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Abstract1

In this paper we address the test scheduling problem for
system-on-chip designs. Different from previous approaches
where it is assumed that all tests will be performed until
completion, we consider the cases where the test process
will be terminated as soon as a defect is detected. This is
common practice in production test of chips. The proposed
technique takes into account the probability of defect-
detection by a test in order to schedule the tests so that the
expected total test time will be minimized. We investigate
different test bus structures, test scheduling strategies
(sequential scheduling vs. concurrent scheduling), and test
set assumptions (fixed test time vs. flexible test time). We
have also made experiments to illustrate the efficiency of
taking defect probability into account during test
scheduling.

1. Introduction

The cost of developing electronic systems is increasing and
a significant part of the cost is related to the testing of the
systems. One efficient way to reduce the total cost is
therefore to reduce the testing cost. Test cost reduction can
be achieved by minimizing the testing time of the system.
An efficient ordering, test scheduling, of the execution of
the test sets will minimize the total testing time.

The core-based design technique is another approach to
reduce the increasing development costs. With such a
technique, pre-designed and pre-verified blocks of logic, so
called cores, are integrated to a complete system, which can
be placed on a single die to form a system-on-chip (SOC).
To test a SOC, a test bus is used for the transportation of test
data in the system and its organization often has a great
impact on the test schedule. SOC test scheduling can be
performed assuming: sequential scheduling, i.e. only one
test at a time, or concurrent scheduling, with a possibility to
execute several tests at the same time. The testing time for
the execution of each test set can be fixed, or flexible where
it is possible to adjust the test time for a test.

In a large volume production test for SOC, an abort-on-
fail approach is usually used, which means that the test
sequence is aborted as soon as a fault is detected. This
approach is used to reduce the test application time. With

the abort-on-fail assumption, the tests should be ordered in
such a way that tests with a high probability to fail are
scheduled before tests with a lower probability to fail since
this will minimize the average testing time.

In this paper we discuss test scheduling considering
defect detection probability, which is collected from the
production line or generated based on inductive fault
analysis. We have defined models to compute the expected
test time as well as scheduling heuristic taking the defect
probabilities into account and we have performed
experiments to show the efficiency of the proposed
approach.

The rest of the paper is organized as follows. An
overview of related work is in Section 2. Sequential test
scheduling is discussed in Section 3 and concurrent test
scheduling is described in Section 4. The paper is concluded
with experimental results in Section 5 and conclusions in
Section 6.

2. Related Work

Test scheduling determines the execution order of the tests
in a system. A common objective is to minimize the test
application time while considering test conflicts. In SOC
systems, where each core is equipped with a wrapper, an
interface to the test access mechanism (TAM), a test conflict
is due to the sharing of the TAM or the test bus. The TAM,
used for the transportation of test data, is used to connect the
test source, the cores and the test sink. The test source is
where the test vectors are generated or stored, and the test
sink is where the test responses are analyzed or stored. An
automatic test equipment (ATE) is a typical example of a
test source and test sink.

A TAM can be organized in different ways, which
impacts the test scheduling. An example is the AMBA test
bus, which makes use of the existing functional bus,
however, the tests have to be scheduled in a sequence [2].
An alternative is the approach proposed by Varma and
Bhatia where several test buses are used. The tests on each
bus are scheduled in a sequence, however, since several
buses are allowed, testing can be performed concurrently
[11]. Another approach is the TestRail, which allows a high
degree of flexibility [8].

