairwise different c1, . . . cn in C. We only write
grd (resp. cmd) in case cmd is empty (resp. grd is tt) in grd⇒ cmd.

A machine configuration is a pair (q, θ) where q is a state in Q and θ is a
mapping C → N. Semantics are given in Fig. 5. A configuration (q, θ) is initial

Abstracting and Counting Synchronizing Processes (extended abstract) 13

if q ∈ QInit and θ ∈ ΘInit. An M run ρM is a sequence (q0, θ0), δ1, . . . (qn, θn). It

is feasible if (q0, θ0) is initial and (qi, θi)
δi+1−−−→
M

(qi+1, θi+1) for i : 0 ≤ i < n. The

machine state reachability problem is to decide whether there is an M feasible
run (q0, θ0), δ1, . . . (qn, θn) s.t. qn = qtrgt.

δ = [q : op : q′] and θ
op
�−→
M

θ′

(q, θ)
δ−−→
M

(q′, θ′)
: transition

θ
nop
�−−→
M

θ

: nop θ
op
�−→
M

θ′ and θ′
op′
�−−→
M

θ′′

θ
op;op′
�−−−−→

M
θ′′

: seq

∃A.valθ (π) ∧ θ′ = θ [{ci ← valθ (ei) |i : 1 ≤ i ≤ n}]

θ
grd⇒(c1...cn:=e1...en)

�−−−−−−−−−−−−−−−−→
M

θ′
: gcmd

Fig. 5. Semantics of a counter machine

Encoding. We describe in the following a counter machine enc (abstOfΠ(P)) ob-
tained as an encoding of the boolean program abstOfΠ(P). Recall abstOfΠ(P)
results from an abstraction (Def. 1) wrt. ∪(π)#∈vars(ωinv)∪vars(ωtrgt)atoms(π) ∪
Π0 of the concurrent program P . The machine enc (abstOfΠ(P)) is a tuple
(Q,C,∆,QInit, ΘInit, qtrgt). Each state in Q is either the target state qtrgt or is
associated to a shared configuration σ̃ of abstOfΠ(P). We write qσ̃ to make the
association explicit. There is a bijection that associates a process configuration
(lc, η̃) to each counter c(lc,η̃) in C. Transitions ∆ coincide with ∪t∈T̃∆t ∪∆trgt

as described in Fig. 6. We abuse notation and associate to each statement stmt
appearing in abstOfΠ(P) the set enc (stmt) of tuples [(σ̃, η̃) : op : (σ̃′, η̃′)]stmt
generated in Fig. 6. Given a multiset m̃ of program configurations, we write θm̃ to
mean the mapping associating m̃((lc, η̃)) to each counter c(lc,η̃) in C. We let QInit
be the set {qσ̃|σ̃ is an initial shared state of abstOfΠ(P)}, and ΘInit be the set
{θm̃|m̃((lcent, η̃)) = 1 for an η̃ initial in abstOfΠ(P) and 0 otherwise}. We asso-
ciate a program configuration (σ̃, m̃) to each machine configuration (qσ̃, θm̃). The
machine encodes abstOfΠ(P) in the following sense

Lemma 1. qtrgt is enc (abstOfΠ(P)) reachable iff a configuration (σ̃, m̃) such

that ωtrgt

[{
(π)# ←

∑
{(lc,η̃)|valσ̃,(lc,η̃)(π)} m̃(lc, η̃)|(π)# ∈ vars(ωtrgt)

}]
is reach-

able in abstOfΠ(P).

Observe that all transitions of a boolean program abstOfΠ(P) are mono-
tonic, i.e., if a configuration (σ̃′, m̃′) is obtained from (σ̃, m̃) using a transition,
then the same transition can obtain a configuration larger (i.e., has the same

14 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

and possibly more processes) than (σ̃′, m̃′) from any configuration larger than
(σ̃, m̃). This reflects in the monotonicity of all transitions in Fig. 6 (except for
rule target). Rule target results in monotonic machine transitions for all counting
predicates ωtrgt that denote upward closed sets of processes. This is for instance
the case of predicates capturing assertion violation but not of those capturing
deadlocks (see Sec. 4). An encoding enc (abstOfΠ(P)) is said to be monotonic if
all its transitions are monotonic. Checking program assertion violations always
results in monotonic encodings.

Lemma 2. State reachability of all monotonic encodings is decidable.

(
lc I lc′ : stmt

)
and

[
(σ̃, η̃) : op : (σ̃′, η̃′)

]
stmt

(qσ̃ : c(lc,η̃) ≥ 1⇒ (c(lc,η̃))
−−; op; (c(lc′,η̃′))

++ : qσ̃′) ∈ ∆(lcIlc′:stmt)

: transition

(qσ̃ : ωtrgt

[{
(π)# ←

∑{
(lc,η̃)|valσ̃,(lc,η̃)(π)

} c((lc,η̃))|(π)# ∈ vars(ωtrgt)
}]

: qtrgt) ∈ ∆trgt
: target

[
(σ̃, η̃) : op : (σ̃′, η̃′)

]
stmt

and
[
(σ̃′, η̃′) : op′ : (σ̃′′, η̃′′)

]
stmt′[

(σ̃, η̃) : op; op′ : (σ̃′′, η̃′′)
]
stmt;stmt′

: sequence

valσ̃,η̃ (π)

[(σ̃, η̃) : nop : (σ̃, η̃)]π
: assume [

(σ̃, η̃) : (c(lcent,η̃init))
++ : (σ̃, η̃)

]
spawn

: spawn

[
(σ̃, η̃) : c(lcext,η̃′) ≥ 1⇒ (c(lcext,η̃′))

−− : (σ̃, η̃)
]
join

: join

σ̃′ = σ̃[
{
ṽi ← valσ̃,η̃ (πi) |ṽi ∈ S̃

}
] η̃′ = η̃[

{
ṽi ← valσ̃,η̃ (πi) |ṽi ∈ L̃

}
]

B =

{
a(lc,η̃p),(lc,η̃′p)

|lc ∈ Loc and (σ̃, η̃, η̃p)
ṽ1,...ṽn,:=π1,...πn7−−−−−−−−−−−−−−→

abstOfΠ (P)
(σ̃′, η̃′, η̃′p)

}
(σ̃, η̃) :

∧

(lc,η̃p)
(c(lc,η̃p) =

∑
a
(lc,η̃p),(lc,η̃′p)

∈B a(lc,η̃p),(lc,η̃′p)
)

⇒ ∪(lc,η̃′p)

{
c(lc,η̃′p)

:=
∑
a
(lc,η̃p),(lc,η̃′p)

∈B a(lc,η̃p),(lc,η̃′p)

} : (σ̃′, η̃′)

ṽ1,...ṽn,:=π1,...πn

: assign

Fig. 6. Encoding of the transitions of a boolean program
(
S̃, L̃, T̃

)
, given a counting

target ωtrgt, to the transitions ∆ = ∪t∈T̃∆t ∪∆trgt of a counter machine.

However, monotonic encodings correspond to coarse over-approximations.
Intuitively, bad configurations (such as those where a deadlock occurs, or those
obtained in a backward exploration for a barrier based program as described in
the running example) are no more guaranteed to be upward closed. This loss of
precision is irrevocable for techniques solely based on monotonic encodings. To
regain some of the lost precision, we constrain the runs using counting invariants.

Lemma 3. Any feasible P run has a feasible abstOfΠ(P) run with a feasible
run in any machine obtained as the strengthening of enc (abstOfΠ(P)) wrt. some
P invariant ωinv ∈ preds(exprs(S ∪ΩLoc,S,L)).

Abstracting and Counting Synchronizing Processes (extended abstract) 15

[qσ̃ : op : qσ̃′] ∈ ∆
[qσ̃ : grdσ̃(ωinv); op; grdσ̃′(ωinv) : qσ̃′] ∈ ∆′

strengthen

Fig. 7. Strengthening of a transition of a counter machine enc (abstOfΠ(P))
given a counting invariant ωinv using the predicate grdσ̃(ωinv) =

∃S.predOf(σ̃) ∧ ωinv
[{

(π)# ←
∑
{(lc,η̃)|valσ̃,(lc,η̃)(π)} c((lc,η̃))|(π)# ∈ vars(ωinv)

}]
in preds(exprs(C)).

The resulting machine is not monotonic in general and we can encode the
state reachability of a two counter machine.

Lemma 4. State reachability is in general undecidable after strengthening.

