
Linköping Studies in Science and Technology

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Scheduling and Optimization of Fault-Tolerant
Distributed Embedded Systems

by

Viacheslav Izosimov

Linköping 2009

Dissertation No. 1290

ISBN 978-91-7393-482-4 ISSN 0345-7524
PRINTED IN LINKÖPING, SWEDEN

BY LINKÖPINGS UNIVERSITET

COPYRIGHT © 2009 VIACHESLAV IZOSIMOV

To Evgenia

Abstract

SAFETY-CRITICAL APPLICATIONS have to function correctly
and deliver high level of quality-of-service even in the
presence of faults. This thesis deals with techniques for
tolerating effects of transient and intermittent faults. Re-
execution, software replication, and rollback recovery with
checkpointing are used to provide the required level of fault
tolerance at the software level. Hardening is used to increase
the reliability of hardware components. These techniques are
considered in the context of distributed real-time systems with
static and quasi-static scheduling.

Many safety-critical applications have also strict time and
cost constrains, which means that not only faults have to be
tolerated but also the constraints should be satisfied. Hence,
efficient system design approaches with careful consideration
of fault tolerance are required. This thesis proposes several
design optimization strategies and scheduling techniques that
take fault tolerance into account. The design optimization
tasks addressed include, among others, process mapping, fault
tolerance policy assignment, checkpoint distribution, and
trading-off between hardware hardening and software re-
execution. Particular optimization approaches are also
proposed to consider debugability requirements of fault-
tolerant applications. Finally, quality-of-service aspects have
been addressed in the thesis for fault-tolerant embedded
systems with soft and hard timing constraints.

The proposed scheduling and design optimization strategies
have been thoroughly evaluated with extensive experiments.
The experimental results show that considering fault
tolerance during system-level design optimization is essential
when designing cost-effective and high-quality fault-tolerant
embedded systems.

Acknowledgements

I WOULD LIKE to thank my advisors Prof. Zebo Peng, Prof.
Petru Eles, and Dr. Paul Pop for guiding me through years of
graduate studies and for their valuable comments on this thesis.
Despite having four often contradictory points of view, after long
discussions, we could always find a common agreement.

Special thanks to Dr. Ilia Polian from the University of
Freiburg for his good sense of humour and productive collabora-
tion resulted in the hardware hardening part of this thesis.

Many thanks to the CUGS graduate school for supporting my
research and providing excellent courses, and to the ARTES++
graduate school for supporting my travelling.

I would also like to express many thanks to my current and
former colleagues at ESLAB and IDA for creating nice and
friendly working environment. I will never forget our julbords
and fikas.

I am also grateful to my family and friends who have sup-
ported me during work on this thesis. I would like to exception-
ally thank my parents, Victor Izosimov and Galina Lvova, who
have been encouraging me during many long years of my stud-
ies. Finally, I devote this thesis to my beloved wife, Yevgeniya
Kyselova, for her love, patience, and constant support.

Linköping, November 2009

Viacheslav Izosimov

Contents

I. Preliminaries:

1. Introduction ...1
1.1 Motivation ..2

1.1.1 Transient and Intermittent Faults 2
1.1.2 Fault Tolerance and Design Optimization.................. 4

1.2 Contributions ...6

1.3 Thesis Overview...8
2. Background and Related Work..11

2.1 Design and Optimization ...11

2.2 Fault Tolerance Techniques ...14
2.2.1 Error Detection Techniques .. 14
2.2.2 Re-execution... 16
2.2.3 Rollback Recovery with Checkpointing 17
2.2.4 Active and Passive Replication 19
2.2.5 Hardening .. 21

2.3 Transparency ...22

2.4 Design Optimization with Fault Tolerance24
2.4.1 Design Flow with Fault Tolerance Techniques 29

3. Preliminaries ...33
3.1 System Model ..33

3.1.1 Hard Real-Time Applications...................................... 33

3.1.2 Mixed Soft and Hard Real-Time Applications35
3.1.3 Basic System Architecture...36
3.1.4 Fault Tolerance Requirements37
3.1.5 Adaptive Static Cyclic Scheduling...............................38
3.1.6 Quality-of-Service Model..40

3.2 Software-level Fault Tolerance Techniques....................42
3.2.1 Recovery in the Context of Static Cyclic Scheduling..44

II. Hard Real-Time Systems:

4. Scheduling with Fault Tolerance Requirements.........49
4.1 Performance/Transparency Trade-offs50

4.2 Fault-Tolerant Conditional Process Graph54
4.2.1 FTPG Generation ...58

4.3 Conditional Scheduling ...64
4.3.1 Schedule Table..64
4.3.2 Conditional Scheduling Algorithm..............................68

4.4 Shifting-based Scheduling...73
4.4.1 Shifting-based Scheduling Algorithm74

4.5 Experimental Results ..81
4.5.1 Case Study..84

4.6 Conclusions ..85
5. Mapping and Fault Tolerance Policy Assignment.......87

5.1 Fault Tolerance Policy Assignment.................................88
5.1.1 Motivational Examples ..89

5.2 Mapping with Fault Tolerance ..92
5.2.1 Design Optimization Strategy93
5.2.2 Scheduling and Replication ...94
5.2.3 Optimization Algorithms ...96

5.3 Experimental Results ..101

5.4 Conclusions ..105
6. Checkpointing-based Techniques107

6.1 Optimizing the Number of Checkpoints.........................107
6.1.1 Local Checkpointing Optimization..............................108
6.1.2 Global Checkpointing Optimization............................111

6.2 Policy Assignment with Checkpointing113

6.2.1 Optimization Strategy ... 115
6.2.2 Optimization Algorithms... 116

6.3 Experimental Results ...119

6.4 Conclusions ..123

III. Mixed Soft and Hard Real-Time Systems:

7. Value-based Scheduling for Monoprocessor Systems 127
7.1 Utility and Dropping ...128

7.2 Single Schedule vs. Schedule Tree..................................131

7.3 Problem Formulation...136

7.4 Scheduling Strategy and Algorithms..............................137
7.4.1 Schedule Tree Generation ... 138
7.4.2 Generation of f-Schedules.. 140
7.4.3 Switching between Schedules 142

7.5 Experimental Results ..143

7.6 Conclusions ..145
8. Value-based Scheduling for Distributed Systems147

8.1 Scheduling..148
8.1.1 Signalling and Schedules .. 149
8.1.2 Schedule Tree Generation ... 153
8.1.3 Switching between Schedules 157

8.2 Experimental Results ...157

8.3 Conclusions ..163

IV. Embedded Systems with Hardened Components:

9. Hardware/Software Design for Fault Tolerance167
9.1 Hardened Architecture and Motivational Example.......168

9.2 System Failure Probability (SFP) Analysis....................170
9.2.1 Computation Example... 173

9.3 Conclusions ..175
10. Optimization with Hardware Hardening....................177

10.1 Motivational Example ...178

10.2 Problem Formulation...180

10.3 Design Strategy and Algorithms181

10.4 Mapping Optimization ...185

10.5 Hardening/Re-execution Optimization187

10.6 Scheduling..189

10.7 Experimental Results ...190

10.8 Conclusions ..194

V. Conclusions and Future Work:

11. Conclusions and Future Work197
11.1 Conclusions ...198

11.1.1 Hard Real-Time Systems ...198
11.1.2 Mixed Soft and Hard Real-Time Systems200
11.1.3 Embedded Systems with Hardened Hardware

Components ..201

11.2 Future Work ..201

Appendix I .. 205

Appendix II ... 207

Appendix III .. 211

List of Notations .. 219

List of Abbreviations ... 229

Bibliography... 233

List of Figures

2.1 Generic Design Flow..12
2.2 Re-execution...17
2.3 Rollback Recovery with Checkpointing18
2.4 Active Replication and Primary-Backup20
2.5 Hardening ..22
2.6 Design Flow with Fault Tolerance30

3.1 Hard Real-Time Application ...34
3.2 Mixed Soft and Hard Real-Time Application35
3.3 A Static Schedule...39
3.4 Utility Functions and Dropping..40
3.5 Fault Model and Fault Tolerance Techniques42
3.6 Transparency and Frozenness ..44
3.7 Alternative Schedules for Re-execution45
3.8 Alternative Schedules for Rollback Recovery with

 Checkpointing ..45

4.1 Application with Transparency ..51
4.2 Trade-off between Transparency and Performance...........53
4.3 Fault-Tolerant Process Graph...55
4.4 Generation of FTPG ..59

4.5 FTPG Generation Steps (1)...60
4.6 FTPG Generation Steps (2)...63
4.7 Conditional Schedule Tables ...66
4.8 Signalling Messages ..67
4.9 Fault-Tolerant Schedule Synthesis Strategy69
4.10 Alternative Traces Investigated by FTPGScheduling for

 the Synchronization Node ...71
4.11 Conditional Scheduling ...72
4.12 Ordered FTPG ...75
4.13 Generation of Root Schedules ...77
4.14 Example of a Root Schedule..78
4.15 Example of an Execution Scenario79
4.16 Extracting Execution Scenarios..80

5.1 Policy Assignment: Re-execution + Replication88
5.2 Comparison of Replication and Re-execution.....................90
5.3 Combining Re-execution and Replication92
5.4 Mapping and Fault Tolerance ...93
5.5 Design Optimization Strategy

 for Fault Tolerance Policy Assignment94
5.6 Scheduling Replica Descendants ..95
5.7 Moves and Tabu History ...98
5.8 Tabu Search Algorithm for Optimization of Mapping

 and Fault Tolerance Policy Assignment99
5.9 Comparing MXR with MX, MR and SFX104

6.1 Locally Optimal Number of Checkpoints108
6.2 Globally Optimal Number of Checkpoints111
6.3 Policy Assignment: Checkpointing + Replication113
6.4 Design Optimization Strategy for Fault

 Tolerance Policy Assignment with Checkpointing.............116
6.5 Restricting the Moves for Setting

 the Number of Checkpoints ...118
6.6 Deviation of MC and MCR from MC0

 with Varying Application Size ..120

6.7 Deviation of MC and MCR from MC0
 with Varying Checkpointing Overheads.............................121

6.8 Deviation of MC and MCR from MC0
 with Varying Number of Transient Faults122

7.1 Application Example with Soft and Hard Processes128
7.2 Utility Functions and Dropping..129
7.3 Scheduling Decisions for a Single Schedule132
7.4 A Schedule Tree ...135
7.5 General Scheduling Strategy ..137
7.6 Schedule Tree Generation ...139
7.7 Single Schedule Generation ..141
7.8 Comparison between FTTreeGeneration, FTSG and FTSF.....144

8.1 Signalling Example for a Soft Process................................150
8.2 Signalling Example for a Hard Process..............................152
8.3 Schedule Tree Generation

 in the Distributed Context ..154
8.4 Single Schedule Generation

 in the Distributed Context ..155
8.5 Experimental Results for Schedule Tree Generation

 in the Distributed Context ..160

9.1 Reduction of the Number of Re-executions
 with Hardening ...169

9.2 A Fault Scenario as a Combination
 with Repetitions...171

9.3 Computation Example with SFP Analysis.........................174

10.1 Selection of the Hardened Hardware Architecture179
10.2 Optimization with Hardware Hardening181
10.3 General Design Strategy with Hardening..........................183
10.4 Mapping Optimization with Hardening186
10.5 Hardening Optimization Algorithm188

10.6 Accepted Architectures as a Function of
 Hardening Performance Degradation191

10.7 Accepted Architectures for Different Fault Rates with
 ArC = 20 for HPD = 5% and HPD = 100%..........................193

A.1 The Cruise Controller Process Graph.................................206

List of Tables

4.1 Fault Tolerance Overhead (CS) ...82
4.2 Memory Requirements (CS) ..82
4.3 Memory Requirements (SBS) ..84

5.1 Fault Tolerance Overheads with MXR (Compared to NFT)
 for Different Applications..102

5.2 Fault Tolerance Overheads due to MXR for Different
 Number of Faults in the Applications of 60 Processes
 Mapped on 4 Computation Nodes.......................................103

8.1 Normalized Utility (Un = UFTTree/UfN×100%)
 and the Number of Schedules (n)..158

10.1 Accepted Architectures with Different Hardening
 Performance Degradation (HPD) and with Different
 Maximum Architecture Costs (ArC) for
 the Medium FR Technology ..192

PART I
Preliminaries

1

Chapter 1
Introduction

THIS THESIS DEALS with the analysis and optimization of
safety-critical real-time applications implemented on fault-tol-
erant distributed embedded systems. Such systems are respon-
sible for critical control functions in aircraft, automobiles,
robots, telecommunication and medical equipment. Therefore,
they have to function correctly and meet timing constraints even
in the presence of faults.

Faults in distributed embedded systems can be permanent,
intermittent or transient. Permanent faults cause long-term
malfunctioning of components, while transient and intermittent
faults appear for a short time. The effects of transient and inter-
mittent faults, even though they appear for a short time, can be
devastating. They may corrupt data or lead to logic miscalcula-
tions, which can result in a fatal failure or dramatic quality-of-
service deterioration. Transient and intermittent faults appear
at a rate much higher than the rate of permanent faults and,
thus, are very common in modern electronic systems.

Transient and intermittent faults can be addressed in hard-
ware with hardening techniques, i.e., improving the hardware
technology and architecture to reduce the fault rate, or in soft-

CHAPTER 1

2

ware. We consider hardware-based hardening techniques and
several software-based fault tolerance techniques, including re-
execution, software replication, and rollback recovery with
checkpointing.

Safety-critical real-time applications have to be implemented
such that they satisfy strict timing requirements and tolerate
faults without exceeding a given amount of resources. Moreover,
not only timeliness, reliability and cost-related requirements
have to be considered but also other issues such as debugability
and testability have to be taken into account.

In this introductory chapter, we motivate the importance of
considering transient and intermittent faults during the design
optimization of embedded systems. We introduce the design
optimization problems addressed and present the main contri-
butions of our work. We also present an overview of the thesis
with short descriptions of the chapters.

1.1 Motivation
In this section we discuss the main sources of transient and
intermittent faults and how to consider such faults during
design optimization.

1.1.1 TRANSIENT AND INTERMITTENT FAULTS

There are several reasons why the rate of transient and inter-
mittent faults is increasing in modern electronic systems,
including high complexity, smaller transistor sizes, higher oper-
ational frequency, and lower voltage levels [Mah04, Con03,
Har01].

The first type of faults, transient faults, cause components to
malfunction for a short time, leading to corruption of memory or
miscalculations in logic, and then disappear [Sto96, Kor07]. A
good example of a transient fault is the fault caused by solar
radiation or electromagnetic interference. The rate of transient

INTRODUCTION

3

faults is often much higher compared to the rate of permanent
faults. Transient-to-permanent fault ratios can vary between
2:1 and 50:1 [Sos94], and more recently 100:1 or higher [Kop04].
Automobiles, for example, are largely affected by transient
faults [Cor04a, Han02] and proper fault tolerance techniques
against transient faults are needed.

Another type of faults, which we consider, are intermittent
faults. Although an intermittent fault manifests itself similar to
a transient fault, i.e., appears for a short time and then disap-
pears, this fault will re-appear at some later time [Sto96, Kor07].
For example, intermittent faults can be triggered by one improp-
erly placed device affecting other components through a radio
emission or via a power supply. One such component can also
create several intermittent faults at the same time.

It is observed that already now more than 50% of automotive
electronic components returned to the vendor have no physical
defects, and the malfunctioning is the result of intermittent and
transient faults produced by other components [Kim99].

Causes of transient and intermittent faults can vary a lot.
There exist several possible causes of these faults, including:
 • (solar) radiation (mostly neutrons) that can affect electronic

systems not only on the Earth orbit and in space but also on
the ground [Sri96, Nor96, Tan96, Ros05, Bau01, Vel07];

 • electromagnetic interference by mobile phones, wireless com-
munication equipment [Str06], power lines, and radars
[Han02];

 • lightning storms that can affect power supply, current lines,
or directly electronic components [Hei05];

 • internal electromagnetic interference [Wan03];
 • crosstalk between two or more internal wires [Met98];
 • ion particles in the silicon that are generated by radioactive

elements naturally present in the silicon [May78];
 • temperature variations [Wei04];
 • power supply fluctuations due to influence of internal compo-

nents [Jun04]; and

CHAPTER 1

4

 • loose connectors [Pet06], for example, between a network
cable and the distributed components attached to it.

From the fault tolerance point of view, transient faults and
intermittent faults manifest themselves in a similar manner:
they happen for a short time and then disappear without caus-
ing a permanent damage. Hence, fault tolerance techniques
against transient faults are also applicable for tolerating inter-
mittent faults and vice versa. Therefore, from now, we will refer
to both types of faults as transient faults and we will talk about
fault tolerance against transient faults, meaning tolerating both
transient and intermittent faults.

1.1.2 FAULT TOLERANCE AND DESIGN OPTIMIZATION

Safety-critical applications have strict time and cost constraints
and have to deliver a high level of quality of service, which
means that not only faults have be to tolerated but also the
imposed constraints have to be satisfied.

Traditionally, hardware replication was used as a fault toler-
ance technique against transient faults. For example, in the
MARS [Kop90, Kop89] approach each fault-tolerant component
is composed of three computation units, two main units and one
shadow unit. Once a transient fault is detected, the faulty com-
ponent must restart while the system is operating with the non-
faulty component. This architecture can tolerate one permanent
fault and one transient fault at a time, or two transient faults.
Another example is the XBW [Cla98] architecture, where hard-
ware duplication is combined with double process execution.
Four process replicas are run in total. Such an architecture can
tolerate either two transient faults or one transient fault with
one permanent fault. Interesting implementations can be also
found in avionics. For example, an airborne architecture, which
contains seven hardware replicas that can tolerate up to three
transient faults, has been studied in [Als01] based on the flight
control system of the JAS 39 Gripen aircraft. However, this solu-

INTRODUCTION

5

tion is very costly and can be used only if the amount of
resources is virtually unlimited. In other words, existing archi-
tectures are either too costly or are unable to tolerate multiple
transient faults.

In order to reduce cost, other techniques are required such as
software replication [Xie04, Che99], recovery with checkpoint-
ing [Jie96, Pun97, Bar08, Yin03, Yin06, Aya08, Kri93], and re-
execution [Kan03a]. However, if applied in a straightforward
manner to an existing design, software-based techniques
against transient faults introduce significant time overheads,
which can lead to unschedulable solutions. Time overhead can
be reduced with hardening techniques [Gar06, Hay07, Moh03,
Zha06, Zho06, Zho08], which reduce the transient fault rate
and, hence, the number of faults propagated to the software
level. On the other hand, using more reliable and/or faster com-
ponents, or a larger number of resources, may not be affordable
due to cost constraints. Therefore, efficient design optimization
techniques are required, in order to meet time and cost con-
straints within the given resources, in the context of fault-toler-
ant systems.

Transient faults are also common for communication chan-
nels, even though we do not deal with them in this thesis. We
assume that transient faults on the bus are addressed at the
communication level, for example, with the use of efficient error
correction codes [Pir06, Bal06, Ema07], through hardware repli-
cation of the bus [Kop03, Sil07], and/or acknowledgements/
retransmissions [Jon08]. Solutions such as a cyclic redundancy
code (CRC) are implemented in communication protocols availa-
ble on the market [Kop93, Kop03, Fle04].

CHAPTER 1

6

1.2 Contributions
In our approach, an embedded application is represented as a
set of soft and hard real-time processes [But99] communicating
by sending messages. Hard processes represent time-con-
strained parts of the application, which must be always executed
and meet deadlines. A soft process can complete after its dead-
line and its completion time is associated with a value function
that characterizes its contribution to the quality-of-service of the
application.

Hard and soft processes are mapped on computation nodes
connected to a communication infrastructure. Processes and
communication schedules are determined off-line by quasi-static
scheduling that generates a tree of fault-tolerant schedules that
maximize the quality-of-service value of the application and, at
the same time, guarantees deadlines for hard processes. At run
time, an online runtime scheduler with very low online overhead
would select the appropriate schedule based on the occurrence of
faults and the actual execution times of processes. Our design
optimization considers the impact of communications on the
overall system performance.

Reliability of computation nodes can be increased with hard-
ening in order to reduce the number of transients faults propa-
gating to the software level. To provide resiliency against
transient faults propagated to the software, various fault toler-
ance techniques can be applied to the application processes,
such as re-execution, replication, or recovery with checkpoint-
ing. Design optimization algorithms consider the various over-
heads introduced by the different techniques and determine
which are to be applied for each process. In addition to perform-
ance, quality-of-service and cost-related requirements, debuga-
bility and testability of embedded systems are also taken into
account during design optimization.

INTRODUCTION

7

The main contributions of this thesis are the following:
 • Scheduling techniques with fault tolerance [Izo05,

Pop09, Izo06b, Izo10b]. In the thesis we propose two schedul-
ing techniques for dealing with transient faults in the con-
text of hard real-time systems. The first technique, shifting-
based scheduling, is able to quickly produce efficient sched-
ules of processes and messages, where the order of processes
is preserved in the case of faults and communications on the
bus are fixed. The second technique, conditional scheduling,
creates more efficient schedules than the ones generated
with the shifting-based scheduling, by overcoming restric-
tions of fixed communications on the bus and allowing
changing of process order in the case of faults. This approach
allows to take into account testability and debugability
requirements of safety-critical applications.

 • Value-based scheduling techniques with fault toler-
ance [Izo08a, Izo08b, Izo10a]. These scheduling techniques
produce a tree of fault-tolerant schedules for embedded sys-
tems composed of soft and hard processes, such that the
quality-of-service of the application is maximized and all
hard deadlines are satisfied.

 • Mapping optimization strategies [Izo05, Izo06a, Pop09,
Izo10b], which produce an efficient mapping of processes and
process replicas on the computation nodes.

 • Fault tolerance policy assignment strategies [Izo05,
Izo06c, Pop09] for assigning the appropriate combinations of
fault tolerance techniques to processes, such that the faults
are tolerated and the deadlines are satisfied within the
imposed cost constraints.

 • An approach to optimization of checkpoint distribu-
tion in rollback recovery [Izo06c, Pop09]. We propose an
approach to calculate the optimal checkpoint distribution in
the context of a single process and an optimization heuristic
to determine an appropriate checkpoint distribution for real-
time applications composed of many processes.

CHAPTER 1

8

 • A design approach for trading-off between component
hardening level and number of re-executions [Izo09].
In this approach we combine component hardening with re-
executions in software in order to provide a fault-tolerant
system that satisfies cost and time constraints and, at the
same time, meets the specified reliability goal. The design
approach is based on the system failure probability (SFP)
analysis that connects the global reliability of the system
with the reliability levels of the hardened hardware compo-
nents and the number of re-executions introduced into soft-
ware.

1.3 Thesis Overview
Part II and Part IV of the thesis are devoted to various design
optimization approaches for hard real-time applications, where
hard real-time constraints have to be satisfied even in the pres-
ence of faults. In Part III, we extend our approach to systems
composed of hard and soft real-time processes. In addition to
hard real-time constraints being satisfied we also perform a
value-based optimization of the overall quality-of-service.

The thesis structure is, thus, as follows:

Part I. Preliminaries:

 • Chapter 2 introduces basic concepts of fault tolerance in
software and in hardware in the context of system-level
design and optimization algorithms and presents the related
work.

 • Chapter 3 presents our hardware architecture and applica-
tion models with our quality-of-service and fault model. We
introduce the notion of transparency and frozenness related
to testability and debugability requirements of applications.
This chapter also discusses software-level fault tolerance
techniques in the context of static cyclic scheduling.

INTRODUCTION

9

Part II. Hard Real-Time Systems:

 • Chapter 4 presents two scheduling techniques with fault
tolerance requirements, including scheduling with transpar-
ency/performance trade-offs, in the context of hard real-time
systems. These scheduling techniques are used by design
optimization strategies presented in the later chapters to
derive fault-tolerant schedules.

 • Chapter 5 discusses mapping and policy assignment optimi-
zation issues. We propose a mapping and fault tolerance pol-
icy assignment strategy that combines software replication
with re-execution.

 • Chapter 6 introduces our checkpoint distribution strategies.
We also present mapping and policy assignment optimiza-
tion with checkpointing.

Part III. Mixed Soft and Hard Real-Time Systems:

 • Chapter 7 presents value-based scheduling techniques to
produce a tree of fault-tolerant schedules for monoprocessor
embedded systems composed of soft and hard processes. The
level of quality-of-service must be maximized and hard dead-
lines must be satisfied even in the worst-case scenarios and
in the presence of faults. We suggest an efficient tree-size
optimization algorithm to reduce the number of necessary
fault-tolerant schedules in the schedule tree.

 • Chapter 8 proposes value-based scheduling techniques for
distributed embedded systems composed of soft and hard
processes. We use a signalling mechanism to provide syn-
chronization between computation nodes, which increases
efficiency of the generated schedules.

Part IV. Embedded Systems with Hardened Components:

 • Chapter 9 proposes a system failure probability (SFP) anal-
ysis to determine if the reliability goal of the system is met
under a given hardening and re-execution setup. The SFP

CHAPTER 1

10

analysis is used by our design optimization strategy in Chap-
ter 10.

 • Chapter 10 presents a design strategy to trade-off between
hardening and software-level fault tolerance in the context of
hard real-time systems. We propose a number of design opti-
mization heuristics to minimize the system hardware cost
while satisfying time constraints and reliability require-
ments.

Part V. Conclusion:

 • Chapter 11, finally, presents our conclusions and possible
directions of future work based on the material presented in
this thesis.

11

Chapter 2
Background and

Related Work

THIS CHAPTER presents background and related work in the
area of system-level design, including a generic design flow for
embedded systems. We also discuss software and hardware-level
fault tolerance techniques. Finally, we present relevant research
work on design optimization for fault-tolerant embedded sys-
tems and suggest a possible design flow with fault tolerance.

2.1 Design and Optimization
System-level design of embedded systems is typically composed
of several steps, as illustrated in Figure 2.1. In the “System
Specification” step, an abstract system model is developed. In
our application model, functional blocks are represented as proc-
esses and communication data is encapsulated into messages.
Time constraints are imposed in form of deadlines assigned to
the whole application, to individual processes or to groups of
dependent processes.

CHAPTER 2

12

The hardware architecture is selected in the “Architecture
Selection” step. The architecture for automotive applications
that we consider in this thesis consists of a set of computation
nodes connected to a bus. The computation nodes are heteroge-
neous and have different performance characteristics and relia-
bility properties. They also have different costs, depending on
their performance, reliability, power consumption and other
parameters. Designers should choose an architecture with a
good price-to-quality ratio within the imposed cost constraints.

In the “Mapping & Hardware/Software Partitioning” step,
mapping of application processes on computation nodes has to
be decided such that the performance of the system is maxi-
mized and given design constraints are satisfied [Pra94, Pop04b,
Pop04c, Pop04a]. These can include memory constraints, power
constraints, as well as security- and safety-related constraints.
Some processes can be implemented in hardware using ASICs or
FPGAs. The decision on whether to implement processes in
hardware is taken during hardware/software partitioning of the
application [Cho95, Ele97, Ern93, Bol97, Dav99, Axe96, Mir05].

System Specification

Architecture Selection

Mapping & Hardware/

Scheduling

Back-end Synthesis

Figure 2.1: Generic Design Flow

Feedback
loops

Software Partitioning

BACKGROUND AND RELATED WORK

13

After mapping and partitioning, the execution order and start
times of processes are considered in the “Scheduling” step.
Scheduling can be either static or dynamic. In the case of
dynamic scheduling, start times are determined online based on
priorities assigned to the processes [Liu73, Tin94, Aud95]. In
static cyclic scheduling [Kop97, Jia00], start times of processes
and sending times of messages are pre-defined off-line and
stored in form of schedule tables. Researchers have developed
several algorithms to efficiently produce static schedules off-
line. Many of these algorithms are based on list scheduling heu-
ristics [Cof72, Deo98, Jor97, Kwo96]. However, off-line static
cyclic scheduling lacks flexibility and, unless extended with
adaptive functionality, cannot handle overloads or efficiently
provide fault recovery [Dim01, Kan03a]. In this thesis we over-
come the limitations of static cyclic scheduling by employing
quasi-static scheduling techniques, which will be used to design
fault-tolerant systems and can provide the flexibility needed to
efficiently handle soft real-time processes [Cor04b]. Quasi-static
scheduling algorithms produce a tree of schedules, between
which the scheduler switches at runtime based on the conditions
(such as fault occurrences or process finishing times) calculated
online, during the runtime of the application.

If, according to the resulted schedule, deadlines are not satis-
fied or the desired quality-of-service level is not achieved, then
either mapping or partitioning should be changed (see the feed-
back line in Figure 2.1). If no acceptable solution in terms of
quality, costs or deadlines can be found by optimizing process
mapping and/or the schedule, then the hardware architecture
needs to be modified and the optimization will be performed
again.

After a desirable implementation has been found, the back-
end system synthesis of a prototype will be performed for both
hardware and software (shown as the last step in the design
flow).

CHAPTER 2

14

If the prototype does not meet requirements, then either the
design or specification will have to be changed. However, re-
design of the prototype has to be avoided as much as possible by
efficient design optimization in the early design stages, in order
to reduce design costs.

2.2 Fault Tolerance Techniques
In this section, we present first several error-detection tech-
niques that can be applied against transient faults. Then, we
discuss software-based fault tolerance techniques such as re-
execution, rollback recovery with checkpointing, and software
replication, and introduce hardening techniques.

2.2.1 ERROR DETECTION TECHNIQUES

In order to achieve fault tolerance, a first requirement is that
transient faults have to be detected. Researchers have proposed
several error-detection techniques against transient faults,
including watchdogs, assertions, signatures, duplication, and
memory protection codes.

Signatures. Signatures [Nah02a, Jie92, Mir95, Sci98, Nic04]
are among the most powerful error detection techniques. In this
technique, a set of logic operations can be assigned with pre-
computed “check symbols” (or “checksum”) that indicate
whether a fault has happened during those logic operations. Sig-
natures can be implemented either in hardware, as a parallel
test unit, or in software. Both hardware and software signatures
can be systematically applied without knowledge of implemen-
tation details.

Watchdogs. In the case of watchdogs [Ben03, Mah88, Mir95],
program flow or transmitted data is periodically checked for the
presence of faults. The simplest watchdog schema, watchdog
timer, monitors the execution time of processes, whether it
exceeds a certain limit [Mir95]. Another approach is to incorpo-

BACKGROUND AND RELATED WORK

15

rate simplified signatures into a watchdog. For example, it is
possible to calculate a general “checksum” that indicates correct
behaviour of a computation node [Sos94]. Then, the watchdog
will periodically test the computation node with that checksum.
Watchdogs can be implemented either in hardware as a separate
processor [Ben03, Mah88] or in software as a special test pro-
gram.

Assertions. Assertions [Gol03, Hil00, Pet05] are an applica-
tion-level error-detection technique, where logical test state-
ments indicate erroneous program behaviour (for example, with
an “if” statement: if not <assertion> then <error>). The logical
statements can be either directly inserted into the program or
can be implemented in an external test mechanism. In contrast
to watchdogs, assertions are purely application-specific and
require extensive knowledge of the application details. However,
assertions are able to provide much higher error coverage than
watchdogs.

Duplication. If the results produced by duplicated entities
are different, then this indicates the presence of a fault. Exam-
ples of duplicated entities are duplicated instructions [Nah02b],
functions [Gom06], procedure calls [Nah02c], and whole proc-
esses. Duplication is usually applied on top of other error detec-
tion techniques to increase error coverage.

Memory protection codes. Memory units, which store pro-
gram code or data, can be protected with error detection and cor-
rection codes (EDACs) [Shi00, Pen95]. An EDAC code separately
protects each memory block to avoid propagation of faults. A
common schema is “single-error-correcting, double-error-detect-
ing” (SEC-DED) [Pen95] that can correct one fault and detect
two faults simultaneously in each protected memory block.

Other error-detection techniques. There are several other
error-detections techniques, for example, transistor-level cur-
rent monitoring [Tsi01] or the widely-used parity-bit check.

Error coverage of error-detection techniques has to be as high
as possible. Therefore, several error-detection techniques are

CHAPTER 2

16

often applied together. For example, hardware signatures can be
combined with transistor-level current monitoring, memory pro-
tection codes and watchdogs. In addition, the application can
contain assertions and duplicated procedure calls.

Error-detection techniques introduce an error-detection over-
head, which is the time needed for detecting faults. The error-
detection overhead can vary a lot with the error-detection tech-
nique used. In our work, unless other specified, we account the
error-detection overhead in the worst-case execution time of
processes.

2.2.2 RE-EXECUTION

In software, after a transient fault is detected, a fault tolerance
mechanism has to be invoked to handle this fault. The simplest
fault tolerance technique to recover from fault occurrences is re-
execution [Kan03a]. With re-execution, a process is executed
again if affected by faults.

The time needed for the detection of faults is accounted for by
error-detection overhead. When a process is re-executed after a
fault has been detected, the system restores all initial inputs of
that process. The process re-execution operation requires some
time for this, which is captured by the recovery overhead. In
order to be restored, the initial inputs to a process have to be
stored before the process is executed for first time. For the sake
of simplicity, however, we will ignore this particular overhead,
except for the discussion of rollback recovery with checkpointing
in Section 2.2.3, Section 3.2, and Chapter 6.1 The error detection

1. The overhead due to saving process inputs does not influence the
design decisions during mapping and policy assignment optimization
when re-execution is used. However, we will consider this overhead in
rollback recovery with checkpointing as part of the checkpointing
overhead during the discussion about checkpoint optimization in
Chapter 6.

BACKGROUND AND RELATED WORK

17

and recovery overheads will be denoted throughout this work
with α and μ, respectively.

Figure 2.2 shows the re-execution of process P1 in the pres-
ence of a single fault. As illustrated in Figure 2.2a, the process
has the worst-case execution time of 60 ms, which includes the
error-detection overhead α of 10 ms. In Figure 2.2b process P1
experiences a fault and is re-executed. We will denote the j-th
execution of process Pi as Pi/j. Accordingly, the first execution of
process P1 is denoted as P1/1 and its re-execution P1/2. The recov-
ery overhead μ = 10 ms is depicted as a light grey rectangle in
Figure 2.2.

2.2.3 ROLLBACK RECOVERY WITH CHECKPOINTING

The time needed for re-execution can be reduced with more com-
plex fault tolerance techniques such as rollback recovery with
checkpointing [Pun97, Bar08, Yin03, Yin06, Ora94, Aya08,
Kri93]. The main principle of this technique is to restore the last
non-faulty state of the failing process. The last non-faulty state,
or checkpoint, has to be saved in advance in the static memory
and will be restored if the process fails. The part of the process
between two checkpoints or between a checkpoint and the end of
the process is called an execution segment.1

1. Note that re-execution can be considered as rollback recovery with a
single checkpoint, where this checkpoint is the initial process state and
the execution segment is the whole process.

a) b)P1

C1 = 60 ms

α =10 ms

Figure 2.2: Re-execution

P1/1 P1/2

μ = 10 ms

CHAPTER 2

18

There are several approaches to distribute checkpoints. One
approach is to insert checkpoints in the places where saving of
process states is the fastest [Ziv97]. However, this approach is
application-specific and requires knowledge of application
details. Another approach is to systematically insert check-
points, for example, at equal intervals [Yin06, Pun97, Kwa01].

An example of rollback recovery with checkpointing is pre-
sented in Figure 2.3. We consider processes P1 with the worst-
case execution time of 60 ms and error-detection overhead α of
10 ms, as depicted in Figure 2.3a. In Figure 2.3b, two check-
points are inserted at equal intervals. The first checkpoint is the
initial state of process P1. The second checkpoint, placed in the
middle of process execution, is for storing an intermediate proc-
ess state. Thus, process P1 is composed of two execution seg-
ments. We will name the k-th execution segment of process Pi as

. Accordingly, the first execution segment of process P1 is
and its second segment is . Saving process states, including
saving initial inputs, at checkpoints, takes a certain amount of
time that is considered in the checkpointing overhead χ, depicted
as a black rectangle.

In Figure 2.3c, a fault affects the second execution segment
 of process P1. This faulty segment is executed again starting

from the second checkpoint. Note that the error-detection over-
head α is not considered in the last recovery in the context of
rollback recovery with checkpointing because, in this example,
we assume that a maximum of one fault can happen.

We will denote the j-th execution of k-th execution segment of
process Pi as . Accordingly, the first execution of execution

Figure 2.3: Rollback Recovery with Checkpointing

a) b) P1 P1
1 2

χ = 5 ms

c)

μ = 10 ms

P1 P1/1
1 2

P1/2
2P1

C1 = 60 ms

α =10 ms

Pi
k P1

1

P1
2

P1
2

Pi/j
k

BACKGROUND AND RELATED WORK

19

segment has the name and its second execution is
named . Note that we will not use the index j if we only
have one execution of a segment or a process, as, for example,
P1’s first execution segment in Figure 2.3c.

When recovering, similar to re-execution, we consider a recov-
ery overhead μ, which includes the time needed to restore check-
points. In Figure 2.3c, the recovery overhead μ, depicted with a
light gray rectangle, is 10 ms for process P1.

The fact that only a part of a process has to be restarted for
tolerating faults, not the whole process, can considerably reduce
the time overhead of rollback recovery with checkpointing com-
pared to re-execution.

2.2.4 ACTIVE AND PASSIVE REPLICATION

The disadvantage of rollback recovery techniques, such as re-
execution1 and rollback recovery with checkpointing, is that
they are unable to explore spare capacity of available
computation nodes and, by this, to possibly reduce the schedule
length. If the process experiences a fault, then it has to recover
on the same computation node. In contrast to rollback recovery
technique, active and passive replication techniques can utilize
available spare capacity of other computation nodes. Moreover,
active replication provides the possibility of spatial redundancy,
e.g. the ability to execute process replicas in parallel on different
computation nodes.

In the case of active replication [Xie04], all replicas of proc-
esses are executed independently of fault occurrences. In the
case of passive replication, also known as primary-backup
[Ahn97, Sze05], on the other hand, replicas are executed only if
faults occur. In Figure 2.4 we illustrate primary-backup and
active replication. We consider process P1 with the worst-case
execution time of 60 ms and error-detection overhead α of 10 ms,

1. Sometimes referred as rollback recovery with a single checkpoint.

P1
2 P1/1

2

P1/2
2

P1
1

CHAPTER 2

20

see Figure 2.4a. Process P1 will be replicated on two computa-
tion nodes N1 and N2, which is enough to tolerate a single fault.
We will name the j-th replica of process Pi as Pi(j). Note that, for
the sake of uniformity, we will consider the original process as
the first replica. Hence, the replica of process P1 is named P1(2)
and process P1 itself is named as P1(1).

In the case of active replication, illustrated in Figure 2.4b,
replicas P1(1) and P1(2) are executed in parallel, which, in this
case, improves system performance. However, active replication
occupies more resources compared to primary-backup because
P1(1) and P1(2) have to run even if there is no fault, as shown in
Figure 2.4b1. In the case of primary-backup, illustrated in
Figure 2.4c, the “backup” replica P1(2) is activated only if a fault
occurs in P1(1). However, if faults occur, primary-backup takes
more time to complete compared to active replication as shown
in Figure 2.4c2, compared to Figure 2.4b2. To improve perform-
ance, primary-backup can be enhanced with checkpointing as
discussed, for example, in [Sze05] so that only a part of the rep-
lica is executed in the case of faults.

In our work, we are mostly interested in active replication.
This type of replication provides the possibility of spatial redun-
dancy, which is lacking in rollback recovery.

N1

N2

N1

N2

N1

N2

N1

N2

Figure 2.4: Active Replication (b) and Primary-Backup (c)

P1

C1 = 60 ms

α =10 ms

P1(1)

P1(2)

P1(1)

P1(2)

P1(1)P1(1)

P1(2)

a)

b1)

b2)

c1)

c2)

BACKGROUND AND RELATED WORK

21

2.2.5 HARDENING

Transient faults can also be addressed with hardening tech-
niques, i.e., improving the hardware architecture to reduce the
transient fault rate. Researchers have proposed a variety of
hardware hardening techniques. Zhang et al. [Zha06] have pro-
posed an approach to hardening of flip-flops, resulting in a
small area overhead and significant reduction in the transient
fault rate. Mohanram and Touba [Moh03] have studied harden-
ing of combinatorial circuits. Zhou et al. [Zho08] have proposed
a “filtering technique” for hardening of combinatorial circuits.
Zhou and Mohanram [Zho06] have studied the problem of gate
resizing as a technique to reduce the transient fault rate. Garg
et al. [Gar06] have connected diodes to the duplicated gates to
implement an efficient and fast voting mechanism. Finally, a
hardening approach to be applied in early design stages has
been presented in [Hay07], which is based on the transient fault
detection probability analysis.

Nevertheless, hardening comes with a significant overhead in
terms of cost and speed [Pat08, Tro06]. The main factors which
affect the cost are the increased silicon area, additional design
effort, lower production quantities, excessive power consump-
tion, and protection mechanisms against radiation, such as
shields. Hardened circuits are also significantly slower than the
regular ones. Manufacturers of hardened circuits are often
forced to use technologies few generations back [Pat08, Tro06].
Hardening also enlarges the critical path of the circuit, because
of a voting mechanism [Gar06] and increased silicon area.

To reduce the probability of faults, the designer can choose to
use a hardened, i.e., a more reliable, version of the computation
node. Such a hardened version will be called an h-version. Thus,
each node Nj is available in several versions, with different
hardening levels, denoted with h. We denote the h-version of
node Nj, and with the cost associated with . In Figure 2.5
we consider one process, P1, and one computation node, N1, with

Nj
h

Cj
h Nj

h

CHAPTER 2

22

three h-versions, without hardening and and progres-
sively more hardened. The execution times (t) and failure proba-
bilities (p) for the process on different h-versions of node N1 are
shown in the table. The corresponding costs are also associated
with these versions (given at the bottom of the table). For exam-
ple, with the h-version , the failure probability is reduced by
two orders of magnitude, compared to the first version . How-
ever, using will cost twice as much as the solution with less
hardening. Moreover, with more hardening, due to performance
degradation, the execution time on is twice as much as on
the first version .

2.3 Transparency
A common systematic approach for debugging embedded soft-
ware is to insert observation points into software and hardware
[Vra97, Tri05, Sav97] for observing the system behaviour under
various circumstances. The observation points are usually
inserted by an expert, or can be automatically injected based on
statistical methods [Bou04]. In order to efficiently trace design
errors, the results produced with the observation points have to
be easily monitored, even in the recovery scenarios against tran-
sient faults.

Tolerating transient faults leads to many execution scenarios,
which are dynamically adjusted in the case of fault occurrences.

N1
1 N1

2 N1
3

N1
2

Figure 2.5: Hardening

P1

P1

P1

N1

N1

N1

N1

80P1

N1
h = 1

10

h = 2

20Cost

h = 3

40

t t tp p p

100 1604·10-2 4·10-4 4·10-6

a)

b)

c)
3

2

1

N1
1

N1
2

N1
3

N1
1

BACKGROUND AND RELATED WORK

23

The number of execution scenarios grows exponentially with the
number of processes and the number of tolerated transient
faults. In order to debug, test, or verify the system, all its execu-
tion scenarios have to be taken into account. Therefore, monitor-
ing observation points for all these scenarios is often infeasible
and debugging, verification and testing become very difficult.