The TestRail approach has recently gained interest and
several scheduling techniques for scan tested SOCs have
been proposed [3,5,7]. The objective is to arrange the scan-1. The research is partially supported by the Swedish National
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chains into wrapper chains, which then are connected to
TAM wires. Iyengar et al. made use of integer-linear
programming [5] and Huang et al. used a bin-packing
algorithm. Both these approaches assume that the tests will
always be performed until completion. Koranne proposed
an abort-on-fail technique to minimize the average-
completion time by scheduling tests with short test time
early [7]. For sequential testing, several abort-on-fail test
scheduling techniques considering the defect probability
have been proposed [4,6]. Huss and Gyurcsik made use of a
dynamic programming algorithm to order the tests [4].
Milor and Sangiovanni-Vincentelli proposed a technique
for the selection and ordering of the test sets [10], which is
based on the dependencies between the test sets. For SOC
testing with cores in wrappers, however, there is no
dependency between the testing of different cores. In the
approach proposed by Jiang and Vinnakota the actual fault
coverage is extracted from the manufacturing line [6]. The
technique minimizes the average completion time by
ordering of the tests based on the failure probability.

3. Sequential Test Scheduling

In sequential testing, all tests are scheduled in a sequence,
one test at a time. When the abort-on-fail approach is
assumed, if a defect is detected, the testing should be
terminated at once. In order to account for the case when the
test responses are compacted into a single signature after a
whole test set is applied, we assume that the test abortion
occurs at the end of a test set even if the actual defect is
detected in the middle of applying the test set. This
assumption is also used in our formula to compute the
expected test time. Note, this means that the computational
results are pessimistic, or the actual test time will be smaller
than the computed one, in the case when the tests are
actually aborted as soon as the first defect is detected.

Given a core-based system with n cores, for each core i
there is a test set ti with a test time τi and a probability of
passing pi (i.e. the probability that test ti will detect a defect
at core i is 1-pi). For a given schedule, the expected test time
for sequential testing is given by:

For illustration of the computation of the expected test
time, we use an example with four tests (Table 1). The tests
are scheduled in a sequence as in Figure 1. For test t1, the
expected test time is given by the test time τ1 and the
probability of success p1, τ1×p1=2×0.7=1.4. Note if there is
only one test in the system, our above formula will give the
expected test time to be 2 since we assume that every test set
has to be fully executed before we can determine if the test
is a successful test or not.

The expected test time for the completion of the
complete test schedule in Figure 1 is:

τ1×(1−p1) +
(τ1+τ2)×p1×(1−p2) +
(τ1+τ2+τ3)×p1×p2×(1-p3) +
(τ1+τ2+τ3+τ4)×p1×p2×p3×(1−p4) +
(τ1+τ2+τ3+τ4)×p1×p2×p3×p4 =
2×(1−0.7) + (2+4)×0.7×(1−0.8) + (2+4+3)×0.7×0.8×

(1−0.9) + (2+4+3+6)×0.7×0.8×0.9×(1−0.95) + (2+4+3+6)×
0.7×0.8×0.9×0.95 = 9.5

As a comparison, for the worst schedule, where the test
with highest passing probability is scheduled first, the order
will be t4, t3, t2, t1, and the expected test time is 13.6. In the
case of executing all tests until completion, the total test
time does not depend on the order, and is τ1+τ2+τ3+τ4=15.

The algorithm for test scheduling based on defect
probability in the sequential case is straight forward, it sorts
the tests in descending order based on τi×(1−pi) and
schedule the tests in this order (Figure 2).

4. Concurrent Test Scheduling

The total test time of a system can be reduced by executing
several tests at the same time, concurrent testing.
Concurrent testing is for instance possible in systems with
several test buses. In this section, we analyze concurrent
scheduling with fixed test time per test set and flexible test
time per test set.

A concurrent test schedule of the example system used in
Section 3 with data as in Table 1 assuming 3 TAMs (test
buses) is in Figure 3. The test schedule (Figure 3) consists
of a set of sessions, S1, S2, S3, and S4. Test session S1
consists of test t1, t2 and t3; S1={t1,t2,t3}. The length of a
session Sk is given by lk. For instance l1=2. We assume now
that the abortion of the test process can occur at any time
during the application of the tests. To simplify the
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Core i Test ti Test time τi Probability to pass, pi

1 t1 2 0.7

2 t2 4 0.8

3 t3 3 0.9

4 t4 6 0.95

 Table 1. Example data.