5.3 Constrained monotonic abstraction and preorder refinement

This step addresses the state reachability problem for a counter machine M =
(Q,C,∆,QInit, ΘInit, qtrgt). As stated in Lem. 4, this problem is in general un-
decidable for strengthened encodings. The idea here [17] is to force monotonicity
with respect to a well-quasi ordering � on the set of its configurations. This is
apparent at line 7 of the classical working list algorithm Alg. 1. We start with the
natural component wise preorder θ � θ′ defined as ∧c∈Cθ(c) ≤ θ′(c). Intuitively,
θ � θ′ holds if θ′ can be obtained by “adding more processes to” θ. The algo-
rithm requires that we can compute membership (line 5), upward closure (line
7), minimal elements (line 7) and entailment (lines 9, 13, 15) wrt. to preorder
�, and predecessor computations of an upward closed set (line 7).

If no run is found, then not reachable is returned. Otherwise a run is
obtained and simulated on M. If the run is possible, it is sent to the fourth
step of our approach (described in Sect. 5.4). Otherwise, the upward closure
step Up�((q, θ)) responsible for the spurious run is identified and an inter-
polant I (with vars(I) ⊆ C) is used to refine the preorder as follows: �i+1:=
{(θ, θ′)|θ �i θ′ ∧ (valθ (I)⇔ valθ′ (I))}. Although stronger, the new preorder is
again a well quasi ordering and the run is guaranteed to be eliminated in the
next round. We refer the reader to [4] for more details.

Lemma 5 (CMA [4]). All steps involved in Alg. 1 are effectively computable
and each instantiation of Alg. 1 is sound and terminates given the preorder is a
well quasi ordering.

5.4 Simulation on the original concurrent program

A given run of the counter machine (Q,C,∆,QInit, ΘInit, qtrgt) is simulated by
this step on the original concurrent program P = (S,L, T). This is possible be-
cause to each step of the counter machine run corresponds a unique and concrete

16 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

input : A machine (Q,C,∆,QInit, ΘInit, qtrgt) and a preorder �
output: not reachable or a run (q1, θ1), δ1, (q2, θ2), δ2, . . . δn, (qtrgt, θ)

1 Working := ∪e∈Min�(N|C|) {((qtrgt, e), (qtrgt, e))}, Visited := {};
2 while Working 6= {} do
3 ((q, θ), ρ) =pick and remove a member from Working;
4 Visited ∪ = {((q, θ), ρ)};
5 if (q, θ) ∈ QInit ×ΘInit then return ρ;
6 foreach δ ∈ ∆ do
7 pre = Min�(Preδ(Up�((q, θ))));

8 foreach (q′, θ′) ∈ pre do
9 if θ′′ � θ′ for some ((q′, θ′′),) in Working ∪ Visited then

10 continue;
11 else
12 foreach ((q′, θ′′),) ∈Working do
13 if θ′ � θ′′ then Working = Working \ {((q′, θ′),)};
14 foreach ((q′, θ′′),) ∈ Visited do
15 if θ′ � θ′′ then Visited = Visited \ {((q′, θ′),)};
16 Working ∪ = {((q′, θ′), (q′, θ′); δ; ρ)}
17 return not reachable;

Algorithm 1: Monotonic abstraction

transition of P . This step is classical in counter example guided abstraction re-
finement approaches. In our case, we need to differentiate the variables belonging
to different processes during the simulation. As usual in such frameworks, if the
run turns out to be possible then we have captured a concrete run of P that vi-
olates an assertion and we report it. Otherwise, we deduce predicates that make
the run infeasible and send them to step 1 (Sect. 5.1).

Theorem 1 (predicated constrained monotonic abstraction). Assume
an effective and sound predicate abstraction. If the constrained monotonic ab-
straction step returns not reachable, then no configuration satisfying ωtrgt is
reachable in P . If a P run is returned by the simulation step, then it reaches
a configuration where ωtrgt holds. Every iteration of the outer loop terminates
given the inner loop terminates. Every iteration of the inner loop terminates.

Notice that there is no general guaranty that we establish or refute the safety
property (the problem is undecidable). For instance, it may be the case that one
of the loops does not terminate (although each one of their iterations does) or
that we need to add predicates relating local variables of two different processes
(something the predicate abstraction framework we use in this paper cannot
express).

Abstracting and Counting Synchronizing Processes (extended abstract) 17

Table 1. Checking assertion violation with Pacman

outer loop inner loop results
example P enc (abstOfΠ(P)) num. preds. num. preds. time(s) output

max 5:2:8 18:16:104 4 5 6 2 192 correct

max-bug 5:2:8 18:8:55 3 4 5 2 106 trace

max-nobar 5:2:8 18:4:51 3 3 3 0 24 trace

readers-writers 3:3:10 9:64:121 5 6 5 0 38 correct

readers-writers-bug 3:3:10 9:7:77 3 3 3 0 11 trace

parent-child 2:3:10 9:16:48 3 4 5 2 73 correct

parent-child -nobar 2:3:10 9:1:16 2 1 2 0 3 trace

simp-bar 5:2:9 8:16:123 3 3 5 2 93 correct

simp-nobar 5:2:9 8:7:67 3 2 3 0 13 trace

dynamic-barrier 5:2:8 8:8:44 3 3 3 0 8 correct

dynamic-barrier-bug 5:2:8 8:1:14 2 1 2 0 3 trace

as-many 3:2:6 8:4:33 3 2 6 3 62 correct

as-many-bug 3:2:6 8:1:9 2 1 2 0 2 trace

6 Experimental results

We report on experiments with our prototype Pacman(for predicated constrained
monotonic abstraction). We have conducted our experiments on an Intel Xeon
2.67GHz processor with 8GB of RAM. To the best of our understanding, the
reported examples which require refinements of the natural preorder cannot be
verified by techniques such as [6, 8]. Indeed, such approaches always adopt mono-
tonic abstractions when the correctness of these examples crucially depends on
the fact that non-monotonic behaviors of barriers are taken into account.

All predicate abstraction predicates and counting invariants have been de-
rived automatically. For the counting invariants, we implemented a thread mod-
ular analysis operating on the polyhedra numerical domain. This took less than
11 seconds for all the examples we report here. For each example, we report on
the number of transitions and variables both in P and in the resulting counter
machine. We also state the number of refinement steps and predicates automat-
ically obtained in both refinement loops.

We report on experiments checking assertion violations in Tab.1 and deadlock
freedom in Tab.2. For both cases we consider correct and buggy (by removing
the barriers for instance) programs. Pacman establishes correctness and exhibits
faulty runs as expected. The tuples under the P column respectively refer to the
number of variables, procedures and transitions in the original program. The
tuples under the enc (abstOfΠ(P)) column refer to the number of counters,
states and transitions in the extended counter machine.

We made use of several optimizations. For instance, we discarded boolean
mappings corresponding to unsatisfiable combinations of predicates, we used
automatically generated invariants (such as (wait ≤ count) ∧ (wait ≥ 0) for
the max example in Fig.1) to filter the state space. Such heuristics dramatically

18 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

helped our state space exploration algorithms. Still, our prototype did not ter-
minate on several larger examples. We are working on improiving scalability by
coming up and combining with more clever optimisations.

Table 2. Checking deadlock with Pacman

outer loop inner loop results
example P enc (abstOfΠ(P)) num. preds. num. preds. time(s) output

bar-bug-no.1 4:2:7 7:16:66 4 4 6 2 27 trace

bar-bug-no.2 4:3:8 9:16:95 4 3 4 0 33 trace

bar-bug-no.3 3:2:6 6:16:78 5 4 6 1 21 trace

correct-bar 4:2:7 7:16:62 4 4 6 2 18 correct

ddlck bar-loop 4:2:10 8:8:63 3 2 3 0 16 trace

no-ddlck bar-loop 4:2:9 7:16:78 4 3 4 0 19 correct

7 Conclusions and Future Work

We have presented a technique, predicated constrained monotonic abstraction,
for the automated verification of concurrent programs whose correctness depends
on synchronization between arbitrary many processes, for example by means of
barriers implemented using integer counters and tests. We have introduced a
new logic and an iterative method based on combination of predicate, counter
and monotonic abstraction. Our prototype implementation gave encouraging
results and managed to automatically establish or refute program assertions and
deadlock freedom. To the best of our knowledge, this is beyond the capabilities
of current automatic verification techniques. Our current priority is to improve
scalability by leveraging on techniques such as cartesian and lazy abstraction,
partial order reduction, or combining forward and backward explorations. We
also aim to generalize to richer variable types.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their helpful remarks and relevant references.