The overall number of possible recovery scenarios can be con-
siderably reduced by restricting the system behaviour, in partic-
ular, by introducing transparency requirements or, simply,
transparency. A transparent recovery scheme has been proposed
in [Kan03a], where recovering from a transient fault on one
computation node does not affect the schedule of any other node.
In general, transparent recovery has the advantage of increased
debugability, where the occurrence of faults in a certain process
does not affect the execution of other processes, which reduces
the total number of execution scenarios. At the same time, with
increased transparency, the amount of memory needed to store
the schedules decreases. However, transparent recovery
increases the worst-case delay of processes, potentially reducing
the overall performance of the embedded system. Thus, efficient
design optimization techniques are even more important in
order to meet time and cost constraints in the context of fault-
tolerant embedded systems with transparency requirements. To
our knowledge, most of the design strategies proposed so far
[Yin03, Yin06, Xie04, Pin08, Sri95, Mel04, Aya08, Bar08,
Aid05] have not explicitly addressed the transparency require-
ments for fault tolerance. If at all addressed, these requirements
have been applied, at a very coarse-grained level, to a whole
computation node, as in the case of the original transparent re-
execution proposed in [Kan03a].

CHAPTER 2

24

2.4 Design Optimization with Fault Tolerance
Fault-tolerant embedded systems have to be optimized in order
to meet time, quality-of-service, and cost constraints. Research-
ers have shown that schedulability of an application can be
guaranteed for pre-emptive online scheduling under the pres-
ence of a single transient fault [Ber94, Bur96, Han03].

Liberato et al. [Lib00] have proposed an approach for design
optimization of monoprocessor systems in the presence of multi-
ple transient faults and in the context of pre-emptive earliest-
deadline-first (EDF) scheduling. Ying Zhang and Chakrabarty
[Yin03] have proposed a checkpointing optimization approach
for online fixed-priority scheduling to tolerate k faults in peri-
odic real-time tasks during a hyperperiod. The application is run
on a monoprocessor system and only rollback recovery with
checkpointing is considered as a fault tolerance technique.

Hardware/software co-synthesis with fault tolerance has been
addressed in [Sri95] in the context of event-driven scheduling.
Hardware and software architectures have been synthesized
simultaneously, providing a specified level of fault tolerance and
meeting the performance constraints, while minimizing the sys-
tem costs. Safety-critical processes are re-executed in order to
tolerate transient fault occurrences. This approach, in principle,
also addresses the problem of tolerating multiple transient
faults, but does not consider static cyclic scheduling. Design
optimization is limited to only hardware/software co-design,
where some of the software functionality is migrated to ASICs
for improving performance. Both hard and soft real-time con-
straints are considered in this work. However, value-based
scheduling optimization is not performed, assuming unchanged
fixed priorities of process executions in all hardware/software
co-design solutions.

Xie et al. [Xie04] have proposed a technique to decide how rep-
licas can be selectively inserted into the application, based on
process criticality. Introducing redundant processes into a pre-

BACKGROUND AND RELATED WORK

25

designed schedule has been used in [Con05] in order to improve
error detection. Both approaches only consider one single fault.

Szentivanyi et al. [Sze05] have proposed a checkpoint optimi-
zation approach in the context of servers running high-availabil-
ity applications, employing primary-backup replication strategy.
The queuing theory has been used to mathematically model sys-
tem behaviour in the context of requests arriving to the servers,
and in order to optimize system availability in the presence of
faults. However, as the authors in [Sze05] have re-called, their
approach is not suitable for hard real-time applications, as the
ones discussed in this thesis. Moreover, fault tolerance policy
assignment, mapping and scheduling with fault tolerance are
not addressed in [Sze05].

Ayav et al. [Aya08] have achieved fault tolerance for real-time
programs with automatic transformations, where recovery with
checkpointing is used to tolerate one single fault at a time. Shye
et al. [Shy07] have developed a process-level redundancy
approach against multiple transient faults with active replica-
tion on multi-core processors in general-purpose computing sys-
tems. Design optimization and scheduling are not addressed in
[Shy07], assuming a given fault tolerance and execution setup.

Wattanapongsakorn and Levitan [Wat04] have optimized reli-
ability for embedded systems, both for hardware and software,
taking costs aspects into account. However, their technique is
limited to only software or hardware permanent faults of a com-
ponent, i.e., transient faults are not addressed. Traditional
hardware replication and N-version programming are used as
fault tolerance techniques. A simulated annealing-based algo-
rithm has been developed to provide design optimization of the
reliability against permanent faults with reduced hardware and
software costs of the fault tolerance. However, neither mapping
optimization nor scheduling have been addressed in [Wat04].

Aidemark et al. [Aid05] have developed a framework for node-
level fault tolerance in distributed real-time systems. System-
atic and application-specific error detection mechanisms with

CHAPTER 2

26

recovery have been used to ensure fail-silent behaviour of com-
putation nodes in the presence of transient faults. Although a
fixed priority scheduling with reserved recovery slacks is
assumed to be employed, design optimization and scheduling
with fault tolerance are not addressed in [Aid05].

Power-related optimization issues of fault-tolerant embedded
systems have been studied in [Yin06, Jia05, Zhu05, Mel04,
Wei06, Pop07]. Ying Zhang et al. [Yin04, Yin06] have studied
fault tolerance and dynamic power management in the context
of message-passing distributed systems. The number of check-
points has been optimized in order to improve power consump-
tion and meet timing constraints of the system without,
however, performing fault tolerance-aware optimization of map-
ping and scheduling. Fault tolerance has been applied on top of a
pre-designed system, whose process mapping and scheduling
ignore the fault tolerance issue. Jian-Jun Han and Qing-Hua Li
[Jia05] have proposed a scheduling optimization algorithm for
reducing power consumption in the context of online least-exe-
cution-time-first scheduling. Dakai Zhu et al. [Zhu05] have stud-
ied sequential and parallel recovery schemes on a set of
distributed servers, which tolerate arbitrary faults affecting
aperiodic tasks/requests. They use very different application
model and neither consider hard deadlines nor optimize sched-
uling or mapping of processes. Melhem et al. [Mel04] have con-
sidered checkpointing for rollback recovery in the context of
online earliest-deadline-first (EDF) scheduling on a monoproces-
sor embedded system. They have proposed two checkpointing
policies for reducing power consumption, where the number of
checkpoints can be analytically determined in the given context
of EDF scheduling. Wei et al. [Wei06] have proposed an online
scheduling algorithm for power consumption minimization in
the context of hard real-time monoprocessor systems. Pop et al.
[Pop07] have studied reliability and power consumption of dis-
tributed embedded systems. Mapping has been considered as
given to the problem and only scheduling has been optimized. A

BACKGROUND AND RELATED WORK

27

scheduling technique, based on our scheduling approach pre-
sented in Chapter 4 of this thesis, has been proposed to provide a
schedulable solution, which satisfies the reliability against the
given number of transient faults with the lowest-possible power
consumption.

Kandasamy et al. [Kan03a] have proposed constructive map-
ping and scheduling algorithms for transparent re-execution on
multiprocessor systems. The work has been later extended with
fault-tolerant transmission of messages on a time-division mul-
tiple access bus [Kan03b]. Both papers consider only one fault
per computation node, and only process re-execution is used.

Very few research work is devoted to general design
optimization in the context of fault tolerance. For example,
Pinello et al. [Pin04, Pin08] have proposed a simple heuristic for
combining several static schedules in order to mask fault
patterns. Passive replication has been used in [Alo01] to handle
a single failure in multiprocessor systems so that timing
constraints are satisfied. Multiple failures have been addressed
with active replication in [Gir03] in order to guarantee a
required level of fault tolerance and satisfy time constraints.
None of these previous work, however, has considered optimal
assignment of fault tolerance policies, nor has addressed
multiple transient faults in the context of static cyclic
scheduling.

Regarding hardware, a variety of hardening optimization
techniques against transient faults have been developed, which
optimize hardware cost and area overhead with respect to hard-
ware reliability [Zha06, Moh03, Zho06, Zho08, Hay07, Gar06].
However, these techniques target optimization of hardware
alone and do not consider embedded applications, which will be
executed on this hardware and their fault recovery capabilities.
Thus, hardening may either lead to unnecessary overdesign of
hardware or to its insufficient reliability since hardware design-
ers will use unrealistic assumptions about the software and the
system as a whole. To overcome this limitation, hardware hard-

CHAPTER 2

28

ening levels should be optimized in a more global system con-
text, taking into account properties of the application and
system requirements.

Regarding soft real-time systems, researchers have shown
how faults can be tolerated with active replication while
maximizing the quality level of the system [Mel00]. During
runtime, the resource manager allocates available system
resource for each arrived process such that the overall quality of
the system is not compromised while degree of the fault
tolerance is maintained. An online greedy resource allocation
algorithm has been proposed, which incrementally chooses
waiting process replicas and allocate them to the least loaded
processors. In [Ayd00] faults are tolerated while maximizing the
reward in the context of online scheduling and an imprecise
computation model, where processes are composed of mandatory
and optional parts. Monoprocessor architecture is considered
and the fault tolerance is provided with online recovering of the
task parts. In [Fux95] the trade-off between performance and
fault tolerance, based on active replication, is considered in the
context of online scheduling. This, however, incurs a large
overhead during runtime which seriously affects the quality of
the results. None of the above approaches considers value-based
scheduling optimization in the context of static cyclic
scheduling. In general, the considered value-based optimization
is either very limited and based on costly active replication
[Mel00, Fux95] or restricted to monoprocessor systems with
online scheduling [Ayd00].

Hard and soft real-time systems have been traditionally
scheduled using very different techniques [Kop97]. However,
many applications have both components with hard and soft
timing constraints [But99]. Therefore, researchers have recently
proposed techniques for addressing mixed hard and soft real-
time systems [But99, Dav93, Cor04b]. Particularly, Cortes et al.
[Cor04b] have developed a design approach for multiprocessor
embedded systems composed of soft and hard processes. None of

BACKGROUND AND RELATED WORK

29

the above mentioned work on mixed soft and hard real-time sys-
tems, however, addresses fault tolerance aspects.

Hereafter we present the summary of limitations of previous
research work, which we address in this thesis:

 • design optimization of embedded systems with fault
tolerance is usually restricted to a single aspect, as, for
example, process mapping is not considered together with
fault tolerance issues;

 • fault tolerance policy assignment, e.g., deciding which fault
tolerance technique or combination of techniques to apply to
a certain process, is not considered;

 • multiple faults are not addressed in the context of static
cyclic scheduling;

 • transparency, if at all addressed, is restricted to a whole com-
putation node and is not flexible;

 • fault tolerance aspects are not considered for mixed soft and
hard real-time systems, i.e., the value-based optimization in
the context of fault-tolerant mixed soft/hard embedded sys-
tems is not addressed;

 • reliability of hardware is usually addressed alone, without
considering software-level fault tolerance, which may lead to
unnecessarily expensive solutions.

2.4.1 DESIGN FLOW WITH FAULT TOLERANCE TECHNIQUES

In Figure 2.6 we enhance the generic design flow presented in
Figure 2.1, with the consideration of fault tolerance techniques.
In the “System Specification and Architecture Selection” stage,
designers specify, besides other functional and non-functional
properties, timing constraints, for example, deadlines, and select
a certain fault-tolerant architecture. They also set the maximum
number k of transient faults in the application period T, which
must be tolerated in software for the selected architecture.
Designers can introduce transparency requirements in order to
improve the debugability and testability on the selected archi-

CHAPTER 2

30

tecture (step A in Figure 2.6). Based on the number k of tran-
sient faults and the transparency requirements, design

Figure 2.6: Design Flow with Fault Tolerance

S
ys

te
m

 S
pe

ci
fi

ca
ti

on
an

d
A

rc
h

it
ec

tu
re

 S
el

ec
ti

on
D

es
ig

n
 O

pt
im

iz
at

io
n

 a
n

d
S

ch
ed

u
li

n
g

Fault-Tolerant
Process Graph (FTPG)

N1 true 1P
F

1
PF

11 PP FF ∧
11 PP FF ∧

211 PPP FFF ∧∧

P1 0 35 70
P2 30 100 65 90
m1 31 100 66
m2 105 105 105
m3 120 120

Mapping

B

F

Fault-Tolerant
Hardware Architecture

Mapped and Scheduled
Application

P2 P1

P4

m2 m1m3

P3

Application

m5

m4

k faults

P2 P1

P4

m2 m1m3

P3

Transparency

m4

m5

A

G

D

Fault Tolerance Policy Assignment

C

Schedule Tables

Period T

Timing Constraints

U1(t)

U2(t)

d3 d4

P1 : Replication
P2 : Re-execution + Replication
P3 : Re-execution + Replication
P4 : Re-execution

E

BACKGROUND AND RELATED WORK

31

optimization and scheduling are performed in the “Design Opti-
mization and Scheduling” stage.1

In the “Fault Tolerance Policy Assignment” step in Figure 2.6,
processes are assigned with fault tolerance techniques against
transient faults. For example, some processes can be assigned
with recovery (re-execution), some with active replication, and
some with a combination of recovery and replication. In the con-
text of rollback recovery, we also determine the adequate
number of checkpoints. The policy assignment is passed over to
the “Mapping” step (C), where a mapping algorithm optimizes
the placement of application processes and replicas on the com-
putation nodes. After that, the application is translated in step
D into an intermediate representation, a “Fault-Tolerant Proc-
ess Graph”, which is used in the scheduling step. The fault-toler-
ant process graph (FTPG) representation captures the
transparency requirements and all possible combinations of
fault occurrences. Considering the mapping solution and the
FTPG, a fault-tolerant schedule is synthesized (E) as a set of
“Schedule Tables”, which are captured in a schedule tree.

The generated schedules have to meet hard deadlines even in
the presence of k faults in the context of limited amount of
resources. If the application is unschedulable, the designer has
to change the policy assignment and/or mapping (F). If a valid
solution cannot be obtained after an extensive iterative mapping
and policy assignment optimization, then the system specifica-
tion and requirements, for example, transparency requirements
or timing constraints, have to be adjusted or the fault-tolerant
hardware architecture has to be modified (G).

1. Our design optimization and scheduling strategies, presented in Part II
and Part III of the thesis, in general, follow this design flow with the
maximum number k of transient faults provided by the designer. In
Part IV, however, the number k of transient faults to be considered is
calculated based on our system failure probability analysis.

33

Chapter 3
Preliminaries

IN THIS CHAPTER we introduce our application and quality-of-
service (utility) models, hardware architecture, and our fault
model. We also present our approach to process recovery in the
context of static cyclic scheduling.

3.1 System Model
In this section we present details regarding our application mod-
els, including a quality-of-service model, and system architec-
ture.

3.1.1 HARD REAL-TIME APPLICATIONS

In Part II and Part IV of this thesis, we will consider hard real-
time applications. We model a hard real-time application A as a
set of directed, acyclic graphs merged into a single hypergraph
G(V, E). Each node Pi ∈ V represents one process. An edge
eij ∈ E from Pi to Pj indicates that the output of Pi is the input
of Pj. Processes are non-preemptable and cannot be interrupted
by other processes. Processes send their output values encapsu-

CHAPTER 3

34

lated in messages, when completed. All required inputs have to
arrive before activation of the process. Figure 3.1a shows a sim-
ple application A1 represented as a graph G1 composed of five
nodes (processes P1 to P5) connected with five edges (messages
m1 to m5).

In a hard real-time application, violation of a deadline is not
allowed. We capture time constraints with hard deadlines di ∈
D, associated to processes in the application A. In Figure 3.1a,
all processes have to complete before their deadlines di, for
example, process P1 has to complete before d1 = 160 ms and
process P5 before d5 = 240 ms. In this thesis, we will often
represent the hard deadlines in form of a global cumulative
deadline D1.

1. An individual hard deadline di of a process Pi is modelled as a dummy
node inserted into the application graph with the execution time
Cdummy = D − di, which, however, is not allocated to any resource
[Pop03].

N1 N2P2

m4

m2

P3

P4 P5

m5

P1

N2

P2

P3
P4

N1

40 60

P5

60 X
40 60
40 60

P1 20 30

WCET WCTT

m1

m2

m3

10
5
10

(a)
(b)

(c) (d)

m1

m3

m4

m5

10
5

k = 1

μ = 5 ms

D = 240 ms

(e)

d1 = 160 ms

d3 = 200 ms

d5 = 240 ms

d2 = 200 ms

d4 = 240 ms

T = 250 ms

Figure 3.1: Hard Real-Time Application

A1:G1

PRELIMINARIES

35

3.1.2 MIXED SOFT AND HARD REAL-TIME APPLICATIONS

In Part III of this thesis, we will consider mixed soft and hard
real-time applications, and will extend our hard real-time
approaches to deal also with soft timing constraints. Similar to
the hard real-time application model, we model a mixed appli-
cation A as a set of directed, acyclic graphs merged into a sin-
gle hypergraph G(V, E). Each node Pi ∈ V represents one
process. An edge eij ∈ E from Pi to Pj indicates that the output
of Pi is the input of Pj. The mixed application consists of hard
and soft real-time processes. Hard processes are mandatory to
execute and have to meet their hard deadlines. Soft processes,
as opposed to hard ones, can complete after their deadlines.
Completion time of a soft process is associated with a value (util-
ity) function that characterizes its contribution to the quality-of-
service of the application. Violation of a soft timing constraint is
not as critical as violation of a hard deadline. However, it may
lead to application quality deterioration, as will be discussed in
Section 3.1.6. Moreover, a soft process may not start at all, e.g.
may be dropped, to let a hard or a more important soft process
execute instead.

In Figure 3.2 we have an application A2 consisting of the
process graph G2 with four processes, P1 to P4. The hard part

m2 : m3 : 10 ms

m5 : 5 ms

P2

P1

P3

d1 = 250ms

P4 d4 = 380ms

m1 m2

m4m3

m5

Figure 3.2: Mixed Soft and Hard Real-Time Application

A2:G2

T=400ms

N1 N2k = 2

μ = 5 ms

AETBCET WCETM(Pi)
P1 30 50 70N1

P2 50 60 100N1

P3 50 75 120N2

P4 30 60 80N2

CHAPTER 3

36

consists of hard processes P1 and P4 and hard message m5. Proc-
ess P1 has deadline d1 = 250 ms and process P4 has deadline d4
= 380 ms. The soft part consists of soft process P2 with soft mes-
sages m1 and m3, and soft process P3 with soft messages m2 and
m4, respectively. A soft process can complete after its deadline
and the utility functions are associated to soft processes, as will
be discussed in Section 3.1.6. The decision which soft process to
execute and when should eventually increase the overall qual-
ity-of-service of the application without, however, violation of
hard deadlines in the hard part.

3.1.3 BASIC SYSTEM ARCHITECTURE

The real-time application is assumed to run on a hardware
architecture, which is composed of a set of computation nodes
connected to a communication infrastructure. Each node con-
sists of a memory subsystem, a communication controller, and a
central processing unit (CPU). For example, an architecture
composed of two computation nodes (N1 and N2) connected to a
bus is shown in Figure 3.1b.

The application processes have to be mapped on the computa-
tion nodes. The mapping of an application process is determined
by a function M: V → N, where N is the set of nodes in the archi-
tecture. For a process Pi ∈ V , its mapping M(Pi) is the node Nj to
which Pi is assigned for execution. We consider that the map-
ping of the application is not fixed and has to be determined as a
part of the design optimization.

For real-time applications, we know, first of all, a worst-case
execution time (WCET), tij

w. Although finding the WCET of a
process is not trivial, there exists an extensive portfolio of meth-
ods that can provide designers with safe worst-case execution
time estimations [Erm05, Sun95, Hea02, Jon05, Gus05, Lin00,
Col03, Her00, Wil08]. Figure 3.1c shows the worst-case execu-
tion times of processes of the application A1 depicted in
Figure 3.1a. For example, process P2 has the worst-case execu-

PRELIMINARIES

37

tion time of 40 ms if mapped on computation node N1 and 60 ms
if mapped on computation node N2. By “X” we show mapping
restrictions. For example, process P3 cannot be mapped on com-
putation node N2.

Besides a worst-case execution time (WCET), tij
w, we also

know for each process Pi, when mapped on node Nj, a best-case
execution time (BCET), tij

b, and an expected (average) execution
time (AET), tij

e, given by

for an arbitrary continuous execution time probability distribu-
tion Eij(t) of process Pi on computation node Nj. In Figure 3.2,
with a mixed application A2, the execution times for processes
P1, P2, P3 and P4 and transmission times of messages are
shown in the table, as if processes P1 and P2 are mapped on
computation node N1, and P3 and P4 on N2.

Processes mapped on different computation nodes communi-
cate by messages sent over the bus. We consider that the worst-
case sizes of messages are given, which can be implicitly trans-
lated into the worst-case transmission times on the bus. For
example, Figure 3.1d shows the worst-case transmission times
of messages implicitly derived from the message worst-case
sizes, in the case the messages are transmitted over the bus. If
processes are mapped on the same node, the message transmis-
sion time between them is accounted for in the worst-case execu-
tion time of the sending process.

3.1.4 FAULT TOLERANCE REQUIREMENTS

In our system model, we consider that at most k transient faults
may occur during a hyperperiod T of the application running on
the given architecture. The application software has to tolerate
these transient faults by fault tolerance techniques such as
rollback recovery or active replication. For example, application

tij
e tEij t() td

tij
b

tij
w

∫=

CHAPTER 3

38

A1 has to tolerate k = 1 transient faults in the hyperperiod T =
250 ms, as depicted in Figure 3.1e; application A2 in Figure 3.2
has to tolerate k = 2 transient faults in its hyperperiod T = 400
ms.

Overheads related to fault tolerance are also part of our
system model. When recovering from faults, we explicitly
consider a recovery overhead μ, which includes the time needed
to restore a process state and restart the process (or a part of the
process). For example, recovery overhead μ is 5 ms for both
applications A1 and A2, as depicted in Figure 3.1e and
Figure 3.2, respectively.

Checkpointing overhead χ and error detection overhead α are
also considered, as discussed in Section 2.2. However, since they
do not influence design optimization and scheduling decisions
we will not explicitly model them except the discussion on
checkpoint optimization in Section 3.2 and Chapter 6.

3.1.5 ADAPTIVE STATIC CYCLIC SCHEDULING

In this thesis, we will consider a static cyclic scheduling based
approach. With static cyclic scheduling both communications
and processes are scheduled such that start times are deter-
mined off-line using scheduling heuristics. These start and send-
ing times are stored in form of schedule tables on each
computation node. Then, the runtime scheduler of a computation
node will use the schedule table of that node in order to invoke
processes and send messages on the bus.

In Figure 3.3b we depict a static schedule for the application
and the hardware architecture presented in Figure 3.1. Proc-
esses P1, P3 and P5 are mapped on computation node N1 (grey
circles), while processes P2 and P4 are mapped on N2 (white cir-
cles). The schedule table of the computation node N1 contains
start times of processes P1, P3 and P5, which are 0, 20, and 100
ms, respectively, plus sending time of message m1, which is 20
ms. The schedule table of N2 contains start times of P2 and P4,

PRELIMINARIES

39

30 and 90 ms, plus sending time of message m4, which is 90 ms.
According to the static schedule, the application will complete at
150 ms, which satisfies the cumulative deadline D of 240 ms. All
local deadlines of hard processes are also met.

Static cyclic scheduling, which we have used to generate the
schedule in Figure 3.3b, is an attractive option for safety-critical
applications. It provides predictability and deterministic
behaviour. However, unless extended with adaptive
functionality, it cannot efficiently handle faults and overload
situations [Dim01, Kan03a] by adapting to particular
conditions. For example, suppose that we have to handle the
maximum k = 1 transient faults for application A1 in Figure 3.1,
given the option that only one single static schedule can be used.
In such a schedule, each process would need to be explicitly
scheduled in two copies assuming the worst-case execution
times of processes, which would lead to hard deadline violations
and is not efficient.

In general, an application can have different execution scenar-
ios [Ele00]. For example, some parts of the application might not
be executed under certain conditions. In this case, several execu-
tion scenarios, corresponding to different conditions, have to be
stored. At execution time, the runtime scheduler will choose the
appropriate schedule that corresponds to the actual conditions.
If the conditions change, the runtime scheduler will accordingly

P3

P2 P4

P5

m4

N1

N2

bus

deadline D = 240

P1

20 40 60 80 100 120 140 160 180 time200

m1

220

d1 d3

d2

d5

d4

Figure 3.3: A Static Schedule
(a) (b)

P2
m2

m1

P3

P4 P5

m3

P1

A1:G1

CHAPTER 3

40

switch to the appropriate precalculated schedule. Such a sched-
uling technique is called quasi-static scheduling.

Quasi-static mechanisms will be exploited in the following
sections for capturing the behaviour of fault-tolerant applica-
tions. However, at first, to illustrate scheduling in the context of
mixed soft and hard real-time systems, we will introduce our
quality-of-service model, which is also a part of our system
model.

3.1.6 QUALITY-OF-SERVICE MODEL

In our mixed soft and hard real-time application model, pre-
sented in Section 3.1.2, each soft process Pi ∈ V is assigned with
a utility function Ui(t), which is any non-increasing monotonic
function of the completion time of a process. The overall utility of
each execution scenario of the application is the sum of individ-
ual utilities produced by soft processes in this scenario.

In Figure 3.4 we depict utility function U2(t) for the soft proc-
ess P2 of the application A2 in Figure 3.2. According to the
schedule in Figure 3.4a, P2 completes at 110 ms and its utility
would be 15. For a soft process Pi we have the option to “drop”

Figure 3.4: Utility Functions and Dropping
(a) (b)

P1 P2

P4

m5 m3

N1

N2

bus

P3

U3(t)
U2(t)30

15
t

m2

U = U2(110) + U3
*(75) =

0 20 40 60 80 100 120

15 + 1/2 × 15 = 22.5

U2(t)30
15

t

P1 P2

P4

m5 m3

N1

N2

bus

U3(t)

U = U2(110) + U3(–) = 15 + 0 = 15

0 20 40 60 80 100 120

PRELIMINARIES

41

the process, and, thus, its utility will be 0, i.e., Ui(−) = 0. In
Figure 3.4a we drop process P3 of application A2. Thus, the
overall utility of the application in this case will be U = U2(110)
+ U3(−) = 15 + 0 = 15. We may also drop soft messages of the
application alone or together with the producer process. For
example, in Figure 3.4a, messages m2 is dropped. Dropping
might be necessary in order to meet deadlines of hard processes,
or to increase the overall system utility (e.g. by allowing other,
potentially higher-value soft processes to complete).

If Pi, or its re-execution, is dropped but would produce an
input for another process Pj, we assume that Pj will use an input
value from a previous execution cycle, i.e., a “stale” value. Thus,
output values produced by processes in one execution cycle can be
reused by processes in the next cycles. For example, in Figure 3.4a,
process P2 will send message m3 to update an input “stale” value for
process P4 in the next iteration. Reusing stale inputs, however,
may lead to reduction in the utility value, i.e., utility of a process
Pi would degrade to Ui

*(t) = σi × Ui(t), where σi represents the
stale value coefficient. σi captures the degradation of utility that
occurs due to dropping of processes, re-executions and messages,
and is obtained according to an application-specific rule R. In
this thesis, we will consider that if a process Pi completes, but
reuses stale inputs from one or more of its direct predecessors,
the stale value coefficient is calculated as follows:

where DP(Pi) is the set of Pi’s direct predecessors.
If we apply the above rule to the execution scenario in

Figure 3.4b, the overall utility is U=U2(110) + U3
*(75) = 15 + 1/2

× 15 = 22.5. The utility of process P3 is degraded because it uses
a “stale” value from process P1, i.e., P3 does not wait for input m2

σi

1 σj
Pj DP Pi()∈

∑+

1 DP Pi()+
--=

CHAPTER 3

42

and its stale value coefficient σ3 = (1 + σ1) / (1 + |DP(P3)|) = (1 +
0) / (1 + 1) = 1/2.

3.2 Software-level Fault Tolerance Techniques
To illustrate adaptive scheduling with fault tolerance, in
Figure 3.5a we show a simple application of two processes that
has to tolerate the maximum number of two transient faults,
i.e., k = 2.

As mentioned in Chapter 2, error detection itself introduces a
certain time overhead, which is denoted with αi for a process Pi.
Usually, unless otherwise specified, we account for the error-
detection overhead in the worst-case execution time of proc-
esses. In the case of re-execution or rollback recovery with
checkpointing, a process restoration or recovery overhead μi has
to be considered for a process Pi. The recovery overhead includes
the time needed to restore the process state. Rollback recovery is
also characterized by a checkpointing overhead χi, which is

Figure 3.5: Fault Model and Fault Tolerance Techniques

P1 P2

k = 2

P1

C1 = 60 ms

P2

C2 = 60 ms

χ α μ
10 5 5

5 5 10

P1

P2

(a) (b)

m1

P1

P1

P1 P2 P2/1 P2/2
1 2 21

P2/3
2 2

P2/1 P2/2 P2/3(c)

(d)

20 40 60 80 100 120 140 160 180 200 220 2600 280 300

PRELIMINARIES

43

related to the time needed to store initial and intermediate proc-
ess states.

We consider that the worst-case time overheads related to the
particular fault tolerance techniques are given. For example,
Figure 3.5b shows recovery, detection and checkpointing over-
heads associated with the processes of the simple application
depicted in Figure 3.5a. The worst-case fault scenarios of this
application in the presence of two faults, if re-execution and roll-
back recovery with checkpointing are applied, are shown in
Figure 3.5c and Figure 3.5d, respectively. As can be seen, the
overheads related to the fault tolerance techniques have a sig-
nificant impact on the overall system performance.

As discussed in Section 2.3, such fault tolerance techniques as
re-execution and rollback recovery with checkpointing make
debugging, testing, and verification potentially difficult. Trans-
parency is one possible solution to this problem. Our approach to
handling transparency is by introducing the notion of frozenness
applied to a process or a message. A frozen process or a frozen
message has to be scheduled at the same start time in all fault
scenarios, independently of external fault occurrences1.

Given an application A(V, E) we will capture the transpar-
ency using a function T: W → {Frozen, Regular}, where W is
the set of all processes and messages. If T(wi) = Frozen, our
scheduling algorithm will handle this transparency requirement
(a) by scheduling wi, if it is a message, at the same transmission
time in all alternative execution scenarios and (b) by scheduling
the first execution instance of wi, if it is a process, at the same
start time in all alternative execution scenarios. In a fully trans-
parent system, all messages and processes are frozen. Systems
with a node-level transparency [Kan03a] support a limited
transparency setup, in which all the inter-processor messages
are frozen, while all processes and all the intra-processor mes-
sages are regular.

1. External in respect to, i.e., outside, the frozen process or message.

CHAPTER 3

44

Figure 3.6 shows the non-fault scenario and the worst-case
fault scenario of the application depicted in Figure 3.5a, if re-
execution is applied and process P2 is frozen. Process P2 is first
scheduled at 205 ms in both execution scenarios independently
of external fault occurrences, e.g., faults in process P1. However,
if fault occurrences are internal, i.e., within process P2, process
P2 has to be re-executed as shown in Figure 3.6b.

3.2.1 RECOVERY IN THE CONTEXT OF STATIC CYCLIC
SCHEDULING

In the context of static cyclic scheduling, each possible execution
scenario has to be captured to provide the necessary adaptabil-
ity to current conditions [Ele00].

Re-execution. In case of re-execution, faults lead to different
execution scenarios that correspond to a set of alternative sched-
ules. For example, considering the same application as in
Figure 3.5a, with a maximum number of faults k = 1, re-execu-
tion will require three alternative schedules as depicted in
Figure 3.7a. The fault scenario in which P2 experiences a fault is
shown with shaded circles. In the case of a fault in P2, the run-
time scheduler switches from the non-fault schedule S0 to the
schedule S2 corresponding to a fault in process P2.

Similarly, in the case of multiple faults, every fault occurrence
will trigger a switching to the corresponding alternative sched-
ule. Figure 3.7b represents a tree of constructed alternative
schedules for the same application of two processes, if two tran-

Figure 3.6: Transparency and Frozenness

P1 P2 P2 P2P1 P1

P1 P2P1 P1 no faultsa)

b)

20 40 60 80 100 120 140 160 180 200 220 2400 260 280 300 320 340 360 380 400

PRELIMINARIES

45

sient faults can happen at maximum, i.e., k = 2. For example, as
depicted with shaded circles, if process P1 experiences a fault,
the runtime scheduler switches from the non-fault schedule S0
to schedule S1. Then, if process P2 experiences a fault, the run-
time scheduler switches to schedule S4.

Checkpointing. Figure 3.8 represents a tree of constructed
alternative schedules for the same application in Figure 3.5a
considering, this time, a rollback recovery schema with two
checkpoints, as in Figure 3.5d. In the schedule, every execution
segment is considered as a “small process” that is recovered
in the case of fault occurrences. Therefore, the number of alter-
native schedules is larger than it is in the case of pure re-execu-
tion. In Figure 3.8 we highlight the fault scenario presented in
Figure 3.5d with shaded circles. The runtime scheduler switches
between schedules S0, S4, and S14.

S0

S1 S2

S0

S1

S3 S4

S2

S5

P1 P2

P1
P2

P1 P2 P2

Figure 3.7: Alternative Schedules for Re-execution

a) b)

Pi
j

Figure 3.8: Alternative Schedules for Rollback Recovery
with Checkpointing

S0

S1

S5 S6 S7 S8 S9 S10 S11

S2

S12 S13

S3

S14

S4

P1
1

P1
1

P1
2 P2

1
P2

2 P1
2

P2
1

P2
2

P2
1

P2
2 P2

2

P1
2

P2
1

P2
2

CHAPTER 3

46

Transparency. The size of the above tree of alternative
schedules can be reduced by introducing transparency
requirements. For example, in the case with frozen process P2
for the application in Figure 3.5a, with the corresponding
schedule depicted in Figure 3.6, it is sufficient to have a single
schedule to capture the application behaviour in all possible
fault scenarios even in case k = 2. This can be compared to 6
schedules, depicted in Figure 3.7b, for the same application but
without transparency. However, the application with 6
schedules is more flexible, which will result in the much shorter
worst schedule length than in the case depicted in Figure 3.6.
We will investigate this relation between transparency
requirements, the schedule tree size and the schedule length in
the next Chapter 4, where we present our scheduling techniques
with fault tolerance.

PART II
Hard Real-Time Systems

49

Chapter 4
Scheduling with Fault

Tolerance Requirements

IN THIS CHAPTER we propose two scheduling techniques for
fault-tolerant embedded systems in the context of hard real-
time applications, namely conditional scheduling and shifting-
based scheduling. Conditional scheduling produces shorter
schedules than the shifting-based scheduling, and also allows to
trade-off transparency for performance. Shifting-based schedul-
ing, however, has the advantage of low memory requirements for
storing alternative schedules and fast schedule generation time.

Both scheduling techniques are based on the fault-tolerant
process graph (FTPG) representation.

Although the proposed scheduling algorithms are applicable
for a variety of fault tolerance techniques, such as replication,
re-execution, and rollback recovery with checkpointing, for the
sake of simplicity, in this chapter we will discuss them in the
context of only re-execution.

CHAPTER 4

50

4.1 Performance/Transparency Trade-offs
As defined in Section 3.2, transparency refers to providing
extended observability to the embedded application. The notion
of transparency has been introduced with the property of frozen-
ness applied to processes and messages, where a frozen process
or a frozen message has to be scheduled independently of exter-
nal fault occurrences.

Increased transparency makes a system easier to observe and
debug. Moreover, since transparency reduces the number of exe-
cution scenarios, the amount of memory required to store alter-
native schedules, corresponding to these scenarios, is reduced.
However, transparency increases the worst-case delays of proc-
esses, which can violate timing constraints of the application.
These delays can be reduced by trading-off transparency for per-
formance.

In the example in Figure 4.1a, we introduce transparency
properties into the application A. We let process P3 and mes-
sages m2 and m3 be frozen, i.e., T(m2) = Frozen, T(m3) = Frozen
and T(P3) = Frozen. We will depict frozen processes and mes-
sages with squares, while the regular ones are represented by
circles. The application has to tolerate k = 2 transient faults, and
the recovery overhead μ is 5 ms. It is assumed that processes P1
and P2 are mapped on N1, and P3 and P4 are mapped on N2.
Messages m1, m2 and m3, with the sending processes and receiv-
ing processes mapped on different nodes, are scheduled on the
bus. Four alternative execution scenarios are illustrated in
Figure 4.1b-e.

The schedule in Figure 4.1b corresponds to the fault-free sce-
nario. Once a fault occurs in P4, for example, the scheduler on
node N2 will have to switch to another schedule. In this sched-
ule, P4 is delayed with C4 + μ to account for the fault, where C4
is the worst-case execution time of process P4 and μ is the recov-
ery overhead. If, during the second execution of P4, a second

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

51

fault occurs, the scheduler has to switch to yet another schedule
illustrated in Figure 4.1c.

Since P3, m2 and m3 are frozen they should be scheduled at
the same time in all alternative fault scenarios. For example, re-
executions of process P4 in the case of faults in Figure 4.1c must
not affect the start time of process P3. The first instance of proc-
ess P3 has to be always scheduled at the same latest start time

P2P1

P3/2 P3/3P4 P3/1

P2

m1

P1

m2 m3

P3P4/1 P4/2 P4/3

P2

P1

P4
m2

m1

m3

P3

a)

c)

d)

m1 m2 m3

P2

m1

P1

m2 m3

P3P4b)

N1

N2

bus

N1

N2

bus

N1

N2

bus

m1 : m2 : m3 : 5ms

P2P1/1

m2 m3m1

P4 P3

N1

N2

bus

P1/2 P1/3

e)

m4

m5

m4 : m5 : 10 ms

N1 N2

P1
P2
P3

N1
30 X
20
X

X
20

N2

P4 X 30

P2

P1

P4
m2

m1

m3

P3

D = T = 210 ms

m4

m5 Introduce
transparency

10 20 30 40 50 60 70 80 90 100 110 1200 130 140 150 160 170 180 190 200 210

Figure 4.1: Application with Transparency

A: G

CHAPTER 4

52

in all execution scenarios, which is illustrated with a dashed line
crossing Figure 4.1. Even if no faults happen in process P4, in
the execution scenarios depicted in Figure 4.1d and Figure 4.1b,
process P3 will have to be delayed, which leads to a worst-case
schedule as in Figure 4.1d. Similarly, idle times are introduced
before messages m2 and m3, such that possible re-executions of
processes P1 and P2 do not affect the sending times of these mes-
sages. Message m1, however, can be sent at different times
depending on fault occurrences in P1, as illustrated, for example,
in Figures 4.1b and 4.1e, respectively.

In Figure 4.2 we illustrate three alternatives, representing
different transparency/performance setups for the application
A in Figure 4.1. The application has to tolerate k = 2 transient
faults, and the recovery overhead μ is 5 ms. Processes P1 and P2
are mapped on N1, and P3 and P4 are mapped on N2. For each
transparency alternative (a− c), we show the schedule when no
faults occur (a1–c1) and also depict the worst-case scenario,
resulting in the longest schedule (a2–c2). The end-to-end worst-
case delay of an application will be given by the maximum fin-
ishing time of any alternative schedule. Thus, we would like the
worst-case schedules in Figure 4.2a2-c2 to meet the deadline of
210 ms depicted with a thick vertical line.

In Figure 4.2a1 and 4.2a2 we show a schedule produced with a
fully transparent alternative, in which all processes and mes-
sages are frozen. We can observe that processes and messages
are all scheduled at the same time, indifferent of the actual
occurrence of faults. The shaded slots in the schedules indicate
the intervals reserved for re-executions that are needed to
recover from fault occurrences. In general, a fully transparent
approach, as depicted in Figure 4.2a1 and 4.2a2, has the draw-
back of producing long schedules due to complete lack of flexibil-
ity. The worst-case end-to-end delay in the case of full
transparency, for this example, is 275 ms, which means that the
deadline is missed.

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

53

The alternative in Figure 4.2b does not have any transpar-
ency restrictions. Figure 4.2b1 shows the execution scenario if
no fault occurs, while 4.2b2 illustrates the worst-case scenario.

Figure 4.2: Trade-off between Transparency and Performance

a) b) c)m2

m1

m3

P3

P4

P1

P2

m4

m5

m2

m1

m3

P3

P4

P1

P2

m4

m5

P2

P1

P4
m2

m1

m3

P3

m4

m5

P2

P1

P4
m2

m1

m3

P3

m4

m5

P2

P1

P4
m2

m1

m3

P3

m4

m5

P2

P1

P4
m2

m1

m3

P3

m4

m5

P2P1/3P1/2

275

P2/2

m1

P1

P4 P4/2

m2

P4/3

P2/3

m3

P3 P3/2 P3/3

P2

m1

P1

m2 m3

P4 P3

Deadline: 210
N1

N2

bus

a1)

N1

N2

bus

b1)

P2

m1

P1

m2 m3

P4 P3

N1

N2

bus

c1)

205
c2)

P2P1

m2 m3

P3/2 P3/3

m1

P4 P3/1

N1

N2

bus

P2 P2/2

m1

P1 P1/2 P1/3

P4 P4/2

m2

P4/3

P2/3

m3

P3/1 P3/2 P3/3

a2)
N1

N2

bus

155P2

m1

P1/1

m2 m3

P4/1 P3

P1/2

P4/2

b2)
N1

N2

bus

10 20 30 40 50 60 70 80 90 100 110 1200 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270

CHAPTER 4

54

In the case without frozen processes/messages, a fault occur-
rence in a process Pi can affect the schedule of another process
Pj. This allows to build schedules that are customized to the
actual fault scenarios and, thus, are more efficient. In
Figure 4.2b2, for example, a fault occurrence in P1 on N1 will
cause another node N2 to switch to an alternative schedule that
delays the activation of P4, which receives message m1 from P1.
This would lead to a worst-case end-to-end delay of only 155 ms,
as depicted in Figure 4.2b2, that meets the deadline.

However, transparency could be highly desirable and a
designer would like to introduce transparency at certain points
of the application without violating the timing constraints. In
Figure 4.2c, we show a setup with a fine-grained, customized
transparency, where process P3 and its input messages m2 and
m3 are frozen. In this case, the worst-case end-to-end delay of
the application is 205 ms, as depicted in Figure 4.2c2, and the
deadline is still met.

4.2 Fault-Tolerant Conditional Process Graph
The scheduling techniques presented in this section are based
on the fault-tolerant process graph (FTPG) representation.
FTPG captures alternative schedules in the case of different
fault scenarios. Every possible fault occurrence is considered as
a condition which is “true” if the fault happens and “false” if the
fault does not happen.

In Figure 4.3a we have an application A modelled as a process
graph G, which can experience at most two transient faults (for
example, one during the execution of process P2, and one during
P4, as illustrated in the figure). Transparency requirements are
depicted with rectangles on the application graph, where proc-
ess P3, message m2 and message m3 are set to be frozen. For
scheduling purposes we will convert the application A to a fault-
tolerant process graph (FTPG) G, represented in Figure 4.3b. In

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

55

an FTPG the fault occurrence information is represented as con-
ditional edges and the frozen processes/messages are captured
using synchronization nodes. One of the conditional edges, for
example, is to in Figure 4.3b, with the associated condi-
tion denoting that has no faults. Message transmission
on conditional edges takes place only if the associated condition
is satisfied.