Figure 1. Sequential schedule of the example (Table 1).

ττ1 τ2 τ3

t1 t2 t3 t4

τ4

Figure 2. Sequential test scheduling algorithm.

1. Compute the cost ci =(1-pi)×τi for all tests ti
2. Sort the costs ci descending in L
3. until L is empty (all tests are scheduled) begin
4. select, schedule and remove the first test in L
5. end
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computation of expected test time, it is assumed that the test
process will terminate at the end of a session (note this is
again a pessimistic assumption). The probability to reach
the end of a session depends in the concurrent test
scheduling approach not only on a single test, but on all tests
in the session. For instance, the probability to complete
session 1 depends on the tests in session 1 (S1): t1, t2 and t3.
As can be observed in Figure 3, only test t1 is fully
completed at the end of session 1. For a test ti that is not
completed at the end of a session, the probability pik for it
to pass all test vectors applied during session k is given by:

It can be seen that for a test set ti, which is divided into m
sessions, the probability that the whole test set is passed is
equal to:

since:

For example, the probability for the tests in session S1 are
(Figure 3):

p11 = p1 = 0.7
p21 =0.82/4 = 0.89
p31 =0.92/3 = 0.93.
The formula for computing the expected test time for a

complete concurrent test schedule is given as:

As an example, the computation of the expected test time
for the test schedule in Figure 3 is given below. First we
compute the probability for each test set in each session.

The probabilities p11, p21, p31 are computed to 0.7, 0.89,
and 0.93, respectively (see above).

p22 = 0.71/4 = 0.91.
p32 = 0.91/3 = 0.96.
p23 =0.81/4= 0.95.
p43 =0.951/6=0.99.
p44 =0.955/6=0.96.
From the formula we get:

l1×(1−p11×p21×p31)+
(l1+l2)×p11×p21×p31×(1−p22×p32)+
(l1+l2+l3)×p11×p21×p31×p22×p32× (1−p23×p43)+
(l1+l2+l3+l4)×p11×p21×p31×p22×p32×p23×p43×(1-p44)+
(l1+l2+l3+l4)×p11×p21×p31×p22×p32×p23×p43×p44=
2×(1−0.7×0.89×0.93)+
(2+1)×0.7×0.89×0.93×(1−0.91×0.96)+
(2+1+1)×0.7×0.89×0.93×0.91×0.96× (1−0.95×0.99)+
(2+1+1+5)×0.7×0.89×0.93×0.91×0.96×0.95×0.99×
(1-0.96) + (2+1+1+5)×0.7×0.8×0.9×0.95 = 5.66.

As a comparison, if all tests are assumed to be executed
until completion, the total test time will be 9.

In concurrent scheduling with fixed test times, we sort
the tests based on τi×(1−pi) and select n tests for the n TAMs
based on the sorted list. The selected tests are scheduled and
removed from the list. As soon as a test terminates, a new
test from the list of unscheduled tests is selected. The
process continues until all tests are scheduled (sketch of the
algorithm is given in Figure 4.)

A way to further reduce the test application time is to
modify, if possible, the test times of the individual test sets.
For instance, in scan tested cores the test times at each core
can be modified by loading several scan chains in parallel.
The scan-chains and the wrapper cells are to form a set of
wrapper chains. Each wrapper chain is then connected to a
TAM wire. If a high number of wrapper chains are used,
their length is shorter and the loading time of a new test
vector is reduced. However, the higher number of wrapper
chains requires more TAM wires.

In Figure 5 the TAM bandwidth |W| is 4, there are four
wires in W={w1, w2, w3, w4}. The testing of each core is
performed by transporting test vectors on the assigned TAM
wires to a core and the test response is also transported from
the core to the test sink using the TAM. The testing of cores
sharing TAM wires cannot be executed concurrently. For
instance, the testing of core 1 and core 2 cannot be

Figure 3. Concurrent schedule of the example (Table 1).
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Figure 4. Concurrent test scheduling algorithm
for tests with fixed test times.