References

1. P. Abdulla, F. Haziza, and L. Holk. All for the price of few. In R. Giacobazzi,
J. Berdine, and I. Mastroeni, editors, Verification, Model Checking, and Abstract
Interpretation, volume 7737 of Lecture Notes in Computer Science, pages 476–495.
Springer Berlin Heidelberg, 2013.

Abstracting and Counting Synchronizing Processes (extended abstract) 19

2. P. A. Abdulla, A. Annichini, S. Bensalem, A. Bouajjani, P. Habermehl, and
Y. Lakhnech. Verification of infinite-state systems by combining abstraction and
reachability analysis. In N. Halbwachs and D. Peled, editors, Computer Aided Ver-
ification, 11th International Conference, CAV ’99, Trento, Italy, July 6-10, 1999,
Proceedings, volume 1633 of Lecture Notes in Computer Science, pages 146–159.
Springer, 1999.

3. P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay. General decidability theo-
rems for infinite-state systems. In Proc. LICS ’96, 11th IEEE Int. Symp. on Logic
in Computer Science, pages 313–321, 1996.

4. P. A. Abdulla, Y.-F. Chen, G. Delzanno, F. Haziza, C.-D. Hong, and A. Rezine.
Constrained monotonic abstraction: A cegar for parameterized verification. In
Proc. CONCUR 2010, 21th Int. Conf. on Concurrency Theory, pages 86–101, 2010.

5. K. Bansal, E. Koskinen, T. Wies, and D. Zufferey. Structural counter abstraction.
In Tools and Algorithms for the Construction and Analysis of Systems, pages 62–
77. Springer, 2013.

6. G. Basler, M. Hague, D. Kroening, C.-H. L. Ong, T. Wahl, and H. Zhao. Boom:
Taking boolean program model checking one step further. In Proceedings of the
16th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS’10, pages 145–149, Berlin, Heidelberg, 2010. Springer-
Verlag.

7. L. E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. Amer. J. Math., 35:413–422, 1913.

8. A. Donaldson, A. Kaiser, D. Kroening, and T. Wahl. Symmetry-aware predicate
abstraction for shared-variable concurrent programs. In Computer Aided Verifica-
tion, pages 356–371. Springer, 2011.

9. A. F. Donaldson, A. Kaiser, D. Kroening, M. Tautschnig, and T. Wahl.
Counterexample-guided abstraction refinement for symmetric concurrent pro-
grams. Formal Methods in System Design, 41(1):25–44, 2012.

10. A. F. Donaldson, A. Kaiser, D. Kroening, and T. Wahl. Symmetry-aware predicate
abstraction for shared-variable concurrent programs. In G. Gopalakrishnan and
S. Qadeer, editors, Computer Aided Verification - 23rd International Conference,
CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings, volume 6806 of
Lecture Notes in Computer Science, pages 356–371. Springer, 2011.

11. A. Downey. The Little Book of SEMAPHORES (2nd Edition): The Ins and Outs
of Concurrency Control and Common Mistakes. Createspace Independent Pub,
2009.

12. A. Farzan, Z. Kincaid, and A. Podelski. Proofs that count. In Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’14, pages 151–164, New York, NY, USA, 2014. ACM.

13. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1-2):63–92, 2001.

14. C. Flanagan and S. Qadeer. Thread-modular model checking. In T. Ball and S. K.
Rajamani, editors, SPIN, volume 2648 of Lecture Notes in Computer Science, pages
213–224. Springer, 2003.

15. A. Kaiser, D. Kroening, and T. Wahl. Dynamic cutoff detection in parameterized
concurrent programs. In Proceedings of CAV, volume 6174 of LNCS, pages 654–
659. Springer, 2010.

16. A. Kaiser, D. Kroening, and T. Wahl. Lost in abstraction: Monotonicity in multi-
threaded programs. In P. Baldan and D. Gorla, editors, CONCUR 2014 - Con-
currency Theory - 25th International Conference, CONCUR 2014, Rome, Italy,

20 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

September 2-5, 2014. Proceedings, volume 8704 of Lecture Notes in Computer Sci-
ence, pages 141–155. Springer, 2014.

17. A. Rezine. Parameterized Systems: Generalizing and Simplifying Automatic Veri-
fication. PhD thesis, Uppsala University, 2008.

A Appendix

In this section the examples of Sec.6 are demonstrated. For simplicity the prop-
erty which is going to be checked in the input program is reformulated as a
statement that goes to lcerr which denotes the error location.

A.1 Readers and Writers

int readcount := 0
bool lock := tt, writing := ff

main :
lcent I lcent : spawn(writer)
lcent I lcent : readcount = 0 ∧ lock; spawn(reader); readcount := readcount+ 1
lcent I lcent : readcount! = 0; spawn(reader); readcount := readcount+ 1

reader :
lcent I lcerr : writing
lcent I lcext : readcount = 1; readcount := readcount− 1; lock := tt

lcent I lcext : readcount! = 1; readcount := readcount− 1

writer :
lcent I lc1 : lock; lock := ff

lc1 I lc2 : writing := tt

lc2 I lc3 : writing := ff

lc3 I lcext : lock := tt

Fig. 8. The readers and writers example.

The readers and writers problem is a classical problem. In this problem there
is a resource which is shared between several processes. There are two type of
processes, one that only read from the resource reader and one that read and
write to it writer. At each time there can either exist several readers or only
one writer. readers and writers can not exist at the same time.

In Fig.8 a solution to the readers and writers problem with preference to
readers is shown. In this approach readers wait until there is no writer in the
critical section and then get the lock that protects that section. We simulate a
lock with a boolean variable lock. Considering the fact that in our model the

Abstracting and Counting Synchronizing Processes (extended abstract) 21

transitions are atomic, such simulation is sound. When a writer wants to access
the critical section, it first waits for the lock and then gets it (buy setting it to
ff). Before starting writing, a writer sets a flag writing that we check later on
in a reader process. At the end a writer unsets writing and frees lock.

An arbitrary number of reader processes can also be spawned. The number of
readers is being kept track of by the variable readcount. When the first reader
is going to be spawned (i.e. readcount = 0) flag lock must hold. readcount is
incremented after spawning each reader. Whenever a reader starts execution,
it checks flag writing and goes to error if it is set, because it shows that at the
same time a writer is writing to the shared resource. When a reader wants to
exit, it decrements the readcount. The last reader frees the lock.

In this example we need a counting invariant to capture the relation between
number of readers, i.e. readcount and the number of processes in different loca-
tions of process reader.

A.2 Parent and Child

int i := 0
bool allocated := ff

main :
lcent I lcent : spawn(parent); i := i+ 1
lcent I lcent : join(parent); i := i− 1

parent :

lcent I lc1 : allocated := tt

lc1 I lc2 : spawn(child)
lc2 I lc3 : join(child)
lc3 I lcext : i = 1; allocated := ff

lc1 I lc3 : tt

child :
lcent I lcext : allocated
lcent I lcerr : ¬allocated

Fig. 9. The Parent and Child example.

In the example of Fig.9 a sample nested spawn/join is demonstrated. In
this example two types of processes exist. One is parent which is spawned by
main and the other one is called child which is spawned by parent. The shared
variable i is initially 0 and is incremented and decremented respectively when
a parent process is spawned and joined. A parent process first sets the shared
flag allocated and then either spawns and joins a child process or just moves
from lc1 to lc3 without doing anything. The parent that sees i = 1 unsets the

22 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

flag allocated. A child process goes to error if allocated is not set. This example
is error free because one can see that allocated is unset when only one parent
exists and that parent has already joined its child or did not spawn any child,
i.e. no child exists. Such relation between number of child and parent processes
as well as variable i can only be captured by appropriate counting invariants
and predicate abstraction is incapable of that.

A.3 Simple Barrier

int wait := 0, count := 0
bool enough := ff, f lag := ∗, barrierOpen := ff

main :
lcent I lc1 : ¬enough; spawn(proc); count := count+ 1
lc1 I lcent : enough := ff

lc1 I lcent : enough := tt

proc :

lcent I lc1 : flag := tt

lc1 I lc2 : flag := ff

lc2 I lc3 : wait := wait+ 1
lc3 I lc4 : (enough ∧ wait = count); barrierOpen := tt : wait := wait− 1
lc3 I lc4 : barrierOpen;wait := wait− 1
lc4 I lcerr : flag

Fig. 10. Simple Barrier example.