The FTPG in Figure 4.3b captures all the fault scenarios that
can happen during the execution of application A in

P1
1 P4

1

FP1
1 P1

1

1

m3
1

6

5

P3

P2

P1

P4

P4

6

f = 1

f = 0
f = 0

f = 0

S

m2
S

2

4

4

1

2

f = 2

1

FP4
2FP4
2

FP4
4FP4
4

FP2
2FP2
2

FP1
2FP1
2

FP1
1FP1
1

FP2
1FP2
1

P2

6

5
3

1 3

2
P1

P1

P2

P2

P2

P2

P4

P4
P4

3

m1

m1

m1

FP2
4FP2
4

FP4
1FP4
1

1

2

3

f = 2
f = 1

f = 0

f = 2

f = 1

f = 0

f = 1

f = 0

f = 1

f = 0

m3

SP3

1

2

3
P3

P3

FP3
1FP3
1

FP3
2FP3
2

P4

FP4
1FP4
1

FP4
2FP4
2

FP2
1FP2
1

FP2
2FP2
2

FP1
1FP1
1

FP1
2FP1
2

FP1
1FP1
1

FP1
1FP1
1

FP1
2FP1
2

FP1
2FP1
2

FP4
4FP4
4

FP2
4FP2
4

f = 0

f = 1

f = 2

m4
1

m4
2

m4
3

m5

m5
1

m5
2

m5
3

m5
4

m5
5

m2

P2

P1

P4
m2

m1

m3

P3

m4

m5

k = 2

Figure 4.3: Fault-Tolerant Process Graph

b)

a)

CHAPTER 4

56

Figure 4.3a. The subgraph marked with thicker edges and
shaded nodes in Figure 4.3b captures the execution scenario
when processes P2 and P4 experience one fault each, as illus-
trated in Figure 4.3a. We will refer to every such subgraph cor-
responding to a particular execution scenario as an alternative
trace of the FTPG. The fault occurrence possibilities for a given
process execution, for example , the first execution of P2, are
captured by the conditional edges (fault) and (no-fault).
The transparency requirement that, for example, P3 has to be fro-
zen, is captured by the synchronization node , which is
inserted, as shown in Figure 4.3b, before the copies corresponding
to the possible executions of process P3. The first execution of
process P3 has to be immediately scheduled after its synchroniza-
tion node . In Figure 4.3b, process is a conditional process
because it “produces” condition , while is a regular proc-
ess. In the same figure, and , similarly to , are syn-
chronization nodes (depicted with a rectangle). Messages m2 and
m3 (represented with their single copies and in the FTPG)
have to be immediately scheduled after synchronization nodes
and , respectively.

Regular and conditional processes are activated when all their
inputs have arrived. A synchronization node, however, can be
activated after inputs coming on one of the alternative traces,
corresponding to a particular fault scenario, have arrived. For
example, a transmission on the edge , labelled , will be
enough to activate .

A guard is associated to each node in the graph. An example of
a guard associated to a node is, for example, = ,
indicating that will be activated in the fault scenario where
P2 will experience a fault, while P1 will not. A node is activated
only in a scenario where the value of its associated guard is true.

Definition. Formally, an FTPG corresponding to an application
A = G(V, E) is a directed acyclic graph G(VP∪VC∪VT, ES∪EC). We
will denote a node in the FTPG with that will correspond to

P2
1

FP2
1 FP2

1

P3
S

P3
1

P3
S P1

1

FP1
1 P1

3

m2
S m3

S P3
S

m2
1 m3

1

m2
S

m3
S

e12
1Sm FP1

1

m2
S

KP2
2 FP1

1 FP2
1∧

P2
2

Pi
m

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

57

the mth copy of process Pi ∈ V. Each node ∈ VP, with simple
edges at the output, is a regular node. A node ∈ VC, with con-
ditional edges at the output, is a conditional process that pro-
duces a condition.

Each node ϑi ∈ VT is a synchronization node and represents
the synchronization point corresponding to a frozen process or
message. We denote with the synchronization node corre-
sponding to process Pi ∈ A and with the synchronization
node corresponding to message mi ∈ A. Synchronization nodes
will take zero time to execute.

ES and EC are the sets of simple and conditional edges, respec-
tively. An edge ∈ ES from to indicates that the out-
put of is the input of . Synchronization nodes and
are also connected through edges to regular and conditional
processes and other synchronization nodes:
 • ∈ ES from to ;
 • ∈ ES from to ;
 • ∈ ES from to ;
 • ∈ ES from to ;
 • ∈ ES from to ;
 • ∈ ES from to ; and
 • ∈ ES from to .

Edges ∈ EC, ∈ EC, and ∈ EC are conditional edges
and have an associated condition value. The condition value pro-
duced is “true” (denoted with) if experiences a fault, and
“false” (denoted with) if does not experience a fault.
Alternative traces starting from such a process, which corre-
spond to complementary values of the condition, are disjoint1.
Note that edges , , , and coming from a syn-
chronization node cannot be conditional.

1. They can only meet in a synchronization node.

Pi
m

Pi
m

Pi
S

mi
S

eij
mn Pi

m Pj
n

Pi
m Pj

n Pi
S mi

S

eij
mS Pi

m Pj
S

eij
Sn Pi

S Pj
n

eij
mSm Pi

m mj
S

eij
Smn mi

S Pj
n

eij
SS Pi

S Pj
S

eij
SmS mi

S Pj
S

eij
SSm Pi

S mj
S

eij
mn eij

mS eij
mSm

FPi
m Pi

m

FPi
m Pi

m

eij
Sn eij

Smn eij
SS eij

SmS eij
SSm

CHAPTER 4

58

A boolean expression , called guard, can be associated to
each node in the graph. The guard captures the necessary
activation conditions (fault scenario) for the respective node.

4.2.1 FTPG GENERATION

In Figure 4.4 we have outlined the BuildFTPG algorithm that
traces processes in the application graph G with transparency
requirements T in the presence of maximum k faults and gener-
ates the corresponding FTPG G. In the first step, BuildFTPG copies
the root process into the FTPG (line 2). Then, re-executions of the
root process are inserted, connected through “fault” conditional
edges with the “true” condition value (lines 3–5).

The root process and its copies are assigned with f, f − 1, f −
2,..., 0 possible faults, respectively, where f = k for the root proc-
ess. These fault values will be used in the later construction
steps. In Figure 4.5a, we show the intermediate state resulted
after this first step during the generation of the FTPG depicted
in Figure 4.3b. After the first step, copies , and are
inserted (where k = 2), connected with the conditional edges
and , between copies and , and between copies and

, respectively. Copies , and are assigned with f = 2,
f = 1 and f = 0 possible faults, as shown in the figure.

In the next step, BuildFTPG places successors of the root process
into the ready process list LR (line 7). For generation of the
FTPG, the order of processes in the ready process list LR is not
important and BuildFTPG extracts the first available process Pi
(line 9). By an “available” process, we denote a process Pi with
all its predecessors already incorporated into the FTPG G.

KPi
m

Pi
m

P1
1 P1

2 P1
3

e11
12

e11
23 P1

1 P1
2 P1

2

P1
3 P1

1 P1
2 P1

3

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

59

 BuildFTPG(G, T, k)
 1 G = ∅
 2 Pi = RootNode(G); Insert(, G); faults() = k -- insert the root node
 3 for f = k − 1 downto 0 do -- insert re-executions of the root node
 4 Insert(, G); Connect(,); faults() = f
 5 end for
 6 LR = ∅ -- add successors of the root node to the process list
 7 for ∀Succ(Pi) ∈ G do LR = LR ∪ Succ(Pi)
 8 while LR ∅ do -- trace all processes in the merged graph G
 9 Pi = ExtractProcess(LR)
 10 VC = GetValidPredCombinations(Pi, G)
 11 for ∀mj ∈ InputMessages(Pi) if T(mj)≡Frozen do -- transform frozen messages
 12 Insert(, G) -- insert “message” synchronization node
 13 for ∀vcn ∈ VC do
 14 Connect(∀ {mj} ∈ vcn,)
 15 end for
 16 UpdateValidPredCombinations(VC, G)
 17 end for
 18 if T(Pi)≡Frozen then -- if process Pi is frozen, then insert corresponding synch. node
 19 Insert(, G) -- insert “process” synchronization node
 20 for ∀vcn ∈ VC do
 21 Connect(∀ ∈vcn,); Connect(∀ ∈vcn,)
 22 end for
 23 Insert(,G); Connect(, ∀ ∈vcn); faults() = k -- insert first copy of Pi
 24 for f = k − 1 downto 0 do -- insert re-executions
 25 Insert(, G); Connect(,); faults() = f
 26 end for
 27 else -- if process Pi is regular
 28 h = 1
 29 for ∀vcn ∈ VC do -- insert copies of process Pi

 30 Insert(, G); Connect(∀ ∈vcn,); Connect(∀ ∈vcn,)
 31 if ∈vcn then faults() = k
 32 else faults() =
 33 end if
 34 f = faults() − 1; h = h + 1
 35 while f ≥ 0 do -- insert re-executions
 36 Insert(, G); Connect(,); faults() = f; f = f − 1; h = h + 1
 37 end while
 38 end for
 39 end if
 40 for ∀Succ(Pi) ∈ G do -- add successors of process Pi to the process list
 41 if ∀Succ(Pi) LR then LR = LR ∪ Succ(Pi)
 42 end for
 43 end while
 44 return G
 end BuildFTPG

Pi
1 Pi

1

Pi
k f– 1+ Pi

k f– Pi
k f– 1+ Pi

k f– 1+

≠

mj
S

Px
m mj

S

Pi
S

Px
m Pi

S mx
S Pi

S

Pi
1 Pi

1 Px
m Pi

1

Pi
k f– 1+ Pi

k f– Pi
k f– 1+ Pi

k f– 1+

Pi
h Px

m Pi
h mx

S Pi
h

mx
S∃ Pi

h

Pi
h k k faults Px

m()–()
Px

m∀ vcn∈
∑–

Pi
h

Pi
h Pi

h Pi
h 1– Pi

h

∉

Figure 4.4: Generation of FTPG

CHAPTER 4

60

For each process Pi, extracted from the ready process list LR,
BuildFTPG prepares a set VC of valid combinations of copies of
the predecessor processes (line 10). A combination is valid (1) if
the copies of predecessor processes in each combination vcn ∈
VC correspond to a non-conflicting set of condition values, (2) if
all copies of the predecessors together do not accumulate more
than k faults, and (3) if the combination contains at most one
copy of each predecessor.

Let us extract process P2 from the ready process list LR and
incorporate this process into the FTPG G. In the application
graph G, process P2 has only one predecessor P1. Initially, the
set of combinations of copies of predecessors for process P2 will
contain seven elements: { }, { }, { }, { , }, { , },
{ , } and { , , }.

FP1
1FP1
1

P2

P1

f = 0
f = 0

2

4

f = 2

1

FP2
2FP2
2

FP1
2FP1
2

FP1
1FP1
1

FP2
1FP2
1

P2

6

5
3

1 3

2
P1

P1

P2

P2

P2

P2

FP2
4FP2
4

f = 2
f = 1

f = 0

f = 1

f = 0

f = 1

FP
1
2FP
1
2m4

1

m4
2

m4
3

After the first step

FP 1
1FP 1
1

5P2

P1

P4

P4

6

f = 1

f = 0
f = 0

f = 0

2

4

4

1

2

f = 2

1

FP4
2FP4
2

FP 4
4FP 4
4

FP 2
2FP 2
2

FP1
2FP1
2

FP 1
1FP 1
1

FP2
1FP2
1

P2

6

5
3

1 3

2
P1

P1

P2

P2

P2

P2

P4

P4
P4

3

m1

m1

m1

FP 2
4FP 2
4

FP 4
1FP 4
1

1

2

3

f = 2
f = 1

f = 0

f = 2

f = 1

f = 0

f = 1

f = 0

f = 1

f = 0
P4

FP1
2FP1
2

FP1
1FP1
1

FP 1
2FP 1
2m4

1

m4
2

m4
3

Figure 4.5: FTPG Generation Steps (1)

b)

a)

P1
1 P1

2 P1
3 P1

1 P1
2 P1

1 P1
3

P1
2 P1

3 P1
1 P1

2 P1
3

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

61

According to the first rule, none of the elements in this set cor-
responds to a conflicting set of conditional values. For example,
for { , , }, is activated upon the condition true as the
root node of the graph; under condition ; and under
joint condition . Condition true is not in conflict with
any of the conditions. Conditions and are not in
conflict since includes .1 If, however, we apply the
second rule, { , } and { , , } are not valid since they
would accumulate more than k = 2 faults, i.e., 3 faults each.
Finally, only three elements { }, { } and { } satisfy the last
rule. Thus, in Figure 4.5a, the set of valid predecessors VC for
process P2 will contain three elements with copies of process P1:
{ }, { }, and { }.

In case of any frozen input message to P2, we would need to
further modify this set VC, in order to capture transparency
properties. However, since all input messages of process P2 are
regular, the set of combinations should not be modified, i.e., we
skip lines 12-16 in the BuildFTPG and go directly to the process
incorporation step.

For regular processes, such as P2, the FTPG generation pro-
ceeds according to lines 28–38 in Figure 4.4. For each combina-
tion vcn ∈ VC, BuildFTPG inserts a corresponding copy of process
Pi, connects it to the rest of the graph (line 30) with conditional
and unconditional edges that carry copies of input messages to
process Pi, and assigns the number of possible faults (lines 31–
33). If the combination vcn contains a “message” synchronization
node, the number of possible faults f for the inserted copy will be
set to the maximum k faults (line 31). Otherwise, f is derived
from the number of possible faults in all of the predecessors’ cop-
ies as (line 32). In this for-
mula, we calculate how many faults have already happened
before invocation of , and then derive the number of faults

1. An example of conflicting conditions would be and
that contain mutually exclusive condition values and .

P1
1 P1

2 P1
3 P1

1

P1
2 FP1

1 P1
3

FP1
1 FP1

2∧
FP1

1 FP1
1 FP1

2∧
FP1

1 FP1
2∧ FP1

1

F
P1

1 FP1
2∧ F

P1
1 FP1

2∧
FP1

2 FP1
2

P1
2 P1

3 P1
1 P1

2 P1
3

P1
1 P1

2 P1
3

P1
1 P1

2 P1
3

Px
m vcn∈ f Pi

h() k k f Px
m()–()∑–=

Pi
h

CHAPTER 4

62

that can still happen (out of the maximum k faults). Once the
number of possible faults f is obtained, BuildFTPG inserts f re-exe-
cution copies that will be invoked to tolerate these faults (lines
34–37). Each re-execution copy is connected to the preceding
copy with a “fault” conditional edge . The number of
possible faults for is, consequently, reduced by 1, i.e.,

.
In Figure 4.5a, after , with f = 2, copies , and are

inserted, connected with the conditional edges , and ,
that will carry copies , and of message m4. After ,
with f = 1, copies and are inserted, connected with the
conditional edges and . After , with no more faults
possible (f = 0), a copy is introduced, connected to with
the unconditional edge . This edge will be always taken after

. The number of possible faults for is f = 2. For re-execu-
tion copies and , f = 1 and f = 0, respectively. The number
of possible faults for is f = 1. Hence, f = 0 for the correspond-
ing re-execution copy . Finally, no more faults are possible for

, i.e., f = 0.
In Figure 4.5b, process P4 is also incorporated into the FTPG

G, with its copies connected to the copies of P1. Edges ,
and , which connect copies of P1 (, and) and copies
of P4 (, and), will carry copies , and of mes-
sage m1.

When process Pi has been incorporated into the FTPG G, its
available successors are placed into the ready process list LR
(lines 40–42). For example, after P2 and P4 have been incorpo-
rated, process P3 is placed into the ready process list LR. Build-

FTPG continues until all processes and messages in the merged
graph G are incorporated into the FTPG G, i.e., until the list LR
is empty (line 8).

After incorporating processes P1, P2 and P4, the ready process
list LR will contain only process P3. Contrary to P2 and P4, the
input of process P3 includes two frozen messages m2 and m3.
Moreover, process P3 is itself frozen. Thus, the procedure for

Pi
h

Pi
h 1– ei i

h 1 h–

Pi
h

f Pi
h() f Pi

h 1–() 1–=

P1
1 P2

1 P2
2 P2

3

e1 2
11 e2 2

1 2 e2 2
2 3

m4
1 m4

2 m4
3 P1

2

P2
4 P2

5

e1 2
24 e2 2

4 5 P1
3

P2
6 P1

3

e1 2
36

P1
3 P2

1

P2
2 P2

3

P2
4

P2
5

P2
6

e1 4
11 e1 4

24

e1 4
36 P1

1 P1
2 P1

3

P4
1 P4

4 P4
6 m1

1 m1
2 m1

3

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

63

incorporating P3 into the FTPG G will proceed according to lines
19-26 in Figure 4.4. In the application graph G, process P3 has
three predecessors P1, P2, and P4. Thus, its set of valid combina-
tions VC of copies of the predecessor processes will be: { , ,

}, { , , }, { , , }, { , , }, { , , },
{ , , }, { , , }, { , , }, { , , } and { ,

, }.
If any of the input messages of process Pi is frozen (line 11),

the corresponding synchronization nodes are inserted and con-
nected to the rest of the nodes in G (lines 12–15). In this case, the
set of valid predecessors VC is updated to include the synchroni-
zation nodes (line 17). Since input messages m2 and m3 are fro-
zen, two synchronization nodes and are inserted, as
illustrated in Figure 4.6. and are connected to the copies
of the predecessor processes with the following edges: , ,
and (for), and , , , , , and (for

). The set of valid predecessors VC is updated to include the
synchronization nodes: { , , }, { , , }, { , ,

}, { , , }, { , , }, and { , , }. Note that the
number of combinations has been reduced due to the introduc-
tion of the synchronization nodes.

P1
1 P2

1

P4
1 P1

1 P2
1 P4

2 P1
1 P2

1 P4
3 P1

1 P2
2 P4

1 P1
1 P2

2 P4
2

P1
1 P2

3 P4
1 P1

2 P2
4 P4

4 P1
2 P2

4 P4
5 P1

2 P2
5 P4

4 P1
3

P2
6 P4

6

m2
S m3

S

m2
S

Figure 4.6: FTPG Generation Steps (2)

FP 1
1FP 1
1

5P2

P1

P4

P4

6

f = 1

f = 0
f = 0

f = 0

S

m2
S

2

4

4

1

2

f = 2

1

FP 4
2FP 4
2

FP4
4FP4
4

FP 2
2FP 2
2

FP 1
2FP 1
2

FP1
1FP1
1

FP 2
1FP 2
1

P2

6

5
3

1 3

2
P1

P1

P2

P2

P2

P2

P4

P4
P4

3

m1

m1

m1

FP 2
4FP 2
4

FP 4
1FP 4
1

1

2

3

f = 2
f = 1

f = 0

f = 2

f = 1

f = 0

f = 1

f = 0

f = 1

f = 0

m3

P4

FP 2
1FP 2
1

FP 2
2FP 2
2

FP1
2FP1
2

FP 1
1FP 1
1

FP1
1FP1
1

FP1
2FP1
2

FP 1
2FP 1
2

FP2
4FP2
4

m4
1

m4
2

m4
3

m3
S

e12
1Sm e1 2

2Sm

e12
3Sm m2

S e2 2
1Sm e2 2

2Sm e2 2
3Sm e2 2

4Sm e2 2
5Sm e2 2

6Sm

m3
S

m2
S m3

S P4
1 m2

S m3
S P4

2 m2
S m3

S

P4
3 m2

S m3
S P4

4 m2
S m3

S P4
5 m2

S m3
S P4

6

CHAPTER 4

64

Since process P3 is frozen, we first insert synchronization
node (line 19), as illustrated in Figure 4.3b, which is con-
nected to the copies of the predecessor processes and the other
synchronization nodes with the edges , , , , ,

, and (lines 20–22). After that, the first copy of
process P3 is inserted, assigned with f = 2 possible faults (line
23). is connected to the synchronization node with edge

. Finally, re-execution copies and with f = 1 and f = 0
possible faults, respectively, are introduced, and connected with
two “fault” conditional edges and (lines 24–26), which
leads to the complete FTPG G depicted in Figure 4.3b. The algo-
rithm will now terminate since the list LR is empty.

4.3 Conditional Scheduling
Our conditional scheduling is based on the FTPG representation
of the merged process graph G, transformed as discussed in the
previous section. In general, the problem that we will address
with the FTPG-based conditional scheduling in this section can
be formulated as follows: Given an application A, mapped on an
architecture consisting of a set of hardware nodes N intercon-
nected via a broadcast bus B, and a set of transparency require-
ments on the application T(A), we are interested to determine
the schedule table S such that the worst-case end-to-end delay
δG, by which the application completes execution, is minimized,
and the transparency requirements captured by T are satisfied.
If the resulting delay is smaller than the deadline, the system is
schedulable.

4.3.1 SCHEDULE TABLE

The output produced by the FTPG-based conditional scheduling
algorithm is a schedule table that contains all the information
needed for a distributed runtime scheduler to take decisions on

P3
S

e4 3
1S e4 3

2S e4 3
3S e4 3

4S e4 3
5S

e4 3
6S e2 3

SmS e3 3
SmS P3

1

P3
1 P3

S

e3 3
S1 P3

2 P3
3

e3 3
1 2 e3 3

2 3

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

65

activation of processes and sending of messages. It is considered
that, during execution, a simple non-preemptive scheduler
located in each node decides on process and communication acti-
vation depending on the actual fault occurrences.

Only one part of the table has to be stored in each node,
namely, the part concerning decisions that are taken by the cor-
responding scheduler, i.e., decisions related to processes located
on the respective node. Figure 4.7 presents the schedules for
nodes N1 and N2, which will be produced by the conditional
scheduling algorithm in Figure 4.9 for the FTPG in Figure 4.3.
Processes P1 and P2 are mapped on node N1, while P3 and P4 on
node N2.

In each table there is one row for each process and message
from application A. A row contains activation times
corresponding to different guards, or known conditional values,
that are depicted as a conjunction in the head of each column in
the table. A particular conditional value in the conjunction
indicates either a success or a failure of a certain process
execution. The value, “true” or “false”, respectively, is produced
at the end of each process execution (re-execution) and is
immediately known to the computation node on which this
process has been executed. However, this conditional value is
not yet known to the other computation nodes. Thus, the
conditional value generated on one computation node has to be
broadcasted to the other computation nodes, encapsulated into a
signalling message.1

1. In this work, we will use the same bus for broadcasting signalling
messages as for the information messages. However, the presented
approach can be also applied for architectures that contain a dedicated
signalling bus.

CHAPTER 4

66

F
ig

u
re

 4
.7

:
C

on
di

ti
on

al
 S

ch
ed

u
le

 T
ab

le
s

N
1

tr
ue

1 1PF
1 1PF

2 1
1 1

P
P

F
F

∧
2 1

1 1
P

P
F

F
∧

4 2
2 1

1 1
P

P
P

F
F

F
∧

∧
4 2

2 1
1 1

P
P

P
F

F
F

∧
∧

1 2
1 1

P
P

F
F

∧
2 2

1 2
1 1

P
P

P
F

F
F

∧
∧

2 2
1 2

1 1
P

P
P

F
F

F
∧

∧
1 2

1 1
P

P
F

F
∧

P 1
0

(
1 1P

)
35

 (
2 1P

)
70

 (
3 1P

)

P 2
30

 (
1 2P

)
10

0
(

6 2P
)

65
 (

4 2P
)

90
 (

5 2P
)

55
 (

2 2P
)

80
 (

3 2P
)

m
1

31
 (

1 1
m

)
10

0
(

3 1
m

)
66

 (
2 1

m
)

m
2

10
5

10
5

10
5

m
3

12
0

12
0

12
0

12
0

12
0

12
0

1 1PF
30

65
2 1PFN
1

tr
ue

1 1PF
1 1PF

1 1PF
1 1PF

2 1
1 1

P
P

F
F

∧
2 1

1 1
P

P
F

F
∧

2 1
1 1

P
P

F
F

∧
2 1

1 1
P

P
F

F
∧

4 2
2 1

1 1
P

P
P

F
F

F
∧

∧
4 2

2 1
1 1

P
P

P
F

F
F

∧
∧

4 2
2 1

1 1
P

P
P

F
F

F
∧

∧
4 2

2 1
1 1

P
P

P
F

F
F

∧
∧

1 2
1 1

P
P

F
F

∧
1 2

1 1
P

P
F

F
∧

2 2
1 2

1 1
P

P
P

F
F

F
∧

∧
2 2

1 2
1 1

P
P

P
F

F
F

∧
∧

2 2
1 2

1 1
P

P
P

F
F

F
∧

∧
2 2

1 2
1 1

P
P

P
F

F
F

∧
∧

1 2
1 1

P
P

F
F

∧
1 2

1 1
P

P
F

F
∧

P 1
0

(
1 1P
1 1P

)
35

 (
2 1P
2 1P

)
70

 (
3 1P
3 1P

)

P 2
30

 (
1 2P1 2P

)
10

0
(

6 2P
6 2P

)
65

 (
4 2P
4 2P

)
90

 (
5 2P
5 2P

)
55

 (
2 2P
2 2P

)
80

 (
3 2P
3 2P

)

m
1

31
 (

1 1
m

1 1
m

)
10

0
(

3 1
m

3 1
m

)
66

 (
2 1

m
2 1

m
)

m
2

10
5

10
5

10
5

m
3

12
0

12
0

12
0

12
0

12
0

12
0

1 1PF
1 1PF

30

65
2 1PF
2 1PF N
2

tr
ue

1 1PF
1 1PF

2 1
1 1

P
P

F
F

∧
2 1

1 1
P

P
F

F
∧

4 4
2 1

1 1
P

P
P

F
F

F
∧

∧
4 4

2 1
1 1

P
P

P
F

F
F

∧
∧

1 4
1 1

P
P

F
F

∧
2 4

1 4
1 1

P
P

P
F

F
F

∧
∧

2 4
1 4

1 1
P

P
P

F
F

F
∧

∧
1 4

1 1
P

P
F

F
∧

1 3PF
2 3

1 3
P

P
F

F
∧

P 3
13

6
(

8 3P
)

13
6

(
1 3P

)
13

6
(

1 3P
)

13
6

(
1 3P

)
13

6
(

1 3P
)

13
6

(
1 3P

)
16

1
(

2 3P
)

18
6

(
3 3P

)

P 4
36

 (
1 4P

)
10

5
(

6 4P
)

71
 (

4 4P
)

10
6

(
5 4P

)
71

 (
2 4P

)
10

6
(

3 4P
)

N
2

tr
ue

1 1PF
1 1PF

1 1PF
1 1PF

2 1
1 1

P
P

F
F

∧
2 1

1 1
P

P
F

F
∧

2 1
1 1

P
P

F
F

∧
2 1

1 1
P

P
F

F
∧

4 4
2 1

1 1
P

P
P

F
F

F
∧

∧
4 4

2 1
1 1

P
P

P
F

F
F

∧
∧

4 4
2 1

1 1
P

P
P

F
F

F
∧

∧
4 4

2 1
1 1

P
P

P
F

F
F

∧
∧

1 4
1 1

P
P

F
F

∧
1 4

1 1
P

P
F

F
∧

2 4
1 4

1 1
P

P
P

F
F

F
∧

∧
2 4

1 4
1 1

P
P

P
F

F
F

∧
∧

2 4
1 4

1 1
P

P
P

F
F

F
∧

∧
2 4

1 4
1 1

P
P

P
F

F
F

∧
∧

1 4
1 1

P
P

F
F

∧
1 4

1 1
P

P
F

F
∧

1 3PF
1 3PF

2 3
1 3

P
P

F
F

∧
2 3

1 3
P

P
F

F
∧

P 3
13

6
(

8 3P
8 3P

)
13

6
(

1 3P
1 3P

)
13

6
(

1 3P
1 3P

)
13

6
(

1 3P
1 3P

)
13

6
(

1 3P
1 3P

)
13

6
(

1 3P
1 3P

)
16

1
(

2 3P
2 3P

)
18

6
(

3 3P
3 3P

)

P 4
36

 (
1 4P
1 4P

)
10

5
(

6 4P
6 4P

)
71

 (
4 4P
4 4P

)
10

6
(

5 4P
5 4P

)
71

 (
2 4P
2 4P

)
10

6
(

3 4P
3 4P

)

b)a)

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

67

Signalling messages have to be sent at the earliest possible
time since the conditional values are used to take the best possi-
ble decisions on process activation [Ele00]. Only when the condi-
tion is known, i.e., has arrived with a signalling message, a
decision can be taken that depends on this condition. In the
schedule table, there is one row for each signalling message. For
example, in Figure 4.7a, according to the schedule for node N1,
process P1 is activated unconditionally at the time 0, given in
the first column of the table. Activation of the rest of the proc-
esses, in a certain execution cycle, depends on the values of the
conditions, i.e., the occurrence of faults during the execution of
certain processes. For example, process P2 has to be activated at
t = 30 ms if is true (no fault in P1), and at t = 100 ms if

 is true (faults in P1 and its first re-execution), etc.
In Figure 4.8, we illustrate these signalling-based scheduling

decisions. In Figure 4.8a, we show that, if process P1 is affected
by two faults, a corresponding “true” conditional value is
broadcasted twice over the bus with two signalling messages, at
30 and 65 ms, respectively, according to the schedule table in
Figure 4.7a. Based on this information, regular message m1 is
sent after completion of re-execution P1/3 at 100 ms. Regular
process P4, based on the broadcasted conditions, starts at 105

FP1
1

FP1
1 FP1

2∧

Figure 4.8: Signalling Messages

b)

P2P1

m2 m3

P3/2 P3/3

m1

P4 P3/1

N1

N2

bus

a)

P2P1/1

m2 m3m1

P4 P3

N1

N2

bus

P1/2 P1/3

FP1

FP1
FP1

FP1

CHAPTER 4

68

ms, after arrival of delayed message m1. If process P1 executes
without faults, as depicted in Figure 4.8b, “false” conditional
value has to be broadcasted. In this case, according to the
schedule tables in Figure 4.7, regular message m1 is sent earlier,
at 31 ms, and regular process P4 starts at 36 ms. Note that,
despite broadcasting of signalling messages, the start times of
frozen messages m2 and m3, as well as of the frozen process P3,
are not affected.

In general, to produce a deterministic behaviour, which is
globally consistent for any combination of conditions (faults), the
schedule table, as the one depicted in Figure 4.7, has to fulfil the
following requirements:

1. No process will be activated if, for a given execution of the
task graph, the conditions required for its activation are not
fulfilled.

2. Activation times for each process copy have to be uniquely
determined by the conditions.

3. Activation of a process Pi at a certain time t has to depend

only on condition values, which are determined at the re-
spective moment t and are known to the computation node
that executes Pi.

4.3.2 CONDITIONAL SCHEDULING ALGORITHM

According to our FTPG model, some processes can only be acti-
vated if certain conditions (i.e. fault occurrences), produced by
previously executed processes, are fulfilled. Thus, at a given
activation of the system, only a certain subset of the total
amount of processes is executed and this subset differs from one
activation to the other. As the values of the conditions are unpre-
dictable, the decision regarding which process to activate and at
which time has to be taken without knowing which values some
of the conditions will later get. On the other hand, at a certain
moment during execution, when the values of some conditions

FP1

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

69

are already known, they have to be used in order to take the best
possible decisions on when and which process to activate, in
order to reduce the schedule length.

Optimal scheduling has been proven to be an NP-complete
problem [Ull75] in even simpler contexts than that of FTPG
scheduling. Hence, heuristic algorithms have to be developed to
produce a schedule of the processes such that the worst case
delay is as small as possible. Our strategy for the synthesis of
fault-tolerant schedules is presented in Figure 4.9. The
FTScheduleSynthesis function produces the schedule table S, while
taking as input the application graph G with the transparency
requirements T, the maximum number k of transient faults that
have to be tolerated, the architecture consisting of computation
nodes N and bus B, and the mapping M.

Our synthesis approach employs a list scheduling based heu-
ristic, FTPGScheduling, presented in Figure 4.11, for scheduling
each alternative fault scenario. The heuristic not only derives

Figure 4.9: Fault-Tolerant Schedule Synthesis Strategy

 FTScheduleSynthesis(G, T, k,N, B, M)
 1 S = ∅; G = BuildFTPG(G, T, k)
 2 Lϑ = GetSynchronizationNodes(G)
 3 PCPPriorityFunction(G, Lϑ)
 4 if Lϑ≡∅ then
 5 FTPGScheduling(G, M, ∅, S)
 6 else
 7 for each ϑi ∈ Lϑ do
 8 tmax = 0;Kϑi = ∅
 9 {tmax, Kϑi} = FTPGScheduling(G, M, ϑi, S)
 10 for each Kj ∈ Kϑi do
 11 Insert(S, ϑi, tmax, Kj)
 12 end for
 13 end for
 14 end if
 15 return S
 end FTScheduleSynthesis

CHAPTER 4

70

dedicated schedules for each fault scenario but also enforces the
requirements (1) to (3) presented in Section 4.3.1. It schedules
synchronization nodes at the same start time in all of these
alternative schedules.

In the first line of the FTScheduleSynthesis algorithm
(Figure 4.9), we initialize the schedule table S and build the
FTPG G as presented in Section 4.2.1.1 If the FTPG does not
contain any synchronization node (Lϑ ≡ ∅), we perform the FTPG
scheduling for the whole FTPG graph at once (lines 4–5).

If the FTPG contains at least one synchronization node ϑi ∈Lϑ,
where Lϑ is the list of synchronization nodes, the procedure is
different (lines 7–13). A synchronization node ϑi must have the
same start time ti in the schedule S, regardless of the guard
Kj∈Kϑi, which captures the necessary activation conditions for
ϑi under which it is scheduled. For example, the synchronization
node in Figure 4.10 has the same start time of 105 ms, in
each corresponding column of the table in Figure 4.7.

In order to determine the start time ti of a synchronization
node ϑi ∈Lϑ, we will have to investigate all the alternative fault-
scenarios (modelled as different alternative traces through the
FTPG) that lead to ϑi. Figure 4.10 depicts the three alternative
traces that lead to for the graph in Figure 4.3b. These traces
are generated using the FTPGScheduling function (called in line 9,
Figure 4.9), which records the maximum start time tmax of ϑi
over the start times in all the alternative traces. In addition,
FTPGScheduling also records the set of guards Kϑi under which ϑi
has to be scheduled. The synchronization node ϑi is then
inserted into the schedule table in the columns corresponding to
the guards in the set Kϑi at the unique time tmax (line 11 in
Figure 4.9). For example, is inserted at time tmax = 105 ms

1. For efficiency reasons, the actual implementation is slightly different
from the one presented here. In particular, the FTPG is not explicitly
generated as a preliminary step of the scheduling algorithm. Instead,
during the scheduling process, the currently used nodes of the FTPG
are generated on the fly.

m2
S

m2
S

m2
S

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

71

in the columns corresponding to Km2 = { , ,
}.

The FTPGScheduling function is based on list scheduling and it
calls itself for each conditional process in the FTPG G in order to
separately schedule the fault branch and the no fault branch
(lines 21 and 23, Figure 4.11). Thus, the alternative traces are
not activated simultaneously and resource sharing is correctly
achieved. Signalling messages, transporting condition values,
are scheduled (line 19), and only when the signalling message
arrives to the respective computation node, the scheduling algo-
rithm can account for the received condition value and activate
processes and messages, associated with this computation node
on the corresponding conditional branch of the FTPG.

List scheduling heuristics use priority lists from which ready
nodes (vertices) in an application graph are extracted in order to
be scheduled at certain moments. A node in the graph is “ready”
if all its predecessors have been scheduled. Thus, in
FTPGScheduling, for each resource rj ∈ N ∪ {B}, which is either a
computation node Nj ∈ N or the bus B, the highest priority ready
node Xi is extracted from the head of the local priority list LRj

FP1
1 FP1

1 FP1
2∧

FP1
1 FP1

2∧

Figure 4.10: Alternative Traces Investigated by
FTPGScheduling for the Synchronization Node m2

S

6

3

2

1P1

P1

P1

P2

m2

FP 1
2

FP 1
1

6

3

2

1P1

P1

P1

P2

m2

FP 1
2FP 1
2

FP 1
1FP 1
1

2

1P1

P1

P2
4

m2

FP1
2

FP1
2

FP 1
1

2

1P1

P1

P2
4

m2

FP1
2FP1
2

FP1
2FP1
2

FP 1
1FP 1
1 P2

1

1P1

m2

FP 1
1FP 1
1

FP1
1FP1
1

1
1P

F2
1

1
1 PP

FF ∧ 2
1

1
1 PP

FF ∧

SSS

CHAPTER 4

72

(line 3). We use the partial critical path (PCP) priority function
[Ele00] in order to assign priorities to the nodes (line 3 in
FTScheduleSynthesis, Figure 4.9).

Xi can be a synchronization node, a copy of a process, or a copy
of a message in the FTPG G. If the ready node Xi is the currently
investigated synchronization node ϑ (line 8), the latest start
time and the current guards are recorded (lines 10–11). If other

Figure 4.11: Conditional Scheduling

 FTPGScheduling(G, M, ϑ, S)
 1 while do
 2 for each rj ∈ N ∪ {B} do -- loop for each resource rj
 3 LRj = LocalReadyList(S, rj, M) -- find unscheduled ready nodes on rj
 4 while LRj ≠ ∅ do
 5 Xi = Head(LRj)
 6 t = ResourceAvailable(rj, Xi) -- the earliest time to accommodate Xi on rj
 7 K = KnownConditions(rj, t) -- the conditions known to rj at time t
 8 if Xi ≡ ϑ then -- synchronization node currently under investigation
 9 if t > tmax then
 10 tmax = t -- the latest start time is recorded
 11 Kϑi = Kϑi ∪ {K} -- the guard of synchronization node is recorded
 12 end if
 13 return {tmax, Kϑi} -- exploration stops at the synchronization node ϑ
 14 else if Xi ∈ VT and Xi is unscheduled then -- other synch. nodes
 15 continue -- are not scheduled at the moment
 16 end if
 17 Insert(S, Xi, t, K) -- the ready node Xi is placed in S under guard K
 18 if Xi ∈ VC then -- conditional process
 19 Insert(S, SignallingMsg(Xi), t, K) -- broadcast conditional value
 20 -- schedule the fault branch (recursive call for true branch)
 21 FTPGScheduling(G, LRj ∪ GetReadyNodes(Xi, true))
 22 -- schedule the non-fault branch (recursive call for false branch)
 23 FTPGScheduling(G, LRj ∪ GetReadyNodes(Xi, false))
 24 else
 25 LRj = LRj ∪ GetReadyNodes(Xi)
 26 end if
 27 end while
 28 end for
 29 end while
 end FTPGScheduling

Xi G Xi S∉∈∃

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

73

unscheduled synchronization nodes are encountered, they will
not be scheduled yet (lines 14–15), since FTPGScheduling investi-
gates one synchronization node at a time. Otherwise, i.e., if not a
synchronization node, the current ready node Xi is placed in the
schedule S at time t under guard K.1 The time t is the time when
the resource rj is available (line 17). Guard K on the resource rj
is determined by the KnownConditions function (line 7).

Since we enforce the synchronization nodes to start at their
latest time tmax to accommodate all the alternative traces, we
might have to insert idle times on the resources. Thus, our
ResourceAvailable function (line 6, Figure 4.11) will determine the
start time t ≥ tasap in the first continuous segment of time, which
is available on resource rj, large enough to accommodate Xi, if Xi
is scheduled at this start time t. tasap is the earliest possible
start time of Xi in the considered execution scenario. For exam-
ple, as outlined in the schedule table in Figure 4.7a, m2 is sched-
uled at 105 ms on the bus. We will later schedule m1 at times 31,
100 and 66 ms on the bus (see Figure 4.7a).

4.4 Shifting-based Scheduling
Shifting-based scheduling is the second scheduling technique for
synthesis of fault-tolerant schedules proposed in this thesis.
This scheduling technique is an extension of the transparent
recovery against single faults proposed in [Kan03a].

The problem that we address with shifting-based scheduling
can be formulated as follows. Given an application A, mapped
on an architecture consisting of a set of hardware nodes N inter-
connected via a broadcast bus B, we are interested to determine
the schedule table S with a fixed execution order of processes
such that the worst-case end-to-end delay δG, by which the appli-
cation completes execution, is minimized, and the transparency

1. Recall that synchronization nodes are inserted into the schedule table
by the FTScheduleSynthesis function on line 11 in Figure 4.9.

CHAPTER 4

74

requirements with all messages on the bus frozen are satisfied. If
the resulting delay is smaller than the deadline, the system is
schedulable.

In shifting-based scheduling, a fault occurring on one compu-
tation node is masked to the other computation nodes in the sys-
tem but can impact processes on the same computation node. On
a computation node Ni where a fault occurs, the scheduler has to
switch to an alternative schedule that delays descendants of the
faulty process running on the same computation node Ni. How-
ever, a fault happening on another computation node is not visi-
ble on Ni, even if the descendants of the faulty process are
mapped on Ni.

Due to the imposed restrictions, the size of schedule tables for
shifting-based scheduling is much smaller than the size of
schedule tables produced with conditional scheduling. Moreover,
shifting-based scheduling is significantly faster than the condi-
tional scheduling algorithm presented in Section 4.3.2. However,
first of all, shifting-based scheduling does not allow to trade-off
transparency for performance since, by definition, all messages
on the bus, and only those, are frozen. Secondly, because of the
fixed execution order of processes, which does not change with
fault occurrences, schedules generated with shifting-based
scheduling are longer than those produced by conditional sched-
uling.

4.4.1 SHIFTING-BASED SCHEDULING ALGORITHM

The shifting-based scheduling algorithm is based on the FTPG
representation, on top of which it introduces an additional
ordering of processes, mapped on the same computation node,
based on a certain priority function.

Let us illustrate the ordering with an example in Figure 4.12a
showing an application A composed of five processes mapped on
two computation nodes. Processes P1, P2 and P4 are mapped on
computation node N1. Processes P3 and P5 are mapped on com-

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

75

putation node N2. Message m1 is frozen since it is transmitted
through the bus. The order in Figure 4.12a (in the low part of the
figure) is obtained using the partial critical path (PCP) priority
function [Ele00] with the following ordering relations: (1) proc-
ess P4 cannot start before completion of process P1; (2) P2 cannot
start before completion of P4; and (3) P3 cannot start before com-
pletion of P5. The resulting FTPG with introduced ordering rela-
tions, when k = 2 transient faults can happen at maximum, is
presented in Figure 4.12b. The introduced ordering relations
order the execution of processes mapped on the same computa-
tion node in all execution scenarios.