1. Compute the cost ci =τi × (1-pi) for all tests ti
2. Sort the costs ci descending in L
3. f=number of TAMs
4. τ=0 // current time,
5. Until L is empty (all tests are scheduled) begin
6. at time τ Until f=0 Begin
7. select tests from list in order and reduce f accordingly
8. End
9. τ=time when first test terminates.
10. End
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performed concurrently due to the sharing of TAM wire w3
(Figure 5). A test schedule for the system is given in
Figure 6 and the computation of the expected test time can
be done using formula 3 in Section 4. In the case with
flexible test times, the number of assigned TAM wires will
affect the expected test time.

5. Experimental Results

We have compared three approaches to demonstrate the
importance of considering the defect probability during test
scheduling. We have implemented (1) sequential
scheduling where the tests are ordered in a sequence, (2)
one where a fixed test time is assigned to each test prior to
scheduling (for details see [13]), and (2) one where the
testing time versus the number of used TAM wires is
flexible (for details see [12]). For all three approaches, we
have included the consideration of defect probabilities.

We have used the ITC’02 designs [9] and for all
experiments we have used an AMD 1800 machine (1.53
GHz, 512 MB RAM) and the computational cost is usually
a few seconds, and never exceeds 15 seconds. The defect
probability for each core is collected in Table 2.

The experimental results are collected in Table 3. We
have for each of the benchmarks made experiments at
various TAM bandwidths. We have compared the three
approaches. The results indicate that an efficient ordering
taking the defect probabilities into account can reduce the
average testing times up to nearly 90% compared to
sequential testing (also taking the defect probabilities into
account).

6. Conclusions

In this paper we have discussed test scheduling techniques
for system-on-chip (SOC) that take into account the defect
probability of each test. The advantage with our approach is
that by considering defect probabilities during the test

scheduling process, the expected test time can be
minimized, which is important in large volume production
of SOC where the testing process is terminated as soon as a
defect is detected (abort-on-fail).

We have analyzed several different test bus structures and
scheduling approaches, and defined models to compute the
expected test times and test scheduling algorithms for
several types of test buses. We have also performed
experiments to demonstrate the efficiency of our approach.

Figure 5. SoC example.

Test source Test sink

core 1

wrapper

core 2

wrapper

core 3

wrapper

core 4

wrapper

W

Figure 6. SOC test schedule of the example (Table 1).

τ

t1
t2

t3

t4

l4l1 l2 l3

w4

w3

w2

w1

W

Core
Design

d695 h953 g1023 t512505 p22810 p34392 p93791

1 98 95 99 99 98 98 99

2 99 91 99 95 98 98 99

3 95 92 99 97 97 97 97

4 92 92 98 93 93 91 90

5 99 97 94 90 91 95 91

6 94 90 95 98 92 94 92

7 90 94 94 98 99 94 98

8 92 96 97 96 96 93 96

9 98 92 92 96 99 91

10 94 92 91 95 99 94

11 96 91 93 91 93

12 92 92 91 91 91

13 93 91 92 90 91

14 96 91 93 95 90

15 99 99 94 99

16 95 99 96 98

17 97 99 96 97

18 95 95 97 99

19 94 96 92 99

20 99 97 90 99

21 91 93 92 90

22 99 99 99 99

23 91 96 96 90

24 97 98 98 98

25 92 99 92

26 96 92 96

27 95 91 95

28 92 91 91

29 90 93 90

30 91 94 96

31 95

Table 2. The pass probability in percentage for cores in
the systems.
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Design TAM Width
Expected Test Time Comparison