In the example of Fig.10 a simple application of a barrier is shown. main
process spawns an arbitrary number of procs and increments a shared variable
count that is initially zero and counts the number of procs in the program before
shared flag enough is set. Each proc first sets and then unsets shared flag flag.
The statements in lc2 to lc4 simulate a barrier. Each proc first increments a
shared variable wait which is initially zero. Then the first proc that finds out that
the condition (enough∧wait = count) holds, sets a shared flag barrierOpen and
goes to lc4. Other procs that want to traverse the barrier can the transition lc3 I
lc4 : barrierOpen. After the barrier a proc goes to error if flag is unset.One can
see that the error state is not reachable in this program because all procs have
to unset flag before any of them can traverse the barrier. To prove that this
example is error free, it must be shown that the barrier implementation does not
let any process be in locations lcent, lc1 or lc2 where there are processes after
barrier, i.e. in locations lc4 and lcerr. Proving such property requires the relation
between number of processes in program locations and variables wait and count
be kept. This is possible when we use counting invariants as introduced in this
paper.

Abstracting and Counting Synchronizing Processes (extended abstract) 23

A.4 Dynamic Barrier

int N := ∗, wait := ∗, count := ∗, i := 0
bool done := ff

main :
lcent I lc1 : count, wait := N, 0
lc1 I lc1 : i! = N, spawn(proc); i := i+ 1
lc2 I lc3 : i = N ∧ wait = count
lc3 I lc3 : join(proc); i := i− 1
lc3 I lc4 : i = 0; done := tt

proc :

lcent I lcext : count := count− 1
lcent I lcerr : done

Fig. 11. dynamic barrier

In a dynamic barrier the number of processes that have to wait at a barrier
can change. The way we implemented barriers in this paper makes it easy to
capture characteristics of such barriers. In the example of Fig.11 the variables
corresponding to barrier i.e. count and wait are respectively set to N and 0 in
the main’s first statement. Then procs are spawned as long as the counter i is
not equal to N which denotes the total number of procs in the system. Each
created proc decrements count and by doing so it decrements the number of
processes that have to wait at the barrier. In this example the barrier is in lc2
of main and can be traversed as usual when wait = count holds and no more
proc is going to be spawned, i.e. i = N . Then main can non-deterministically
join a proc or set flag done if no more proc exists.

A.5 As Many

In the example of Fig.12 process main spawns as many processes proc1 as proc2
and it increments their corresponding counters count1 and count2 accordingly.
At some point main sets flag enough and does not spawn any other processes.
Processes in proc1 and proc2 start execution after enough is set. A process in
proc1 goes to error location if count1 6= count2. One can see that error is not
reachable because the numbers of processes in the two groups are the same
and respective counter variables are initially zero and are incremented with each
spawn to represent the number of processes. To verify this example obviously the
relation between count1, count2 and number of processes in different locations
of proc1 and proc2 must be captured.

24 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

int count1 := 0, count2 := 0
bool enough := ff

main :
lcent I lc1 : spawn(proc1); count1 := count1 + 1
lc1 I lcent : spawn(proc2); count2 := count2 + 1
lcent I lc2 : enough := tt

proc1 :

lcent I lc1 : enough
lc1 I lcerr : count1 6= count2

proc2 :

lcent I lc1 : enough

Fig. 12. As Many

int wait := 0, count := 0, open := 0
bool proceed := ff

main :
lcent I lcent : spawn(proc); count := count+ 1
lcent I lc1 : proceed := tt

proc :

lcent I lc1 : wait := wait+ 1
lc1 I lc2 : proceed ∧ wait = count; open := open+ 1
lc1 I lc2 : proceed ∧ wait 6= count
lc2 I lc3 : open > 0; open := open− 1

lc2 I lcerr : open = 0 ∧ (proc@lcent)
= 0 ∧ (proc@lc1)# = 0

Fig. 13. Buggy Barrier No.1

Abstracting and Counting Synchronizing Processes (extended abstract) 25

A.6 Barriers causing deadlock

In Fig.13 a buggy implementation of barrier is demonstrated. This example is
based on an example in [11]. The barrier implementation in the book is based on
semaphores and in our example the shared variable open which is initialized to
zero plays the role of a semaphore. A buggy barrier is implemented in program
locations lcent to lc3. First process main spawns a number of process proc,
increments the shared variable count which is supposed to count the number of
procs and at the end sets flag proceed. A proc increments shared variable wait
which is aimed to count the number of procs accumulated at the barrier. procs
must wait for the flag proceed to be set before they can proceed to lc2. Each
proc that finds out that condition proceed ∧ wait = count holds increments
open. This lets another process which is waiting at lc2 to take the transition
lc2 I lc3, i.e. traverse the barrier. A deadlock situation is possible to happen in
this implementation and that is when one or more processes are waiting for the
condition open > 0 to hold, but there is no process left at lcent or lc1 of process
which may eventually increment open. In this case a process goes to error state.

int wait := 0, count := 0
bool proceed := ff

main :
lcent I lcent : spawn(proc1); count := count+ 1
lcent I lcent : spawn(proc2)
lcent I lcext : proceed := tt

proc1 :

lcent I lc1 : wait := wait+ 1
lc1 I lc2 : proceed ∧ wait = count

lc1 I lcerr : proceed ∧ wait 6= count ∧ (proc1@lcent)
= 0

proc2 :

lcent I lc1 : wait > 0;wait := wait− 1

Fig. 14. Buggy Barrier No.2

In Fig.14 another buggy implementation of a barrier is demonstrated which
makes deadlock possible. Process main non-deterministically either spawns a
proc1 and increments count or spawns a proc2 or sets flag proceed. proc1 contains
a barrier. Each process in proc1 increments wait and then waits at lc1 for the
barrier condition to hold. A proc2 decrements wait if wait > 0. A deadlock
happens when at least a proc2 decrements wait which causes the condition in
lc1 I lc2 of proc1 to never hold. We check a deadlock situation in lc1 I lcerr
of proc1 which is equivalent to the situation where proceed∧wait 6= count does
not hold but there exists no process in lcent of proc1 that can increment wait.

The buggy implementation of a barrier in Fig.15 is similar to Fig.14, just
that this time the proc itself may decrement the wait and thus make the barrier

26 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

int wait := 0, count := 0
bool proceed := ff

main :
lcent I lcent : spawn(proc); count := count+ 1
lcent I lc1 : proceed := tt

proc :

lcent I lc1 : wait := wait+ 1
lcent I lc1 : wait > 0;wait := wait− 1
lc1 I lc2 : proceed ∧ wait = count

lc1 I lcerr : proceed ∧ wait 6= count ∧ (proc@lcent)
= 0

Fig. 15. Buggy Barrier No.3

condition proceed ∧ wait = count never hold. A deadlock situation is detected
similar to the Fig.14.

int wait := 0, count := 0, open := 0
bool proceed := ff

main :
lcent I lcent : spawn(proc); count := count+ 1
lcent I lc1 : proceed := tt

proc :

lcent I lc1 : wait := wait+ 1
lc1 I lc2 : proceed ∧ wait = count; open := open+ 1
lc1 I lc2 : proceed ∧ wait 6= count
lc2 I lc3 : open >= 1
lc3 I lc4 : wait := wait− 1;
lc4 I lcerr : wait = 0 ∧ open = 0
lc4 I lcent : wait = 0 ∧ open >= 1; open := open− 1
lc4 I lcent : wait 6= 0

Fig. 16. Buggy Barrier in Loop

The example in Fig.16 is based on an example in [11]. It demonstrates a
buggy implementation of a reusable barrier. Reusable barriers are needed when
a barrier is inside a loop. In Fig.16 the loop is formed by backward edges from lc3
to lcent. Process main spawns proc and increments count accordingly. Program
locations lcent to lc3 in proc correspond the barrier implementation and are
similar to example in Fig.13 and the other transitions make the barrier ready to
be reused in the next loop iteration. The example is buggy first because deadlock
is possible and second because a processes can continue to next loop iteration

Abstracting and Counting Synchronizing Processes (extended abstract) 27

while others are still in previous iterations. Deadlock will happen when processes
are not able to proceed from lc4 because wait = 0 but open = 0, thus they can
never take any of the lc4 I lcent edges. For detecting such a deadlock scenario
it is essential to capture the relation between shared variables count and wait
with number of procs in different locations.