For the shifting-based scheduling, the FTPG and the ordering
relations are not explicitly generated. Instead, only a root sched-

P1

P4

P4

P4

P2

P2

P2
P2

P2

P2

P1

P1 P4

P4

P2

P2

P2

P4

P2

m1
S

P5

P3

P3

P3

P5

P5P3

P3 P3

m1

m1

m1

FP 1
1

FP1
2

FP 1
1

FP 1
1

FP 1
1

FP1
2

FP1
2

FP1
1

FP 1
2

FP 4
1

FP 4
2

1

2

3

1

2

3
1

2

3
4

5
6

4

56

7

8

910

FP4
1

FP 4
2

FP 2
1

FP2
2FP2

1 FP2
2

FP 4
4

FP 4
4

FP 2
4

FP2
4

FP2
8

FP2
8

1

2

3

1

2

3

4

5 6

FP 5
1

FP5
2

FP 3
4

FP 3
1

FP 3
2

FP 5
1

FP 5
2

P1

P4

P4

P4

P2

P2

P2
P2

P2

P2

P1

P1 P4

P4

P2

P2

P2

P4

P2

m1
S

P5

P3

P3

P3

P5

P5P3

P3 P3

m1

m1

m1

FP 1
1FP 1
1

FP1
2FP1
2

FP 1
1FP 1
1

FP 1
1FP 1
1

FP 1
1FP 1
1

FP1
2FP1
2

FP1
2FP1
2

FP1
1FP1
1

FP 1
2FP 1
2

FP 4
1FP 4
1

FP 4
2FP 4
2

1

2

3

1

2

3
1

2

3
4

5
6

4

56

7

8

910

FP4
1FP4
1

FP 4
2FP 4
2

FP 2
1FP 2
1

FP2
2FP2
2FP2

1FP2
1 FP2

2FP2
2

FP 4
4FP 4
4

FP 4
4FP 4
4

FP 2
4FP 2
4

FP2
4FP2
4

FP2
8FP2
8

FP2
8FP2
8

1

2

3

1

2

3

4

5 6

FP 5
1FP 5
1

FP5
2FP5
2

FP 3
4FP 3
4

FP 3
1FP 3
1

FP 3
2FP 3
2

FP 5
1FP 5
1

FP 5
2FP 5
2

P1

P2 P5

P3

P4

m1

P1

P2

P5P3

P4

m1

P4 after P1

P2 after P4

P3 after P5

mapped on N1

mapped on N2

P1

P2 P5

P3

P4

m1

P1

P2 P5

P3

P4

m1

P1

P2

P5P3

P4

m1

P4 after P1

P2 after P4

P3 after P5

mapped on N1

mapped on N2

Figure 4.12: Ordered FTPG

a) b)

CHAPTER 4

76

ule is obtained off-line, which preserves the order of processes
mapped on the same computation node in all execution scenar-
ios. The root schedule consists of start times of processes in the
non-faulty scenario and sending times of messages. In addition,
it has to provide idle times for process recovering, called recov-
ery slacks. The root schedule is later used by the runtime sched-
uler for extracting the execution scenario corresponding to a
particular fault occurrence (which corresponds to a trace in the
ordered FTPG). Such an approach significantly reduces the
amount of memory required to store schedule tables.

Generation of the Root Schedule. The algorithm for gener-
ation of the root schedule is presented in Figure 4.13 and takes
as input the application A, the number k of transient faults that
have to be tolerated, the architecture consisting of computation
nodes N and bus B, the mapping M, and produces the root
schedule RS.

Initial recovery slacks for all processes Pi ∈ A are calculated
as s0(Pi) = k × (Ci + μ) (lines 2-4). (Later the recovery slacks of
processes mapped on the same computation node will be merged
to reduce timing overhead.)

The process graph G of application A is traversed starting
from the root node (line 5). Process p is selected from the ready
list LR according to the partial critical path (PCP) priority
function [Ele00] (line 7). The last scheduled process r on the
computation node, on which p is mapped, is extracted from the
root schedule S (line 9). Process p is scheduled and its start time
is recorded in the root schedule (line 10). Then, its recovery slack
s(p) is adjusted such that it can accomodate recovering of
processes scheduled before process p on the same computation
node (lines 12-13). The adjustment is performed in two steps:

1. The idle time b between process p and the last scheduled
process r is calculated (line 12).

2. The recovery slack s(p) of process p is changed, if the recov-

ery slack s(r) of process r substracted with the idle time b is

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

77

larger than the initial slack s0(p). Otherwise, the initial slack

s0(p) is preserved (line 13).

If no process is scheduled before p, the initial slack s0(p) is pre-
served as s(p). Outgoing messages sent by process p are sched-
uled at the end of the recovery slack s(p) (line 15).

After the adjustment of the recovery slack, process p is
removed from the ready list LR (line 16) and its successors are
added to the list (lines 18-20). After scheduling of all the proc-
esses in the application graph A, the algorithm returns a root

Figure 4.13: Generation of Root Schedules

 RootScheduleGeneration(A, k, N, B, M)
 1 RS = ∅
 2 for ∀Pi ∈ A do -- obtaining initial recovery slacks
 3 s(Pi) = k × (Ci + μ)
 4 end for
 5 LR = {RootNode(A)}
 6 while LR ≠ ∅ do
 7 p = SelectProcess(LR) -- select process from the ready list
 8 -- the last scheduled process on the computation node, where p is mapped
 9 r = CurrentProcess(RS {M(p)})
 10 ScheduleProcess(p, RS {M(p)}) -- scheduling of process p
 11 -- adjusting recovery slacks
 12 b = start(p) - end(r) -- calculation of the idle time r and p
 13 s(p) = max{s(p), s(r) - b} -- adjusting the recovery slack of process p
 14 -- schedule messages sent by process p at the end of its recovery slack s
 15 ScheduleOutgoingMessages(p, s(p), RS{M(p)})
 16 Remove(p, LR) -- remove p from the ready list
 17 -- add successors of p to the ready list
 18 for ∀Succ(p) do
 19 if Succ(p) ∉ LR then Add(Succ(p), LR)
 20 end for
 21 end while
 22 return RS
 end RootScheduleGeneration

CHAPTER 4

78

schedule RS with start times of processes, sending times of mes-
sages, and recovery slacks (line 22).

In Figure 4.14 we present an example of a root schedule with
recovery slacks. Application A is composed of four processes,
where processes P1 and P2 are mapped on N1 and processes P3
and P4 are mapped on N2. Messages m1, m2 and m3, to be trans-
ported on the bus, are frozen, according to the requirements of
shifting-based scheduling. Processes P1 and P2 have start times
0 and 30 ms, respectively, and share a recovery slack of 70 ms,
which is obtained as max{2 × (30 + 5) − 0, 2 × (20 + 5)} (see the
algorithm). Processes P3 and P4 have start times of 135 and 105
ms, respectively, and share a recovery slack of 70 ms. Messages
m1, m2 and m3 are sent at 100, 105, and 120 ms, respectively, at
the end of the worst-case recovery intervals of the sender proc-
esses.

Extracting Execution Scenarios. In Figure 4.15, we show
an example, where we extract one execution scenario from the
root schedule of the application A, depicted in Figure 4.14. In
this execution scenario, process P4 experiences two faults. P4
starts at 105 ms according to the root schedule. Then, since a

m1 : m2 : m3 : 5ms

m4 : m5 : 10 ms

N1 N2

P1
P2
P3

N1
30 X
20
X

X
20

N2

P4 X 30

P2

P1

P4
m2

m1

m3

P3

D = T = 210 ms

m4

m5

k = 2

μ = 5 ms

Figure 4.14: Example of a Root Schedule

A: G

P2

m1

P1

m2 m3

P4 P3

N1

N2

Bus

P1 P1

Worst-case scenario for P1

Recovery slack for P1 and P2

10 20 30 40 50 60 70 80 90 100 110 1200 130 140 150 160 170 180 190 200 210 220

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

79

fault has happened, P4 has to be re-executed. The start time of
P4’s re-execution, is obtained as 105 + 30 + 5 = 140 ms, where 30
is the worst-case execution time of P4 and 5 is the recovery over-
head μ. The re-execution experiences another fault and the
start time of P4’s second re-execution is 140 + 30 + 5 = 175
ms. Process P3 will be delayed because of the re-executions of
process P4. The current time CRT, at the moment when P3 is
activated, is 175 + 30 = 205 ms, which is more than 135 ms that
is the schedule time of P3 according to the root schedule. There-
fore, process P3 will be immediately executed at CRT = 205 ms.
The application A will complete execution at 225 ms.

The runtime algorithm for extracting execution scenarios
from the root schedule RS is presented in Figure 4.16. The run-
time scheduler runs on each computation node Ni ∈ N and exe-
cutes processes according to the order in the root schedule of
node Ni until the last process in that root schedule is executed.

In the initialization phase, the current time CRT of the sched-
uler running on node Ni is set to 0 (line 1) and the first process p
is extracted from the root schedule of node Ni (line 2). This proc-
ess is executed according to its start time in the root schedule

P4
1

P4
2

m1 : m2 : m3 : 5ms
m4 : m5 : 10 ms

N1 N2

P1
P2
P3

N1
30 X
20
X

X
20

N2

P4 X 30

P2

P1

P4
m2

m1

m3

P3

D = T = 210 ms

m4

m5

k = 2

μ = 5 ms

Figure 4.15: Example of an Execution Scenario

A: G

10 20 30 40 50 60 70 80 90 100 110 1200 130 140 150 160 170 180 190 200 210 220

P2P1

P4/1 P3P4/2 P4/3

225

m1 m2 m3

Bus

N1

N2

CHAPTER 4

80

(line 4). If p fails, then it is restored (line 6) and executed again
with the time shift of its worst-case execution time Cp (line 7). It
can be re-executed at most k times in the presence of k faults.
When p is finally completed, its output messages are placed into
the output buffer of the communication controller (line 9). The
output message will be sent according to its sending times in the
root schedule. After completion of process p, the next process is
extracted from the root schedule of node Ni (line 10) and the
algorithm continues with execution of this process.

Re-executions in the case of faults usually delay executions of
the next processes in the root schedule. We have accommodated
process delays into recovery slacks of the root schedule with the
RootScheduleGeneration algorithm (Figure 4.13). Therefore, if proc-
ess p is delayed due to re-executions of previous processes and
cannot be executed at the start time pre-defined in the root
schedule, it is immediately executed after been extracted, within
its recovery slack (Execute function, line 7 in Figure 4.16).

Figure 4.16: Extracting Execution Scenarios

 ExtractScenario(RS, Ni)
 1 CRT = 0
 2 p = GetFirstProcess(RS {Ni})
 3 while p ≠ ∅ do
 4 Execute(p, CRT)
 5 while fault(p) do
 6 Restore(p)
 7 Execute(p, CRT + Cp)
 8 end while
 9 PlaceIntoCommBuffer(OutputMessages(p))
 10 p = GetNextProcess(RS {Ni})
 11 end while
 end ExtractScenario

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

81

4.5 Experimental Results
For the evaluation of our scheduling algorithms we have used
applications of 20, 40, 60, and 80 processes mapped on architec-
tures consisting of 4 nodes. We have varied the number of faults,
considering 1, 2, and 3 faults, which can happen during one exe-
cution cycle. The duration μ of the recovery has been set to 5 ms.
Fifteen examples have been randomly generated for each appli-
cation dimension, thus a total of 60 applications have been used
for experimental evaluation. We have generated both graphs
with random structure and graphs based on more regular struc-
tures like trees and groups of chains. Execution times and mes-
sage lengths have been randomly assigned using both uniform
and exponential distribution within the interval 10 to 100 ms,
and 1 to 4 bytes range, respectively. To evaluate the scheduling,
we have first generated a fixed mapping on the computation
nodes with our design optimization strategy from Chapter 5,
which we have restricted for evaluation purposes to mapping
optimization with only re-execution. The experiments have been
run on Sun Fire V250 computers.

We were first interested to evaluate how the conditional
scheduling algorithm handles the transparency/performance
trade-offs imposed by the designer. Hence, we have scheduled
each application, on its corresponding architecture, using the
conditional scheduling (CS) strategy from Figure 4.9. In order to
evaluate CS, we have considered a reference non-fault-tolerant
implementation, NFT. NFT executes the same scheduling algo-
rithm but considering that no faults occur (k = 0). Let δCS and
δNFT be the end-to-end delays of the application obtained using
CS and NFT, respectively. The fault tolerance overhead is defined
as 100 × (δCS – δNFT) / δNFT.

We have considered five transparency scenarios, depending on
how many of the inter-processor messages have been set as fro-
zen: 0, 25, 50, 75 or 100%. Table 4.1 presents the average fault

CHAPTER 4

82

tolerance overheads for each of the five transparency require-
ments. We can see that, as the transparency requirements are
relaxed, the fault tolerance overheads are reduced. Thus, the
designer can trade-off between the degree of transparency and
the overall performance (schedule length). For example, for
application graphs of 60 processes with three faults, we have
obtained an 86% overhead for 100% frozen messages, which is
reduced to 58% for 50% frozen messages.

Table 4.2 presents the average memory1 space per computa-
tion node (in kilobytes) required to store the schedule tables.
Often, one process/message has the same start time under dif-
ferent conditions. Such entries into the table can be merged into
a single table entry, headed by the union of the logical expres-
sions. Thus, Table 4.2 reports the memory required after such a

1. Considering an architecture where an integer and a pointer are repre-
sented on two bytes.

Table 4.1: Fault Tolerance Overheads (CS),%
%

Frozen
messages

20 processes 40 processes 60 processes 80 processes

k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3

100% 48 86 139 39 66 97 32 58 86 27 43 73
75% 48 83 133 34 60 90 28 54 79 24 41 66
50% 39 74 115 28 49 72 19 39 58 14 27 39
25% 32 60 92 20 40 58 13 30 43 10 18 29
0% 24 44 63 17 29 43 12 24 34 8 16 22

Table 4.2: Memory Requirements (CS), Kbytes

%
Frozen

messages

20 processes 40 processes 60 processes 80 processes

k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3

100% 0.1 0.3 0.5 0.4 0.9 1.7 0.7 2.1 4.4 1.2 4.2 8.8
75% 0.2 0.6 1.4 0.6 2.1 5.0 1.2 4.6 11.6 2.0 8.4 21.1
50% 0.3 0.8 1.9 0.8 3.1 8.1 1.5 7.1 18.3 2.6 12.2 34.5
25% 0.3 1.2 3.0 1.0 4.3 12.6 1.9 10.0 28.3 3.1 17.3 51.3
0% 0.4 1.4 3.7 1.2 5.6 16.7 2.2 11.7 34.6 3.4 19.3 61.9

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

83

straightforward compression. We can observe that as the trans-
parency increases, the memory requirements decrease. For
example, for 60 processes and three faults, increasing the
number of frozen messages from 50% to 100%, reduces the mem-
ory needed from 18Kb to 4Kb. This demonstrates that transpar-
ency can also be used for memory/performance trade-offs.

The CS algorithm runs in less than three seconds for large
applications (80 processes) when only one fault has to be toler-
ated. Due to the nature of the problem, the execution time
increases, in the worst case, exponentially with the number of
faults that have to be handled. However, even for graphs of 60
processes, for example, and three faults, the schedule synthesis
algorithm finishes in under 10 minutes.

Our shifting-based scheduling (SBS), presented in Section 4.4,
always preserves the same order of processes and messages in
all execution scenarios and assumes that all inter-processor
messages are frozen and no other transparency requirements
can be captured. As a second set of experiments, we have
compared the conditional scheduling approach with the shifting-
based scheduling approach. In order to compare the two
algorithms, we have determined the end-to-end delay δSBS of the
application when using SBS. For both the SBS and the CS

approaches, we have obtained a fixed mapping on the
computation nodes with our design optimization strategy from
Chapter 5, restricted to re-execution. We have considered that
all inter-processor messages and only them are frozen in both
cases. When comparing the delay δCS, obtained with conditional
scheduling, to δSBS in the case of, for example, k = 2, conditional
scheduling outperforms SBS on average with 13%, 11%, 17%,
and 12% for application dimensions of 20, 40, 60 and 80
processes, respectively. However, shifting-based scheduling
generates schedules for these applications in less than a quarter
of a second and can produce root schedules for large graphs of
80, 100, and 120 processes with 4, 6, and 8 faults also in less
than a quarter of a second. The schedule generation time does

CHAPTER 4

84

not exceed 0.2 sec. even for 120 processes and 8 faults.
Therefore, shifting-based scheduling can be effectively used
inside design optimization, where transparency-related trade-
offs are not considered.

The amount of memory needed to store root schedules is also
very small as shown in Table 4.3. Moreover, due to the nature of
the shifting-based scheduling algorithm, the amount of memory
needed to store the root schedule does not change with the
number of faults. Because of low memory requirements,
shifting-based scheduling is suitable for synthesis of fault-
tolerant schedules even for small microcontrollers.

4.5.1 CASE STUDY

Finally, we have considered a real-life example implementing a
vehicle cruise controller (CC). The process graph that models the
CC has 32 processes, and is presented in Appendix I.

The CC maintains a constant speed over 35 km/h and under
200km/h, offers an interface (buttons) to increase or decrease
the reference speed, is able to resume its operation at the previ-
ous reference speed, and is suspended when the driver presses
the brake pedal. The CC has been mapped on an architecture
consisting of three nodes: Electronic Throttle Module (ETM),
Anti-lock Braking System (ABS) and Transmission Control
Module (TCM).

We have considered a deadline of 300 ms, k = 2 and μ = 2 ms,
and have obtained a fixed mapping of the CC on the computation
nodes with the design optimization strategy from Chapter 5. SBS

has produced an end-to-end delay of 384 ms, which is larger
than the deadline. The CS approach reduces this delay to 346

Table 4.3: Memory Requirements (SBS), Kbytes

 20 processes 40 processes 60 processes 80 processes
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3

100% 0.02 0.03 0.05 0.07

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

85

ms, given that all inter-processor messages are frozen, which is
also unschedulable. If we relax this transparency requirement
and select 50% of the inter-processor messages as frozen, we can
further reduce the delay to 274 ms, which will meet the dead-
line.

4.6 Conclusions
In this chapter, we have proposed two novel scheduling
approaches for fault-tolerant embedded systems in the presence
of multiple transient faults: conditional scheduling and shifting-
based scheduling.

The main contribution of the first approach is the ability to
handle performance versus transparency and memory size
trade-offs. This scheduling approach generates the most effi-
cient schedules.

The second scheduling approach handles only a fixed trans-
parency setup, transparent recovery, where all messages on the
bus have to be sent at fixed times, regardless of fault occur-
rences. Additionally all processes have to be executed in the
same order in all execution scenarios. Even though this schedul-
ing approach generates longer schedules, it is much faster than
the conditional scheduling and requires less memory to store the
generated schedule tables. These advantages make this schedul-
ing technique suitable for microcontroller systems with strict
memory constraints.

87

Chapter 5
Mapping and Fault

Tolerance Policy
Assignment

IN THIS CHAPTER we discuss mapping and fault tolerance pol-
icy assignment for hard real-time applications. For optimization
of policy assignment we combine re-execution, which provides
time redundancy, with replication, which provides spatial
redundancy. The mapping and policy assignment optimization
algorithms decide a process mapping and fault tolerance policy
assignment such that the overheads due to fault tolerance are
minimized. The application is scheduled using the shifting-
based scheduling technique presented in Section 4.4.

CHAPTER 5

88

5.1 Fault Tolerance Policy Assignment
In this thesis, by policy assignment we denote the decision on
which fault tolerance techniques should be applied to a process.
In this chapter, we will consider two techniques: re-execution
and replication (see Figure 5.1).

The fault tolerance policy assignment is defined by three func-
tions, P, Q, and R, as follows:

P: V → {Replication, Re-execution, Replication & Re-execu-
tion} determines whether a process is replicated, re-executed, or
replicated and re-executed. When replication is used for a process
Pi, we introduce several replicas into the application A, and con-
nect them to the predecessors and successors of Pi.

The function Q: V → Ν indicates the number of replicas for each
process. For a certain process Pi, if P(Pi)= Replication, then Q(Pi) =
k; if P(Pi) = Re-execution, then Q(Pi)= 0; if P(Pi) = Replication & Re-
execution, then 0 < Q(Pi) < k.

Let VR be the set of replica processes introduced into the appli-
cation. Replicas can be re-executed as well, if necessary. The
function R: V ∪ VR → Ν determines the number of re-executions
for each process or replica. In Figure 5.1c, for example, we have
P(P1)=Replication & Re-execution, R(P1(1)) = 1 and R(P1(2)) = 0.1

1. For the sake of uniformity, in the case of replication, we name the origi-
nal process Pi as the first replica of process Pi, denoted with Pi(1), see
Section 2.2.4.

Figure 5.1: Policy Assignment: Re-execution + Replication

P1/1 P1/2 P1/3

P1(1)

P1(2)

P1(3)

a) Re-execution b) Replication

P1

N1

N1

N2

N3

C1 = 30 ms

μ=10 ms

k=2
P1(1)/1 P1(1)/2N1

P1(2)N2

c) Re-execution and
replication

MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

89

Each process Pi ∈ V, besides its worst-case execution time Ci
on each computation node, is characterized by a recovery over-
head μi.

The mapping of a process is given by a function M: V ∪ VR →
N, where N is the set of nodes in the architecture. The mapping
M is not fixed and will have to be obtained during design optimi-
zation.

Thus, our problem formulation is as follows:
 • As an input we have an application A given as a merged

process graph (Section 3.1.1) and a system consisting of a set
of nodes N connected to a bus B.

 • The parameter k denotes the maximum number of transient
faults that can appear in the system during one cycle of exe-
cution.

We are interested to find a system configuration ψ, on the
given architecture N, such that the k transient faults are toler-
ated and the imposed deadlines are guaranteed to be satisfied.

Determining a system configuration ψ = <F, M, S> means:

1. finding the fault tolerance policy assignment, given by F =
<P, Q, R>, for the application A;

2. deciding on a mapping M for each process Pi in the applica-

tion A and for each replica in VR;
3. deriving the set S of schedule tables on each computation

node.
The shifting-based scheduling presented in Section 4.4 with

small modifications, which will be discussed in Section 5.2.2, is
used to derive schedule tables for the application A.

5.1.1 MOTIVATIONAL EXAMPLES

Let us, first, illustrate some of the issues related to policy
assignment. In the example presented in Figure 5.2 we have the
application A1 with three processes, P1 to P3, and an architec-
ture with two nodes, N1 and N2. The worst-case execution times
on each node are given in a table to the right of the architecture.

CHAPTER 5

90

Note that N1 is faster than N2. We assume a single fault, thus
k = 1. The recovery overhead μ is 10 ms. The application A1 has
a deadline of 160 ms depicted with a thick vertical line. We have
to decide which fault tolerance technique to use.

Figure 5.2: Comparison of Replication and Re-execution

N1 N2

P1

P3

P2

m1

k = 1

μ= 10 ms

P1
P2
P3

N1 N2

40 50
40
60

50
70

P1 P3P2

m1 m2

A2

A1

P1(1)N1

N2

bus

P1(2)

P2(1)

P2(2)

P3(1)

P3(2)

N1

N2

bus

P1 P2

m1(2)

P3

a1)

b1)

Recovery slack
for P1 and P2

Deadline: 160

Missed

Met

m1(1)

P1(1)N1

N2

bus

P1(2)

P2(1)

P2(2)

N1

N2

bus

P1 P2 P3

P3(1)

P3(2)a2)

b2)

Deadline: 200

Missed

Met

Recovery slack
for P1, P2 , P3

m1(1) m1(2) m2(1) m2(2)

20 40 60 80 100 120 140 160 180 2000

m1 : 10 ms

m1 : m2 : 10 ms

D = T = 160 ms

D = T = 200 ms

MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

91

In Figure 5.2 we depict the schedules for each node. Compar-
ing the schedules in Figure 5.2a1 and Figure 5.2b1, we can
observe that using only replication the deadline is missed
(Figure 5.2a1). An additional delay is introduced with messages
m1(1) and m1(2) sent from replicas P1(1) and P1(2) of process P1,
respectively, to replicas P2(2) and P2(1) of process P2. In order to
guarantee that time constraints are satisfied in the presence of
faults, all re-executions of processes, which are accommodated
in recovery slacks, have to finish before the deadline. Using only
re-execution we are able to meet the deadline (Figure 5.2b1).
However, if we consider a modified application A2 with process
P3 data dependent on P2, the imposed deadline of 200 ms is
missed in Figure 5.2b2 if only re-execution is used, and it is met
when replication is used as in Figure 5.2a2.

This example shows that the particular technique to use has
to be carefully adapted to the characteristics of the application
and the available resources. Moreover, the best result is most
likely to be obtained when both re-execution and replication are
used together, some processes being re-executed, while others
replicated.

Let us consider the example in Figure 5.3, where we have an
application with four processes mapped on an architecture of
two nodes. In Figure 5.3a all processes are re-executed, and the
depicted schedule is optimal for re-execution, yet missing the
deadline in the worst-case (process P1 experiences a fault and is
re-executed). However, combining re-execution with replication,
as in Figure 5.3b where process P1 is replicated, will meet the
deadline even in the worst case (process P2 is re-executed). In
this case, P2 will have to receive message m1(1) from replica P1(1)
of process P1, and process P3 will have to receive message m2(2)
from replica P1(2). Even though transmission of these messages
will introduce a delay due to the inter-processor communication
on the bus, this delay is compensated by the gain in performance
because of replication of process P1.

CHAPTER 5

92

5.2 Mapping with Fault Tolerance
In general, fault tolerance policy assignment cannot be done
separately from process mapping. Consider the example in
Figure 5.4. Let us suppose that we have applied a mapping algo-
rithm without considering the fault tolerance aspects, and we
have obtained the best possible mapping, depicted in
Figure 5.4a, which has the shortest execution time. If we apply
on top of this mapping a fault tolerance technique, for example,
re-execution as in Figure 5.4b, we miss the deadline in the
worst-case of re-execution of process P3.

The actual fault tolerance policy, in this case re-execution, has
to be considered during mapping of processes, and then the best
mapping will be the one in Figure 5.4c, which clusters all proc-
esses on the same computation node. In this thesis, we will con-
sider the assignment of fault tolerance policies at the same time
with the mapping of processes to computation nodes in order to
improve the quality of the final design.

Figure 5.3: Combining Re-execution and Replication

a)

b)

P1

P4

P2 P3

m1 m2

m3

N1

N2 P1/1

P3

P4P2

N1

N2

P1(1)

P1(2)

bus

k = 1

μ= 10 ms

P1
P2
P3

N1 N2

80 80
50
60

50
60

P4 40 40

Deadline: 240

Missed

Met

bus
m2

N1 N2

m1(1) m2(2)

P3

P2/1

20 40 60 80 100 120 140 160 180 200 220 2400 260 m1 : m2 : m3 : 10 ms

D = T = 240 ms P1/2

P4P2/2

MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

93

5.2.1 DESIGN OPTIMIZATION STRATEGY

The design problem formulated in the previous section is NP
complete (both the scheduling and the mapping problems, con-
sidered separately, are already NP-complete [Gar03]). Our strat-
egy is outlined in Figure 5.5 and has two steps:

1. In the first step (lines 1–2) we decide very quickly on an

initial fault tolerance policy assignment F0 and mapping

M0. The initial mapping and fault tolerance policy

Figure 5.4: Mapping and Fault Tolerance

b)

c)

N1

N2

P1

P3/1

P4P2

N1

N2

P1

bus

k = 1

μ= 10 ms
P1
P2
P3

N1 N2

60 X
70
70

110
110

P4 60 X

Deadline: 340

Missed

Met

bus
m2

N1 N2

P3/1 P4P2

20 40 60 80 100 120 140 160 180 200 220 2400 260

m1 : m2 : m3 : m4 : 10 ms

P1

P4

P2 P3

m1 m2

m3 m4

a)

N1

N2

P1

P3

P4P2 Best mapping
without considering
fault tolerance

bus
m4m2

m4

280 300 320 340

D = T = 340 ms

P3/2

P3/2

360

CHAPTER 5

94

assignment algorithm (InitialMPA line 1 in Figure 5.5) assigns
a re-execution policy to each process in the application A and
produces a mapping that tries to balance the utilization
among nodes. The application is then scheduled using the
shifting-based scheduling algorithm presented in Section
4.4. If the application is schedulable the optimization
strategy stops.

2. If the application is not schedulable, we use, in the second
step, a tabu search-based algorithm TabuSearchMPA, presented in
Section 5.2.3, that aims to improve the fault tolerance policy
assignment and mapping obtained in the first step.

If after these steps the application is unschedulable, we
assume that no satisfactory implementation could be found with
the available amount of resources.

5.2.2 SCHEDULING AND REPLICATION

In Section 4.4, we presented the shifting-based scheduling algo-
rithm with re-execution as the employed fault tolerance tech-
nique. For scheduling applications that combine re-execution
and replication, this algorithm has to be slightly modified to cap-
ture properties of replica descendants, as illustrated in
Figure 5.6. The notion of “ready process” will be different in the
case of processes waiting inputs from replicas. In that case, a
successor process Ps of replicated process Pi can be placed in the

Figure 5.5: Design Optimization Strategy for
Fault Tolerance Policy Assignment

MPAOptimizationStrategy(A, N)
 1 Step 1: ψ0 = InitialMPA(A, N)

 2 if S0 is schedulable then return ψ0 end if

 3 Step 2: ψ = TabuSearchMPA(A, N, ψ)

 4 if S is schedulable then return ψ end if

 5 return no_solution

end MPAOptimizationStrategy

MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

95

root schedule at the earliest time moment t, at which at least one
valid message mi(j) can arrive from a replica Pi(j) of process Pi.

1

We also include in the set of valid messages mi(j) the output from
replica Pi(j) to successor Ps passed through the shared memory
(if replica Pi(j) and successor Ps are mapped on the same compu-
tation node).

Let us consider the example in Figure 5.6, where P2 is repli-
cated and we use a shifting-based scheduling without the above
modification. In this case, P3, the successor of P2, is scheduled at
the latest moment, when any of the messages to P3 can arrive.
Therefore, P3 has to be placed in the schedule, as illustrated in
Figure 5.6a, after message m2(2) from replica P2(2) has arrived.
We should also introduce recovery slack for process P3 for the
case it experiences a fault.

However, the root schedule can be shortened by placing P3 as
in Figure 5.6b, immediately following replica P2(1) on N1, if we
use the updated notion of “ready process” for successors of repli-

1. We consider the original process Pi as a first replica, denoted with Pi(1).

Figure 5.6: Scheduling Replica Descendants

k = 1

μ = 10 ms

P1
P2

P3

N1 N2

40 40
80
50

80
50

P1

P3

P2

m1

m2N1

N2

bus

P1 P3

m1(2)

P2(1)

P2(2)

P3

N1

N2

bus

P1 P3P2(1)

P2(2)

m1(2)

Deadline: 290

Missed

Met

N1 N2

m2(2)

m2(2)

m2(1)

m2(1)

m1 : m2 : 10 ms

20 40 60 80 100 120 140 160 180 200 220 2400 260 280 300

b)

a)

D = T = 290 ms

m1(1)

m1(1)

CHAPTER 5

96

cated processes. In this root schedule, process P3 will start
immediately after replica P2(1) in the case that no fault has
occurred in P2(1). If replica P2(1) fails, then, in the corresponding
alternative schedule, process P3 will be delayed until it receives
message m2(2) from replica P2(2) on N2 (shown with the thick-
margin rectangle). In the root schedule, we should accommodate
this delay into the recovery slack of process P3 as shown in
Figure 5.6b. Process P3 can also experience faults. However,
processes can experience at maximum k faults during one appli-
cation run. In this example, P2 and P3 cannot be faulty at the
same time because k = 1. Therefore, process P3 will not need to
be re-executed if it is delayed in order to receive message m2(2)
(since, in this case, P2(1) has already failed). The only scenario,
in which process P3 can experience a fault, is the one where
process P3 is scheduled immediately after replica P2(1). In this
case, however, re-execution of process P3 is accommodated into
the recovery slack. The same is true for the case if P1 fails and,
due to its re-execution, P2(1) and P3 have to be delayed. As can be
seen, the resulting root schedule depicted in Figure 5.6b is
shorter than the one in Figure 5.6a and the application will
meet its deadline.

5.2.3 OPTIMIZATION ALGORITHMS

For the optimization of the mapping and fault tolerance policy
assignment we perform two steps, see Figure 5.5. The first step
is a straightforward policy assignment with only re-execution,
where mapping is obtained by a simple balancing of utilization
of the computation nodes. If this step fails to produce a
schedulable implementation, we use, in the next step, a tabu
search-based optimization approach, TabuSearchMPA.

This approach investigates in each iteration all the processes
on the critical path of the merged application graph G, and use
design transformations (moves) to change a design such that the
critical path is reduced. Let us consider the example in

MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

97

Figure 5.7, where we have an application of four processes that
has to tolerate one fault, mapped on an architecture of two
nodes. Let us assume that the current solution is the one
depicted in Figure 5.7a. In order to generate neighbouring solu-
tions, we perform design transformations that change the map-
ping of a process, and/or its fault tolerance policy. Thus, the
neighbouring solutions considered by our heuristic, starting
from Figure 5.7a, are those presented in Figure 5.7b–5.7e. Out
of these, the solution in Figure 5.7c is the best in terms of sched-
ule length.

One simple (greedy) optimization heuristic could have been to
select in each iteration the best move found and apply it to mod-
ify the design. However, although a greedy approach can quickly
find a reasonable solution, its disadvantage is that it can “get
stuck” into a local optimum. Thus, to avoid this, we have imple-
mented a tabu search algorithm [Ree93].

The tabu search algorithm, TabuSearchMPA, presented in
Figure 5.8, takes as an input the merged application graph G,
the architecture N and the current implementation ψ, and pro-
duces a schedulable and fault-tolerant implementation xbest.
The tabu search is based on a neighbourhood search technique,
and thus in each iteration it generates the set of moves Nnow

that can be reached from the current solution xnow (line 7 in
Figure 5.8). In our implementation, we only consider changing
the mapping or fault tolerance policy assignment of the proc-
esses on the critical path, corresponding to the current solution,
denoted with CP in Figure 5.8. For example, in Figure 5.7a, the
critical path is formed by P1, m2 and P3.

CHAPTER 5

98

The key feature of a tabu search is that the neighbourhood
solutions are modified based on a selective history of the states

Figure 5.7: Moves and Tabu History

N1

N2

bus

P1

P3

P4

m2

P2

P1 P2 P3 P4

Tabu 1 2 0 0
Wait 1 0 1 1

a)

N1

N2

bus

P1 P3

P4P2

m1

N1

N2

P1/1

P3

P4P2

P1/2

bus

N1

N2

bus

P1 P3 P4

m2

P2

N1

N2

bus

P1

P3/2

P4P2 P3/1

b)

c)

d)

e)

P1

P4

P2 P3

m1 m2

m3

k = 1

μ = 10 ms

P1
P2
P3

N1 N2

40 50
60
60

75
75

P4 40 50

P1 P2 P3 P4

Tabu 2 1 0 0
Wait 0 0 2 1

Current solution

P1 P2 P3 P4

Tabu 1 2 0 0
Wait 1 0 1 1

P1 P2 P3 P4

Tabu 1 2 0 0
Wait 1 0 1 1

P1 P2 P3 P4

Tabu 1 2 0 0
Wait 1 0 1 1

Tabu move & worse
than best-so-far

Tabu move & better
than best-so-far

Non-tabu move &
worse than best-so-far

Non-tabu move &
worse than best-so-far

N1 N2

m2(1) m1(2)

20 40 60 80 100 120 140 160 180 200 220 2400 260 280 300

D = T = 240 ms

MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

99

encountered during the search [Ree93]. The selective history is
implemented in our case through the use of two tables, Tabu and
Wait. Each process has an entry in these tables. If Tabu(Pi) is
non-zero, it means that the process is “tabu”, i.e., should not be
selected for generating moves. Thus, a move will be removed

Figure 5.8: Tabu Search Algorithm for Optimization of
Mapping and Fault Tolerance Policy Assignment

TabuSearchMPA(G, N, ψ)
 1 -- given a merged application graph G and an architecture N produces a policy
 2 -- assignment F and a mapping M such that G is fault-tolerant & schedulable
 3 xbest = xnow = ψ; BestCost = ListScheduling(G, N, xbest) -- Initialization
 4 Tabu = ∅; Wait = ∅ -- The selective history is initially empty
 5 while xbest not schedulable ∧ TerminationCondition not satisfied do

 6 -- Determine the neighboring solutions considering the selective history
 7 CP = CriticalPath(G); Nnow = GenerateMoves(CP)

 8 -- eliminate tabu moves if they are not better than the best-so-far
 9 Ntabu = {move(Pi) | ∀ Pi ∈CP ∧ Tabu(Pi)=0 ∧ Cost(move(Pi)) < BestCost}

 10 Nnon-tabu = N \ Ntabu

 11 -- add diversification moves

 12 Nwaiting = {move(Pi) | ∀ Pi ∈ CP ∧ Wait(Pi) > |G|}

 13 Nnow = Nnon-tabu ∪ Nwaiting

 14 -- Select the move to be performed
 15 xnow = SelectBest(Nnow)

 16 xwaiting = SelectBest(Nwaiting); xnon-tabu = SelectBest(Nnon-tabu)

 17 if Cost(xnow) < BestCost then x = xnow -- select xnow if better than best-so-far
 18 else if ∃ xwaiting then x = xwaiting -- otherwise diversify
 19 else x = xnon-tabu -- if no better and no diversification, select best non-tabu
 20 end if

 21 -- Perform selected move
 22 PerformMove(x); Cost = ListScheduling(G, N, x)

 23 -- Update the best-so-far solution and the selective history tables
 24 If Cost < BestCost then xbest = x; BestCost = Cost end if

 25 Update(Tabu); Update(Wait)

 26 end while

 27 return xbest

end TabuSearchMPA

CHAPTER 5

100

from the neighbourhood solutions if it is tabu (lines 9 and 10 of
the algorithm). However, tabu moves are also accepted if they
lead to solutions better than the best-so-far solution
(Cost(move(Pi)) < BestCost, line 9). If Wait(Pi) is greater than the
number of processes in the graph, |G|, the process has waited a
long time and should be selected for diversification [Ree93], i.e.,
move(Pi) can lead to the significantly different solution from
those encountered previously during the search. In line 12 the
search is diversified with moves that have waited a long time
without being selected.

In lines 14–20 we select the best one out of these solutions. We
prefer a solution that is better than the best-so-far xbest (line 17).
If such a solution does not exist, then we choose to diversify. If
there are no diversification moves, we simply choose the best
solution found in this iteration, even if it is not better than xbest.
Finally, the algorithm updates the best-so-far solution, and the
selective history tables Tabu and Wait. The algorithm ends
when a schedulable solutions has been found, or an imposed ter-
mination condition has been satisfied (as, if a time limit has
been reached).

Figure 5.7 illustrates how the algorithm works. Let us con-
sider that the current solution xnow is the one presented in
Figure 5.7a, with the corresponding selective history presented
to its right, and the best-so-far solution xbest being the one in
Figure 5.3a. The generated solutions are presented in
Figure 5.7b–5.7e. The solution (b) is removed from the set of con-
sidered solutions because it is tabu, and it is not better than
xbest. Thus, solutions (c)–(e) are evaluated in the current itera-
tion. Out of these, the solution in Figure 5.7c is selected, because
although it is tabu, it is better than xbest. The table is updated as
depicted to the right of Figure 5.7c in bold, and the iterations
continue with solution (c) as the current solution.

MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

101

5.3 Experimental Results
For the evaluation of our strategy for policy assignment and
mapping we have used applications of 20, 40, 60, 80, and 100
processes (all unmapped and with no fault tolerance policy
assigned) implemented on architectures consisting of 2, 3, 4, 5,
and 6 nodes, respectively. We have varied the number of faults
depending on the architecture size, considering 3, 4, 5, 6, and 7
faults for each architecture dimension, respectively. The recov-
ery overhead μ has been set to 5 ms. Fifteen examples have ran-
domly been generated for each application dimension, thus a
total of 75 applications have been used for experimental evalua-
tion. We have generated both graphs with random structure and
graphs based on more regular structures like trees and groups of
chains. Execution times and message lengths have been ran-
domly assigned using both uniform and exponential distribution
within the 10 to 100 ms, and 1 to 4 bytes ranges, respectively.
The experiments have been performed on Sun Fire V250 com-
puters.

We were first interested to evaluate the proposed optimization
strategy in terms of overheads introduced due to fault tolerance.
Hence, we have implemented each application, on its corre-
sponding architecture, using the MPAOptimizationStrategy (MXR)
strategy from Figure 5.5. In order to evaluate MXR, we have
derived a reference non-fault-tolerant implementation, NFT,
which ignores the fault tolerance issues. The NFT implementa-
tion has been produced as the result of an optimization similar
to MXR but without any moves related to fault tolerance policy
assignment. Compared to the NFT implementation thus
obtained, we would like MXR to produce a fault-tolerant design
with as little as possible overhead, using the same amount of
hardware resources (nodes). For these experiments, we have
derived the shortest schedule within an imposed time limit for
optimization: 10 minutes for 20 processes, 20 for 40, 1 hour for

CHAPTER 5

102

60, 2 hours and 20 minutes for 80 and 5 hours and 30 minutes
for 100 processes.

The first results are presented in Table 5.1. Applications of 20,
40, 60, 80, and 100 processes are mapped on 2, 3, 4, 5, and 6 com-
putation nodes, respectively. Accordingly, we change the number
of faults from 3 to 7. In the three last columns, we present max-
imum, average and minimum time overheads introduced by MXR

compared to NFT. Let δMXR and δNFT be the schedule lengths
obtained using MXR and NFT. The overhead due to introduced
fault tolerance is defined as 100 × (δMXR – δNFT) / δNFT. We can
see that the fault tolerance overheads grow with the application
size. The MXR approach can offer fault tolerance within the con-
straints of the architecture at an average time overhead of
approximately 100%. However, even for applications of 60 proc-
esses, there are cases where the overhead is as low as 52%.

We were also interested to evaluate our MXR approach in the
case of different number of faults, while the application size and
the number of computation nodes were fixed. We have consid-
ered applications with 60 processes mapped on four computation
nodes, with the number k of faults being 2, 4, 6, 8, or 10.
Table 5.2 shows that the time overheads due to fault tolerance
increase with the number of tolerated faults. This is expected,

Table 5.1: Fault Tolerance Overheads with MXR (Compared
to NFT) for Different Applications

Number of
processes

k % maximum % average % minimum

20 3 98 71 49

40 4 117 85 47

60 5 143 100 52

80 6 178 121 91

100 7 216 150 100

MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

103

since we need more replicas and/or re-executions if there are
more faults.

With a second set of experiments, we were interested to eval-
uate the quality of our MXR optimization approach. Thus,
together with the MXR approach we have also evaluated two
extreme approaches: MX that considers only re-execution, and
MR which relies only on replication for tolerating faults. MX and
MR use the same optimization approach as MRX, but, for fault tol-
erance, all processes are assigned only with re-execution or rep-
lication, respectively. In Figure 5.9 we present the average
percentage deviations of the MX and MR from MXR in terms of
overhead. We can see that by optimizing the combination of re-
execution and replication, MXR performs much better compared
to both MX and MR. On average, MXR is 77% and 17.6% better
than MR and MX, respectively. This shows that considering re-
execution at the same time with replication can lead to signifi-
cant improvements.

In Figure 5.9 we have also presented a straightforward strat-
egy SFX, which first derives a mapping without fault tolerance
considerations (using MXR without fault tolerance moves) and
then applies re-execution. This is a solution that can be obtained
by a designer without the help of our fault tolerance optimiza-
tion tools. We can see that the overheads thus obtained are very

Table 5.2: Fault Tolerance Overheads due to MXR for
Different Number of Faults in the Applications of 60

Processes Mapped on 4 Computation Nodes

k % maximum % average % minimum

2 52 33 20

4 110 77 47

6 162 119 82

8 251 174 118

10 292 220 155

CHAPTER 5

104

large compared to MXR, up to 58% on average. We can also notice
that, despite the fact that both SFX and MX use only re-execution,
MX is much better. This confirms that the optimization of the
fault tolerance policy assignment has to be addressed at the
same time with the mapping of functionality.