1 - Sequential Testing 2 - Fixed Testing Times [13] 3 - Flexible Testing Times [12] (3) vs (1) (3) vs (2)

g1023

128 41 807 24 878 17 904 - 57,2% - 28,0%

96 43 289 23 443 18 741 - 56,7% - 20,1%

80 44 395 23 112 18 229 - 58,9% - 21,1%

64 44 395 27 358 20 773 - 53,2% - 24,1%

48 46 303 27 997 21 501 - 53,6% - 23,2%

32 55 562 27 662 26 867 - 51,6% - 2,9%

24 56 711 29 410 28 795 - 49,2% - 2,1%

20 60 609 36 979 35 431 - 41,5% - 4,2%

16 75 100 44 728 44 657 - 40,5% - 0,2%

12 95 679 67 549 60 239 - 37,0% - 10,8%

d695

128 31 113 10 884 9 468 - 69,6% - 13,0%

96 31 158 14 716 11 712 - 62,4% - 20,4%

80 31 158 14 881 14 509 - 53,4% - 2,5%

64 40 586 25 483 16 652 - 59,0% - 34,7%

48 40 692 27 388 23 983 - 41,1% - 12,4%

32 70 411 50 998 33 205 - 52,8% - 32,9%

24 70 598 62 367 42 165 - 40,3% - 32,4%

20 70 696 68 611 50 629 - 28,4% - 26,2%

16 131 178 123 164 61 473 - 53,1% - 50,1%

12 131 465 131 465 82 266 - 37,4% - 37,4%

h953

128 104 382 87 339 82 358 - 21,1% - 5,7%

96 104 466 82 733 82 437 - 21,1% - 0,4%

80 104 466 85 307 82 448 - 21,1% - 3,4%

64 104 466 87 349 82 466 - 21,1% - 5,6%

48 104 508 87 443 82 495 - 21,1% - 5,7%

32 104 549 92 245 84 169 - 19,5% - 8,8%

24 104 591 99 888 104 290 - 0,3% + 4,4%

20 104 633 125 262 92 159 - 11,9% - 26,4%

16 159 657 137 089 135 438 - 15,2% - 1,2%

12 189 740 185 016 183 359 - 3,4% - 0,9%

p22810

128 423 852 71 628 50 484 - 88,1% - 29,5%

96 423 968 93 921 59 177 - 86,0% - 37,0%

80 423 993 122 641 71 995 - 83,0% - 41,3%

64 443 459 141 999 92 218 - 79,2% - 35,1%

48 510 795 213 995 121 865 - 76,1% - 43,1%

32 535 586 355 646 160 237 - 70,1% - 54,9%

24 707 813 480 480 294 612 - 58,4% - 38,7%

20 836 491 756 138 328 270 - 60,8% - 56,6%

16 877 443 855 355 383 034 - 56,3% - 55,2%

12 1 341 549 1 336 251 401 720 - 70,1% - 69,9%

t512505

128 9 724 227 1 073 413 889 677 - 90,9% - 17,1%

96 9 724 227 1 217 641 894 924 - 90,8% - 26,5%

80 9 724 227 1 269 333 928 499 - 90,5% - 26,9%

64 9 724 227 2 810 847 1 062 112 - 89,1% - 62,2%

48 14 883 557 8 938 649 1 828 281 - 87,7% - 79,5%

32 14 883 609 8 940 193 1 955 361 - 86,9% - 78,1%

24 25 202 194 16 090 266 2 891 241 - 88,5% - 82,0%

20 25 202 230 16 308 884 3 652 388 - 85,5% - 77,6%

16 25 202 298 21 716 978 3 961 341 - 84,3% - 81,8%

12 46 296 336 27 526 848 5 394 939 - 88,3% - 80,4%

 Table 3. Experimental results comparing three approaches (1), (2) and (3).
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Design TAM Width
Expected Test Time Comparison

1 - Sequential Testing 2 - Fixed Testing Times [13] 3 - Flexible Testing Times [12] (3) vs (1) (3) vs (2)

 Table 3. Experimental results comparing three approaches (1), (2) and (3).
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