B Proofs

In this section, assume a program P = (S,L, T), a setΠ0 ⊆ preds(exprs(S ∪ L))
of predicates and two counting predicates, namely an invariant predicate ωinv in
preds(exprs(S ∪ΩLoc,S,L)) and a target predicate ωtrgt belonging to preds(exprs(ΩLoc,S,L)).

We write abstOfΠ(P) =
(
S̃, L̃, T̃

)
to mean the abstraction of P wrt. Π =

∪(π)#∈vars(ωinv)∪vars(ωtrgt)atoms(π)∪Π0. We write enc (abstOfΠ(P)) = (Q,C,∆,QInit, ΘInit, qtrgt)
to mean the counter machine encoding abstOfΠ(P).

In order to prove Lem. 1, we first establish Lem. 6. Intuitively, the lemma re-
lates the semantics of the statements of a boolean program to the one of the oper-
ations of its encoding. Recall enc (stmt) is the set of tuples [(σ̃, η̃) : op : (σ̃, η̃)]stmt
generated in Fig. 6 during the encoding of the statement stmt of abstOfΠ(P).

Lemma 6. For any statement stmt appearing in abstOfΠ(P), (σ̃, η̃, m̃)
stmt

�−−−−−−−→
abstOfΠ(P)

(σ̃′, η̃′, m̃′) iff θm̃
op

�−−−−−−−−−−→
enc(abstOfΠ(P))

θm̃′ for some [(σ̃, η̃) : op : (σ̃′, η̃′)]stmt in enc (stmt).

Proof. We proceed by induction on the number of atomic statements (i.e., as-
sume, spawn, join or assign statements) appearing in stmt.

Base case, stmt consists of the atomic statement:

1. π is an assume statement appearing in abstOfΠ(P). The semantics of boolean

programs in Fig.4 ensures that (σ̃, η̃, m̃)
π

�−−−−−−−→
abstOfΠ(P)

(σ̃′, η̃′, m̃′) iff valσ̃,η̃ (π)

holds, σ̃ = σ̃′, η̃ = η̃′ and m̃ = m̃′. In addition, the definition of the encod-
ing of a boolean program in Fig. 6 only generates [: op :]π for op = nop.
It ensures that [(σ̃, η̃) : nop : (σ̃′, η̃′)]stmt is generated iff valσ̃,η̃ (π), σ̃ = σ̃′

and η̃ = η̃′. Finally, counter machines semantics in Fig. 5 ensures that

θm̃
nop

�−−−−−−−→
abstOfΠ(P)

θm̃ for any multiset m̃.

2. spawn is a statement appearing in abstOfΠ(P). The semantics of boolean

programs in Fig.4 ensure that (σ̃, η̃, m̃)
spawn

�−−−−−−−→
abstOfΠ(P)

(σ̃′, η̃′, m̃′) iff σ̃ = σ̃′,

η̃ = η̃′ and m̃′ = (lcent, η̃init) ⊕ m̃ for each initial η̃init. In addition, the
definition of the encoding of a boolean program in Fig. 6 ensures that
[(σ̃, η̃) : op : (σ̃′, η̃′)]spawn is generated iff σ̃ = σ̃′, η̃ = η̃′ and op = (c(lcent,η̃init) :=
c(lcent,η̃init) + 1) for each initial η̃init. Finally, counter machines semantics in

Fig. 5 ensure that θm̃
c(lcent,η̃init):=(c(lcent,η̃init)+1)

�−−−−−−−−−−−−−−−−−−−−→
abstOfΠ(P)

θ(lcent,η̃init)⊕m̃ for any

multiset m̃.

28 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

3. join is a statement appearing in abstOfΠ(P). The semantics of boolean

programs in Fig.4 ensure that (σ̃, η̃, m̃)
join

�−−−−−−−→
abstOfΠ(P)

(σ̃′, η̃′, m̃′) iff σ̃ = σ̃′,

η̃ = η̃′ and m̃ = (lcext, η̃1)⊕m̃′. In addition, the definition of the encoding of
a boolean program in Fig. 6 ensures that [(σ̃, η̃) : op : (σ̃′, η̃′)]join is generated
iff σ̃ = σ̃′, η̃ = η̃′ and op = c(lcext,η̃1) ≥ 1 ⇒ (c(lcext,η̃1) := c(lcext,η̃1) − 1).

Finally, Fig. 5 ensures that θ(lc,η̃)⊕m̃
c(lc,η̃)≥1⇒(c(lc,η̃):=c(lc,η̃)−1)
�−−−−−−−−−−−−−−−−−−→

abstOfΠ(P)
θm̃ for any

multiset m̃ and program configuration (lc, η̃).
4. an assign statement ṽ1, . . . ṽn := π1, . . . πn appears in abstOfΠ(P). The se-

mantics of boolean programs in Fig.4 ensures that (σ̃, η̃, m̃)
ṽ1,...ṽn:=π1,...πn
�−−−−−−−−−−→

abstOfΠ(P)

(σ̃′, η̃′, m̃′) iff σ̃′ = σ̃[
{
ṽi ← valσ̃,η̃ (πi) |ṽi ∈ S̃

}
], η̃′ = η̃[

{
ṽi ← valσ̃,η̃ (πi) |ṽi ∈ L̃

}
]

and there is a bijection h : {1, ...|m̃|} → {1, ...|m̃′|} such that each (lcp, η̃p)i ∈
m̃ is associated to a (lcp, η̃

′
p)h(i) ∈ m̃′ with (σ̃, η̃, η̃p)

ṽ1,...ṽn,:=π1,...πn7−−−−−−−−−−−−→
abstOfΠ(P)

(σ̃′, η̃′, η̃′p).

In addition, the definition of the encoding of an assignment in Fig. 6 en-
sures that [(σ̃, η̃) : op : (σ̃′, η̃′)]ṽ1,...ṽn,:=π1,...πn

are exactly generated when

σ̃′ = σ̃[
{
ṽi ← valσ̃,η̃ (πi) |ṽi ∈ S̃

}
] and η̃′ = η̃[

{
ṽi ← valσ̃,η̃ (πi) |ṽi ∈ L̃

}
]

and op = (grd ⇒ cmd) is defined wrt. the set of auxiliary natural variables

A =

{
a(lc,η̃p),(lc,η̃′p)|lc ∈ Loc and (σ̃, η̃, η̃p)

ṽ1,...ṽn,:=π1,...πn7−−−−−−−−−−−−→
abstOfΠ(P)

(σ̃′, η̃′, η̃′p)

}
in

the following way:

grd =
∧

(lc,η̃p)
(c(lc,η̃p) =

∑
a(lc,η̃p),(lc,η̃′p)

∈A a(lc,η̃p),(lc,η̃′p))

cmd = ∪(lc,η̃′p)
{
c(lc,η̃′p) :=

∑
a(lc,η̃p),(lc,η̃′p)

∈A a(lc,η̃p),(lc,η̃′p)

}

Now, given two multisets m̃, m̃′, Fig. 5 ensures that θm̃
grd⇒cmd

�−−−−−−−−−−→
enc(abstOfΠ(P))

θm̃′

iff there is a mapping γ : A → N such that valθm̃,γ (grd) evaluates to true

and θm̃′ = θm̃

[
c(lc,η̃′p) ←

∑
a(lc,η̃p),(lc,η̃′p)

∈A γ(a(lc,η̃p),(lc,η̃′p))

]
. Each element

a(lc,η̃p),(lc,η̃′p) in A can be regarded as the number of (lc, η̃p) elements in m̃

that are sent to (lc, η̃′p) elements in m̃′. The guard ensures that each element
in m̃ is sent to some elements in m̃′, and the command ensures that each
element in m̃ comes from some element in m̃. This is possbile iff there is
a bijection h : {1, ...|m̃|} → {1, ...|m̃′|} such that each (lcp, η̃p)i ∈ m̃ is

associated to a (lcp, η̃
′
p)h(i) ∈ m̃′ with (σ̃, η̃, η̃p)

ṽ1,...ṽn,:=π1,...πn7−−−−−−−−−−−−→
abstOfΠ(P)

(σ̃′, η̃′, η̃′p).