Finally, we have considered the real-life example implement-
ing a vehicle cruise controller (CC), previously used to evaluate
scheduling techniques in Chapter 4. We have considered the
same deadline of 300 ms, the maximum number of faults k = 2,
and a recovery overhead μ = 2 ms.

In this setting, the MXR produced a schedulable fault-tolerant
implementation with a worst-case system delay of 275 ms, and
with an overhead compared to NFT of 65%. If only one single pol-
icy is used for fault tolerance, as in the case of MX and MR, the
delay is 304 ms and 361 ms, respectively, and the deadline is
missed.

Figure 5.9: Comparing MXR with MX, MR and SFX

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

MR
SFX
MX

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

MR
SFX
MX

Number of processes

A
vg

.%
 d

ev
ia

ti
on

 f
ro

m
 M

X
R

MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

105

5.4 Conclusions
In this chapter, we have proposed a strategy for fault tolerance
policy assignment and mapping. With fault tolerance policy
assignment, we can decide on which fault tolerance technique or
which combination of techniques to assign to a certain process in
the application. The fault tolerance technique can be re-execu-
tion, which provides time-redundancy, or active replication,
which provides space-redundancy. The fault tolerance policy
assignment has to be jointly optimized with process mapping.
We have implemented a tabu search-based algorithm that
assigns fault tolerance techniques to processes and decides on
the mapping of processes, including replicas.

107

Chapter 6
Checkpointing-based

Techniques

IN THIS CHAPTER we extend our previous techniques based on
re-execution by introducing checkpoints. We, first, present our
approach to optimize the number of checkpoints. Then, we
extend the optimization strategy for fault tolerance policy
assignment presented in Chapter 5 with checkpoint optimiza-
tion.

6.1 Optimizing the Number of Checkpoints
Re-execution is a recovery technique with only one checkpoint,
where a faulty process is restarted from the initial process state.
In the general case of rollback recovery with checkpointing, how-
ever, a faulty process can be recovered from several checkpoints
inserted into the process, which, potentially, will lead to smaller
fault tolerance overheads. The number of checkpoints has a sig-
nificant impact on the system performance and has to be opti-
mized, as will be shown in this section.

CHAPTER 6

108

6.1.1 LOCAL CHECKPOINTING OPTIMIZATION

First, we will illustrate issues of checkpoint optimization when
processes are considered in isolation. In Figure 6.1 we have
process P1 with a worst-case execution time of C1 = 50 ms. We
consider a fault scenario with k = 2, the recovery overhead μ1
equal to 15 ms, and checkpointing overhead χ1 equal to 5 ms.
The error-detection overhead α1 is considered equal to 10 ms.
Recovery, checkpointing and error-detection overheads are
shown with light grey, black, and dark grey rectangles, respec-
tively.

In the previous chapters, the error-detection overhead has
been considered to be part of the worst-case execution time of
processes. Throughout this chapter, however, we will explicitly
consider the error-detection overhead since it directly influences
the decision regarding the number of checkpoints introduced. In
this chapter, we will consider equidistant checkpointing, which
relies on using equal length time intervals between checkpoints,
as has been discussed in Section 2.2.3.

μ1 = 15 ms

k = 2

χ1 = 5 ms

α1 = 10 ms

P1 C1 = 50 ms

P1

P1 P1

P1 P1 P1

P1 P1 P1 P1

P1 P1 P1 P1 P1

1

2

3

4

5

1 2

1 2

1 2 3 4

1 2 3 4 5

3

E1(1) S1(1)

E1(5) S1(5)

20 40 60 80 100 120 140 160 180 2000

Figure 6.1: Locally Optimal Number of Checkpoints

N
o.

 o
f

ch
ec

kp
oi

nt
s

CHECKPOINTING-BASED TECHNIQUES

109

In Figure 6.1 we depict the execution time needed for P1 to tol-
erate two faults, considering from one to five checkpoints. Since
P1 has to tolerate two faults, the recovery slack S1 has to be dou-
ble the size of P1 including the recovery overhead, as well as the
error-detection overhead α1 that has to be considered for the
first re-execution of the process. Thus, for one checkpoint, the
recovery slack S1 of process P1 is (50 + 15) × 2 + 10 = 140 ms.

If two checkpoints are introduced, process P1 will be split into
two execution segments and . In general, the execution
segment is a part of the process execution between two check-
points or a checkpoint and the end of the process. In the case of
an error in process P1, only the segments or have to be
recovered, not the whole process, thus the recovery slack S1 is
reduced to (50/2 + 15) × 2 + 10 = 90 ms.

By introducing more checkpoints, the recovery slack S1 can be
further reduced. However, there is a point over which the reduc-
tion in the recovery slack S1 is offset by the increase in the over-
head related to setting each checkpoint. We will name this
overhead as a constant checkpointing overhead denoted as Oi for
process Pi. In general, this overhead is the sum of checkpointing
overhead χi and the error-detection overhead αi. Because of the
overhead associated with each checkpoint, the actual execution
time E1 of process P1 is constantly increasing with the number
of checkpoints (as shown with thick-margin rectangles around
the process P1 in Figure 6.1).

For process P1 in Figure 6.1, going beyond three checkpoints
will enlarge the total execution time R1 = S1 + E1, when two
faults occur.

In general, in the presence of k faults, the execution time Ri in
the worst-case fault scenario of process Pi with ni checkpoints
can be obtained with the formula:

P1
1 P1

2

P1
1 P1

2

CHAPTER 6

110

where Ei(ni) is the execution time of process Pi with ni check-
points in the case of no faults. Si(ni) is the recovery slack of proc-
ess Pi. Ci is the worst-case execution time of process Pi.

 is the overhead introduced with ni checkpoints to
the execution of process Pi. In the recovery slack Si(ni),

 is the time needed to recover from a single fault,
which has to be multiplied by k for recovering from k faults. The
error-detection overhead αi of process Pi has to be additionally
considered in k − 1 recovered execution segments for detecting
possible fault occurrences (except the last, kth, recovery, where
all k faults have already happened and been detected).

Let now be the optimal number of checkpoints for Pi, when
Pi is considered in isolation. Punnekkat et al. [Pun97] derive a
formula for in the context of preemptive scheduling and sin-
gle fault assumption:

where Oi is a constant checkpointing overhead and Ci is the
computation time of Pi (the worst-case execution time in our
case).

We have extended formula (6.2) to consider k faults and
detailed checkpointing overheads χi and αi for process Pi, when
process Pi is considered in isolation:

Ri ni() Ei ni() Si ni()+=

Ei ni() Ci ni αi χi+()×+=

Si ni()
Ci

ni
----- μi+
⎝ ⎠
⎜ ⎟
⎛ ⎞

k αi k 1–()×+×=

where

and

(6.1)

ni αi χi+()×

Ci ni⁄ μi+

ni
0

ni
0

, if

, if

ni
+

Ci

Oi
-----=

ni
–

Ci

Oi
-----= Ci ni

– ni
– 1+()Oi≤

Ci ni
– ni

– 1+()Oi>
ni

0= (6.2)

CHECKPOINTING-BASED TECHNIQUES

111

The proof of formula (6.3) can be found in Appendix II.
Formula (6.3) allows us to calculate the optimal number of

checkpoints for a certain process considered in isolation. For
example, in Figure 6.1, = 3:

6.1.2 GLOBAL CHECKPOINTING OPTIMIZATION

Calculating the number of checkpoints for each individual proc-
ess will not produce a solution which is globally optimal for the
whole application because processes share recovery slacks.

Let us consider the example in Figure 6.2, where we have two
processes, P1 and P2 on a single computation node. We consider

, if

, if

ni
+ kCi

χi αi+
----------------=

ni
–

kCi

χi αi+
----------------= Ci ni

– ni
– 1+()

χi αi+

k
----------------≤

Ci ni
– ni

– 1+()
χi αi+

k
---------------->

ni
0= (6.3)

n1
0

2 2 1+()× 5 10+
2

--------------- 45 50<=n1
– 2 50×

10 5+
--------------- 2= = n1

0 3=

Figure 6.2: Globally Optimal Number of Checkpoints

P1 P1 P1
1 2 3 P2 P2 P2

P1 P2 P2P1

1 2 3

1 2 1 2

a)

b)

P1 P2

m1
χ α μ
10 5 10
10 5 10

P1
P2

P1 C1 = 50 ms

P2 C2 = 60 ms

k = 2

20 40 60 80 100 120 140 160 180 200 220 2400 260 280 300

265

255

CHAPTER 6

112

two transient faults. The worst-case execution times and the
fault tolerance overheads are depicted in the figure. In
Figure 6.2a, processes P1 and P2 are assigned with the locally
optimal number of checkpoints, = 3 and = 3, and share
one recovery slack, depicted as a shaded rectangle. The size of
the shared slack is equal to the individual recovery slack of proc-
ess P2 because its slack, which is (60 / 3 + 10) × 2 + 5 = 65 ms, is
larger than the slack of P1, which is (50 / 3 + 10) × 2 + 5=58.3 ms.
The resulting schedule length is the sum of actual execution
times of processes P1 and P2 and the size of their shared recov-
ery slack of 65 ms:

[50 + 3 × (5 + 10)] + [60 + 3 × (5 + 10)] + 65 = 265 ms.
However, if we reduce the number of checkpoints to 2 for both

processes, as shown in Figure 6.2b, the resulting schedule
length is 255 ms, which is shorter than in the case of the locally
optimal number of checkpoints. The shared recovery slack, in
this case, is also equal to the individual recovery slack of process
P2 because its recovery slack, (60 / 2 + 10) × 2 + 5 = 85 ms, is
larger than P1’s recovery slack, (50 / 3 + 10) × 2 + 5 = 75 ms. The
resulting schedule length in Figure 6.2b is, hence, obtained as

[50 + 2 × (5 + 10)] + [60 + 2 × (5 + 10)] + 85 = 255 ms.
In general, slack sharing leads to a smaller number of check-

points associated to processes, or, at a maximum, this number is
the same as indicated by the local optima. This is the case
because the shared recovery slack, obviously, cannot be larger
than the sum of individual recovery slacks of the processes that
share it. Therefore, the globally optimal number of checkpoints
is always less or equal to the locally optimal number obtained
with formula (6.3). Thus, formula (6.3) provides us with an
upper bound on the number of checkpoints associated to individ-
ual processes. We will use this formula in order to bound the
number of checkpoints explored with the optimization algorithm
presented in Section 6.2.2.

n1
0 n2

0

CHECKPOINTING-BASED TECHNIQUES

113

6.2 Policy Assignment with Checkpointing
In this section we extend the fault tolerance policy assignment
algorithm presented in Section 5.2.3 with checkpoint optimiza-
tion. Here rollback recovery with checkpointing1 will provide
time redundancy, while the spatial redundancy is provided with
replication, as shown in Figure 6.3. The combination of fault tol-
erance policies to be applied to each process is given by four
functions:
 • P: V → {Replication, Checkpointing, Replication & Check-

pointing} determines whether a process is replicated, check-
pointed, or replicated and checkpointed. When replication is
used for a process Pi, we introduce several replicas into the
application A, and connect them to the predecessors and suc-
cessors of Pi.

 • The function Q: V → Ν indicates the number of replicas for
each process. For a certain process Pi, if P(Pi) = Replication,
then Q(Pi) = k; if P(Pi) = Checkpointing, then Q(Pi) = 0; if P(Pi)
= Replication & Checkpointing, then 0 < Q(Pi) < k.

 • Let VR be the set of replica processes introduced into the
application. Replicas can be checkpointed as well, if neces-
sary. The function R: V ∪ VR → Ν determines the number of

1. From here and further on we will call the rollback recovery with check-
pointing shortly checkpointing.

Figure 6.3: Policy Assignment: Checkpointing + Replication

a) Checkpointing P1 C1 = 30 ms

μ1 = 5 ms

k = 2

χ1 = 5 ms

α1 = 5 ms

b) Replication

N1

N2

N3

P1(1)

P1(2)

P1(3)

c) Checkpointed replicas

N1

N2

P1(1)

P1(2) P1(2)N1 P1 P1 P1
1 2 3 1 2

CHAPTER 6

114

recoveries for each process or replica. In Figure 6.3c, for exam-
ple, we have P(P1) = Replication & Checkpointing, R(P1(1)) = 0
and R(P1(2)) = 1.

 • The fourth function X: V ∪ VR → Ν decides the number of
checkpoints to be applied to processes in the application and
the replicas in VR. We consider equidistant checkpointing,
thus the checkpoints are equally distributed throughout the
execution time of the process. If process Pi ∈ V or replica
Pi(j) ∈ VR is not checkpointed, then we have X(Pi) = 0 or
X(Pi(j)) = 0, respectively, which is the case if the recovery is
not used at all for this particular process or replica.

Each process Pi ∈ V , besides its worst execution time Ci for
each computation node, is characterized by an error detection over-
head αi, a recovery overhead μi, and checkpointing overhead χi.

The mapping of a process in the application is given by a func-
tion M: V ∪ VR → N, where N is the set of nodes in the archi-
tecture. The mapping M is not fixed and will have to be obtained
during design optimization.

Thus, our problem formulation for mapping and policy assign-
ment with checkpointing is as follows:

 • As an input we have an application A given as a merged
process graph (Section 3.1.1) and a system consisting of a set
of nodes N connected to a bus B.

 • The parameter k denotes the maximal number of transient
faults that can appear in the system during one cycle of exe-
cution.

We are interested to find a system configuration ψ, on the
given architecture N, such that the k transient faults are toler-
ated and the imposed deadlines are guaranteed to be satisfied.

Determining a system configuration ψ = <F, X, M, S> means:

1. finding a fault tolerance policy assignment, given by F = <P,
Q, R, X>, for each process Pi in the application A; this also

CHECKPOINTING-BASED TECHNIQUES

115

includes the decision on the number of checkpoints X for each
process Pi in the application A and each replica in VR;

2. deciding on a mapping M for each process Pi in the applica-

tion A;
3. deciding on a mapping M for each replica in VR;
4. deriving the set S of schedule tables on each computation

node.
We will discuss policy assignment based on transparent recov-

ery with replication, where all messages on the bus are set to be
frozen, except those that are sent by replica processes. The shift-
ing-based scheduling presented in Section 4.4 with small modi-
fications, which have been discussed in Section 5.2.2, is used to
derive schedule tables for the application A. We calculate recov-
ery slacks in the root schedule and introduce checkpointing
overheads as discussed in Section 6.1.

6.2.1 OPTIMIZATION STRATEGY

The design problem formulated in the beginning of this section
is NP-complete (both the scheduling and the mapping problems,
considered separately, are already NP-complete [Gar03]). There-
fore, our strategy is to utilize a heuristic and divide the problem
into several, more manageable, subproblems. We will adapt our
design optimization strategy from Chapter 5 (presented in Sec-
tion 5.2.1), which combines re-execution and replication, to cap-
ture checkpointing optimization. Our optimization strategy with
checkpointing optimization, based on the strategy in Section
5.2.1, is outlined in Figure 6.4. The strategy produces the config-
uration ψ leading to a schedulable fault-tolerant application and
also has two steps:

1. In the first step (lines 1–2) we quickly decide on an initial
fault tolerance policy assignment and an initial mapping.
The initial mapping and fault tolerance policy assignment al-
gorithm (InitialMPAChk line 1 in Figure 6.4) assigns a check-

CHAPTER 6

116

pointing policy with a locally optimal number of checkpoints
(using the equation (6.3)) to each process in the application
A and produces a mapping that tries to balance the utiliza-
tion among nodes and buses. The application is then sched-
uled using the shifting-based scheduling algorithm (see Sec-
tion 4.4). If the application is schedulable the optimization
strategy stops.

2. If the application is not schedulable, we use, in the second
step, a tabu search-based algorithm, TabuSearchMPAChk (line 3),
discussed in the next section.

If after these two steps the application is unschedulable, we
assume that no satisfactory implementation could be found with
the available amount of resources.

6.2.2 OPTIMIZATION ALGORITHMS

For deciding the mapping and fault tolerance policy assignment
with checkpointing we use a tabu search based heuristic
approach, TabuSearchMPAChk, which is an adaptation of the
TabuSearchMPA algorithm presented in Section 5.2.3. In addition
to mapping and fault tolerance policy assignment,
TabuSearchMPAChk will handle checkpoint distribution.

TabuSearchMPAChk uses design transformations (moves) to
change a design such that the end-to-end delay of the root sched-

Figure 6.4: Design Optimization Strategy for
Fault Tolerance Policy Assignment with Checkpointing

 MPAOptimizationStrategyChk(A, N)
 1 Step 1: ψ0 = InitialMPAChk(A, N)
 2 if S0 is schedulable then return ψ0 end if
 3 Step 2: ψ = TabuSearchMPAChk(A, N, ψ0)
 4 if S is schedulable then return ψ end if
 5 return no_solution
 end MPAOptimizationStrategyChk

CHECKPOINTING-BASED TECHNIQUES

117

ule is reduced. In order to generate neighboring solutions, we
perform the following types of transformations:
 • changing the mapping of a process;
 • changing the combination of fault tolerance policies for a

process;
 • changing the number of checkpoints used for a process.

The algorithm takes as an input the application graph G, the
architecture N and the current implementation ψ , and produces
a schedulable and fault-tolerant implementation xbest. In each
iteration of the tabu search algorithm it generates the set of
moves Nnow that can be performed from the current solution
xnow. The cost function to be minimized by the tabu search is the
end-to-end delay of the root schedule produced by the list sched-
uling algorithm. In order to reduce the huge design space, in our
implementation, we only consider changing the mapping or fault
tolerance policy of the processes on the critical path correspond-
ing to the current solution.

Moreover, we also try to eliminate moves that change the
number of checkpoints if it is clear that they do not lead to better
results. Consider the example in Figure 6.5 where we have four
processes, P1 to P4 mapped on two nodes, N1 and N2. The worst-
case execution times of processes and their fault tolerance over-
heads are also given in the figure, and we have to tolerate at
most two faults. The number of checkpoints calculated using the
formula (6.3) are: = 2, = 2, = 1 and = 3, which are
upper bounds on the number of checkpoints. Let us assume that
our current solution is the one depicted in Figure 6.5a, where we
have X(P1) = 2, X(P2) = 1, X(P3) = 1 and X(P4) = 2. Given a proc-
ess Pi, with a current number of checkpoints X(Pi), our tabu
search approach will generate moves with all possible check-
points starting from 1 up to . Thus, starting from the solution
depicted in Figure 6.5a, we can have the following moves that
modify the number of checkpoints: (1) decrease the number of
checkpoints for P1 to 1; (2) increase the number of checkpoints
for P2 to 2; (3) increase the number of checkpoints for P4 to 3; (4)

n1
0 n2

0 n3
0 n4

0

ni
0

CHAPTER 6

118

decrease the number of checkpoints for P4 to 1. Moves (1) and (3)
will lead to the optimal number of checkpoints depicted in
Figure 6.5b.

In order to reduce optimization time, our heuristic will not try
moves (2) and (4), since they cannot lead to a shorter critical
path, and, thus, a better root schedule. Regarding move (2), by
increasing the number of checkpoints for P2 we can reduce its
recovery slack. However, P2 shares its recovery slack with P1
and segments of P4, which have a larger execution time, and
thus even if the necessary recovery slack for P2 is reduced, it will
not affect the size of the shared slack (and implicitly, of the root
schedule) which is given by the largest process (or process seg-
ment) that shares the slack. Regarding move (4), we notice that
by decreasing for P4 the number of checkpoints to 1, we increase
the recovery slack, which, in turn, increases the length of the
root schedule.

Figure 6.5: Restricting the Moves for Setting
the Number of Checkpoints

k = 2

N1 N2

m2

N1

N2

bus

N1

N2

bus

a)

b) Met

Missed

P1 P1 P4 P4P2

P3

P1

m2

P3

P2 P4 P4 P4

1 2 21

1 2 3

P1

P4

P2 P3

m1 m2

m3

P1
P2
P3
P4

χ α μ
10 10 10
5 5 5
10 30 10
15 15 20

Deadline: 470

P1
P2
P3

N1 N2

50 50
30
X

30
40

P4 120 X

20 40 60 80 100 120 140 160 180 200 220 2400 260 280 300 320 340 360 400 420 440 460 480

D = T = 470 ms

CHECKPOINTING-BASED TECHNIQUES

119

The termination conditions and other aspects related to
mapping and policy assignment of this tabu search algorithm
follow the original algorithm TabuSearchMPA for mapping and
policy assignment (without checkpoint optimization) presented
in Section 5.2.3 of Chapter 5.

6.3 Experimental Results
For the evaluation of our design strategy with checkpointing we
have used applications of 20, 40, 60, 80, and 100 processes (all
unmapped and with no fault tolerance policy assigned) imple-
mented on architectures consisting of 3, 4, 5, 6, and 7 nodes,
respectively. We have varied the number of faults depending on
the architecture size, considering 4, 5, 6, 7, and 8 faults for each
architecture dimension, respectively. The recovery overhead μ
has been set to 5 ms. We have also varied the fault tolerance
overheads (checkpointing and error-detection) for each process,
from 1% of its worst-case execution time up to 30%. Fifteen
examples have been randomly generated for each application
dimension, thus a total of 75 applications were used for experi-
mental evaluation. The experiments have been performed on
Sun Fire V250 computers.

We were interested to evaluate the quality of our optimization
strategy given in Figure 6.4, with multiple checkpoints and rep-
lication (MCR). For evaluation of MCR, we have considered two
other approaches: (1) MC that considers global checkpointing but
without replication, and (2) MC0, similar to MC but where the
number of checkpoints is fixed based on the formula (6.3),
updated from [Pun97]. We have compared the quality of MCR to
MC0 and MC. In Figures 6.6-6.8 we show the average percentage
deviation of overheads obtained with MCR and MC from the base-
line represented by MC0 (larger deviation means smaller over-
head). From Figures 6.6-6.8 we can see that by optimizing the
combination of checkpointing and replication MCR performs

CHAPTER 6

120

much better compared to MC and MC0. This shows that consider-
ing checkpointing at the same time with replication can lead to
significant improvements. Moreover, by considering the global
optimization of the number of checkpoints, with MC, significant
improvements can be gained over MC0 (which computes the opti-
mal number of checkpoints for each process in isolation).

In Figure 6.6 we consider 4 computation nodes, 3 faults, and
vary the application size from 40 to 100 processes. As the
amount of available resources per application decreases, the
improvement due to replication (part of MCR) will diminish,
leading to a result comparable to MC.

In Figure 6.7, we were interested to evaluate our MCR

approach in case the constant checkpointing overheads O (i.e.,
χ+α) associated to processes are varied. We have considered
applications with 40 processes mapped on four computation

Figure 6.6: Deviation of MC and MCR from MC0
with Varying Application Size

0

5

10

15

20

25

30

35

40

45

40 60 80 100

MC

MCR

Number of processes

A
vg

.%
 d

ev
ia

ti
on

 f
ro

m
 M

C
0

CHECKPOINTING-BASED TECHNIQUES

121

nodes, and we have varied the constant checkpointing overhead
from 2% of the worst-case execution time of a process up to 60%.
We can see that, as the amount of checkpointing overheads
increases, our optimization approaches are able to find increas-
ingly better quality solutions compared to MC0.

We have also evaluated the MCR and MC approaches with
increasing the maximum number of transient faults to be toler-
ated. We have considered applications with 40 processes
mapped on 4 computation nodes, and varied k from 2 to 6, see
Figure 6.8. As the number of faults increases, the improvement
achieved over MC0 will stabilize to about 10% improvement (e.g.,
for k = 10, not shown in the figure, the improvement due to MC is
8%, while MCR improves with 10%).

Finally, we have considered the real-life example implement-
ing a vehicle cruise controller (CC), used to evaluate scheduling

Figure 6.7: Deviation of MC and MCR from MC0

with Varying Checkpointing Overheads

A
vg

.%
 d

ev
ia

ti
on

 f
ro

m
 M

C
0

Checkpointing overheads (%), χ + α

0

5

10

15

20

25

2 10 20 30 40 50 60

MC

MCR

CHAPTER 6

122

techniques in Chapter 4. We have considered a deadline of 300
ms, k = 2 faults and the constant checkpointing overheads are
10% of the worst-case execution time of the processes.

In this setting, the MCR has produced a schedulable fault-tol-
erant implementation with a worst-case system delay of 265 ms,
and with an overhead, compared to NFT (which produces a non-
fault-tolerant schedule of length 157 ms), of 69%. If we globally
optimize the number of checkpoints (similarly to MCR but with-
out considering the alternative of replication) using MC we
obtain a schedulable implementation with a delay of 295 ms,
compared to 319 ms produced by MC0, which is larger than the
deadline. If replication only is used, in the case of MR, the delay
is 369 ms, which, again, is greater than the deadline.

Figure 6.8: Deviation of MC and MCR from MC0

with Varying Number of Transient Faults

A
vg

.%
 d

ev
ia

ti
on

 f
ro

m
 M

C
0

Number of transient faults k

0

5

10

15

20

25

2 3 4 5 6

MC

MCR

CHECKPOINTING-BASED TECHNIQUES

123

6.4 Conclusions
In this chapter we have addressed the problem of checkpoint
optimization. First, we have discussed issues related to local
optimization of the number of checkpoints. Second, we have
shown that global optimization of checkpoint distribution
significantly outperforms the local optimization strategy. We
have extended the fault tolerance policy assignment and
mapping optimization strategy presented in Chapter 5 with a
global optimization of checkpoint distribution, and have shown
its efficiency by experimental results.

PART III
Mixed Soft and Hard

Real-Time Systems

127

Chapter 7
Value-based Scheduling for

Monoprocessor Systems

IN THIS PART OF THE THESIS we will consider that safety
critical applications are composed of soft and hard real-time
processes. The hard processes in the application are critical and
must always complete on time. A soft process can complete after
its deadline and its completion time is associated with a value
function that characterizes its contribution to the quality-of-
service or utility of the application.

We are interested to guarantee the deadlines for the hard
processes even in the presence of transient faults, while maxi-
mizing the overall utility. We will propose a quasi-static schedul-
ing strategy, where a set of schedules is synthesized off-line and,
at run time, the scheduler will select the appropriate schedule
based on the occurrence of faults and the actual execution times
of the processes.

In this chapter we will propose an approach to the synthesis of
fault-tolerant schedules for monoprocessor embedded systems
with mixed soft and hard real-time constraints. We will employ
process re-execution to recover from multiple transient faults.

CHAPTER 7

128

Although in this chapter we focus on various aspects of value-
based scheduling in the simplified context of monoprocessor
embedded systems, we will show how our scheduling approach
can be extended towards distributed embedded systems in
Chapter 8.

7.1 Utility and Dropping
The processes of an application are either hard or soft, as dis-
cussed in Section 3.1.2. Hard processes are mandatory while
the execution of soft processes is optional. In Figure 7.1 proc-
esses P1 and P2 are soft, while process P3 is hard. Each soft proc-
ess Pi is assigned with a utility function Ui(t), which is any non-
increasing monotonic function of the completion time of a proc-
ess, as discussed in Section 3.1.6. Figure 7.2a illustrates a utility
function Ua(t) that is assigned to a soft process Pa. If Pa com-
pletes its execution at 60 ms, its utility would equal to 20, as
illustrated in Figure 7.2a.

The overall utility of an application is the sum of individual
utilities produced by the soft processes. The utility of the appli-
cation depicted in Figure 7.2b, which is composed of two soft
processes, Pb and Pc, is 25, in the case that Pb completes at 50
ms and Pc at 110 ms, giving utilities 15 and 10, respectively.
Note that hard processes are not associated with utility func-
tions but it has to be guaranteed that, under any circumstances,
they are executed and meet their deadlines. For application A1,

k = 1

AET

P1

P2

P3

BCET

20 50

30 50

40 60

WCET

80

70

80
μ = 10 msP2

P1

P3
d3 = 180 ms

T = 300 ms

Figure 7.1: Application Example with Soft and Hard
Processes

A1: G1

VALUE-BASED SCHEDULING FOR MONOPROCESSOR SYSTEMS

129

for example, the overall utility in the execution scenario in
Figure 7.2c will be U = U1(25) + U2(60) = 25 + 18 = 43 (i.e., we do
not account for hard process P3 during the computation of the
overall utility).

For a soft process Pi we have the option not to start it at all,
and we say that we “drop” the process, and thus its utility will be
0, i.e., Ui(−) = 0. In the execution scenario in Figure 7.2d, for
example, we drop process P2 of application A1. Thus, process P1
completes at 50 ms and process P3 at 110 ms, which gives the
total utility U = U1(50) + U2(−) = 10 + 0 = 10.

If Pi is dropped and is supposed to produce an input for
another process Pj, we assume that Pj will use an input value
from a previous execution cycle, i.e., a “stale” value, as dis-

P1 P3

U1(t)30

10 t
U2(t)

20

15 t

U1(50)=10

50 110

(d)

(c) P1 P2

18

25

P3 U1(25)=25
U2(60)=18

U2(–)=0

25 60 100
U1(25) + U2(60) = 43

U1(25) + U2(–) = 10

Figure 7.2: Utility Functions and Dropping

Ua (t)
40

20 t

Pa

60 ms
(a) Ua(60)=20

Ub (t)30

15 t

Uc (t)

20

10
t

Pb Pc

Pb Pc

(b)
50 ms 110 ms

Ub(50) + Uc(110) =15 + 10 = 25

CHAPTER 7

130

cussed in Section 3.1.6. This can be the case in control applica-
tions, where a control loop executes periodically and will use
values from previous runs if new ones are not available. To cap-
ture the degradation of quality that might be caused by using
stale values, we update our utility model of a process Pi to
Ui

*(t) = σi × Ui(t), as discussed in Section 3.1.6, where σi repre-
sents the stale value coefficient. σi captures the degradation of
utility that occurs due to dropping of processes, and is obtained
according to an application-specific rule R. We will use the rule
from Section 3.1.61, according to which, if Pi reuses stale
inputs from one of its predecessors, the stale value coefficient
is:

where DP(Pi) is the set of Pi’s direct predecessors. Note that we
add “1” to the denominator and the dividend to account for Pi
itself. The intuition behind this formula is that the impact of a
stale value on Pi is in inverse proportion to the number of its
inputs.

Let us illustrate the above rule on an additional example.2

Suppose that soft process P3 has two predecessors, P1 and P2. If
P1 is dropped while P2 and P3 are completed successfully, then,
according to the above formula, σ3 =(1 + 0 + 1)/(1 + 2) = 2/3.
Hence, U3

*(t) = 2/3 × U3(t). The use of a stale value will propagate
through the application. For example, if soft process P4 is the
only successor of P3 and is completed, then σ4 = (1 + 2/3) / (1 + 1)
= 5/6. Hence, U4

*(t) = 5/6 × U4(t).

1. However, our approach can be used with any other service degradation
rule, different from the one presented here.

2. In Section 3.1.6 we have already provided a simplified example for
computing utilities with service degradation rules.

σi

1 σj
Pj DP Pi()∈

∑+

1 DP Pi()+
--=

VALUE-BASED SCHEDULING FOR MONOPROCESSOR SYSTEMS

131

Dropping might be necessary in order to meet deadlines of
hard processes, or to increase the overall system utility (e.g. by
allowing other, potentially higher-value, soft processes to com-
plete).

7.2 Single Schedule vs. Schedule Tree
The goal of our scheduling strategy is to guarantee meeting the
deadlines for hard processes, even in the case of faults, and to
maximize the overall utility for soft processes. In addition, the
utility of the no-fault scenario must not be compromised when
building the fault-tolerant schedule, since the no-fault scenario
is the most likely to happen.

In our scheduling strategy, we adapt the scheduling strategy
for hard processes, which, as proposed in Chapter 4, uses a
“recovery slack” in order to accommodate the time needed for re-
executions in the case of faults. For each process Pi we assign a
slack of length equal to (ti

w + μ) × f, where f is the number of
faults to tolerate, ti

w is the worst-case execution time of process
Pi, and μ is the recovery overhead. The slack is shared by several
processes in order to reduce the time allocated for recovering
from faults. We will refer to such a fault-tolerant schedule with
recovery slacks as an f-schedule.

Let us illustrate how the value-based scheduling would work
for application A2 in Figure 7.3 if only a single f-schedule is per-
mitted. The application has to tolerate k = 1 faults and the recov-
ery overhead μ is 10 ms for all processes. There are two possible
orderings of processes: schedule S1, “P1, P2, P3” and schedule S2,
“P1, P3, P2”, for which the execution scenarios in the average
non-fault case are shown in Figure 7.3b1-b2. With a recovery
slack of 70 ms, P1 would meet the deadline in both of them in the
worst case and both schedules would complete before the period
T = 300 ms. With our scheduling approach (with a single f-sched-
ule) we have to decide off-line, which schedule to use. In the

CHAPTER 7

132

average no-fault execution case that follows schedule S1, process
P2 completes at 100 ms and process P3 completes at 160 ms. The
overall utility in the average case is U = U2(100) + U3(160) = 20

P2

P1 P2 P3

U2(t) 40

U3(t)
40

P2

P1 k = 1

P3

d1 = 180 AET
P1

P2

P3

BCET

30 50
30 50
40 60

WCET

70
70
80T = 300

μ = 10 ms

P1/1 P1/2 P3 P2

30
10

20 10

b1)

b3)

b4)

a)

P1 P3 P2b2)

P1 P3/1 P3/2

T: 300 250

P1/1 P1/2 P3 P2c1)

c2) P1/1 P1/2 P2 P3

P1

P2P1

P3c3)

c4)

90ms

100ms 150ms 220ms

200ms 250ms

50 100 160

50 110 160

70 150 230 300

70 150 240 310

70 150 230 300

70 150 220 300

50 110

50 100

t

t

b5) P1 P2 P3
30 80 140

S1

S2

S3

S4

Figure 7.3: Scheduling Decisions for a Single Schedule

A2: G2

VALUE-BASED SCHEDULING FOR MONOPROCESSOR SYSTEMS

133

+ 10 = 30. In the average case1 for S2, process P3 completes at
110 and P2 completes at 160, which results in the overall utility
U = U3(110) + U2(160) = 40 + 20 = 60. Thus, S2 is better than S1
on average and is, hence, preferred. However, if P1 will finish
sooner, as shown in Figure 7.3b5, the ordering of S1 is prefera-
ble, since it leads to a utility of U = U2(80) + U3(140) = 40 + 30 =
70, while the utility of S2 would be only 60.

Hard processes have to be always executed and have to toler-
ate all k faults. Since soft processes can be dropped, this means
that we do not have to re-execute them after a fault if their re-
executions affect the deadlines of hard processes, lead to exceed-
ing the period T, or if their re-executions reduce the overall util-
ity. In Figure 7.3b4, execution of process P2 in the worst-case
cannot complete within period T. Hence, process P3 should not
be re-executed. Moreover, in this example, dropping of P3/2 is
better for utility. If P2 is executed instead of P3/2, we get a utility
of 10 even in the worst-case and may get utility of 20 if the exe-
cution of P2 takes less time, while re-execution P3/2 would lead
to 0 utility.

In Figure 7.3c, we reduce the period T to 250 ms for illustra-
tive purposes. In the worst case, if process P1 is affected by a
fault and all processes are executed with their worst-case execu-
tion times, as shown in Figure 7.3c1, schedule S2 will not com-
plete within T. Neither will schedule S1 do in Figure 7.3c2. Since
hard process P1 has to be re-executed in the case of faults, the
only option is to drop one of the soft processes, either P2 or P3.
The resulting schedules S3: “P1, P3” and S4: “P1, P2” are depicted
in Figure 7.3c3 and Figure 7.3c4, respectively. The average util-
ity of S3, U = U3(110) = 30, is higher than the average utility of
S4, U = U2(100) = 20. Hence, S3 will be chosen.

The problem with a single f-schedule is that, although the
faults are tolerated, the application cannot adapt well to a par-

1. We will refer to the average no-fault execution scenario case that
follows a certain schedule Si as the average case for this schedule.

CHAPTER 7

134

ticular execution scenario, which happens online, and would
always use the same pre-calculate single f-schedule. The overall
utility cannot be, thus, improved even if this, potentially, is pos-
sible. To overcome the limitations of a single schedule, we will
generate a tree of schedules. The main idea of the schedule tree is
to generate off-line a set of schedules, each adapted to different
situations that can happen online, such that the utility is maxi-
mized. These schedules will be available to a runtime scheduler,
which will switch to the best one (the schedule that guarantees
the hard deadlines and maximizes utility) depending on the
occurrence of faults and on finishing times tc of processes.

In the schedule tree, each node corresponds to a schedule, and
each edge is the switching that will be performed if the condition
on the edge becomes true during execution. The schedule tree in
Figure 7.4 corresponds to the application A2 in Figure 7.3. We
will use the utility functions depicted in Figure 7.3a. The sched-
ule tree is constructed for the case k = 1 and contains 12 nodes.
We group the nodes into 4 groups. Each schedule is denoted with
Si

j, where j stands for the group number. Group 1 corresponds to
the no-fault scenario. Groups 2, 3 and 4 correspond to a set of
schedules in the case of faults affecting processes P1, P2, and P3,
respectively. The schedules for the group 1 are presented in
Figure 7.4b. The scheduler starts with the schedule . If proc-
ess P1 completes after time 40, i.e., tc(P1) > 40, the scheduler
switches to schedule , which will produce a higher utility. If a
fault happens in process P1, the scheduler will switch to sched-
ule that contains the re-execution P1/2 of process P1. Here we
switch not because of utility maximization, but because of fault
tolerance. The schedules for group 2 are depicted in Figure 7.4c.
If the re-execution P1/2 completes between 90 and 100 ms, i.e., 90
< tc(P1/2) < 100, the scheduler switches from to , which
gives higher utility, and, if the re-execution completes after 100,
i.e., tc(P1/2) > 100, it switches to in order to satisfy timing con-
straints. Schedule represents the situation illustrated in
Figure 7.3c2, where process P3 had to be dropped. Otherwise,

S1
1

S2
1

S1
2

S1
2 S2

2

S3
2

S3
2

VALUE-BASED SCHEDULING FOR MONOPROCESSOR SYSTEMS

135

execution of process P3 will exceed the period T. Note that we
choose to drop P3, not P2, because this gives a higher utility
value.

P2 P3P1

P1 P3 P2

P1/1 P1/2 P3 P2

P1/1 P1/2 P2 P3

P1/1 P1/2 P2

P2/1 P3P1 P2/2

P1 P2/1 P2/2

P1 P3 P2/1 P2/2

P1 P3 P2/1

P2 P3/1P1 P3/2

P1 P2 P3/1

P1 P3/1 P2

b)

c)

d)

e)

T
S1

1

S2
1

S1
2

S2
2

S3
2

S2
3

S3
3

S4
3

S1
3

S1
4

S2
4

S3
4

20 40 60 80 100 120 140 160 180 200 220 2400

Figure 7.4: A Schedule Tree

S1 S2

Group 1

S1

S2

Group 2

S1 S2

Group 3

S3

S3 S4

S1 S2

Group 4

S3

P1

tc(P1)>40

90<tc(P1/2)≤100

a)

tc(P1/2)>100 tc(P2/1) > 90

tc(P2/1) >160

tc(P3/1)>150

P2 P3

2

1 1

2

2

3

3

3

3

4

4

4

CHAPTER 7

136

The generation of a complete schedule tree with all the neces-
sary schedules that captures different completion times of proc-
esses is practically infeasible for large applications. The number
of fault scenarios grows exponentially with the number of faults
and the number of processes, as has been discussed in Chapter
4. In addition, in each fault scenario, the processes may com-
plete at different time moments. The combination of different
completion times is also growing exponentially [Cor04b]. Thus,
the main challenge of schedule tree generation for fault-tolerant
systems with utility maximization is to generate an affordable
number of schedules, which are able to produce a high utility.

7.3 Problem Formulation
In this section we present our problem formulation for value-
based monoprocessor scheduling.

As an input to our problem we get an application A, repre-
sented as a set of directed, acyclic graphs merged into a single
hypergraph G(V, E), composed of soft real-time and hard real-
time processes. Soft processes are assigned with utility func-
tions Ui(t) and hard processes with hard deadlines di, as pre-
sented in Section 3.1.6. Application A runs with a period T on a
single computation node. The maximum number k of transient
faults and the recovery overhead μ are given. We know the best
and worst-case execution times for each process, as presented in
Section 3.1.2. The execution time distributions for all processes
are also given.

As an output, we have to obtain a schedule tree that maxi-
mizes the total utility U produced by the application and satis-
fies all hard deadlines in the worst case. The schedules in the
tree are generated such that the utility is maximized in the case
that processes execute with the expected execution times.

Schedules must be generated so that the utility is maximized
with preference to the more probable scenario. The no-fault sce-

VALUE-BASED SCHEDULING FOR MONOPROCESSOR SYSTEMS

137

nario is the most likely to happen, and scenarios with less faults
are more likely than those with more faults. This means that
schedules for f + 1 faults should not compromise schedules for f
faults.

7.4 Scheduling Strategy and Algorithms
Due to complexity, in our scheduling approach, which solves the
scheduling problem presented in Section 7.3, we restrict the
number of schedules that are part of the schedule tree. Our
schedule tree generation strategy for fault tolerance is pre-
sented in Figure 7.5. We are interested in determining the best
M schedules that will guarantee the hard deadlines (even in the
case of faults) and maximize the overall utility. Thus, the func-
tion returns either a fault-tolerant schedule tree Φ of size M or
fails to provide a schedulable solution.

We start by generating the f-schedule Sroot, using the FTSG

scheduling algorithm presented in Section 7.4.21. The schedul-
ing algorithm considers the situation where all the processes are

1. ∅ in the FTSG call in Figure 7.5 indicates that the root schedule Sroot
does not have a parent, i.e., Sparent = ∅.

 SchedulingStrategy(k, T, M, G): const R
 1 Sroot = FTSG(∅, k, T, G)

 2 if Sroot = ∅ then return unschedulable

 3 else

 4 set Sroot as the root of fault-tolerant schedule tree Φ
 5 Φ = FTTreeGeneration(Sroot, k, T, M, G)

 6 return Φ
 7 end if

 end SchedulingStrategy

Figure 7.5: General Scheduling Strategy

CHAPTER 7

138

executed with their worst-case execution times, while the utility
is maximized for the case where processes are executed with
their expected execution times (as was discussed in Figure 7.3).
Thus, Sroot contains the recovery slacks to tolerate k faults for
hard processes and as many as possible faults for soft processes.
The recovery slacks will be used by the runtime scheduler to re-
execute processes online, without changing the order of process
execution. Since this is the schedule assuming the worst-case
execution times, many soft processes will be dropped to provide
a schedulable solution.

If, according to Sroot, the application is not schedulable, i.e.,
one or more hard processes miss their deadlines or if it exceeds
period T, we conclude that we cannot find a schedulable solution
and terminate. If the application is schedulable, we generate the
schedule tree Φ starting from the schedule Sroot by calling a
schedule tree generation heuristic, presented in the next sec-
tion. The tree generation heuristic will call FTSG to generate f-
schedules in the schedule tree.