Suppose that for any statement stmt appearing in abstOfΠ(P) of length

smaller or equal to n ≥ 1: (σ̃, η̃, m̃)
stmt

�−−−−−−−→
abstOfΠ(P)

(σ̃′, η̃′, m̃′) iff θm̃
op

�−−−−−−−−−−→
enc(abstOfΠ(P))

θm̃′ for some [(σ̃, η̃) : op : (σ̃′, η̃′)]stmt in enc (stmt). Using the base case, we

Abstracting and Counting Synchronizing Processes (extended abstract) 29

know that for any stmt′ of length 1, (σ̃′, η̃′, m̃′)
stmt′

�−−−−−−−→
abstOfΠ(P)

(σ̃′′, η̃′′, m̃′′) iff

θm̃′
op′

�−−−−−−−−−−→
enc(abstOfΠ(P))

θm̃′′ for some [(σ̃′, η̃′) : op′ : (σ̃′′, η̃′′)]stmt′ in enc (stmt′).

The only way to build compound rules for boolean programs and their en-
codings are respectively the two sequence rules in Fig. 4 and in Fig. 6. We
get that for any statement stmt appearing in abstOfΠ(P) of length smaller or

equal to n+ 1: (σ̃, η̃, m̃)
stmt;stmt′

�−−−−−−−→
abstOfΠ(P)

(σ̃′′, η̃′′, m̃′′) iff θm̃
op;op′

�−−−−−−−−−−→
enc(abstOfΠ(P))

θm̃′′ for

some [(σ̃, η̃) : op : (σ̃′, η̃′)]stmt and [(σ̃′, η̃′) : op′ : (σ̃′′, η̃′′)]stmt′ in enc (stmt) and
enc (stmt′) respectively. ut

Now we can prove Lem. 1:

Lemma 1. qtrgt is enc (abstOfΠ(P)) reachable iff a configuration (σ̃, m̃) such

that ωtrgt

[{
(π)# ←

∑
{(lc,η̃)|val(lc,η̃)(π)} m̃((lc, η̃))|(π)# ∈ vars(ωtrgt)

}]
is reach-

able in abstOfΠ(P).

Proof. We prove that an abstOfΠ(P) run ρabstOfΠ(P) = (σ̃0, m̃0), t̃1, ...(σ̃n, m̃n)

is feasible with ωtrgt

[{
(π)# ←

∑
{(lc,η̃)|val(lc,η̃)(π)} m̃n((lc, η̃))|(π)# ∈ vars(ωtrgt)

}]
,

iff some ρenc(abstOfΠ(P)) = (qσ̃0 , θm̃0), δ1, . . . (qσ̃n , θm̃n), δtrgt, (qtrgt, e) satisfying

δtrgt ∈ ∆trgt and δi ∈ ∆t̃i
as defined in Fig. 6 for each t̃i = (lc I lc′ : stmt) with

i : 1 ≤ i ≤ n is enc (abstOfΠ(P)) feasible.
By definition σ̃0 and m̃0 are initial iff qσ̃0

and θm̃0
are also initial. In addi-

tion, the semantics of boolean programs in Fig. 4 ensure that (σ̃, m̃)
(lcIlc′:stmt)
−−−−−−−−−→
abstOfΠ(P)

(σ̃′, m̃′) iff m̃ = (lc, η̃) ⊕ m̃1 and m̃′ = (lc′, η̃′) ⊕ m̃′1 and (σ̃, η̃, m̃1)
stmt

�−−−−−−−→
abstOfΠ(P)

(σ̃′, η̃′, m̃′1). Using Lem. 6, we can show that: (σ̃, η̃, m̃1)
stmt

�−−−−−−−→
abstOfΠ(P)

(σ̃′, η̃′, m̃′1) iff

θm̃1

op
�−−−−−−−−−−→
enc(abstOfΠ(P))

θm̃′1 for some [(σ̃, η̃) : op : (σ̃′, η̃′)]stmt in enc (stmt). Observe

that θm̃1

op
�−−−−−−−−−−→
enc(abstOfΠ(P))

θm̃′1 is equivalent to θ(lc,η̃)⊕m̃1

c(lc,η̃)≥1⇒(c(lc,η̃))
−−;op;(c(lc′,η̃′))

++

�−−−−−−−−−−−−−−−−−−−−−−−→
enc(abstOfΠ(P))

θ(lc′,η̃′)⊕m̃′1 . The rule δ = (qσ̃ : c(lc,η̃) ≥ 1 ⇒ (c(lc,η̃))
−−; op; (c(lc′,η̃′))

++ : qσ̃′)
is generated in ∆(lcIlc′:stmt) by the transition rule in Fig. 6. The semantics of

counter machines in Fig. 5, gives that: (qσ̃, θm̃)
δ−−−−−−−−−−−→

enc(abstOfΠ(P))
(qσ̃′ , θm̃′). For the

last step, observe that: ωtrgt

[{
(π)# ←

∑
{(lc,η̃)|val(lc,η̃)(π)} m̃n((lc, η̃))|(π)# ∈ vars(ωtrgt)

}]
holds iff valθm̃n

(
ωtrgt

[{
(π)# ←

∑
{(lc,η̃)|val(lc,η̃)(π)} c((lc,η̃))|(π)# ∈ vars(ωtrgt)

}])
holds. ut

Lemma 2. State reachability of all encodings obtained with monotonic target
counting predicates is decidable.

30 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

Proof. First, notice that (Θ,�), where Θ is the set of counter valuations and
where θ � θ′ (for θ, θ′ ∈ Θ) iff θ(c) ≤ θ′(c) for each c ∈ C is a well quasi ordering
wrt. v (defined by (q, θ) v (q′, θ′) iff q = q′ and θ � θ′) [7]. We show in the
following that encodings obtained with monotonic target counting predicates
result in well structured transition systems [3, 13]. It is well known that state
reachability is decidable for such systems. For this, we need to show that:

1. Except for the transitions generated by the target rule, each transition (q :
op : q′) generated in Fig. 6 is monotonic wrt. the well quasi ordering v.
Established by Lem. 7.

2. The upward closure Upv((q, θ)) = {(q′, θ′)|(q, θ) v (q′, θ′)} of a machine
configuration (q, θ) can be represented as a Presburger definable set of ma-
chine configurations. In addition, for each Presburger definable set of ma-
chine configurations S (we write predOf(S) to mean the associated Pres-
burger formula), we can compute a finite set of minimal elements Minv(S) =
{(q1, θ1), . . . (qn, θn)} (i.e., (qi, θi) 6v (qj , θj) if i 6= j and for each (q, θ) ∈ S
there is a (qi, θi) ∈Min�(S) with (qi, θi) v (q, θ)). Established by Lem. 8.

3. The predecessors Pre(q:op:q′)(Upv((q′, θ′))) are effectively representable as
a Presburger formula for each (q′, θ′) and transition (q : op : q′) generated in
Fig. 6. Established by Lem. 9.

ut

Lemma 7. Transitions (q : op : q′) generated by all rules in Fig. 6, except for
the target rule, are monotonic wrt. v.

Proof. Let op be some operation appearing in a generated transition (q : op :
q′) of enc (abstOfΠ(P)). We say that an operation op is monotonic wrt. � if

for each θ1, θ2, θ3 s.t. θ1
op

�−−−−−−−→
abstOfΠ(P)

θ2 and θ1 � θ3 there exists an θ4 s.t.

θ3
op

�−−−−−−−→
abstOfΠ(P)

θ4 and θ2 � θ4. Observe that (q : op : q′) is monotonic wrt. v iff op

is monotonic wrt. �. In addition, observe that if both op and op′ are monotonic,
then so is op; op′. It is therefore enough to show monotonicity of nop, c ≥ 1,

(c)++, (c)−− and
∧
ci∈C(ci =

∑
ai,j∈A ai,j) ⇒ ∪j

{
cj :=

∑
ai,j∈A ai,j

}
where

A = {ai,j | for each ci ∈ C there is at least one cj ∈ C s.t. ai,j ∈ A} is a set of
auxiliary natural variables. The first four cases are straightforward. We show

grd ⇒ cmd is monotonic. Suppose we are given θ1, θ2, θ3 s.t. θ1
grd⇒cmd
�−−−−−−−→
abstOfΠ(P)

θ2

and θ1 � θ3. We exhibit a θ4 s.t. θ3
grd⇒cmd
�−−−−−−−→
abstOfΠ(P)

θ4 and θ2 � θ4.

Since θ1
grd⇒cmd
�−−−−−−−→
abstOfΠ(P)

θ2, we get that there is a valuation γ : A → N s.t.

θ1(c(i)) =
∑
js.t.ai,j∈A γ(ai,j) and θ2(cj) =

∑
is.t.ai,j∈A γ(ai,j).

If θ1 � θ3 we have that for all c(i) ∈ C, θ1(c(i)) ≤ θ3(c(i)), thus θ3(c(i)) =
θ1(c(i)) + ei =

∑
js.t.ai,j∈A ai,j + ei where ei ≥ 0. By definition of A, for each ci

there is at least a j0 such that ai,j0 ∈ A.

Abstracting and Counting Synchronizing Processes (extended abstract) 31

We define θ4(c(j0)) :=
∑
ls.t.al,j0∈A

γ′(al,j0) where γ′al,j0 = γ(al,j0) + δliei

where δli is the Kronecker delta. So, θ2(c(j0)) � θ4(c(j0)). We repeat the the
process for each counter in C. This results in a θ4 where θ2 � θ4 and for which
the transition is possible using the mapping γ′. ut

Lemma 8. The upward closure Upv((q, θ)) = {(q′, θ′)|(q, θ) v (q′, θ′)} of a ma-
chine configuration (q, θ) can be represented as a Presburger definable set of ma-
chine configurations. In addition, for each Presburger definable set of machine
configurations S (we write predOf(S) to mean the associated Presburger for-
mula), we can compute a finite set of minimal elements Minv(S) = {(q1, θ1), . . . (qn, θn)}
(i.e., (qi, θi) 6v (qj , θj) if i 6= j and for each (q, θ) ∈ S there is a (qi, θi) ∈
Min�(S) with (qi, θi) v (q, θ)).

Proof. We use variable state to refer to the state of a machine configuration. We
represent a machine configuration (q, θ) with the Presburger formula φ(q,θ)(state, C) =
(state = q)∧∧c∈Cθ(c) = c. We define the Presburger formula φUpv((q,θ))

(state, C) =

(state = q) ∧ ∧c∈Cθ(c) ≤ c to represent all machine configurations (q′, θ′)
that satisfy it, i.e., q′ = q and θ(c) � θ′(c) for each c ∈ C, i.e., the upward
closure of (q, θ). Given a set S that contains exactly all machine configura-
tions that satisfy the formula predOf(S) over c1, . . . c|C|, we define the for-
mula φMinv(S) = (predOf(S) ∧ ∀c′1, . . . , c′|C|.((predOf(S) [{c← c′|c ∈ C}])) ⇒
((∧c∈Cc = c′ ∧ state = state′) ∨ ∨c∈Cc′ 6≤ c ∨ state 6= state′)). Intuitively, a
machine configuration (q, θ) satisfies φMinv(S) iff it is in S and for every ma-
chine configuration (q′, θ′) also in S, either (q, θ) = (q′, θ′) or (q′, θ′) 6v (q, θ). In
other words, there is no other machine configuration in S that is both smaller
and different. By well quasi ordering of v, the number of machine configurations
that satisfy φMinv(S) is finite.

Lemma 9. The set of predecessors Pre(q:op:q′)(S) is effectively representable as
a Presburger formula for each Presburer representable set S of machine config-
urations and transition (q : op : q′) generated in Fig. 6.

Proof. Given a transition (q : op : q′) the set Pre(q:op:q′)(S) can be represented
with ∃state, c′1, . . . , c′|C| ((state = q) ∧ φop ∧ (state′ = q′) ∧ S [{state← state′} ∪ {c← c′|c ∈ C}])
where φop is a formula over C,C ′ defined for each operation as follows:

1. op = nop, then φop = ∧c∈Cc = c′.
2. op = (grd => c1, . . . , cn := e1, . . . , en), then φop = ∃A.(grd ∧ c1 = e1 . . . ∧
cn = en ∧ ∧c∈C\c1,...cnc = c′).

3. op = op1; op2 then φop = ∃c′′1 , . . . c′′|C|.φop1 [{c′ ← c′′|c ∈ C}]∧φop2 [{c← c′′|c ∈ C}]
ut

In order to establish Lem. 3, we show two intermediate results Lem. 10 and
Lem. 11.

First recall we assume a program P = (S,L, T), a setΠ0 ⊆ preds(exprs(S ∪ L))
of predicates and two counting predicates, namely an invariant predicate ωinv in
preds(exprs(S ∪ΩLoc,S,L)) and a target predicate ωtrgt belonging to preds(exprs(ΩLoc,S,L)).

32 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

We write abstOfΠ(P) =
(
S̃, L̃, T̃

)
to mean the abstraction of P wrt. Π =

∪(π)#∈vars(ωinv)∪vars(ωtrgt)atoms(π) ∪Π0.
Given a shared configuration σ̃, we write predOf(σ̃) to mean the predicate∧

s̃∈S̃(σ̃(s̃) ⇔ predOf(s̃)). In a similar manner, we write predOf(η̃) to mean∧
l̃∈L̃(η̃(l̃)⇔ predOf(l̃)). Observe vars(predOf(σ̃)) ⊆ S and vars(predOf(η̃)) ⊆

S ∪ L. We abuse notation and write valσ (σ̃) (resp. valσ,η (η̃)) to mean that
valσ (predOf(σ̃)) (resp. valσ,η (predOf(η̃))) holds. We also write valσ̃,η̃ (π), for
a boolean combination π of predicates in Π, to mean the predicate obtained
by replacing each π′ in Πmix ∪ Πloc (resp. Πshr) with η̃(ṽ) (resp. σ̃(ṽ)) where
predOf(ṽ) = π′. We let valσ,m (m̃) mean there is a bijection h : {1, ...|m|} →
{1, ...|m̃|} s.t. we can associate to each (lc, η)i in m an (lc, η̃)h(i) in m̃ such that
valσ,η (η̃) for each i : 1 ≤ i ≤ |m|.

The abstraction of (σ,m) is α ((σ,m)) = {(σ̃, m̃)|valσ (σ̃) ∧ valσ,m (m̃)}.

Lemma 10. If (σ̃, m̃) ∈ α ((σ,m)) then for each π ∈ preds(exprs(S ∪ L)) s.t.
atoms(π) ⊆ Π, we have

∑
{(lc,η)|valσ,(lc,η)(π)}m((lc, η)) =

∑
{(lc,η̃)|valσ̃,(lc,η̃)(π)} m̃((lc, η̃)).

Proof. By definition of α ((σ,m)), valσ,m (m̃) holds. This means that there is a
bijection h : {1, ...|m|} → {1, ...|m̃|} s.t. we can associate to each (lc, η)i in m
an (lc, η̃)h(i) in m̃ such that valσ,η (η̃) for each i : 1 ≤ i ≤ |m|. By construc-
tion of valσ,η (η̃), we have that valσ̃,(lc,η̃) (π) and valσ,(lc,η) (π) coincide on each
boolean combination of predicates in Πmix∪Πloc. As a result, valσ̃,(lc,η̃) (π) and
valσ,(lc,η) (π) coincide on each π such that atoms(π) ⊆ Π. This implies that∑
{(lc,η)|valσ,(lc,η)(π)}m((lc, η)) =

∑
{(lc,η̃)|valσ̃,(lc,η̃)(π)} m̃((lc, η̃)) for each π with

atoms(π) ⊆ Π.
ut

Lemma 11. Assume (σ̃, m̃) ∈ α ((σ,m)). If valσ,m (ωinv) then the following

holds: valm̃

(
∃S.predOf(σ̃) ∧ ωinv

[{
(π)# ←

∑
{(lc,η̃)|val(lc,η̃)(π)} c((lc,η̃))|(π)# ∈ vars(ωinv)

}])
.

Proof. We have that valσ (predOf(σ̃)) holds since (σ̃, m̃) ∈ α ((σ,m)), and valσ,m (ωinv)
holds by assumption. Then, valσ,m (predOf(σ̃) ∧ ωinv) also holds. By definition
of how counted predicates are evaluated (see Sec. 4), the following also holds:

valσ

(
predOf(σ̃) ∧ ωinv

[{
(π)# ←

∑
{(lc,η)|valσ,(lc,η)(π)}m((lc, η))|(π)# ∈ vars(ωinv)

}])
.

Since atoms(π) ⊆ Π for each (π)# appearing in vars(ωinv), Lem. 10 ensures:

valσ

(
predOf(σ̃) ∧ ωinv

[{
(π)# ←

∑
{(lc,η̃)|val(lc,η̃)(π)} m̃σ̃, (lc, η̃)|(π)# ∈ vars(ωinv)

}])
holds. Finally, the existence of σ ensures that the following holds ∃S.predOf(σ̃)∧
ωinv

[{
(π)# ←

∑
{(lc,η̃)|val(lc,η̃)(π)} m̃σ̃, (lc, η̃)|(π)# ∈ vars(ωinv)

}]
. ut

Lemma 3. Any feasible P run has a feasible abstOfΠ(P) run with a feasible
run in any machine obtained as the strengthening of enc (abstOfΠ(P)) wrt. some
P invariant ωinv ∈ preds(exprs(S ∪ΩLoc,S,L)).