7.4.1 SCHEDULE TREE GENERATION

In general, a schedule tree generation heuristic should generate
a tree that will adapt to different execution situations. However,
tracing all execution scenarios is infeasible. Therefore, we have
used the same principle as in [Cor04b] to reduce the number of
schedules in the schedule tree Φ. We consider only the expected
and the worst-case execution times of processes.

We begin the generation of the tree, as depicted in Figure 7.6,
from the root schedule Sroot, from which the scheduler will
switch to the other schedules in the tree in order to improve the
overall utility. We consider Sroot as the current schedule φmax
(φmax = Sroot, line 2). The tree generation algorithm is iterating
while improving the total utility value with the new schedules
φnew, produced from the current schedule φmax (lines 3-20). Alter-
natively, it stops if the maximum number M of f-schedules has

VALUE-BASED SCHEDULING FOR MONOPROCESSOR SYSTEMS

139

been reached. We evaluate each process Pi in φmax as completed
with expected execution time, and generate a corresponding
schedule φnew (lines 8-13). After φnew is generated, we determine
when it is profitable to change to it from φmax, and at what com-
pletion times of process Pi (line 10), in the interval partitioning
step. We heuristically compute switching points to φnew by
exploring possible completion times (from the earliest possible
to the latest possible) of process Pi in φmax with a given interval
Δ. Then, we evaluate the new schedule tree containing also φnew
(line 11). This evaluation is done by simulation. During simula-
tion, we run the actual runtime scheduler that executes a vari-

 FTTreeGeneration(Sroot, k, T, M, G): const R, Δ, dε

 1 Φ = ∅
 2 Φ’ = Sroot; φmax = Sroot

 3 do
 4 improvement = false
 5 if φmax ≠ ∅ and TreeSize(Φ) ≤ M then
 6 improvement = true

 7 Φ = Φ ∪ φmax; Remove(φmax, Φ’)
 8 for all Pi ∈ φmax do
 9 φnew = FTSG(Pi, φmax, k, T, G)

 10 IntervalPartitioning(Pi, φmax, φnew, Δ)
 11 Unew = Evaluate(Φ ∪ φnew, dε)
 12 if Unew > Umax then Φ’ = Φ’ ∪ φnew

 13 end for
 14 Umax = 0; φmax = ∅
 15 for all φj ∈ Φ’ do
 16 Uj = Evaluate(Φ ∪ φj, dε)
 17 if Umax < Uj then Umax = Uj; φmax = φj

 18 end for
 19 end if
 20 while improvement
 21 return Φ
 end FTTreeGeneration

Figure 7.6: Schedule Tree Generation

CHAPTER 7

140

ety of execution scenarios, which are randomly generated based
on the execution time distributions of application processes. We
are able to run 10.000s execution scenarios in a matter of sec-
onds. For each simulation run we obtain the utility produced by
the application in this run, and also obtain the total utility Unew
as an average over the utility values produced by the application
in all the simulation runs so far. Simulation is performed until
the value of the total utility Unew converges with a given error
probability dε. If φnew improves the total utility of the schedule
tree (as compared to the tree without φnew), it is temporarily
attached to the tree (added to the set Φ’ of temporarily selected f-
schedules, line 12). All new schedules, which are generated, are
evaluated in this manner and the f-schedule φmax, which gives
the best improvement in terms of the total utility, is selected
(lines 14-18) to be used in the next iteration (instead of the ini-
tial Sroot). It is permanently added to the tree Φ and is removed
from the temporal set Φ’ in the next iteration (line 7).

7.4.2 GENERATION OF F-SCHEDULES

Our scheduling algorithm for generation of a single f-schedule is
outlined in Figure 7.7. We construct a single f-schedule φnew,
which begins after switching from its parent schedule Sparent
after completion of process Pi. We consider that Pi executes with
its expected execution time for all execution scenarios in φnew.
Because of the reduced execution time of Pi, from the worst case
to the expected, more soft processes can be potentially scheduled
in φnew than in Sparent, which will give an increased overall util-
ity to the schedule φnew compared to Sparent. (Note that in the
case of generation of the root schedule Sroot, if Sparent = ∅, all the
processes are considered with their worst-case execution times.)

The algorithm iterates while there exist processes in the
ready list LR (lines 2-3). List LR includes all “ready” soft and
hard processes. By a “ready” hard process, we will understand
an unscheduled hard process, whose all hard predecessors are

VALUE-BASED SCHEDULING FOR MONOPROCESSOR SYSTEMS

141

already scheduled. A “ready” soft process is simply an unsched-
uled soft process. The ready list LR is prepared during initializa-
tion of the algorithm by collecting the “ready” processes, which
have not been scheduled in Sparent (line 2).

At each iteration, the heuristic determines which processes, if
chosen to be executed, lead to a schedulable solution (line 4), and
copy them to the list A. Then the “best” process is selected from
A (ProcessSelect, line 5). ProcessSelect selects either the “best” soft
process that would potentially contribute to the greatest overall
utility according to the MU priority function proposed in
[Cor04b] or, if there are no soft processes in A, the hard process
with the earliest deadline.

The MU priority function, which we adopt, computes for each
soft process Pi the value, which constitutes of the utility Ui

*(t)
produced by Pi, scheduled as early as possible, and the sum of
utility contributions of the other soft processes delayed because

 FTSG(Pi, Sparent, k, T, G): const R

 1 φnew = ∅
 2 LR = GetReadyNodes(G, Sparent)

 3 while LR ≠ ∅ do
 4 A = LeadToSchedulableSolution(LR, k, T, G)
 5 Best = ProcessSelect(A, k, T, G)

 6 Schedule(Best, φnew)
 7 AddSlack(Best, φnew)
 8 UpdateReadyNodes(Best, LR)

 9 Dropping(LR, k, T, G)
 10 end while
 11 return φnew

 end FTSG

Figure 7.7: Single Schedule Generation

CHAPTER 7

142

of Pi. The utility contribution of the delayed soft process Pj is
obtained as if process Pj would complete at time

where tj
E and tj

L are the completion times of process Pj in the
case that Pj is scheduled after Pi as early as possible and as late
as possible, respectively.

Note that we have modified the original MU priority function
to capture dropping of soft processes by considering the
degraded utility U*(t), obtained with a service degradation rule
R, instead of the original U(t).

We schedule the selected process Best (line 6) and for each
process we add recovery slack, as discussed in Section 7.2 (Add-

Slack, line 7). Recovery slacks of hard processes will accommo-
date all k faults. Recovery slacks of soft processes, however,
must not reduce the utility value of the no-fault scenarios and
will, thus, accommodate re-executions against as much faults as
possible but, in general, not against all k faults.

Finally, the list LR of ready nodes is updated with the ready
successors of the scheduled process (line 8). Those soft processes,
whose executions will not lead to any utility increase or would
exceed application period T, are removed from the ready list LR,
i.e., dropped (line 9).

The FTSG heuristic will return either φnew = Sroot or a fault-tol-
erant schedule φnew that will be integrated into the schedule tree
Φ by the FTTreeGeneration heuristic.

7.4.3 SWITCHING BETWEEN SCHEDULES

Online switching between schedules in the schedule tree is per-
formed very fast. At each possible switching point, e.g. after
completion of a process in the current schedule, the scheduler
can have at most two possible alternatives, i.e., to switch or not
to switch to the “new” schedule φnew. We store a pointer to a

tj
tj

E tj
L

+

2
-----------------=

VALUE-BASED SCHEDULING FOR MONOPROCESSOR SYSTEMS

143

“new” schedule φnew in an “old” schedule Sparent, when attaching
the “new” schedule to the schedule tree (line 7, Figure 7.6), asso-
ciated to a process Pi, whose finishing time triggers the potential
switching to the “new” schedule. We also store the pre-computed
switching intervals. Thus, the runtime scheduler will only check
if the completion time of the process Pi matches the switching
interval (i.e., an “if” statement has to be executed in the sched-
uler code) and, if so, will de-reference the pointer to the “new”
schedule φnew. Thus, no searching of the appropriate schedules is
performed online and the online time overhead is practically
neglectable.

7.5 Experimental Results
For our experimental evaluation, we have generated 450 appli-
cations with 10, 15, 20, 25, 30, 35, 40, 45, and 50 processes,
respectively, where we have uniformly varied worst-case execu-
tion times of processes between 10 and 100 ms. We have gener-
ated best-case execution times randomly between 0 ms and the
worst-case execution times. We consider that completion time of
processes is uniformly distributed between the best-case execu-
tion time ti

b and the worst-case execution time ti
w, i.e., the

expected execution time ti
e is (ti

w − ti
b) / 2. The number k of tol-

erated faults has been set to 3 and the recovery overhead μ to 15
ms. The experiments have been run on a Pentium 4 2.8 GHz
processor with 1Gb of memory.

In the first set of experiments we have evaluated the quality
of single fault-tolerant schedules produced by our FTSG algo-
rithm. We have compared it with a straightforward approach
that works as follows: we obtain single non-fault-tolerant sched-
ules that produce maximal value (e.g. as in [Cor04b]). Those
schedules are then made fault-tolerant by adding recovery
slacks to tolerate k faults in the hard processes. The soft proc-

CHAPTER 7

144

esses with the lowest utility value are dropped until the applica-
tion becomes schedulable. We call this straightforward
algorithm FTSF. The experimental results given in Figure 7.8
show that FTSF is 20-70% worse in terms of utility compared to
FTSG.

In a second set of experiments we were interested to deter-
mine the quality of our schedule tree generation approach for
fault tolerance (FTTreeGeneration) in terms of overall utility for the
no-fault scenario and for the fault scenarios. Figure 7.8 presents
the normalized utility obtained by the three approaches, varying
the size of applications. We have evaluated schedules generated
by FTTreeGeneration, FTSG, and FTSF with extensive simulations.
The overall utility for each case has been calculated as an aver-
age over all execution scenarios. Figure 7.8 shows the results for

0

20

40

60

80

100

120

10 15 20 25 30 35 40 45 50

FTSF

FTSG

FTTreeGeneration

Figure 7.8: Comparison between FTTreeGeneration,
FTSG and FTSF

Application Size (Processes)

U
ti

li
ty

 N
or

m
al

iz
ed

 t
o

F
T

Q
S

 (%
)

VALUE-BASED SCHEDULING FOR MONOPROCESSOR SYSTEMS

145

the no-fault scenarios. We can see that FTTreeGeneration is 11-18%
better than FTSG, where FTSG is the best of the single schedule
alternatives.

7.6 Conclusions
In this chapter we have addressed fault-tolerant applications
with soft and hard real-time constraints. The timing constraints
have been captured using deadlines for hard processes and time/
utility functions for soft processes.

We have proposed an approach to the synthesis of a tree of
fault-tolerant schedules for mixed hard/soft applications run on
monoprocessor embedded systems. Our value-based quasi-static
scheduling approach guarantees the deadlines for the hard
processes even in the case of faults, while maximizing the
overall utility of the system.

147

Chapter 8
Value-based Scheduling for

Distributed Systems

IN THIS CHAPTER we present an approach for scheduling of
fault-tolerant applications composed of soft and hard real-time
processes running on distributed embedded systems. We extend
our monoprocessor quasi-static scheduling approach from
Chapter 7. We propose a scheduling algorithm to generate a tree
of fault-tolerant distributed schedules that maximize the
application’s quality value and guarantee hard deadlines even
in the presence of faults. We also develop a signalling
mechanism to transmit knowledge of the system state from one
computation node to the others and we explicitly account for
communications on the bus during generation of schedule
tables.

CHAPTER 8

148

8.1 Scheduling
Our problem formulation for the value-based scheduling in the
distributed context is similar to the case of monoprocessor sys-
tems, presented in Section 7.3, with the difference that we con-
sider a distributed bus-based architecture, where the mapping
M of processes on computation nodes is given. We have to obtain
a tree of fault-tolerant schedules on computation nodes that
maximize the total utility U produced by the application and
satisfies all hard deadlines in the worst case. In this section we
propose a value-based quasi-static scheduling approach that
solves this problem of utility maximization for fault-tolerant dis-
tributed systems.

In this chapter we adapt the scheduling strategy, which we
have applied in Chapter 7 to generate fault-tolerant schedules
for mixed soft and hard real-time monoprocessor systems. This
strategy uses a “recovery slack” in the schedule to accommodate
the time needed for re-executions in the case of faults. After each
process Pi we will assign a slack equal to (ti

w + μ) × f, where f is
the number of faults to tolerate, ti

w is the worst-case execution
time of the process and μ is the re-execution overhead. The slack
is shared between processes in order to reduce the time allocated
for recovering from faults.

We extend our monoprocessor scheduling strategy from
Chapter 7 to capture communications on the bus. In our
scheduling approach for distributed hard real-time systems in
Section 4.4, the sending and receiving times of messages on the
bus are fixed and cannot be changed within one fault-tolerant
schedule. Each message mi, which is an output of process Pj, is
always scheduled at fixed time on the bus after the worst-case
completion time of Pj. In this chapter, we will refer to such a
fault-tolerant multiprocessor schedule with recovery slacks and
fixed communications as an fN-schedule, where N is the number
of computation nodes in the system.

VALUE-BASED SCHEDULING FOR DISTRIBUTED SYSTEMS

149

8.1.1 SIGNALLING AND SCHEDULES

Our primary objective is to maximize the total utility value of
the application. However, pure fN schedules with fixed sending
times of messages can lower the total utility due to imposed
communication restrictions. Thus, we will propose a signalling
mechanism to overcome this restriction, where a signalling
message is broadcasted by computation node Nj to all other
nodes to inform if a certain condition has been satisfied on that
node. In our case, this condition is the completion of process Pi
on node Nj at such time that makes execution of another pre-
calculated schedule more beneficial than the presently
running schedule. The condition can be used for scheduling if
and only if it has been broadcasted to all computation nodes with
the signalling message. Switching to the new schedule is
performed by all computation nodes in the system after
receiving the broadcasted signalling message with the
corresponding “true” condition value. In the proposed signalling
approach, we will send one signalling message for each process,
after the worst-case execution time for hard processes or after
the expected execution time for soft processes in the schedule.
The number of signalling messages has been limited to one per
process, taking into account problem complexity and in order to
provide a simple yet efficient solution. We will illustrate our
signalling mechanism for soft and hard processes on two
examples in Figure 8.1 and Figure 8.2, respectively.

In Figure 8.1, we consider application A1 with 5 processes, P1
to P5, where processes P1 and P5 are hard with deadlines of 170
and 400 ms, respectively, and processes P2, P3 and P4 and all
messages are soft. In Figure 8.1a, a single f 2 schedule S0 is gen-
erated, as depicted above the Gantt chart that outlines a possi-
ble execution scenario that would follow S0. Message sending
times on the bus are fixed and message m2 is, thus, always sent
at 150 ms (denoted as m2[150] in the schedule). m2 has to wait

fn
N

fp
N

fn
N

CHAPTER 8

150

for the worst-case completion time of P2.1 The order of processes
is preserved on computation nodes. However, the start times of

P1/2

60
50

t

N1

N2

bus

m2

P3

P1

k = 1d1 = 170 ms T = 400 ms
μ = 10 ms

N1 N2

P5

d5 = 400 ms

m3

m2 : 10 ms

P2

m2 AETBCET WCETM(Pi)
P1 60 70 80N2

P2 30 70 150N1

P3 40 60 90N2

P4 40 60 90N2

P3

m1

P2

P4

N1

N2

bus

m2Sg2

70

P5 30 40 50N2

P1/1 P1/2

P2

P1

P3

U = U2(70) + U3(220) + U4
*(140) = 45 + 70 + 1/2 × 60 = 145

P4

U = U2(70) + U3(145) + U4(205) = 45 + 70 + 55 = 170

P4

m4

40
30
20
10
0

U3(t)U4(t)
U2(t)

U(t)

d5

d5

d1

d1

P1/1

P2

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

S0(N1): P2(0)+1
S0(N2): P1(0)+1, P4(0)+0, P3(160)+0, P5(160)+1
S0(bus): m2[150]

S1(N1): P2(0)+1
S1(N2): P1(0)+1, CF2 {P4(75)+0, P3(160)+0, P5(160)+1}
S1(bus): Sg2[70], CF2 {m2[150]}

S2(N1): CT2{}
S2(N2): CT2{P3(85)+0, P4(85)+0, P5(85)+1}
S2(bus): CT2{m2[75]}

P5P3P4

P5P4P3

S2

S1

C2

S0

S1 S2

P5P1

P5

Φ:

Figure 8.1: Signalling Example for a Soft Process

(a)

(b)

A1:G1

VALUE-BASED SCHEDULING FOR DISTRIBUTED SYSTEMS

151

processes are varied, under the constraint that processes do not
start earlier than their earliest allowed start time in the sched-
ule. For example, process P3 will wait until completion of process
P4 but will not start earlier than 160 ms, waiting for message m2
(with the constraint denoted as P3(160) in the schedule). In
schedule S0 we also depict the number rex of allowed re-execu-
tions for processes with the “+rex” notation. For example, proc-
ess P2 is allowed to re-execute rex = 1 time to tolerate k = 1 fault,
i.e., P2(0) + 1, while processes P3 and P4 are not allowed to re-
execute (rex = 0).

In the execution scenario in Figure 8.1a, which follows S0,
process P2 completes at 70 ms with utility of 45. Process P4 is
executed directly after process P1 with resulting utility of 1/2 × 60
= 30. Process P3 is waiting for message m2 and completes with
utility of 70. The overall utility is, thus, 145.

In the schedule shown in Figure 8.1b, we employ the signal-
ling mechanism. The signalling message Sg2 is sent after the
expected execution time of the soft process P2, which can trigger
the switch from the initial root schedule S1 to the new schedule
S2. Schedule tree Φ, composed of schedules S1 and S2, is depicted
above the Gantt chart in Figure 8.1b. Switching between the
schedules is performed upon known “true” condition CT2, which
is broadcasted with the signalling message Sg2. CT2 informs
that P2 has completed at such time that switching to S2 has
become profitable. In the opposite case, when switching to S2 is
not profitable, due to, for example, that P2 has not completed at
that time, Sg2 transports a “false” condition CF2. Thus, two exe-
cution scenarios are possible in the tree Φ: under “true” condi-
tion CT2 and under “false” condition CF2. As illustrated in
Figure 8.1b, in schedule S1, in the CF2 case, processes P3, P4 and
P5 and message m2 are grouped under this condition as CF2{P4,
P3, P5} on node N2 and as CF2{m2} on the bus. They will be acti-

1. Note that if P2 is re-executed, message m2 will be, anyway, sent at 150
ms with a “stale” value.

CHAPTER 8

152

vated in the schedule only when “false” condition CF2 is
received. In schedule S2, to which the scheduler switches in the
case of “true” condition CT2, processes P3, P4 and P5 and mes-
sage m2 are grouped under CT2 that will activate them.

With the signalling mechanism, the overall utility produced
by application A1 is improved. In the Gantt chart in Figure 8.1b,
process P2 completes at 70 ms with utility of 45. In this case

P3 P6/1 P6/2

P3

P1 P5N1

N2

bus

P6/1

m2 m4m3

P2

P4 P6/2

P1/1 P1/2

d6

P3

P1 P5
N1

N2

bus

P6/1

m3 m4m2

P2

P4 P6/2

P1/1 P1/2

d6

U = U2(170) + U3
*(135) + U4

*(70) + U5
*(110)

= 35 + 1/2 × 35 + 1/2 × 60 + 1/2 × 70 = 117.5

U =U2(170) +U3(160) +U4
*(70) +U5

*(110)
= 35 + 35 + 1/2 × 60 + 1/2 × 70 = 135

d1

d1

Sg1Sa Sb

40

80

U5(t)50

t
0

20
30

10

60
70

U2()

U3()t

U ()

U(t)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380

t t4

k = 1

μ = 10 ms

N1 N2

P2

P1

P4

d1 = 150 ms

T = 400 ms

P6 d6 = 380 ms

m1 m4

m8m6

m3

P3

m7

m2

P5

m5

m2 : m3 : m4 : 10 ms

AETBCET WCETM(Pi)
P1 30 50 70N1

P2 50 60 100N1

P3 50 75 120N2

P5 50 60 100N1

P4 50 60 120N2

P6 30 60 80N2

Figure 8.2: Signalling Example for a Hard Process

(a)

(b)

A2:G2

VALUE-BASED SCHEDULING FOR DISTRIBUTED SYSTEMS

153

switching to the schedule S2 is profitable and, hence, signalling
message Sg2 with the “true” condition CT2 is broadcasted. The
scheduler switches from S1 to S2 after arrival of Sg2, as shown in
the figure. According to the new order in schedule S2, process P4
is executed after its predecessor P3, with the utilities of 55 and
70, respectively. The resulting utility of this execution scenario,
thus, will be 170, instead of only 145 in Figure 8.1a.

As another example, in Figure 8.2 we depict execution scenar-
ios for application A2, which is composed of 6 processes, P1 to P6,
where processes P2 to P5 are soft with utility functions U2(t) to
U5(t) and processes P1 and P6 are hard with deadlines 150 and
380 ms, respectively. Message m2 is hard and all other messages
are soft. A single f 2 schedule will produce the overall utility of
117.5 for the execution scenario depicted in Figure 8.2a. If, how-
ever, we send a signal Sg1 after the worst-case execution time of
the hard process P1 and generate the corresponding schedule Sb,
we can produce better overall utility of 135, by switching to the
schedule Sb, as depicted in Figure 8.2b.

8.1.2 SCHEDULE TREE GENERATION

The tree of fault-tolerant schedules is constructed with the
FTTreeGenerationDistributed heuristic, outlined in Figure 8.3. This
heuristic is an almost exact copy of the FTTreeGeneration heuristic,
which we have presented in Section 7.4.1 for monoprocessor
systems. In the distributed context, however, the root schedule
Sroot and new schedules φnew are generated with the
FTSGDistributed heuristic, outlined in Figure 8.4, which takes care
of communication and signalling. Note that, as an additional
input, we also receive the mapping M of processes in the
application graph G.

Our fN schedule generation heuristic, FTSGDistributed, is based
on the monoprocessor FTSG heuristic, which we have proposed in
Section 7.4.2, with a number of differences such as handling
communication over the bus with signalling messages and

CHAPTER 8

154

assigning guards. Processes and messages in FTSGDistributed are
scheduled under known conditions or guards [Ele00]. The sched-
uler will switch from a parent schedule Sparent to the new sched-
ule φnew in the case it receives the signalling message Sgi
containing a true condition.

Current guard is initially set to true for the constructed sched-
ule φnew in the case of no parent schedule (and φnew = Sroot sched-
ule is generated, for example, S1 in Figure 8.1b). If there exists a
parent schedule, the value of the current guard is initialized
with the condition value upon which the schedule φnew is acti-

 FTTreeGenerationDistributed(Sroot, k, T, M, M, G): const R, Δ, dε

 1 Φ = ∅
 2 Φ’ = Sroot; φmax = Sroot

 3 do
 4 improvement = false

 5 if φmax ≠ ∅ and TreeSize(Φ) ≤ M then
 6 improvement = true
 7 Φ = Φ ∪ φmax; Remove(φmax, Φ’)

 8 for all Pi ∈ φmax do
 9 φnew = FTSGDistributed(Pi, φmax, k, T, M, G)
 10 IntervalPartitioning(Pi, φmax, φnew, Δ)

 11 Unew = Evaluate(Φ ∪ φnew, dε)
 12 if Unew > Umax then Φ’ = Φ’ ∪ φnew

 13 end for
 14 Umax = 0; φmax = ∅
 15 for all φj ∈ Φ’ do
 16 Uj = Evaluate(Φ ∪ φj, dε)

 17 if Umax < Uj then Umax = Uj; φmax = φj

 18 end for
 19 end if
 20 while improvement
 21 return Φ
 end FTTreeGenerationDistributed

Figure 8.3: Schedule Tree Generation
in the Distributed Context

VALUE-BASED SCHEDULING FOR DISTRIBUTED SYSTEMS

155

vated by its parent schedule Sparent (line 1).1 The current guard
will be updated after scheduling of each signalling message Sgj
in φnew.

During construction of φnew, we consider that Pi executes with
its expected execution time for all execution scenarios in φnew.
Because of the reduced execution time of Pi, from the worst case
to the expected case, more soft processes can be potentially
scheduled in φnew than in Sparent, which will give an increased
overall utility to the schedule φnew compared to Sparent.

The algorithm in Figure 8.4, similar to the monoprocessor
heuristic FTSG, iterates while there exist processes and mes-
sages in the ready list LR, which are selected to be scheduled

1. This condition value will be calculated online based on the actual fin-
ishing time of the process and will initiate switching to the schedule
φnew, as discussed in Section 8.1.3.

 FTSGDistributed(Pi, Sparent, k, T, M, G): const R

 1 φnew = ∅; SetCurrentGuard(Pi, φnew)

 2 LR = GetReadyNodes(G)
 3 while LR ≠ ∅ do
 4 A = LeadToSchedulableSolution(LR, k, T, M, G)

 5 for each resource rj ∈N ∪ {B} do Bestj = ProcessSelect(rj,A,k,T,M,G)
 6 Best = SelectBestCRT(all Bestj)
 7 K = ObtainGuards(Best, φnew)

 8 Schedule(Best, K, φnew)
 9 if Best is a process thenAddSlack(Best, φnew); AddSgMsg(Best, LR)
 10 if Best is a signal then UpdateCurrentGuards(Best, φnew)

 11 UpdateReadyNodes(Best, LR)
 12 Dropping(rj,
 13 end while
 14 return φnew

 end FTSGDistributed

Figure 8.4: Single Schedule Generation in the
Distributed Context

LR, k, T, G)

CHAPTER 8

156

(lines 2-3). List LR includes all “ready” soft and hard processes
and messages. By a “ready” hard process or message, we will
understand an unscheduled hard process or message, whose all
hard predecessors are already scheduled. A “ready” soft process
or message is simply an unscheduled soft process or message. At
each iteration, the heuristic determines which processes and
messages, if chosen to be executed, lead to a schedulable solution
(line 4), and copy them to the list A. Then the “best” processes on
computation nodes and the “best” message on the bus are
selected from A (ProcessSelect, line 5) that would potentially con-
tribute to the greatest overall utility. We select processes and
messages according to the MU priority function proposed in
[Cor04b] and modified by us to capture possible process drop-
ping (see Section 7.4.2, where, during priority computation, we
consider the degraded utility U*(t), obtained with a service deg-
radation rule R, instead of the original U(t)). Out of the “best”
processes and messages on different resources, we select the one
which can be scheduled the earliest (line 6).

We schedule the selected process or message Best under the
current set of known conditions K (lines 7-8). For each process
we add a recovery slack (AddSlack, line 9). Recovery slacks of hard
processes will accommodate re-executions against all k faults.
Recovery slacks of soft processes, however, must not reduce the
utility value of the no fault scenarios and will, thus, accommo-
date re-executions against as much faults as possible but, in
general, not against all k faults. For each process Pj we also add
its signalling message Sgj to the ready list LR (AddSgMsg, line 9).
When scheduling a signalling message (line 10), we change cur-
rent guards of computation nodes at arrival time of the message.

Finally, the list LR is updated with the ready successors of the
scheduled process or message (line 11). Those soft processes,
whose executions will not lead to any utility increase or would
exceed application period T, are removed from the ready list LR,
i.e., dropped (line 12).

VALUE-BASED SCHEDULING FOR DISTRIBUTED SYSTEMS

157

The FTSGDistributed heuristic will return either φnew = Sroot or
an fN schedule φnew that will be integrated into the schedule tree
Φ by the FTTreeGenerationDistributed heuristic in Figure 8.3.

8.1.3 SWITCHING BETWEEN SCHEDULES

Switching between schedules in the schedule tree, at runtime, is
also performed very fast but is different from the monoprocessor
case. At each possible switching point, e.g. after completion of a
process Pi, the scheduler can have at most two possible alterna-
tives, i.e., to signal or not to signal the switching to the “new”
schedule φnew. As in the monoprocessor case, we store a pointer
to the “new” schedule φnew in its parent schedule Sparent, when
attaching the “new” schedule φnew to the schedule tree (line 7,
Figure 8.3). However, the pointer is associated to a signalling
message of the process Pi, whose finishing time triggers the
potential switching to the “new” schedule φnew. We also store the
pre-computed switching intervals as attached to this process.
Thus, the runtime scheduler checks if the completion time of the
process Pi matches the switching interval and, if so, encapsu-
lates the corresponding switching condition into the signalling
message, which is broadcasted through the bus.

Upon arrival of the signalling message, the runtime scheduler
on each computation node will de-reference the pointer, associ-
ated to this message, and will switch to the “new” schedule φnew.
Thus, no searching of the appropriate schedules is performed
online in the distributed context and the online time overhead is
reduced.

8.2 Experimental Results
For our experiments we have generated 1008 applications of 20,
30, 40, 50, 60, 70 and 80 processes (24 applications for each
dimension) for 2, 3, 4, 5, 6 and 7 computation nodes. Execution

CHAPTER 8

158

times of processes in each application have been varied from 10
to 100 ms, and message transmission times between 1 and 4 ms.
Deadlines and utility functions have been assigned individually
for each process in the application. For the main set of experi-
ments we have considered that 50% of all processes in each
application are soft and the other 50% are hard. We have set the
maximum number k of transient faults to 3 and recovery over-
head to 10% of process execution time. As the worst-case execu-
tion time of a process can be much longer than its expected
execution time, we have also assigned a tail factor TFi = WCETi /
(AETi × 2) to each process Pi. Experiments have been run on a
2.83 GHz Intel Pentium Core2 Quad processor with 8 Gb mem-
ory.

At first, we were interested to evaluate our heuristics with the
increased number of computation nodes and the number of proc-
esses. For this set of experiments we have set the tail factor to 5
for all soft processes in the applications. Table 8.1 shows an
improvement of the schedule tree on top of a single fN schedule
in terms of total utility, considering an fN schedule in the case of
no faults as a 100% baseline. The average improvement is rang-
ing from 3% to 22% in case of 20 processes on 6 computation
nodes and 40 processes on 2 computation nodes, respectively.
Note that in this table we depict the normalized utility values

Table 8.1: Normalized Utility (Un = UFTTree/UfN×100%) and
the Number of Schedules (n)

N 20 proc. 30 proc. 40 proc. 50 proc. 60 proc. 70 proc. 80 proc.
Un n Un n Un n Un n Un n Un n Un n

2 117 4.3 119 5.3 122 5.6 117 5.8 116 5.4 114 6.5 112 4.9
3 111 3.8 113 4.6 119 6.9 119 6.0 118 5.8 115 7.4 114 7.5
4 109 2.7 112 4.5 113 5.4 118 7.0 115 7.0 115 7.3 113 6.8
5 106 2.5 112 2.6 113 5.6 112 5.8 116 8.0 113 5.8 115 7.0
6 103 2.2 109 4.2 110 4.5 112 6.1 115 7.3 113 6.7 113 6.3
7 103 1.8 106 3.0 109 4.8 112 5.4 110 6.0 110 5.8 112 7.0

VALUE-BASED SCHEDULING FOR DISTRIBUTED SYSTEMS

159

for schedule trees that have been obtained in the case of no
faults. During our experiments, we have observed that the util-
ity values for faulty cases closely follow the no fault scenarios
with about 1% decrease (on average) in the utility value for each
fault, as illustrated, for example, in Figure 8.5b.

As the number of computation nodes increases, in general, the
schedule tree improves less on top of a single fN schedule, which
could seem counterintuitive. However, this is because, with an
increased number of computation nodes, less soft processes are
allocated per node on average and the number of possible value-
based intra-processor scheduling decisions by the tree genera-
tion algorithm is reduced. At the same time, the number of inter-
processor scheduling decisions is supposed to increase. However,
these decisions are less crucial from the point of view of obtain-
ing utility due to the greater availability of computational
resources, and a single fN schedule with a fixed order of proc-
esses is sufficient to utilize them. Moreover, a limited number of
signalling messages, e.g. one per process, restricts the number of
possible inter-processor decisions by the tree generation algo-
rithm. Hence, the total number of exploitable scheduling alter-
natives is reduced with more computation nodes. In case of 20
processes and 2 nodes, the average number of soft processes is 5
per node (considering 50% soft processes in the application, 20 ×
0.5 / 2 = 5) and the utility improvement is 17%. In the case of 7
nodes, only an average of 1.4 soft processes are allocated per
node and, hence, the utility improvement is only 3%. However,
as the number of processes in the application is growing, the
trend is softened. For 40 processes and 2 nodes the improvement
is 22% with the average of 10 soft processes per node. For 7
nodes the improvement is 9% with 2.9 soft processes per node on
average. For 80 processes, the improvement in case of 2 and 7
nodes is already the same, 12% for 20 and 5.7 soft processes per
node, respectively.

The average size of the schedule tree is between 2.2 schedules
for 20 processes on 6 nodes and 8.0 schedules for 60 processes on

CHAPTER 8

160

5 nodes that correspond to 1.3Kb and 9.4Kb of memory,
respectively. As the size of the application grows, the amount of
memory per schedule will increase. Thus, a tree of 7 schedules
for an 80-process application on 5 nodes would require 11.4Kb of

100

105

110

115

120

125

130

1 2 3 4 5 6 7 8 9 10

3 faults
2 faults
1 fault
no faults

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

20 30 40 50 60 70 80

7 nodes

6 nodes

5 nodes

4 nodes

3 nodes

2 nodes

Figure 8.5: Experimental Results for Schedule Tree
Generation in the Distributed Context

(a) Number of processes

T
re

e
co

n
st

ru
ct

io
n

 t
im

e
(s

ec
.)

(b) Tail factor, TF = WCET / (AET × 2)

N
or

m
al

iz
ed

 u
ti

li
ty

 (
%

)

VALUE-BASED SCHEDULING FOR DISTRIBUTED SYSTEMS

161

memory. During our experiments we could also observe that for
many applications already 2-3 schedules give at least half of the
utility improvement. For example, for 40 processes and 2
computation nodes, 3 schedules will give 21% improvement.

Off-line tree construction times with FTTreeGenerationDistributed

are depicted in Figure 8.5a. Our heuristic produces a tree of
schedules in a matter of minutes for 20, 30 and 40 processes, and
below one hour for 50 and 60 processes. Tree construction time is
around 4 hours for 5 nodes and 80 processes. Although the off-
line tree construction time is high for large applications, the
online overhead is still very small and is constant for all applica-
tions, in spite of the application size, as discussed in Section
8.1.3.

For a given total number of processes, the tree construction
time is reduced with the number of computation nodes. This can
be explained taking into account that the average number of soft
processes per computation node is reduced, which leads to a
smaller amount of scheduling alternatives to be explored by the
tree generation algorithm. In case of 2 nodes, a greater number
of soft processes for each computation node is allocated and, as
the result, more valuable scheduling alternatives in total have
to be considered than in the case of, for example, 7 nodes. Our
tree generation algorithm, thus, has to spend much more time
evaluating scheduling alternatives for less nodes than in the
case of more nodes, as confirmed by the experimental results
given in Figure 8.5a.

In our next set of experiments, we have varied the percentage
of soft and hard processes in the applications. We have addition-
ally generated 1080 applications of 20, 30, 40, 50 and 60 proc-
esses for 2, 3, 4, 5 and 6 computation nodes, respectively. The
percentage of soft processes has been initially set to 10% and
hard processes to 90%. We have gradually increased the percent-
age of soft processes up to 90% of soft processes and 10% of hard
processes, with a step of 10% (and have generated 120 applica-
tions of different dimensions for each setup). The improvement

CHAPTER 8

162

produced by FTTreeGenerationDistributed over all dimensions is
between 14 and 16%. The average number of schedules has
increased from 2 for 10% of soft processes to 6 for 90% of soft
processes, with the increased execution time of the heuristic
from 10 to 30 minutes.

We were also interested to evaluate our heuristic with differ-
ent tail factors TF, which we have varied from 1 to 10 for appli-
cations with 40 processes on 2 nodes. As our results in
Figure 8.5b show, improvement produced by FTTreeGeneration-

Distributed is larger in the case of a greater tail factor. If for the
tail factor 1, the improvement is 7.5%, it is around 20% for the
tail factors of 5-6 and 24% for the tail factors above 7. This is due
to the fact that, if the tail factor increases, more soft processes
are dropped in a single fN schedule while they are allowed to
complete in the case of the schedule tree. The processes are more
rarely executed with the execution times close to the worst case
with the greater tail factors. Switching to another schedule in
the schedule tree (after completion of several process) will allow
many of these soft process to complete, without the risk of dead-
line violations, and contribute to the overall utility of the appli-
cation. Note that the total utilities of fault scenarios, as depicted
in Figure 8.5b, closely follow the no fault scenarios with only
about 1% utility value decrease for each fault.

We have also run our experiments on a real-life example, the
vehicle cruise controller (CC), previously used to evaluate sched-
uling algorithms in Chapter 4, which is composed of 32 proc-
esses. CC has been mapped on 3 computation units: Electronic
Throttle Module (ETM), Anti-lock Braking System (ABS) and
Transmission Control Module (TCM). We have considered that
16 processes, which closely involved with the actuators, are
hard. The rest of processes have been assigned with utility func-
tions. The tail factor is 5 with k = 2 transient faults, recovery
overhead of 10% of process execution time and signalling mes-
sage transmission time of 2 ms. In terms of total utility
FTTreeGenerationDistributed could improve on top of a single f 3

VALUE-BASED SCHEDULING FOR DISTRIBUTED SYSTEMS

163

schedule with 22%, with 4 schedules that would need 4.8Kb of
memory.

8.3 Conclusions
In this chapter we have presented an approach to the
scheduling of mixed soft and hard real-time distributed
embedded systems with fault tolerance.

We have proposed a quasi-static scheduling approach that
generates a tree of fault-tolerant schedules off-line that maxi-
mizes the total utility value of the application and satisfies
deadlines in the distributed context. Depending on the current
execution situation and fault occurrences, an online distributed
scheduler chooses which schedule to execute on a particular
computation node, based on the pre-computed switching condi-
tions broadcasted with the signalling messages over the bus.

The obtained tree of fault-tolerant schedules can deliver an
increased level of quality-of-service and guarantee timing con-
straints of safety-critical distributed applications under limited
amount of resources.

PART IV
Embedded Systems with

Hardened Components

167

Chapter 9
Hardware/Software Design

for Fault Tolerance

IN THIS PART OF THE THESIS we combine hardware harden-
ing with software-level fault tolerance in order to achieve the
lowest-possible system hardware cost while satisfying hard
deadlines and fulfilling the reliability requirements. We propose
an optimization framework for fault tolerance, where we use re-
execution to provide fault tolerance in software, while several
alternative hardware platforms with various levels of hardening
can be considered for implementation.

In this chapter we illustrate, on a simple example, the benefits
of looking into software and hardware simultaneously to reduce
the amount of software fault tolerance and minimize the cost of
the hardware. We propose a system failure probability (SFP)
analysis to ensure that the system architecture meets the relia-
bility requirements. This analysis connects the levels of fault
tolerance (maximum number of re-executions) in software to the
levels of hardening in hardware (hardening levels). In the next
chapter, we will propose a set of design optimization heuristics,
based on the SFP analysis, in order to decide the hardening lev-

CHAPTER 9

168

els of computation nodes, the mapping of processes on computa-
tion nodes, and the number of re-executions on each
computation node.

9.1 Hardened Architecture and Motivational
Example

To reduce the probability of transient faults, the designer can
choose to use a hardened, i.e., a more reliable, version (h-ver-
sion) of the computation node. Thus, each node Nj can be available
in several versions , with different hardening levels h, associ-
ated with the cost , respectively. For each pair {Pi, }, where
process Pi is mapped to the h-version of node Nj, we know the
worst-case execution time (WCET) tijh and the probability pijh of
failure of a single execution of process Pi. WCETs are deter-
mined with worst-case analysis tools [Erm05, Sun95, Hea02,
Jon05, Gus05, Lin00, Col03, Her00, Wil08] and the process fail-
ure probabilities can be obtained using fault injection tools
[Aid01, Ste07].

In this part of our work, we will consider a reliability goal ρ =
1 − γ, with respect to transient faults, which has to be met by the
safety-critical embedded system. γ is the maximum probability
of a system failure due to transient faults on any computation
node within a time unit, e.g. one hour of functionality. With suf-
ficiently hardened nodes, the reliability goal can be achieved
without any re-execution at software level, since the probability
of the hardware failing due to transient faults is acceptably
small. At the same time, as discussed in Section 2.2.5, hardware
hardening comes with an increased cost and a significant over-
head in terms of speed (hardening performance degradation). To
reduce the cost or to increase the performance, designers can
decide to reduce the hardening level. However, as the level of
hardening decreases, the probability of faults being propagated
to the software level will increase. Thus, in order to achieve the

Nj
h

Cj
h Nj

h

HARDWARE/SOFTWARE DESIGN FOR FAULT TOLERANCE

169

reliability goal, a certain number of re-executions will have to be
introduced at the software level, which, again, leads to the worst
case performance degradation.

In the example, depicted in Figure 9.1, we show how harden-
ing can improve schedulability if the fault rate is high. In
Figure 9.1, we consider an application A1 composed of one proc-
ess P1, which runs on one computation node N1, with three h-
versions, without hardening and and progressively
more hardened. The corresponding failure probabilities
(denoted “p”), the WCET (denoted “t”) and the costs are depicted
in the table. The application runs with period T = 360 ms. We
have to meet a deadline of 360 ms and the reliability goal of 1 −
10-5 within one hour. As will be shown in Section 9.2, the hard-
ening levels are connected to the number of re-executions in soft-
ware, to satisfy the reliability goal according to the SFP
analysis. In this example, according to the SFP analysis, using

Figure 9.1: Reduction of the Number of Re-executions with
Hardening

80P1

N1
h = 1

10

h = 2

20Cost

h = 3

40

t t tp p p

100 1604·10-2 4·10-4 4·10-6
P1

A1:G1

P1/1

P1/1

P1/1

N1

N1

N1

ρ = 1 – 10-5

μ = 20 ms

D = T = 360ms
N1

P1/2 P1/3 P1/4 P1/5 P1/6 P1/7

P1/2 P1/3

P1/2

a)

b)

c)
3

2

1

40 80 120 160 200 240 280 320 360 400 440 4800 520 560 600 640

Deadline: 360

N1
1 N1

2 N1
3

CHAPTER 9

170

, we have to introduce 6 re-executions to reach the reliability
goal, as depicted in Figure 9.1a, which, in the worst case, will
miss the deadline of 360 ms.1 However, with the h-version ,
the failure probability is reduced by two orders of magnitude,
and only two re-executions are needed for satisfying the reliabil-
ity goal ρ. This solution will meet the deadline as shown in
Figure 9.1b. In case of the most hardened architecture depicted
in Figure 9.1c, only one re-execution is needed. However, using

 will cost twice as much as the previous solution with less
hardening. Moreover, due to hardening performance degrada-
tion, the solution with the maximal hardening will complete in
the worst-case scenario exactly at the same time as the less
hardened one. Thus, the architecture with should be chosen.
The selected architecture will satisfy the reliability goal and
meet deadlines with the lowest-possible hardware cost.

9.2 System Failure Probability (SFP) Analysis
In this section we present an analysis that determines the sys-
tem failure probability, based on the number k of re-executions
introduced in software and the process failure probability of the
computation node with a given hardening level.

As an input, we get the mapping of process Pi on computation
node (M(Pi) =) and the process failure probability pijh of
process Pi, executed on computation node with hardening
level h.

In the analysis, first, we calculate the probability Pr(0;) of
no faults occurring (no faulty processes) during one iteration of
the application on the h-version of node Nj, which is the proba-

1. Numerical computations for this example with the SFP analysis are
presented in Appendix III. A computational example with the SFP
analysis is also presented in Section 9.2.1 of this chapter.

N1
1

N1
2

N1
3

N1
2

Nj
h Nj

h

Nj
h

Nj
h

HARDWARE/SOFTWARE DESIGN FOR FAULT TOLERANCE

171

bility that all processes mapped on will be executed cor-
rectly:

We call the f-fault scenario the combination with repetitions of
f on Π(), where Π() is the number of processes mapped on
the computation node . Under a combination with repetitions
of n on m, we understand the process of selecting n elements
from a set of m elements, where each element can be selected
more than once and the order of selection does not matter
[Sta97].

For example, an application A is composed of processes P1, P2
and P3, which are mapped on node N1. k1= 3 transient faults
may occur, i.e., f = 3 in the worst case. Let us consider one possi-
ble fault scenario, depicted in Figure 9.2. Process P1 fails and is
re-executed, its re-execution fails but then it is re-executed
again without faults. Process P2 fails once and is re-executed
without faults. Thus, in this fault scenario, from a set of proc-
esses P1, P2 and P3, processes P1 and P2 are selected; moreover,
process P1 is selected twice, which corresponds to repetition of
process P1. Thus, the combination is {P1, P1, P2}.

The probability of recovering from a particular combination of
f faults consists of two probabilities, the probability that this
combination of f faults has happened and that all the processes,
mapped on Nj, will be eventually (re-)executed without faults.
The latter probability is, in fact, the no fault probability Pr(0;

Nj
h

Pr 0 Nj
h

;() 1 pijh–()
Pi M Pi() Nj

h
=∀

∏= (9.1)

Nj
h Nj

h

Nj
h

Figure 9.2: A Fault Scenario as a Combination with
Repetitions

P1/1 P2/1P1/2 P2/2P1/3 P3

CHAPTER 9

172

). Thus, the probability of successful recovering from f faults
in a particular fault scenario S* is

where , ,
. The combination with repetitions is

expressed here with a finite submultiset (S*, m*) of a multiset
(S, m) [Sta97]. Informally, a multiset is simply a set with repeti-
tions. Formally, in the present context, we define a multiset as a
function m: S → N, on set S, which includes indices of all proc-
esses mapped on , to the set N of (positive) natural numbers.
For each process Pa with index a in S, the number of re-execu-
tions of process Pa in a particular fault scenario is the number
m(a), which is less or equal to f, the number of faults (expressed
as a supremum of function m(a)). For example, in Figure 9.2,
m(1) = 2 and m(2) = 1. The number of elements in S* is f, e.g. the
number of faulty processes. Thus, if a is repeated f times, m(a) =
f, i.e., Pa fails f times, S* will contain only repetitions of a and
nothing else.

From (9.2), the probability that the system recovers from all
possible f faults is a sum of probabilities of all f-fault recovery
scenarios1:

Suppose that we consider a situation with maximum kj re-exe-
cutions on the node . The node fails if more than kj faults are
occurring. The failure probability of node with kj re-execu-
tions is

1. The combinations of faults in the re-executions are mutually exclusive.

Nj
h

Pr
S∗ f Nj

h
;() Pr 0 Nj

h
;() p

s∗jh
s∗ S∗m∗(,)∈

∏⋅= (9.2)

S∗ m∗(,) f= S∗ m∗(,) S m,() S N⊂,⊂, S Π Nj
h()=

sup m a() a S∈() f=

Nj
h

Pr f Nj
h

;() Pr 0 Nj
h

;() p
s∗jh

s∗ S∗m∗(,)∈
∏

S∗m∗(,) S m,()⊂
∑⋅= (9.3)

Nj
h

Nj
h

HARDWARE/SOFTWARE DESIGN FOR FAULT TOLERANCE

173

where we subtract from the initial failure probability with only
hardware hardening, , the probabilities of all the
possible successful recovery scenarios provided with kj re-execu-
tions.

Finally, the probability that the system composed of n compu-
tation nodes with kj re-executions on each node Nj will not
recover, in the case more than kj faults have happened on any
computation node Nj, can be obtained as follows:

According to the problem formulation, the system non-failure
probability in the time unit τ (i.e., one hour) of functionality has
to be equal or above the reliability goal ρ = 1 − γ, where γ is the
maximum probability of a system failure due to transient faults
within the time unit τ. Considering that the calculations above
have been performed for one iteration of the application (i.e.,
within a period T), we obtain the following condition for our sys-
tem to satisfy the reliability goal

9.2.1 COMPUTATION EXAMPLE

To illustrate how formulae (9.1)-(9.6) can be used in obtaining
the number of re-execution to be introduced at software level, we
will consider the architecture in Figure 9.3 for an application A2

Pr f kj> Nj
h

;() 1 Pr 0 Nj
h

;()– Pr f Nj
h

;()
f 1=

kj

∑–= (9.4)

1 Pr 0 Nj
h

;()–

Pr f kj> Nj
h

;()
j 1=

n

∪⎝ ⎠
⎛ ⎞ 1 1 Pr f kj> Nj

h
;()–()

j 1=

n

∏–= (9.5)

1 Pr f kj> Nj
h

;()
j 1=

n

∪⎝ ⎠
⎛ ⎞–⎝ ⎠

⎛ ⎞
τ
T

ρ≥ (9.6)

CHAPTER 9

174

(with all the necessary details provided in the figure). At first,
we compute the probability of no faulty processes for both nodes

 and :1

Pr(0;) = ⎝(1– 1.2·10-5)·(1– 1.3·10-5)⎠ = 0.99997500015.
Pr(0;) = ⎝(1– 1.2·10-5)·(1– 1.3·10-5)⎠ = 0.99997500015.

According to formulae (9.4) and (9.5),
Pr(f > 0;) = 1 – 0.99997500015 = 0.00002499985.
Pr(f > 0;) = 1 – 0.99997500015 = 0.00002499985.
Pr((f > 0;) ∪ (f > 0;)) = ⎛1 – (1 – 0.00002499985) · (1 –

0.00002499985)⎞ = 0.00004999908.
The system period T is 360 ms, hence system reliability is (1 –

0.00004999908)10000 = 0.60652865819, which means that the
system does not satisfy the reliability goal ρ = 1 – 10-5.

Let us now consider k1 = 1 and k2 = 1:
Pr(1;)=⎝0.99997500015·(1.2·10-5+1.3·10-5)⎠=0.00002499937.
Pr(1;)=⎝0.99997500015·(1.2·10-5+1.3·10-5)⎠=0.00002499937.

1. Symbols ⎛ and ⎞ indicate that numbers are rounded up with 10-11 accu-
racy; ⎝ and ⎠ indicate that numbers are rounded down with 10-11 accu-
racy. This is needed in order to keep the safeness of the probabilities
calculated.

N1
2 N2

2

N1
2

N2
2

Figure 9.3: Computation Example with SFP Analysis

P1

P2

N1
h = 2

t p

75

90

1.2·10-5

1.3·10-5

P2

P1

P4 ρ = 1 − 10-5

μ = 15 ms
N1 N2

D = 360 msP3

m1 m4

m3

m2

A2:G2

P4N2

N1 P2/1

bus

m2 m3

P3/1

P2/2

P3/2

P1

2

2

30 60 90 120 150 180 210 240 270 300 3300

P3

N2

P4

h = 2

t p

60

75

1.2·10-5

1.3·10-5

N1
2

N2
2

N1
2 N2

2

N1
2

N2
2

HARDWARE/SOFTWARE DESIGN FOR FAULT TOLERANCE

175

According to formulae (9.4) and (9.5),
Pr(f >1;)= ⎛1–0.99997500015 – 0.00002499937⎞ = 4.8·10-10.
Pr(f >1;)=⎛1– 0.99997500015 – 0.00002499937⎞ = 4.8·10-10.
Pr((f > 1;) ∪ (f > 1;)) = 9.6·10-10.

Hence, the system reliability is (1 – 9.6·10-10)10000 =
0.99999040004 and the system meets its reliability goal ρ = 1 –
10-5. Thus, in order to meet its reliability requirements, one
transient fault has to be tolerated on each computation node
during one system period.

9.3 Conclusions
In this chapter we have illustrated the trade-off between
increasing hardware reliability by hardening and tolerating
transient faults at the software level. We have also proposed a
system failure probability (SFP) analysis to evaluate if the sys-
tem meets its reliability goal ρ with the given reliability of hard-
ware components and the given number of re-executions in
software. This analysis will play an important role in our optimi-
zation framework presented in the next chapter.

N1
2

N2
2

N1
2 N2

2

177

Chapter 10
Optimization with

Hardware Hardening

IN THIS CHAPTER we propose an approach to design optimiza-
tion of fault-tolerant hard real-time embedded systems, which
combines hardware and software fault tolerance techniques. We
consider the trade-off between hardware hardening and process
re-execution to provide the required levels of fault tolerance
against transient faults with the lowest-possible system hard-
ware cost. We present design optimization heuristics to select
the fault-tolerant architecture and decide process mapping such
that the system cost is minimized, deadlines are satisfied, and
the reliability requirements are fulfilled. Our heuristic will use
the system failure probability (SFP) analysis, presented in
Chapter 9, to evaluate the system reliability.

CHAPTER 10

178

10.1 Motivational Example
In Figure 10.1 we consider several architecture selection alter-
natives in the distributed context, for the application A, com-
posed of four processes, which can be mapped on three h-
versions of two nodes N1 and N2.

The cheapest two-node solution that meets the deadline and
reliability goal is depicted in Figure 10.1a. The architecture con-
sists of the h-versions and and costs 32 + 40 = 72 mone-
tary units. Based on the SFP analysis, the reliability goal can be
achieved with one re-execution on each computation node.1 Let
us now evaluate some possible monoprocessor architectures.
With the architecture composed of only and the schedule pre-
sented in Figure 10.1b, according to the SFP analysis, the relia-
bility goal is achieved with k1 = 2 re-executions at software
level.2 As can be seen in Figure 10.1b, the application is
unschedulable in this case. Similarly, the application is also
unschedulable with the architecture composed of only , with
the schedule presented in Figure 10.1c. Figure 10.1d and
Figure 10.1e depict the solutions obtained with the monoproces-
sor architecture composed of the most hardened versions of the
nodes. In both cases, the reliability goal ρ is achieved without re-
executions at software level (kj = 0), however, as can be observed,
the solution in Figure 10.1d is not schedulable, even though k1 =
0 with the architecture consisting of . This is because of the
performance degradation due to the hardening. This degrada-
tion, however, is smaller in the case of and, thus, the solution
in Figure 10.1e is schedulable. If we compare the two schedula-
ble alternatives in Figure 10.1a and Figure 10.1e, we observe
that the one consisting of less hardened nodes (Figure 10.1a) is
more cost efficient than the monoprocessor alternative with the

1. See numerical computations for this architecture in Section 9.2.1, pre-
sented as a computation example with the SFP analysis.

2. Numerical computations for all architectures in this example are pre-
sented in Appendix III.

N1
2 N2

2

N1
2

N2
2

N1
3

N2
3

OPTIMIZATION WITH HARDWARE HARDENING

179

most hardened node (Figure 10.1e). In other words, considering
a distributed system with two less hardened computation nodes

Figure 10.1: Selection of the Hardened
Hardware Architecture

P2

P1

P4

P3

m1 m4

m3

m2

N1 N2N1 N2

A: G
60

75

60

P1

P2

P3

1.2·10-3

1.3·10-3

1.4·10-3

N1
h = 1

16

75P4 1.6·10-3

h = 2

32Cost

h = 3

64

t t tp p p

75

90

75

90

1.2·10-5

1.3·10-5

1.4·10-5

1.6·10-5

90

105

90

105

1.2·10-10

1.3·10-10

1.4·10-10

1.6·10-10

P1

P2

P3

N2
h = 1

20

P4

h = 2

40Cost

h = 3

80

t t tp p p

65

50

50 1·10-3

1.2·10-3

1.2·10-3

65 1.3·10-3

75

60

60 1·10-5

1.2·10-5

1.2·10-5

75 1.3·10-5

90

75

75 1·10-10

1.2·10-10

1.2·10-10

90 1.3·10-10ρ = 1 − 10-5

μ = 15 ms

3

2

P4N2

N1 P2/1

P1 P3 P2/1 P4/1

P1 P3 P2 P4

N2

N1 Cd = 64

bus

Ca = 72

Cc = 40

a)

c)

d)

m2 m3

P3/1

P2/2 P4/2

P2/2

P3/2

P1

3

2

2

2

N1b) P1 P3 P2/1 P4/1P2/2 P4/2

Cb = 32

N2e) P1 P3 P2 P4 Ce = 80

Deadline: 360

30 60 90 120 150 180 210 240 270 300 330 3600 390 420 450 480 510

D = T = 360ms

CHAPTER 10

180

is less costly than considering a single node with extensive hard-
ening.

As the example in Figure 10.1 illustrates, the decision on
which architecture to select and how much hardening to use for
each computation node in the architecture is crucial in providing
cost-efficient design solutions with fault tolerance.

10.2 Problem Formulation
As an input to our design optimization problem we get an appli-
cation A, represented as a merged acyclic directed graph G.
Application A runs on a bus-based architecture, as discussed in
Section 3.1.3, with hardened computation nodes as discussed in
Section 9.1. The reliability goal ρ, the deadline, and the recovery
overhead μ are given. Given is also a set of available computa-
tion nodes each with its available hardened h-versions and the
corresponding costs. We know the worst-case execution times and
the failure probabilities for each process on each h-version of com-
putation node. The maximum transmission time of all messages,
if sent over the bus, is given.

As an output, the following has to be produced: (1) a selection
of the computation nodes and their hardening level; (2) a map-
ping of the processes to the nodes of the selected architecture; (3)
the maximum number of re-executions on each computation
node; and (4) a schedule of the processes and communications.

The selected architecture, the mapping and the schedule
should be such that the total cost of the nodes is minimized, all
deadlines are satisfied, and the reliability goal ρ is achieved.
Achieving the reliability goal implies that hardening levels are
selected and the number of re-executions are chosen on each
node Nj such that the produced schedule, in the worst case, sat-
isfies the deadlines.

OPTIMIZATION WITH HARDWARE HARDENING

181

10.3 Design Strategy and Algorithms
We illustrate our hardening optimization framework in
Figure 10.2 as a sequence of iterative design optimization heu-
ristics, represented as rotating circles in the figure. In the outer
loop we explore available architectures, e.g., possible combina-
tions of computation nodes. We evaluate the schedulability of
each selected architecture and check if it meets the reliability
goal ρ against transient faults. We also determine the cost of the
architecture. The least costly and valid architecture will be
eventually chosen as the final result of the overall design explo-
ration.

From the outer architecture optimization heuristic for each
chosen architecture, we call a mapping heuristic, which returns
a valid mapping with schedule tables, and obtains the amount of
hardware hardening and the number of re-executions. In the
mapping heuristic, for each mapping move, we obtain the
amount of hardening required for the mapping solution such
that it is schedulable and meets the reliability goal ρ.

Figure 10.2: Optimization with Hardware Hardening

Architecture
Optimization

Mapping
Optimization

+
Scheduling

Hardening
Optimization

+
Scheduling

Re-execution
Optimization

(based on SFP)

Best
Cost

Architecture
Selection

Meet
Deadline

Mapping

Meet
Deadline

Hardening
Setup

Satisfy
Reliability

Number of
Re-executions

SFP

CHAPTER 10

182

The amount of hardening, or hardening levels of computation
nodes, are determined by the hardening optimization heuristic,
which increases the reliability of computation nodes until the
current mapping solution becomes schedulable.

Inside the hardening optimization heuristic, for each hard-
ened and mapped solution, we obtain the necessary number of
re-executions on each computation node with the re-execution
optimization heuristic. This, innermost, heuristic assigns the
number of re-executions to application processes until the relia-
bility goal ρ is reached, which is evaluated with the system fail-
ure probability (SFP) analysis.

Our design strategy is outlined in Figure 10.3, which is the
outermost architecture optimization heuristic in Figure 10.2.
The design heuristic explores the set of architectures, and even-
tually selects that architecture that minimizes cost, while still
meeting the schedulability and reliability requirements of the
application. The heuristic starts with the monoprocessor archi-
tecture (n = 1), composed of only one (the fastest) node (lines 1-
2). The mapping, selection of software and hardware fault toler-
ance (re-executions and hardening levels) and the schedule are
obtained for this architecture (lines 5-9). If the application is
unschedulable, the number of computation nodes is directly
increased, and the fastest architecture with n = n + 1 nodes is
chosen (line 15). If the application is schedulable on that archi-
tecture with n nodes, i.e., SL ≤ D, the cost HWCost of that archi-
tecture is stored as the best-so-far cost HWCostbest. The next
fastest architecture with n nodes (in the case of no hardening) is
then selected (line 18). If on that architecture the application is
schedulable (after hardening is introduced) and the cost HWCost
< HWCostbest, it is stored as the best-so-far. The procedure con-
tinues until the architecture with the maximum number of
nodes is reached and evaluated.

If the cost of the next selected architecture with the minimum
hardening levels is higher than (or equal to) the best-so-far cost
HWCostbest, the architecture will be ignored (line 6).

OPTIMIZATION WITH HARDWARE HARDENING

183

The evaluation of an architecture is done at each iteration
step with the MappingAlgorithm function, presented in Section 10.4.
MappingAlgorithm receives as an input the selected architecture,
produces the mapping, and returns the schedule corresponding
to that mapping. The cost function used for optimization is also
given as a parameter. We use two cost functions: (1) schedule
length, which produces the shortest-possible schedule length SL
for the selected architecture for the best-possible mapping (line
7), and (2) architecture hardware cost, in which the mapping
algorithm takes an already schedulable application as an input

Figure 10.3: General Design Strategy with Hardening

 DesignStrategy(G, N, D, ρ)
 1 n = 1

 2 AR = SelectArch(N, n)
 3 HWCostbest = MAX_COST
 4 while n ≤ |N | do
 5 SetMinHardening(AR)
 6 if HWCostbest > GetCost(AR) then
 7 SL = MappingAlgorithm(G,AR,D,ρ, ScheduleLengthOptimization)

 8 if SL ≤ D then
 9 HWCost = MappingAlgorithm(G, AR, D,ρ, CostOptimization)
 10 if HWCost < HWCostbest then
 11 HWCostbest = HWCost
 12 ARbest = AR
 13 end if
 14 else
 15 n = n + 1
 16 end if
 17 end if
 18 AR = SelectNextArch(N, n)
 19 end while
 20 return ARbest

 end DesignStrategy

MappingAlgorithm

HardeningOpt

Scheduling

Scheduling

ReExecutionOpt

CHAPTER 10

184

and then optimizes the mapping to improve the cost of the
application without impairing the schedulability (line 9).
MappingAlgorithm tries a set of possible mappings, and for each
mapping it optimizes the levels of fault tolerance in software
and hardware, which are required to meet the reliability goal ρ.
The levels of fault tolerance are optimized inside the mapping
algorithm with the HardeningOpt heuristic presented in Section
10.5, which returns the levels of hardening and the number of
re-executions in software. The relation between these functions
is illustrated in Figure 10.3. The needed maximum number of
re-executions in software is obtained with ReExecutionOpt

heuristic, called inside HardeningOpt for each vector of hardening
levels. Then the obtained alternative of fault tolerance levels is
evaluated in terms of schedulability by the scheduling algorithm
Scheduling, which is described in Section 10.6. After completion of
HardeningOpt, Scheduling is called again to determine the schedule
for each selected mapping alternative in MappingAlgorithm.

The basic idea behind our design strategy is that the change of
the mapping immediately triggers the change of the hardening
levels. To illustrate this, let us consider the application A in
Figure 10.1 with the mapping corresponding to Figure 10.1a.
Processes P1 and P2 are mapped on N1, while processes P3 and
P4 are mapped on N2. Both nodes, N1 and N2, have the second
hardening level (h = 2), and . With this architecture,
according to our SFP calculation, one re-execution is needed on
each node in order to meet the reliability goal. As can be seen in
Figure 10.1a, the deadlines are satisfied in this case. If, however,
processes P1 and P2 are moved to node N2, resulting in the map-
ping corresponding to Figure 10.1e, then using the third harden-
ing level (h = 3) is the only option to guarantee the timing and
reliability requirements, and this alternative will be chosen by
our algorithm for the respective mapping. If, for a certain map-
ping, the application is not schedulable with any available hard-
ening level, this mapping will be discarded by our algorithm.

N1
2 N2

2

OPTIMIZATION WITH HARDWARE HARDENING

185

10.4 Mapping Optimization
In our design strategy we use the MappingAlgorithm heuristic with
two cost functions, schedule length and the architecture hard-
ware cost, as presented in Figure 10.4.

For our mapping heuristic with hardened components, we
have extended the TabuSearchMPA algorithm, proposed in Chap-
ter 5, to consider the different hardening and re-execution lev-
els. The tabu search algorithm takes as an input the application
graph G, the selected architecture AR, deadlines D, reliability
goal ρ and a flag Type, which specifies if the mapping algorithm
is used for schedule length optimization or for the architecture
cost optimization, and produces a schedulable and fault-tolerant
implementation xbest. In case of the schedule length optimiza-
tion, an initial mapping is performed (InitialMapping, line 5) and
the obtained initial schedule length for this mapping is set as
the initial Cost (Scheduling, line 5). In the case of architecture
hardware cost optimization, the initial Cost will be the given
hardware cost (ObtainCost, line 7) and the initial mapping, best in
terms of the schedule length but not in terms of cost, is already
prepared (see our strategy in Figure 10.3). During architecture
cost optimization, our mapping algorithm will search for the
mapping with the lowest-possible architecture hardware cost.

The mapping heuristic, in both cases, investigates the
processes on the critical path (line 12). Thus, at each iteration,
processes on the critical part are selected for the re-mapping
(GenerateMoves, line 12). Processes recently re-mapped are
marked as “tabu” (by setting up the “tabu” counter) and are not
touched unless leading to the solution better than the best so far
(lines 14-15). Processes, which have been waiting for a long time
to be re-mapped, are assigned with the waiting priorities and
will be re-mapped first (line 17). The heuristic changes the
mapping of a process if it leads to (1) a solution that is better
than the best-so-far (including “tabu” processes), or (2) to a
solution that is worse than the best-so-far but is better than the

CHAPTER 10

186

other possible solutions (lines 20-25). The selected move is then
applied (PerformMove, line 27), the current Cost is updated (lines
28-30) and the best-so-far BestCost is changed if necessary (line
32). At every iteration, the waiting counters are increased and

MappingAlgorithm(G, AR, D, ρ,Type {CostOptimization, ScheduleLengthOptimization})
 1 -- given a merged graph G and an architecture AR produces a mapping M
 2 -- such that the solution is fault-tolerant, schedulable & meets reliability goal ρ
 3 -- optimizes either Type = “CostOptimization” or “ScheduleLengthOptimization”
 4 if Type ≡ ScheduleLengthOptimization then

-- for the schedule length, do initial mapping
 5 xbest = xnow = InitialMapping(AR); BestCost = Scheduling(G, AR, xbest)
 6 else -- otherwise, get the previous mapping best in terms of the schedule length
 7 xbest = xnow = GetCurrentMapping(AR); BestCost = ObtainCost(G, AR, xbest)
 8 end if
 9 Tabu = ∅; Wait = ∅ -- The selective history is initially empty
 10 while TerminationCondition not satisfied do
 11 -- Determine the neighboring solutions considering the selective history
 12 CP= CriticalPath(G); Nnow = GenerateMoves(CP) -- calls HardeningOpt inside
 13 -- eliminate tabu moves if they are not better than the best-so-far
 14 Ntabu = {move(Pi) | ∀ Pi ∈CP ∧ Tabu(Pi)=0 ∧ Cost(move(Pi)) < BestCost}
 15 Nnon-tabu = N \ Ntabu

 16 -- add diversification moves
 17 Nwaiting = {move(Pi) | ∀ Pi ∈ CP ∧ Wait(Pi) > |G|}
 18 Nnow = Nnon-tabu ∪ Nwaiting

 19 -- Select the move to be performed
 20 xnow = SelectBest(Nnow)
 21 xwaiting = SelectBest(Nwaiting); xnon-tabu = SelectBest(Nnon-tabu)
 22 if Cost(xnow) < BestCost then x = xnow -- select xnow if better than best-so-far
 23 else if ∃ xwaiting then x = xwaiting -- otherwise diversify
 24 else x = xnon-tabu -- if no better and no diversification, select best non-tabu
 25 end if
 26 -- Perform selected mapping move and determine levels of hardening
 27 PerformMove(AR, x); HardeningOpt(G, AR, x, ρ, InitialHardening(x))
 28 if Type ≡ ScheduleLengthOptimization then Cost = Scheduling(G, AR, x)
 29 else Cost = ObtainCost(G, AR, x)
 30 end if
 31 -- Update the best-so-far solution and the selective history tables
 32 If Cost < BestCost then xbest = x; BestCost = Cost end if
 33 Update(Tabu); Update(Wait)
 34 end while
 35 return xbest -- return mapping M
end MappingAlgorithm

Figure 10.4: Mapping
Optimization with Hardening

OPTIMIZATION WITH HARDWARE HARDENING

187

the “tabu” counters are decreased (line 33). The heuristic stops
after a certain number of steps without any improvement
(TerminationCondition, line 10).

In order to evaluate a particular mapping in terms of cost and
schedulability, for this mapping, before calling the scheduling
heuristic, we have to obtain the hardening levels in hardware
and the maximum number of re-executions in software. This is
performed with the HardeningOpt function, presented in the next
section. HardeningOpt is called inside the GenerateMoves function
evaluating each available mapping move on the critical path
(line 12) and before the “best” move is applied (line 27).

10.5 Hardening/Re-execution Optimization
Every time we evaluate a mapping move by the MappingAlgorithm,
we run HardeningOpt and ReExecutionOpt to obtain hardening levels
in hardware and the number of re-executions in software. The
heuristic, outlined in Figure 10.5, takes as an input the architec-
ture AR with the initial hardening levels H0 and the given map-
ping M. The obtained final hardening solution has to meet the
reliability goal ρ.

At first, the hardening optimization heuristic reaches our first
objective, schedulability of the application. The heuristic
increases the schedulability by increasing the hardening levels
in a greedy fashion, obtaining the number of re-executions for
each vector of hardening (lines 1-9, with the IncreaseAllHardening

function). The schedulability is evaluated with the Scheduling

heuristic. We increase the hardening in this way to provide a
larger number of alternatives to be explored in the next optimi-
zation step, where we preserve the schedulability and optimize
cost. In the next step, once a schedulable solution is reached, we
iteratively reduce hardening by one level for each node, again, at
the same time obtaining the corresponding number of re-execu-
tions (lines 9-24). For example, in Figure 10.1a, we can reduce

CHAPTER 10

188

from to , and from to . If the application is schedu-
lable, as obtained with the Scheduling function (line 15), such a
solution is accepted (line 16). Otherwise, it is not accepted, for
example, in the case we reduce from to . Among the sched-
ulable hardened alternatives, we choose the one with the lowest
hardware cost and continue (line 20 and 22). The heuristic iter-

N1
2 N1

1 N2
2 N2

1

Figure 10.5: Hardening Optimization Algorithm

 HardeningOpt(G, AR, M, ρ, H0): const Hmax, Hmin

 1 REX0 = ReExecutionOpt(G, AR, M, ρ, H0)
 2 SL = Scheduling(G, AR, M, REX0)
 3 if SL ≤ D then
 4 H = H0

 5 else
 6 H = IncreaseAllHardening(AR, H0)

 7 if H > Hmax then
 8 return unschedulable
 9 end if
 10 while true do
 11 for all Nj ∈ N do
 12 if hj > Hmin then

 13 ReduceHardening(hj)
 14 REX = ReExecutionOpt(G, AR, M, ρ, H)
 15 SLj = Scheduling(G, AR, M, REX)

 16 if SLj ≤ D thenHWCostj = GetCost(AR, H)
 17 IncreaseHardening(hj)
 18 end if
 19 end for
 20 best = BestCostResource(∀HWCostj)
 21 if no improvement or H ≡ Hmin then break

 22 else ReduceHardening(hbest)
 23 end if
 24 end while
 25 REX = ReExecutionOpt(G, AR, M, ρ, H)
 26 return {REX; H}

 end HardeningOpt

N1
2 N1

1

OPTIMIZATION WITH HARDWARE HARDENING

189

ates as long as improvement is possible, i.e., there is at least one
schedulable alternative, or until the minimum hardening level
(Hmin) is reached for all the nodes (line 21). In Figure 10.1a, the
heuristic will stop once h-versions to have been reached
since the solutions with less hardening are not schedulable.

The re-execution optimization heuristic ReExecutionOpt is
called in every iteration of HardeningOpt to obtain the number of
re-executions in software (line 14 and inside the IncreaseAllHarden-

ing function, line 6). The heuristic takes as an input the architec-
ture AR, mapping M, and the hardening levels H. It starts
without any re-executions in software at all. The heuristic uses
the SFP analysis and gradually increases the number of re-exe-
cutions until the reliability goal ρ is reached. The exploration of
the number of re-executions is guided towards the largest
increase in the system reliability. For example, if increasing the
number of re-executions by one on node N1 will increase the sys-
tem reliability from 1− 10-3 to 1− 10-4 and, at the same time,
increasing re-executions by one on node N2 will increase the sys-
tem reliability from 1− 10-3 to 1− 5·10-5, the heuristic will choose
to introduce one more re-execution on node N2.

10.6 Scheduling
In our hardening optimization framework we use the shifting-
based scheduling strategy, which we have proposed in Chapter
4, that uses “recovery slack” in order to accommodate the time
needed for re-executions in the case of faults. After each process
Pi we assign a slack equal to (+ μ) × kj, where kj is the
number of re-executions on the computation node Nj with hard-
ening level h, is the worst-case execution time of the process
on this node, and μ is the re-execution overhead. The recovery
slack is also shared between processes in order to reduce the
time allocated for recovering from faults.

N1
2 N2

2

tijh

tijh

CHAPTER 10

190

The Scheduling heuristic is used by the HardeningOpt and the
mapping optimization heuristics to determine the schedulability
of the evaluated solution, and produces the best possible sched-
ule for the final architecture.

10.7 Experimental Results
For the experiments, we have generated 150 synthetic applica-
tions with 20 and 40 processes. The worst-case execution times
(WCETs) of processes, considered on the fastest node without
any hardening, have been varied between 1 and 20 ms. The
recovery overhead μ has been randomly generated between 1
and 10% of process WCET.

Regarding the architecture, we consider nodes with five differ-
ent levels of hardening with randomly generated process failure
probabilities. We have considered three fabrication technologies
with low, medium and high transient fault rates, where the tech-
nology with the high fault rate (or, simply, the high FR technol-
ogy) has the highest level of integration and the smallest
transistor sizes. We have generated process failure probabilities
within the following probability intervals for these technologies:

low FR technology: between 2.1·10-9 and 2.4·10-5;
medium FR technology: between 2.1·10-8 and 2.4·10-4; and
high FR technology: between 2.1·10-7 and 2.4·10-3.

The hardening performance degradation (HPD) from the mini-
mum to the maximum hardening level has been varied from 5%
to 100%, increasing linearly with the hardening level. For a
HPD of 5%, the WCET of processes increases with each harden-
ing level with 1, 2, 3, 4, and 5%, respectively; for HPD = 100%,
the increases will be 1, 25, 50, 75, and 100% for each level,
respectively. Initial costs of computation nodes (without harden-
ing) have been generated between 1 and 6 cost units. We have
assumed that the hardware cost increases linearly with the

OPTIMIZATION WITH HARDWARE HARDENING

191

hardening level. The system reliability requirements have been
varied between ρ = 1 − 7.5·10-6 and 1 − 2.5·10-5 within one hour.
The deadlines have been assigned to all the applications inde-
pendent of the transient fault rates and hardening performance
degradation of the computation nodes. The experiments have
been run on a Pentium 4 2.8 GHz processor with 1Gb memory.

In our experimental evaluation, we have compared our design
optimization strategy from Section 10.3, denoted OPT, to two
strategies, in which the hardening optimization step has been
removed from the mapping algorithms. In the first strategy,
denoted MIN, we use only computation nodes with the minimum
hardening levels. In the second strategy, denoted MAX, only the
computation nodes with the maximum hardening levels are
used.

Figure 10.6: % Accepted Architectures as a
Function of Hardening Performance

Degradation

0

20

40

60

80

100

HPD = 5% 25% 50% 100%

MAX MIN OPT

Hardening performance degradation

%
 a

cc
ep

te
d

ar
ch

it
ec

tu
re

s

CHAPTER 10

192

The experimental results are presented in Figure 10.6,
Table 10.1 and Figure 10.7, which demonstrate the efficiency of
our design approaches in terms of the applications (in percent-
age) accepted out of all considered applications. By the accepta-
ble application we mean an application that meets its reliability
goal, is schedulable, and does not exceed the maximum architec-
tural cost (ArC) imposed. In Figure 10.6, for the medium FR
technology and ArC = 20 units, we show how our strategies per-
form with an increasing performance degradation due to hard-
ening. The MIN strategy always provides the same result because
it uses the nodes with the minimum hardening levels and
applies only software fault tolerance techniques. The efficiency
of the MAX strategy is lower than for MIN and is further reduced
with the increase of performance degradation. The OPT gives
18% improvement on top of MIN, if HPD = 5%, 10% improvement
if HPD = 25%, and 8% improvement for 50% and 100%. More
detailed results for ArC = 15 and ArC = 25 cost units are shown
in Table 10.1, which demonstrate similar trends.

In Figure 10.7a and Figure 10.7b, we illustrate the perform-
ance of our design strategies for the three different technologies
and their corresponding fault rates. The experiments in
Figure 10.7a have been performed for HPD = 5%, while the ones
in Figure 10.7b correspond to HPD = 100%. The maximum

Table 10.1: % Accepted Architectures with
Different Hardening Performance Degradation

(HPD) and with Different Maximum Architecture
Costs (ArC) for the Medium FR Technology

 HPD = 5% HPD = 25% HPD = 50% HPD = 100%
ArC 15 20 25 15 20 25 15 20 25 15 20 25

MAX 35 71 92 33 63 84 27 49 74 23 41 65

MIN 76 76 82 76 76 82 76 76 82 76 76 82
OPT 92 94 98 86 86 92 80 84 90 78 84 90

OPTIMIZATION WITH HARDWARE HARDENING

193

architectural cost is 20 units. In the case of the low FR technol-
ogy, the MIN strategy is as good as our OPT due to the fact that the
reliability requirements can be achieved exclusively with only
software fault tolerance techniques. However, for the medium
FR technology, our OPT strategy outperforms MIN. For the high
FR technology, OPT is significantly better than both other strat-
egies since, in this case, finding a proper trade-off between the
levels of hardening in hardware and the levels of software re-
execution becomes more important.

The execution time of our OPT strategy for the examples that
have been considered is between 3 minutes and 60 minutes.

We have also run our experiments on the vehicle cruise con-
troller (CC) composed of 32 processes, previously used to evalu-
ate several other optimization heuristics presented in the thesis.

Low Medium High0

20

40

60

80

100
MAX MIN OPT

0

20

40

60

80

100

Low Medium High

MAX
MIN
OPT

Figure 10.7: % Accepted Architectures for
Different Fault Rates with ArC = 20 for

(a) HPD = 5% and (b) HPD = 100%

(a)

%
 a

cc
ep

te
d

ar
ch

it
ec

tu
re

s

%
 a

cc
ep

te
d

ar
ch

it
ec

tu
re

s

(b)

CHAPTER 10

194

The CC considers an architecture consisting of three nodes:
Electronic Throttle Module (ETM), Anti-lock Braking System
(ABS) and Transmission Control Module (TCM). We have set
the system reliability requirements to ρ = 1 − 1.2·10-5 within one
hour and considered μ between 1 and 10% of process average-
case execution times. The process failure probabilities have been
generated between 4.5·10-8 and 5·10-5; five h-versions of the
computation nodes have been considered with HPD = 25% and
linear cost functions. We have considered a deadline of 300 ms.
We have found that CC is not schedulable if the MIN strategy has
been used. However, the MAX and OPT approaches are able to
produce a schedulable solution. Moreover, our OPT strategy with
the trading-off between hardware and software fault tolerance
levels has produced results 66% better than the MAX in terms of
cost.

10.8 Conclusions
In this chapter we have considered hard real-time applications
mapped on distributed embedded architectures. We were inter-
ested to derive the least costly implementation that meets
imposed timing and reliability constraints. We have considered
two options for increasing the reliability: hardware hardening
and software re-execution.

We have proposed a design optimization framework for mini-
mizing of the hardware cost by trading-off between hardware
hardening and software re-execution. Our experimental results
have shown that, by selecting the appropriate level of hardening
in hardware and re-executions in software, we can satisfy the
reliability and time constraints of the applications while mini-
mizing the hardware cost of the architecture. The optimization
relies on a system failure probability (SFP) analysis, which con-
nects the level of hardening in hardware with the number of re-
executions in software.

PART V
Conclusions and

Future Work

197

Chapter 11
Conclusions and

Future Work

IN THIS THESIS we have presented several strategies for
design optimization and scheduling of distributed fault-tolerant
embedded systems. We have considered hard real-time and
mixed soft and hard real-time embedded systems.

In the context of hard real-time systems, we have proposed
two scheduling techniques, as well as mapping and policy
assignment approaches. We have also taken into account debu-
gability and testability properties of fault-tolerant applications
by considering transparency requirements. We have proposed
scheduling and mapping approaches that can handle transpar-
ency as well as the trade-off transparency vs. performance.

In the context of mixed soft and hard real-time systems, we
have proposed a value-based scheduling approach, which gener-
ates a set of trees that guarantee the deadlines for the hard proc-
esses even in the case of faults while maximizing the overall
utility.

In the context of embedded systems with hardened hardware
components, we have proposed a design optimization approach

CHAPTER 11

198

to trade-off hardware hardening and software re-execution to
provide cost-efficient, schedulable and reliable implementa-
tions. We have also proposed an analysis approach to support
our design optimization, which connects hardening levels with
the number of re-executions, and determines if the obtained sys-
tem architecture meets the desired reliability goal.

In this final chapter, we summarize the work presented in the
thesis and point out ideas for future work.

11.1 Conclusions
In this thesis we have considered real-time systems, where the
hardware architecture consists of a set of heterogeneous compu-
tation nodes connected to a communication channel. The real-
time application is represented as a set of processes communi-
cating with messages. The processes are scheduled based on off-
line generated quasi-static schedules. To provide fault tolerance
against transient faults propagated to the software level, proc-
esses are assigned with re-execution, replication, or recovery
with checkpointing. To increase the reliability of hardware com-
ponents, hardening techniques are used.

All proposed algorithms have been implemented and evalu-
ated on numerous synthetic applications and a real-life exam-
ple.

In this section we will present conclusions for each part of the
thesis in more details.

11.1.1 HARD REAL-TIME SYSTEMS

Scheduling. In the context of hard real-time systems we have
proposed two novel scheduling approaches with fault tolerance:
conditional scheduling and shifting-based scheduling. These
approaches allow us to efficiently incorporate fault tolerance
against multiple transient faults into static cyclic schedules.

CONCLUSIONS AND FUTURE WORK

199

The main contribution of the first approach is the ability to
handle performance versus transparency and memory size
trade-offs. Our conclusion is that this scheduling approach also
generates the most efficient schedules.

The second scheduling approach handles only a fixed trans-
parency setup, transparent recovery, where all messages on the
bus have to be sent at fixed times, regardless of fault occur-
rences. The order of processes on computation nodes is also fixed
in all alternative execution scenarios. Based on our investiga-
tions, we conclude that this scheduling approach is much faster
than the conditional scheduling approach and requires less
memory to store the generated schedule tables.

Mapping and fault tolerance policy assignment. We have
developed several algorithms for policy assignment and process
mapping, including mapping with performance/transparency
trade-off.

At fault tolerance policy assignment, we decide on which fault
tolerance technique or which combination of techniques to
assign to a certain process in the application. The fault tolerance
technique can be either rollback recovery, which provides time-
redundancy, or active replication, which provides space-redun-
dancy. We have implemented a tabu search-based optimization
approach that decides the mapping of processes to the nodes in
the architecture and the assignment of fault tolerance policies to
processes.

According to our evaluations, the proposed approach can effi-
ciently optimize mapping and policy assignment and is able to
provide schedulable solutions under limited amount of
resources.

Transparency/performance trade-off. In our scheduling and
mapping optimization techniques, we can handle transparency
requirements imposed on the application. Transparency is an
important property that makes a system easier to observe and
debug. The amount of memory required to store alternative

CHAPTER 11

200

schedules is also smaller. However, transparency may lead to
significant performance overheads. Thus, we have proposed a
fine-grained approach to transparency, where transparency can
be selectively applied to processes and messages. Our conclusion
is that the performance/transparency trade-offs imposed by
designers can be supported during the design process.

Checkpoint optimization. We have also addressed the prob-
lem of checkpoint optimization. The conclusion of this study is
that by globally optimizing the number of checkpoints, as
opposed to the approach when processes are considered in isola-
tion, significant improvements can be achieved. We have also
integrated checkpoint optimization into a fault tolerance policy
assignment and mapping optimization strategy, and an optimi-
zation algorithm based on tabu search has been implemented.

11.1.2 MIXED SOFT AND HARD REAL-TIME SYSTEMS

In the context of mixed soft and hard real-time applications, the
timing constraints have been captured using deadlines for hard
processes and time/utility functions for soft processes.

We have proposed an approach to the synthesis of fault-
tolerant schedules for mixed hard/soft applications. Our quasi-
static scheduling approach guarantees the deadlines for the
hard processes even in the case of faults, while maximizing the
overall utility of the system. In the context of distributed
embedded systems, depending on the current execution situation
and fault occurrences, an online distributed scheduler chooses
which schedule to execute on a particular computation node,
based on the pre-computed switching conditions broadcasted
with the signalling messages over the bus.

This study demonstrates that the obtained tree of fault-toler-
ant schedules can deliver an increased level of quality-of-service
and guarantee timing constraints of safety-critical distributed
applications under limited amount of resources.

CONCLUSIONS AND FUTURE WORK

201

11.1.3 EMBEDDED SYSTEMS WITH HARDENED HARDWARE
COMPONENTS

In this thesis, we have also presented an approach, considering
hard real-time applications, where the reliability of hardware
components is increased with hardening. Re-executions have
been used in software to further increase the overall system reli-
ability against transient faults. We have proposed the system
failure probability (SFP) analysis to evaluate if the system
meets its reliability goal ρ with the given reliability of hardware
components and the given number of re-executions in software.

We were interested to derive the least costly implementation
that meets the imposed timing and reliability constraints. We
have proposed a design optimization framework for minimizing
of the overall system cost by trading-off between hardware hard-
ening and software re-execution. The optimization relies on the
system failure probability (SFP) analysis, which connects the
level of hardening in hardware with the number of re-executions
in software.