Proof. Proof of this lemma is by contradiction. Assume to the contrary that a
P feasible run ρP exists but it does not have a enc (abstOfΠ(P))str feasible

Abstracting and Counting Synchronizing Processes (extended abstract) 33

run ρenc(abstOfΠ(P))str
where enc (abstOfΠ(P))str is a strengthening of machine

enc (abstOfΠ(P)) with respect to an invariant ωinv.
According to Def. 1, for each run ρP , a non-empty set α (ρP) of abstOfΠ(P)

feasible runs exist. Moreover, based on Lem. 1, for each run ρabstOfΠ(P) ∈ α (ρP)
there exists an enc (abstOfΠ(P)) feasible run ρenc(abstOfΠ(P)) (before strength-
ening). So, if the run ρenc(abstOfΠ(P))str

does not exist, it is because the run
ρenc(abstOfΠ(P)) was not possible after the strengthening phase.

Let ρenc(abstOfΠ(P)) = (qσ̃0 , θm̃0), δ1, . . . (qσ̃n , θm̃n) where ρP = (σ0,m0), t1, . . . , (σn,mn)
with (σ̃i, m̃i) ∈ α ((σi,mi)) for each i : 0 ≤ i ≤ n. Because ρenc(abstOfΠ(P)) is

removed after strengthening, then there exists a step (qσ̃, θm̃)
[qσ̃ :op:qσ̃′]−−−−−−−−−−−→

enc(abstOfΠ(P))

(qσ̃′ , θ
′
m̃) in ρenc(abstOfΠ(P)) such that its corresponding step (qσ̃, θm̃)

[qσ̃:grdσ̃(ωinv);op;grdσ̃′ (ωinv):qσ̃′]−−−−−−−−−−−−−−−−−−−−−−→
ρenc(abstOfΠ (P))str

(qσ̃′ , θ
′
m̃) is impossible. According to strengthening rule in Fig. 7, grdσ̃(ωinv) =

∃S.predOf(σ̃)∧ωinv
[{

(π)# ←
∑
{(lc,η̃)|valσ̃,(lc,η̃)(π)} c(lc,η̃)|(π)# ∈ vars(ωinv)

}]
.

So, the fact that the mentioned step is not possible after strengthening implies
that either (σ, θm) does not satisfy grdσ̃(ωinv), or that (σ′, θm′) does not satisfy
grdσ̃′(ωinv). Both alternatives violate the fact that ωinv is an invariant, that
(σ,m) and (σ′,m′) are both reachable, and Lem. 11. ut

Lemma 4. State reachability is in general undecidable after strengthening.

Proof. Sketch. We encode a two counters Minsky machine (Q, q0, ∆, qF) where
Q is a finite set of states, q0 is the initial state and qF is the final one, and
the transitions in ∆ are either an increment (q : (xi)

++ : q′), a decrement
(q : xi ≥ 1; (xi)

−− : q′) or a test for zero (q : xi = 0 : q′) for one the counters
{x1, x2}.

We construct a concurrent program with one main method and two processes
proc1 and proc2 (see Fig. 17). The main method simulates the counter machine in
the sense that a bijection associates each location main@lc of the main procedure
to a machine state in Q with lcent associated to q0 and lcext associated to qF .
In addition, the main procedure has a transition (lcq I lcq′ : stmtop) to each
transition (q : op : q′) in ∆. More precisely,

1. if op = (xi)
++, then stmtop = (counti)

++; spawn(proci) (tinc in Fig. 17);
2. if op = (xi)

−−, then stmtop = counti ≥ 1; (counti)
−−; join(proci) (tdec in

Fig. 17);
3. if op = (xi = 0), then stmtop = (counti = 0) (ttest in Fig. 17)

Finally, we let ωtrgt = (main@lcext)
≥ 1 and ωinv = (count1 = (proc1@lcent)

#+
(proc1@lcext)

#)∧(count2 = (proc2@lcent)
#+(proc2@lcext)

#) andΠ0 = {count1 = 0, count2 = 0}.
Predicate abstraction will maintain the predicates counti = 0 but will loose

their connection with the number of proci processes. Strengthning restablishes
this connection and we obtain, after strengthening, essentially the same counter
machine as (Q, q0, ∆, qF) where the reachability of qF is equivalent to the reach-
abilty if qtrgt. ut

34 Zeinab Ganjei, Ahmed Rezine, Petru Eles, and Zebo Peng

int count1 := 0
int count2 := 0

main :
tinc : lcq I lcq′ : (count1)++; spawn(proc1)
tdec : lcq I lcq′ : count2 ≥ 1; (count2)−−; join(proc2)
ttest : lcq I lcq′ : count1 = 0

...

proc1 :

lcent I lcext : tt;

proc1 :

lcent I lcext : tt;

Fig. 17. Encoding a two counter machine.

Lemma 5. For any configurations (σ,m) and (σ̃, m̃) s.t. (σ̃, m̃) ∈ α ((σ,m)), we

have that ωtrgt

[{
(π)# ←

∑
{(lc,η)|valσ,(lc,η)(π)}m((lc, η))|(π)# ∈ vars(ωtrgt)

}]
iff

ωtrgt

[{
(π)# ←

∑
{(lc,η̃)|valσ̃,(lc,η̃)(π)} m̃((lc, η̃))|(π)# ∈ vars(ωtrgt)

}]
.

Proof. Recall ωtrgt ∈ preds(exprs(ΩLoc,S,L)), and that atoms(π) ⊂ Π for each
(π)# appearing in ωtrgt. Lem. 10 ensures that

∑
{(lc,η)|valσ,(lc,η)(π)}m((lc, η)) =∑

{(lc,η̃)|val(lc,η̃)(π)} m̃((lc, η̃)) for each π such that (π)# appears in vars(ωtrgt).

ut

Theorem 1 (predicated constrained monotonic abstraction). Assume
an effective and sound predicate abstraction. If the constrained monotonic ab-
straction step returns not reachable, then no configuration satisfying ωtrgt is
reachable in P . If a P run is returned by the simulation step, then it reaches
a configuration where ωtrgt holds. Every iteration of the outer loop terminates
given the inner loop terminates. Every iteration of the inner loop terminates.

Proof. If a configuration satisfying ωtrgt is reachable in P then there is a P feasi-
ble run ρP that contains a configuration (σ,m) with valσ,m (ωtrgt) holds. Def. 1
ensures that α (ρP) is feasible. Let (σ̃, m̃) ∈ α ((σ,m)) appearing in α (ρP). Lem.

5 ensures that ωtrgt

[{
(π)# ←

∑
{(lc,η̃)|valσ̃,(lc,η̃)(π)} m̃((lc, η̃))|(π)# ∈ vars(ωtrgt)

}]
holds. This means qtrgt is reachable in enc (abstOfΠ(P)) (and Lem. 1) and this
run is preserved after strengthening (Lem. 3). Since constrained monotonic ab-
straction is sound (Lem. 5), it cannot return not reachable. In addition, if a
P run ρP is returned by the simulation step, then it is possible in P . Further-
more, ρP was obtained from a run ρenc(abstOfΠ(P)) of enc (abstOfΠ(P)) that
reached qtrgt. This means (Lem. 1) that a configuration (σ̃, m̃) in ρabstOfΠ(P)

(corresponding to a configuration (σ,m) in ρP with (σ̃, m̃) ∈ α ((σ,m))) satis-

fies ωtrgt

[{
(π)# ←

∑
{(lc,η̃)|valσ̃,(lc,η̃)(π)} m̃((lc, η̃))|(π)# ∈ vars(ωtrgt)

}]
. Lem.

Abstracting and Counting Synchronizing Processes (extended abstract) 35

5 ensures that ωtrgt

[{
(π)# ←

∑
{(lc,η)|valσ,(lc,η)(π)}m((lc, η))|(π)# ∈ vars(ωtrgt)

}]
.

Termination of each iteration of the outer loop is guaranteed by the effectiveness
of the predicate abstraction and by the finiteness of the trace returned by con-
strained monotonic abstraction. Termination of each iteration of the inner loop
is guaranteed by well quasi ordering (see [4]). ut