Based on our experimental results, we conclude that, by
selecting the appropriate level of hardening in hardware and re-
executions in software, we can satisfy the reliability and time
constraints of the applications while minimizing the hardware
cost of the architecture.

11.2 Future Work
The work that has been presented in this thesis can be used as a
foundation for future research in the area of design optimization
of fault-tolerant embedded systems. We see several directions
for the future work based on this thesis.

Failure probability analysis. Our system failure
probability (SFP) analysis is safe but is very time-consuming
since it is based on exact mathematical computations.

CHAPTER 11

202

Development of a fast probability calculation, which is not exact
but still safe, could be an important contribution to hardware/
software design for fault tolerance. Extension of the SFP
analysis to replication and rollback recovery with checkpointing
is another interesting direction of future work.

Relaxing assumptions regarding fault tolerance
mechanisms. In this thesis we have considered that fault
tolerance mechanisms are themselves fault-tolerant, i.e., they
use their own internal fault tolerance techniques for self-
protection against transient faults. However, the costs implied
by these techniques can be high. This cost can be, potentially,
reduced by considering “imperfect” fault tolerance mechanisms
that would allow a fault to happen during, for example,
recovering or storing a checkpoint. Trading-off reliability for the
reduced cost of fault tolerance mechanisms, with additional
measures to cope with “imperfect” fault tolerance, can
potentially reduce the overall system cost while still satisfying
the reliability goal.

Error detection. We consider error detection overheads as a
given input to our design optimization and scheduling
algorithms. Researchers have proposed a number of methods to
optimize error detection, which, however, are considered in
isolation. Thus, a joint design optimization of the error detection
techniques with the fault tolerance techniques can be an
interesting direction for future work.

Fault tolerance and power consumption. Researchers have
proposed a number of techniques to optimize power
consumption in the context of fault-tolerant embedded systems.
One such design optimization framework, based on our shifting-
based scheduling, that connects reliability and power
consumption is, for example, discussed in [Pop07]. More work in

CONCLUSIONS AND FUTURE WORK

203

this area would be beneficial for the future development of
reliable embedded systems that can deliver high performance at
low power consumption.

Fault tolerance and embedded security. Security has
become an important concern to modern embedded systems.
Fault tolerance mechanisms against transient faults may, on
one side, provide additional protection against attacks on the
system. On the other side, these fault tolerance mechanisms
may be exploited by an attacker to gain more information about
the system or attempt to take control over it. Thus, studying
fault tolerance in the context of embedded security and
developing a design optimization framework for coupling
security and fault tolerance techniques, based on the work
presented in this thesis, can be an important contribution.

205

 Appendix I

VEHICLE CRUISE CONTROLLER (CC). In this thesis we have
used the vehicle cruise controller (CC) example from [Pop03]. In
this appendix we briefly discuss the functionality of the CC and
present its process graph.

The CC provides several functions: (a) maintaining a constant
speed during driving at speeds between 35 and 200 km/h, (b)
offering interface to the driver with the buttons to increase/
decrease speed, (c) resuming a previous reference speed, and,
finally, (d) it is suspended when the brake pedal has been
pressed. The CC interacts with five distributed nodes: the Anti-
lock Braking System (ABS), the Transmission Control Module
(TCM), the Engine Control Module (ECM), the Electronic Throttle
Module (ETM), and the Central Electronic Module (CEM). In this
thesis we consider the architectures to implement the CC, where
the CC functionality is mapped on three nodes, ABS, ETM and
TCM.

In [Pop03] the CC functionality is modelled as a process
graph, which consists of 32 processes, as depicted in Figure A.1.
All processes in the application have to be executed, unless some
functions are specified as optional (soft). For example, in Part
III, we consider a CC implementation with 16 soft processes out

206

of 32. In Part II and Part IV, we consider that all processes in the
CC process graph are mandatory (hard).

Figure A.1: The Cruise Controller Process Graph
(Adapted from [Pop03])

P1

P2

P28

P3

P4

P5

P6 P17

P7 P18

P19

P20

P21

P22

P23

P24

P25

P26

P8

P9

P10

P11

P12

P13

P14

P15

P16

P27

P29

P30

P31

P32

m1

m30
m2

m3

m4

m5 m17

m6 m18

m7
m12

m19

m20m8

m9

m13 m21

m22

m10
m14

m23

m24

m25
m11

m26

m27

m15

m16

m31

m32

m33

m34

m28

m29

m35

207

Appendix II

FORMULA (6.3) IN CHAPTER 6. In the presence of k faults, for
process Pi with the worst-case execution time Ci, error-detection
overhead αi, recovery overhead μi, and checkpointing overhead
χi, the optimum number of checkpoints , when process Pi is
considered in isolation, is given by

Proof:1 We consider process Pi in isolation in the presence of k
faults. The execution time Ri of process Pi with checkpoints
in the worst-case fault scenario is obtained with formula (6.1):

1. This proof, in general terms, follows the proof of Theorem 2 (formula
(6.2) in Section 6.1) in [Pun97].

ni
0

, if

, if

ni
+ kCi

χi αi+
----------------=

ni
–

kCi

χi αi+
----------------= Ci ni

– ni
– 1+()

χi αi+

k
----------------≤

Ci ni
– ni

– 1+()
χi αi+

k
---------------->

ni
0=

ni
0

208

The problem of finding the optimum number of checkpoints
for process Pi, when we consider Pi in isolation, reduces to the
following minimization problem:

The conditions for minima in a continuous system are

Since has to be integer, we have

We have to choose among these two values of .

Ri ni
0() Ei ni

0() Si ni
0()+=

Ri ni
0() Ci ni

0 αi χi+()×+()
Ci

ni
0

----- μi+
⎝ ⎠
⎜ ⎟
⎛ ⎞

k αi k 1–()×+×
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

+=

ni
0

Ri ni
0() Ci ni

0 αi χi+()×+()
Ci

ni
0

----- μi+
⎝ ⎠
⎜ ⎟
⎛ ⎞

k αi k 1–()×+×
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

+=

Minimize

with respect to ni
0

ni
0d

dRi
0=

ni
0()2

2

d

d Ri 0>

ni
0d

dRi
0=

ni
0()2

2

d

d Ri 2kCi

ni
0()3

-----------=

αi χi

Ci

ni
0()2

----------- k×–+ 0=

αi χi+
Ci

ni
0()2

----------- k×= ni
0

kCi

αi χi+
----------------=

Also,

ni
0()2

2

d

d Ri 0> since Ci 0> , k 0> , and ni
0 0>

ni
0

ni
–

kCi

αi χi+
----------------= ni

+ kCi

αi χi+
----------------=

ni
0

APPENDIX II

209

which means that if , we select the floor

value as locally optimal number of checkpoints. If

, we select the ceiling.

When , the execution time Ri of process
Pi in the worst-case fault scenario will be the same if we select

 or if . However, in this situation, we prefer to choose
because the lower number of checkpoints, caeteris paribus,
reduces the number of possible execution scenarios and com-
plexity.

ni
–

kCi

αi χi+
----------------=Let

Ci ni
– αi χi+()×+()

Ci

ni
–

------ μi+
⎝ ⎠
⎜ ⎟
⎛ ⎞

k αi k 1–()×+×
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

+

Ri ni
–() is better than Ri ni

– 1+() if

Ci ni
– 1+() αi χi+()×+()

Ci

ni
– 1+

--------------- μi+
⎝ ⎠
⎜ ⎟
⎛ ⎞

k αi k 1–()×+×
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

+

<

kCi

ni
–

-------- αi χi+()
kCi

ni
– 1+

---------------+< Ci ni
– ni

– 1+()
χi αi+

k
----------------<

Ci ni
– ni

– 1+()
χi αi+

k
----------------<

Ci ni
– ni

– 1+()
χi αi+

k
---------------->

Ci ni
– ni

– 1+()
χi αi+

k
----------------=

ni
– ni

+ ni
–

211

 Appendix III

PROBABILITY ANALYSIS FOR FIGURE 9.1.

(A). Let us compute the probability of no fault in process P1 on
the least hardened node :1

Pr(0;) = ⎝(1– 4·10-2)⎠ = 0.96.

Formulae (9.4) and (9.5) are simplified in the case of a single
node and can be used as follows:

Pr(f > 0;) = ⎛1 – 0.96⎞ = 0.04.
The system period T is 360 ms, hence system reliability

against transient faults is (1 – 0.04)10000 = 0.00000000000, or
simply 0, i.e., the system is not reliable at all, and, thus, does not
satisfy the reliability goal ρ = 1 – 10-5.

Let us now try with a single re-execution, i.e., k1 = 1:
Pr(1;)= ⎝0.96·(4·10-2)⎠=0.0384.

According to the simplified formulae (9.4) and (9.5),
Pr(f >1;)= ⎛1– 0.96 – 0.0384⎞ = 0.0016.

1. Here and later on, symbols ⎛ and ⎞ indicate that numbers are rounded
up with 10-11 accuracy; ⎝ and ⎠ indicate that numbers are rounded
down with 10-11 accuracy. This is needed in order to keep the safeness
of the probabilities calculated.

N1
1

N1
1

N1
1

N1
1

N1
1

212

Hence, the system reliability against transient faults is (1 –
0.0016)10000 = 1.111·10-7, which is quite far from the desired
reliability goal ρ = 1 – 10-5.

For k1 = 2: Pr(2;)= ⎝0.96·0.04·(4·10-2)⎠=0.001536, and
Pr(f >2;)= ⎛1– 0.96 – 0.0384 – 0.001536⎞ = 0.000064.
The system reliability against transient faults is, thus,

0.52728162474, which is considerably better but still much less
than ρ = 1 – 10-5.

For k1 = 3: Pr(3;)= ⎝0.96·0.04·0.04·(4·10-2)⎠ = 0.00006144,
and Pr(f > 3;) = ⎛1 – 0.96 – 0.0384 – 0.001536 – 0.00006144⎞ =
0.00000256. The system reliability against transient faults over
the system period T is 0.97472486966, which is less than ρ = 1 –
10-5.

For k1 = 4: Pr(4;)= ⎝0.96·0.04·0.04·0.04·(4·10-2)⎠ =
0.0000024576, and Pr(f > 4;) = ⎛1 – 0.96 – 0.0384 – 0.001536
– 0.00006144 – 0.0000024576⎞ = 0.0000001024. The system reli-
ability over the system period T is already 0.99897652406,
which is, however, less than ρ = 1 – 10-5.

For k1 = 5: Pr(5;)= ⎝0.96·0.04·0.04·0.04·0.04·(4·10-2)⎠ =
0.00000009830, and Pr(f > 5;) = ⎛1 – 0.96 – 0.0384 – 0.001536
– 0.00006144 – 0.0000024576 – 0.00000009830⎞ =
0.00000000410. The obtained reliability over the system period
T is 0.99995900084, which is now only slightly less than the
required ρ = 1 – 10-5.

Finally, for k1 = 6: Pr(6;) = ⎝0.96·0.04·0.04·0.04·0.04·0.04·
(4·10-2)⎠ = 0.00000000393, and Pr(f > 6;) = ⎛1 – 0.96 – 0.0384
– 0.001536 – 0.00006144 – 0.0000024576 – 0.00000009830 –
0.00000000393⎞ = 0.00000000017. The obtained reliability over
the system period T is 0.99999830000, which meets the reliabil-
ity goal ρ = 1 – 10-5.

Thus, 6 re-executions must be introduced into process P1
when running on the first h-version of computation node N1,
in order to satisfy the reliability goal ρ.

N1
1

N1
1

N1
1

N1
1

N1
1

N1
1

N1
1

N1
1

N1
1

N1
1

N1
1

APPENDIX III

213

(B). Let us compute the probability of no fault in process P1 on
the second h-version of the node N1:

Pr(0;) = ⎝(1– 4·10-4)⎠ = 0.9996.

Formulae (9.4) and (9.5) are simplified in the case of a single
node and can be used as follows:

Pr(f > 0;) = ⎛1 – 0.9996⎞ = 0.0004.
The system period T is 360 ms, hence the system reliability

against transient faults is (1 – 0.0004)10000 = 0.01830098833,
which does not satisfy the reliability goal ρ = 1 – 10-5.

Let us now try with a single re-execution, i.e., k1 = 1:
Pr(1;)= ⎝0.9996·(4·10-4)⎠=0.00039984.

According to the simplified formulae (9.4) and (9.5),
Pr(f >1;)= ⎛1– 0.9996 – 0.00039984⎞ = 0.00000016.
Hence, the system reliability against transient faults is (1 –

0.00000016)10000 = 0.99840127918, which still does not satisfy
the reliability goal ρ = 1 – 10-5.

For k1 = 2: Pr(2;) = ⎝0.9996 · 0.0004 · (4 · 10-4)⎠ =
0.00000015993, and

Pr(f > 2;) = ⎛1– 0.9996 – 0.00039984 – 0.00000015993⎞ =
0.00000000007.

The system reliability over the system period T is, thus,
0.99999930000, which meets the reliability goal ρ = 1 – 10-5.

Thus, 2 re-executions must be introduced into process P1
when running on the second h-version of computation node
N1, in order to satisfy the reliability goal ρ.

(C). Let us compute the probability of no fault in process P1 on
the most hardened version of node N1:

Pr(0;) = ⎝(1– 4·10-6)⎠ = 0.999996.

Formulae (9.4) and (9.5) are simplified in the case of a single
node and can be used as follows:

Pr(f > 0;) = ⎛1 – 0.999996⎞ = 0.000004.

N1
2

N1
2

N1
2

N1
2

N1
2

N1
2

N1
2

N1
2

N1
3

N1
3

N1
3

214

The system period T is 360 ms, hence system reliability
against transient faults is (1 – 0.000004)10000 = 0.96078936228,
which does not satisfy the reliability goal ρ = 1 – 10-5.

Let us now try with k1 = 1:
Pr(1;)= ⎝0.999996·(4·10-6)⎠=0.00000399998.

According to the simplified formulae (9.4) and (9.5),
Pr(f >1;)= ⎛1– 0.999996 – 0.00000399998⎞ = 2·10-11.
Hence, the system reliability against transient faults is (1 –

2·10-11)10000 = 0.99999980000, which meets the reliability goal ρ
= 1 – 10-5.

Thus, 1 re-execution must be introduced into process P1 when
running on the third h-version of computation node N1, in
order to satisfy the reliability goal ρ.

PROBABILITY ANALYSIS FOR FIGURE 10.1.

(A). Let us, at first, compute the probability of no faulty proc-
esses for both hardened nodes and :

Pr(0;) = ⎝(1– 1.2·10-5)·(1– 1.3·10-5)⎠ = 0.99997500015.
Pr(0;) = ⎝(1– 1.2·10-5)·(1– 1.3·10-5)⎠ = 0.99997500015.

According to formulae (9.4) and (9.5),
Pr(f > 0;) = 1 – 0.99997500015 = 0.00002499985.
Pr(f > 0;) = 1 – 0.99997500015 = 0.00002499985.
Pr((f > 0;) ∪ (f > 0;)) = ⎛1 – (1 – 0.00002499985) · (1 –

0.00002499985)⎞ = 0.00004999908.
The system period T is 360 ms, hence system reliability is (1 –

0.00004999908)10000 = 0.60652865819, which means that the
system does not satisfy the reliability goal ρ = 1 – 10-5.

Let us now consider k1 = 1 and k2 = 1:
Pr(1;)=⎝0.99997500015·(1.2·10-5+1.3·10-5)⎠=0.00002499937.
Pr(1;)=⎝0.99997500015·(1.2·10-5+1.3·10-5)⎠=0.00002499937.

According to formulae (9.4) and (9.5),
Pr(f >1;)= ⎛1–0.99997500015 – 0.00002499937⎞ = 4.8·10-10.
Pr(f >1;)=⎛1– 0.99997500015 – 0.00002499937⎞ = 4.8·10-10.

N1
3

N1
3

N1
3

N1
2 N2

2

N1
2

N2
2

N1
2

N2
2

N1
2 N2

2

N1
2

N2
2

N1
2

N2
2

APPENDIX III

215

Pr((f > 1;) ∪ (f > 1;)) = 9.6·10-10.
Hence, the system reliability is (1 – 9.6·10-10)10000 =

0.99999040004 and the system meets its reliability goal ρ = 1 –
10-5.

Thus, 1 re-execution must be introduced into all processes run
on the second h-versions and of computation nodes N1
and N2, in order to satisfy the reliability goal ρ.

(B). Let us compute the probability of no faulty processes on the
hardened node :

Pr(0;)= ⎝(1–1.2·10-5)·(1–1.3·10-5)·(1–1.4·10-5)·(1–1.6·10-5)⎠ =
0.99994500112.

According to formulae (9.4) and (9.5), simplified for a single
node,

Pr(f > 0;) = 1 – 0.99994500112 = 0.00005499888.
The system period T is 360 ms, hence, system reliability is (1 –

0.00005499888)10000 = 0.57694754589, which means that the
system does not satisfy the reliability goal ρ = 1 – 10-5.

Let us now consider k1 = 1:
Pr(1;)= ⎝0.99994500112 · (1.2 · 10-5 + 1.3 · 10-5 + 1.4·10-5 +

1.6 · 10-5)⎠ = 0.00005499697, and Pr(f > 1;) = ⎛1 –
0.99994500112 – 0.00005499697⎞ = 0.00000000191.

Hence, the system reliability is (1 – 1.89·10-9)10000 =
0.99998090018 and the system does not meet its reliability goal
ρ = 1 – 10-5, with a very small deviation though.

Let us now consider k1 = 2:
Pr(2;)= ⎝0.99994500112·(1.2·10-5·1.2·10-5 + 1.2·10-5·1.3·10-5

+ 1.2·10-5·1.4·10-5 + 1.2·10-5·1.6·10-5 + 1.3·10-5·1.3·10-5 + 1.3·10-5

· 1.4·10-5 + 1.3·10-5·1.6·10-5 + 1.4·10-5·1.4·10-5 + 1.4·10-5·1.6·10-5

+ 1.6·10-5·1.6·10-5)⎠ = 0.00000000189, and Pr(f > 2;) = ⎛1 –
0.99994500112 – 0.00005499697 – 0,00000000189⎞ =
0.00000000002. Thus, the probability of system failure, which
would require more than 2 re-executions, is (1 – 2·10-11)10000 =
0.99999980000. Hence, the system meets its reliability goal ρ = 1
– 10-5 with k1 = 2 re-executions.

N1
2 N2

2

N1
2 N2

2

N1
2

N1
2

N1
2

N1
2

N1
2

N1
2

N1
2

216

(C). Let us compute the probability of no faulty processes on the
hardened node :

Pr(0;)= ⎝(1–1·10-5)·(1–1.2·10-5)·(1–1.2·10-5)·(1–1.3·10-5)⎠ =
0.99995300082.

According to formulae (9.4) and (9.5), simplified for a single
node,

Pr(f > 0;) = 1 – 0.99995300082 = 0.00004699918.
The system period T is 360 ms, hence, system reliability is (1 –

0.00004699918)10000 = 0.62500049017, which means that the
system does not satisfy the reliability goal ρ = 1 – 10-5.

Let us now consider k2 = 1:
Pr(1;)= ⎝0.99995300082 · (1 · 10-5 + 1.2 · 10-5 + 1.2·10-5 + 1.3 ·

10-5)⎠ = 0.00004699779, and Pr(f > 1;) = ⎛1 – 0.99995300082
– 0.00004699779⎞ = 0.00000000139.

Hence, the system reliability is (1 – 1.39·10-9)10000 =
0.99998610009 and the system does not meet its reliability goal
ρ = 1 – 10-5, with a very small deviation.

Let us now consider k2 = 2:
Pr(2;)= ⎝0.99995300082 · (1·10-5·1·10-5 + 1·10-5·1.2·10-5 +

1·10-5·1.2·10-5+1·10-5·1.3·10-5+1.2·10-5·1.2·10-5+1.2·10-5·1.2·10-5

+ 1.2·10-5·1.3·10-5 + 1.2·10-5·1.2·10-5 + 1.2·10-5·1.3·10-5 + 1.3·10-5

· 1.3·10-5)⎠ = 0.00000000138, and Pr(f > 2;) = ⎛1 –
0.99995300082 – 0.00004699779 – 0.00000000138⎞ =
0.00000000001. Thus, the probability of system failure, which
requires more than 2 re-executions, is (1 – 10-11)10000 =
0.99999990000. Hence, the system meets its reliability goal ρ = 1
– 10-5 with 2 re-executions.

(D). Let us compute the probability of no faulty processes on the
hardened node :

Pr(0;)= ⎝(1 – 1.2 · 10-10) · (1 – 1.3 · 10-10) · (1 – 1.4 · 10-10) · (1
– 1.6 · 10-10)⎠ = 0.99999999945.

According to formulae (9.4) and (9.5), simplified for a single
node,

N2
2

N2
2

N2
2

N2
2

N2
2

N2
2

N2
2

N1
3

N1
3

APPENDIX III

217

Pr(f > 0;) = 1 – 0.99999999945 = 0.00000000055.
The system period T is 360 ms, hence, system reliability is (1 –

5.5·10-10)10000 = 0.99999450001, which means that the system
meets the reliability goal ρ = 1 – 10-5, even without any re-exe-
cutions in software.

(E). Let us compute the probability of no faulty processes on the
hardened node :

Pr(0;)= ⎝(1 – 1 · 10-10) · (1 – 1.2 · 10-10) · (1 – 1.2 · 10-10) · (1
– 1.3 · 10-10)⎠ = 0.99999999953.

According to formulae (9.4) and (9.5), simplified for a single
node,

Pr(f > 0;) = 1 – 0.99999999953 = 0.00000000047.
The system period T is 360 ms, hence, system reliability is (1 –

4.7·10-10)10000 = 0.99999530001, which means that the system
meets the reliability goal ρ = 1 – 10-5, even without any re-exe-
cutions in software.

N1
3

N2
3

N2
3

N2
3

219

List of Notations

Application and Basic Architecture

A Application

G(V, E) Merged directed acyclic hypergraph of the appli-
cation A

V Set of processes (vertices)

E Set of messages (edges)

Pi ∈ V Process

eij ∈ E An edge that indicates that output of process Pi
is an input of process Pj

mi Message

di ∈ D Deadline of process Pi

D Set of process deadlines

D Global cumulative deadline

T Hyperperiod of the application A

Nj ∈ N Computation node

N Set of computation nodes

B Communication bus

220

rj ∈ N ∪ {B} Resource (either a computation node Nj ∈ N
or the bus B)

Worst-case execution time of process Pi executed
on computation node Nj

Ci Worst-case execution time of process Pi (mapping
is not specified)

Best-case execution time of process Pi executed
on computation node Nj

Expected (average) execution time of process Pi
executed on computation node Nj

Ui(t) Utility function of soft process Pi

R Service degradation rule

σi Service performance degradation coefficient for
process Pi (to capture the input “stale” values)

Ui
*(t) Modified utility of soft process Pi capturing serv-

ice performance degradation

U Overall utility

TFi Tail factor of process Pi, TFi = WCETi / (AETi × 2)

Succ(Pi) Set of successors of process Pi

Pred(Pi) Set of predecessors of process Pi

Fault Tolerance Techniques

k The maximum number of faults that can happen
in the worst case during one application run (or
hyperperiod T)

f A current number of faults during one applica-
tion run (execution scenario)

Pi/j jth re-execution of process Pi

tij
w

tij
b

tij
e

LIST OF NOTATIONS

221

Pi(j) jth replica of process Pi, where Pi(1) is the origi-
nal process

mi(j) jth replica of message mi

kth execution (checkpointing) segment of process
Pi

jth recovery of kth execution (checkpointing) seg-
ment of process Pi

α Error detection overhead

μ Recovery overhead

γ Checkpointing overhead

Oi Constant checkpointing overhead for process Pi,
Oi = αi + γi

Ei Actual execution time of process Pi

Si Recovery time of process Pi in the worst case

Ri The total execution time of process Pi, Ri =Si + Ei

ni The number of checkpoints in process Pi

The optimal number of checkpoints in process Pi
if process Pi is considered in isolation

Fault-Tolerant Process Graph

G(VP∪VC∪VT, ES∪EC) Fault-tolerant process graph corre-
sponding to application A = G(V, E)

VP Set of regular processes and messages

VC Set of conditional processes

VT Set of synchronization nodes

 ∈ VT Synchronization node

mth copy of process Pi ∈ V

Pi
k

Pi j⁄
k

ni
0

vi

Pi
m

222

Synchronization node corresponding to process
Pi ∈ A

Synchronization node corresponding to message
mi ∈ A

ES Set of simple edges

EC Set of conditional edges

 ∈ ES Simple edge that indicates that the output of
is the input of

 ∈ ES Simple edge that indicates that the output of
is the input of

 ∈ ES Simple edge that indicates that the output of
is the input of

 ∈ ES Simple edge that indicates that the output of
 is the input of

 ∈ ES Simple edge that indicates that the output of
is the input of

 ∈ ES Simple edge that indicates that the output of
is the input of

 ∈ ES Simple edge that indicates that the output of
is the input of

 ∈ ES Simple edge that indicates that the output of
is the input of

 ∈ EC Conditional edge that indicates that the output
of is the input of

 ∈ EC Conditional edge that indicates that the output
of is the input of

 ∈ EC Conditional edge that indicates that the output
of is the input of

Pi
S

mi
S

eij
mn Pi

m

Pj
n

eij
mS Pi

m

Pj
S

eij
Sn Pi

S

Pj
n

eij
mSm

Pi
m mj

S

eij
Smn mi

S

Pj
n

eij
SS Pi

S

Pj
S

eij
SmS mi

S

Pj
S

eij
SSm Pi

S

mj
S

eij
mn

Pi
m Pj

n

eij
mS

Pi
m Pj

S

eij
mSm

Pi
m mj

S

LIST OF NOTATIONS

223

The “true” condition value (“fault” condition) if
 experiences a fault

The “false” condition value (“no fault” condition)
if does not experience a fault

Guard of (a boolean expression that captures
the necessary activation conditions (fault sce-
nario) for the respective node)

K Current guard

K Set of guards

Set of guards of synchronization node ϑi

vcn ∈ VC Valid combination of copies of the predecessor
processes

VC Set of valid combination of copies of the predeces-
sor processes

Scheduling

S Schedule

S Set of schedules (schedule tables)

Φ A tree of fault-tolerant schedules

Si ∈ Φ Schedule in the schedule tree Φ

Si
j ∈ Φ Schedule in the schedule tree Φ that corresponds

to jth group of schedules

Sroot First “root” schedule in the schedule tree, to
which other schedules are attached

M Size of the schedule tree

φnew New schedule in the schedule tree to switch to
(and the new schedule produced by the schedul-
ing algorithm)

Sparent Parent schedule

FPi
m

Pi
m

FPi
m

Pi
m

KPi
m Pi

m

Kϑi

224

tc Completion (finishing) time of a process

Δ Evaluation step

dε Simulation error

LR Ready list of processes [and messages]

Lϑ List of synchronization nodes

CRT Process time counter

RS Root schedule (for shifting-base scheduling)

T: W → {Frozen, Regular} Transparency function

W Set of processes and messages

wi ∈ W A process or a message

T(wi) Transparency requirements for wi

T(A) Transparency requirements for application A

Sgi Signalling message of process Pi

CTi “True” condition upon completion of process Pi

CFi “False” condition upon completion of process Pi

rex Number of re-executions in the schedule associ-
ated to a process

δG The worst-case execution time (end-to-end delay)
of scheduled application A

δCS The end-to-end delay of application A scheduled
with conditional scheduling

δSBS The end-to-end delay of application A scheduled
with shifting-based scheduling

δNFT The end-to-end delay of application A in case of
no faults

UFTTree, Un The overall utility produced by application A
for a tree of fault-tolerant schedules

LIST OF NOTATIONS

225

UfN The overall utility produced by application A for
a single fN schedule

Mapping and Fault Tolerance Policy Assignment

M: V → N Process mapping function

P: V → {Replication, Re-execution, Replication &
Re-execution} Function which specifies whether a process

is replicated, re-executed, or replicated and re-
executed

P: V → {Replication, Checkpointing, Replication &
Checkpointing} Function which specifies whether a proc-

ess is replicated, checkpointed, or replicated and
checkpointed

Q: V → Ν Function for assigning a number of replicas

VR Set of process replicas

R: V ∪ VR → Ν Function for assigning a number of re-exe-
cutions (recoveries) to processes and replicas

X: V ∪ VR → Ν Function for assigning a number of check-
points to processes and replicas

M(Pi) Mapping of process Pi

P(Pi) Fault tolerance technique or a combination of
fault tolerance techniques assigned to process Pi

Q(Pi) Number of replicas of process Pi

R(Pi), R(Pi(j)) Number of re-executions (recoveries) for
process Pi or replica Pi(j)

X(Pi), X(Pi(j)) Number of checkpoints for process Pi or rep-
lica Pi(j)

ψ System configuration, ψ = <F, M, S> (for re-exe-
cution) or ψ = <F, X, M, S> (for checkpointing)

226

F Fault tolerance policy assignment, F = <P, Q, R>
(for re-execution) or F = <P, Q, R, X> (for check-
pointing)

xbest Best solution

Nnow Set of possible moves

Nwaiting Waiting moves

Nnon-tabu Non-tabu moves

xnow Current solution

xwaiting Waiting solution

xnon-tabu Non-tabu solution

Tabu Set of tabu counters

Wait Set of waiting counters

CP Set of processes on the critical path

Hardened Architecture and Hardening Optimization

h Hardening level of a computation node

Hardening version h of computation node Nj

Cost of version h of computation node Nj

tijh Worst-case execution time of process Pi on h-ver-
sion of computation node Nj

pijh Process failure probability of process Pi on h-ver-
sion of computation node Nj

ρ Reliability goal, ρ = 1 − γ

γ The maximum probability of a system failure due
to transient faults on any computation node
within a time unit, e.g. one hour of functionality

kj The maximum number of transient faults toler-
ated in software on computation node Nj during
one iteration of the application (hyperperiod T)

Nj
h

Cj
h

LIST OF NOTATIONS

227

{Pi, } Mapping of process Pi on h-version of computa-
tion node Nj

AR System architecture

HWCostj Hardening cost of node Nj

SL Schedule length

H Hardening level of the architecture

Hmin Minimum hardening level of the architecture

System Failure Probability (SFP) Analysis

Pr(0;) Probability of no faults occurring (no faulty proc-
esses) during one iteration of the application
(hyperperiod T) on the h-version of node Nj

PrS*(f;) Probability of successful recovering from f
faults in a particular fault scenario S*

Pr(f;) Probability that the system recovers from all pos-
sible f faults during one iteration of the applica-
tion

Pr(f > kj;) The failure probability of the h-version of
node Nj with kj re-executions during one itera-
tion of the application

Probability that the system composed of
n computation nodes with kj re-executions on
each node Nj will not recover, in the case more
than kj faults have happened on any computation
node Nj during one iteration of the application

Nj
h

Nj
h

Nj
h

Nj
h

Nj
h

Pr f kj> Nj
h

;()
j 1=

n

∪⎝ ⎠
⎛ ⎞

229

List of Abbreviations

ABS Anti-lock Braking System

AET Expected (Average) Execution Time

ALU Arithmetic Logic Unit

ArC Architecture Cost

ASAP As Soon As Possible

ASIC Application Specific Integrated Circuit

AUED All Unidirectional Error Detecting

BCET Best Case Execution Time

CC Cruise Controller

CEM Central Electronic Module

CP Critical Path

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CRT Process Time Counter

CS Conditional Scheduling

ECM Engine Control Module

230

EDAC Error Detection And Correction

EDF Earliest Deadline First

EMI Electromagnetic Interference

ET Event Triggered

ETM Electronic Throttle Module

FPGA Filed Programmable Gate Array

FTPG Fault-Tolerant Process Graph

HPD Hardening Performance Degradation

IC Integrated Circuit

MARS Maintainable Real Time System

MC Mapping with Checkpointing

MC0 Mapping with Locally Optimal Checkpoiting

MCR Mapping with Checkpointing and Replication

MR Mapping with Replication

MU Multiple Utility

MX Mapping with Re-execution

MXR Mapping with Re-execution and Replication

NFT Non-Fault-Tolerant

PCP Partial Critical Path

QoS Quality of Service

RM Rate Monotonic

RS Root Schedule

RT Real-Time

SBS Shifting-based Scheduling

SEC-DED Single Error Correcting, Double Error Detecting

SEU Single Event Upset

LIST OF ABBREVIATIONS

231

SFP System Failure Probability

SFS Strongly Fault Secure

SFX Straightforward Re-execution

SP Soft Priority

TCM Transmission Control Module

TT Time Triggered

WCET Worst Case Execution Time

WCTT Worst Case Transmission Time

XBW X-by-Wire

233

Bibliography

[Aid01] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson,
“GOOFI: Generic Object-Oriented Fault Injection
Tool”, Proc. Intl. Conf. on Dependable Systems and
Networks (DSN), 83-88, 2001.

[Aid05] J. Aidemark, P. Folkesson, and J. Karlsson, “A
Framework for Node-Level Fault Tolerance in Dis-
tributed Real-Time Systems”, Proc. Intl. Conf. on
Dependable Systems and Networks, 656-665, 2005.

[Als01] K. Alstrom and J. Torin, “Future Architecture for
Flight Control Systems”, Proc. 20th Conf. on Digital
Avionics Systems, 1B5/1-1B5/10, 2001.

[Alo01] R. Al-Omari, A. K. Somani, and G. Manimaran, “A
New Fault-Tolerant Technique for Improving Sched-
ulability in Multiprocessor Real-Time Systems”,
Proc. 15th Intl. Parallel and Distributed Processing
Symp., 23-27, 2001.

[Ahn97] KapDae Ahn, Jong Kim, and SungJe Hong, “Fault-
Tolerant Real-Time Scheduling Using Passive Repli-
cas”, Proc. Pacific Rim Intl. Symp. on Fault-Tolerant
Systems, 98-103, 1997.

234

[Aya08] T. Ayav, P. Fradet, and A. Girault, “Implementing
Fault-Tolerance in Real-Time Programs by Auto-
matic Program Transformations”, ACM Trans. on
Embedded Computing Systems, 7(4), 1-43, 2008.

[Aud95] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell,
and A. J. Wellings, “Fixed Priority Pre-emptive
Scheduling: An Historical Perspective”, Real-Time
Systems, 8, 173-198, 1995.

[Axe96] J. Axelsson, “Hardware/Software Partitioning Aim-
ing at Fulfillment of Real-Time Constraints”, Sys-
tems Architecture, 42, 449-464, 1996.

[Ayd00] H. Aydin, R. Melhem, and D. Mosse, “Tolerating
Faults while Maximizing Reward”, Proc. 12th Eurom-
icro Conf. on Real-Time Systems, 219–226, 2000.

[Bal06] V. B. Balakirsky and A. J. H. Vinck, “Coding Schemes
for Data Transmission over Bus Systems”, In Proc.
IEEE Intl. Symp. on Information Theory, 1778-1782,
2006.

[Bar08] R. Barbosa and J. Karlsson, “On the Integrity of
Lightweight Checkpoints”, Proc. 11th IEEE High
Assurance Systems Engineering Symp., 125-134,
2008.

[Bau01] R. C. Baumann and E. B. Smith, “Neutron-Induced
10B Fission as a Major Source of Soft Errors in High
Density SRAMs”, Microelectronics Reliability, 41(2),
211-218, 2001.

[Ben03] A. Benso, S. Di Carlo, G. Di Natale, and P. Prinetto,
“A Watchdog Processor to Detect Data and Control
Flow Errors”, Proc. 9th IEEE On-Line Testing Symp.,
144-148, 2003.

BIBLIOGRAPHY

235

[Ber94] A. Bertossi and L. Mancini, “Scheduling Algorithms
for Fault-Tolerance in Hard-Real Time Systems”,
Real Time Systems, 7(3), 229–256, 1994.

[Bol97] I. Bolsens, H. J. De Man, B. Lin, K. Van Rompaey, S.
Vercauteren, and D. Verkest, “Hardware/Software
Co-Design of Digital Telecommunication Systems”,
Proc. of the IEEE, 85(3), 391-418, 1997.

[Bou04] P. Bourret, A. Fernandez, and C. Seguin, “Statistical
Criteria to Rationalize the Choice of Run-Time
Observation Points in Embedded Software”, In Proc.
1st Intl. Workshop on Testability Assessment, 41-49,
2004.

[Bur96] A. Burns, R. Davis, and S. Punnekkat, “Feasibility
Analysis for Fault-Tolerant Real-Time Task Sets”,
Proc. Euromicro Workshop on Real-Time Systems,
29–33, 1996.

[But99] G. Buttazzo and F. Sensini, “Optimal Deadline
Assignment for Scheduling Soft Aperiodic Tasks in
Hard Real-Time Environments”, IEEE Trans. on
Computers, 48(10), 1035–1052, 1999.

[Che99] P. Chevochot and I. Puaut, “Scheduling Fault-Toler-
ant Distributed Hard Real-Time Tasks Independ-
ently of the Replication Strategies”, Proc. 6th Intl.
Conf. on Real-Time Computing Systems and Applica-
tions, 356-363, 1999.

[Cho95] P. H. Chou, R. B. Ortega, and G. Borriello, “The Chi-
nook Hardware/Software Co-Synthesis System”,
Proc. Intl. Symp. on System Synthesis, 22-27, 1995.

[Cla98] V. Claesson, S. Poledna, and J. Soderberg, “The XBW
Model for Dependable Real-Time Systems”, Proc.
Intl. Conf. on Parallel and Distributed Systems, 130-
138, 1998.

236

[Cof72] E. G. Coffman Jr. and R. L. Graham, “Optimal
Scheduling for Two Processor Systems”, Acta Infor-
matica, 1, 200-213, 1972.

[Col03] A. Colin and S. M. Petters, “Experimental Evaluation
of Code Properties for WCET Analysis”, Proc. Real-
Time Systems Symp. (RTSS), 190-199, 2003.

[Con05] J. Conner, Y. Xie, M. Kandemir, R. Dick, and G. Link,
“FD-HGAC: A Hybrid Heuristic/Genetic Algorithm
Hardware/Software Co-synthesis Framework with
Fault Detection”, Proc. Asia and South Pacific Design
Automation Conference (ASP-DAC), 709-712, 2005.

[Con03] C. Constantinescu, “Trends and Challenges in VLSI
Circuit Reliability”, IEEE Micro, 23(4), 14-19, 2003.

[Cor04a] F. Corno, M. Sonza Reorda, S. Tosato, and F.
Esposito, “Evaluating the Effects of Transient Faults
on Vehicle Dynamic Performance in Automotive Sys-
tems”, Proc. Intl. Test Conf. (ITC), 1332-1339, 2004.

[Cor04b] L. A. Cortes, P. Eles, and Z. Peng, “Quasi-Static
Scheduling for Real-Time Systems with Hard and
Soft Tasks”, Proc. Design, Automation and Test in
Europe Conf. (DATE), 1176-1181, 2004.

[Dav99] B. P. Dave, G. Lakshminarayana, and N. J. Jha,
“COSYN: Hardware-Software Co-Synthesis of Heter-
ogeneous Distributed Embedded Systems”, IEEE
Trans. on Very Large Scale Integrated (VLSI) Sys-
tems, 7(1), 92-104, 1999.

[Dav93] R. I. Davis, K. W. Tindell, and A. Burns, “Scheduling
Slack Time in Fixed Priority Pre-emptive Systems”,
Proc. Real-Time Systems Symp. (RTSS), 222–231,
1993.

BIBLIOGRAPHY

237

[Deo98] J. S. Deogun, R. M. Kieckhafer, and A. W. Krings,
“Stability and Performance of List Scheduling with
External Process Delays”, Real Time Systems, 15(1),
5-38, 1998.

[Dim01] C. Dima, A. Girault, C. Lavarenne, and Y. Sorel, “Off-
line Real-Time Fault-Tolerant Scheduling”, Proc.
Euromicro Parallel and Distributed Processing Work-
shop, 410–417, 2001.

[Ele97] P. Eles, Z. Peng, K. Kuchcinski and A. Doboli, “Sys-
tem Level Hardware/Software Partitioning Based on
Simulated Annealing and Tabu Search”, Design
Automation for Embedded Systems, 2(1), 5-32, 1997.

[Ele00] P. Eles, Z. Peng, P. Pop, and A. Doboli, “Scheduling
with Bus Access Optimization for Distributed
Embedded Systems”, IEEE Trans. on VLSI Systems,
8(5), 472-491, 2000.

[Ema07] K. C. Emani, K. Kam, and M. Zawodniok, “Improve-
ment of CAN BUS Performance by Using Error-Cor-
rection Codes”, In Proc. IEEE Region 5 Technical
Conf., 205-210, 2007.

[Erm05] A. Ermedahl, F. Stappert, and J. Engblom, “Clus-
tered Worst-Case Execution-Time Calculation”,
IEEE Trans. on Computers, 54(9), 1104-1122, 2005.

[Ern93] R. Ernst, J. Henkel, and T. Benner, “Hardware/Soft-
ware Co-Synthesis for Microcontrollers”, IEEE
Design & Test of Computers, 10(3), 64-75, 1993.

[Fle04] FlexRay, Protocol Specification, Ver. 2.0, FlexRay
Consortium, 2004.

[Fux95] W. Fuxing, K. Ramamritham, and J.A. Stankovic,
“Determining Redundancy Levels for Fault Tolerant
Real-Time Systems”, IEEE Trans. on Computers,
44(2), 292–301, 1995.

238

[Gar03] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-Complete-
ness, W. H. Freeman and Company, 2003.

[Gar06] R. Garg, N. Jayakumar, S. P. Khatri, and G. Choi, “A
Design Approach for Radiation-Hard Digital Elec-
tronics”, Proc. Design Automation Conf. (DAC), 773-
778, 2006.

[Gir03] A. Girault, H. Kalla, M. Sighireanu, and Y. Sorel, “An
Algorithm for Automatically Obtaining Distributed
and Fault-Tolerant Static Schedules”, Proc. Intl.
Conf. on Dependable Systems and Networks (DSN),
159-168, 2003.

[Gol03] O. Goloubeva, M. Rebaudengo, M. Sonza Reorda, and
M. Violante, “Soft-error Detection Using Control
Flow Assertions”, Proc. 18th IEEE Intl. Symp. on
Defect and Fault Tolerance in VLSI Systems, 581-
588, 2003.

[Gom06] M. A. Gomaa and T. N. Vijaykumar, “Opportunistic
Transient-Fault Detection”, IEEE Micro, 26(1), 92-
99, 2006.

[Gus05] J. Gustafsson, A. Ermedahl, and B. Lisper, “Towards
a Flow Analysis for Embedded System C Programs”,
Proc. 10th IEEE Intl. Workshop on Object-Oriented
Real-Time Dependable Systems, 287-297, 2005.

[Han03] C. C. Han, K. G. Shin, and J. Wu, “A Fault-Tolerant
Scheduling Algorithm for Real-Time Periodic Tasks
with Possible Software Faults”, IEEE Trans. on Com-
puters, 52(3), 362–372, 2003.

[Han02] H. A. Hansson, T. Nolte, C. Norström, and S. Pun-
nekkat, “Integrating Reliability and Timing Analysis
of CAN-based Systems”, IEEE Trans. on Industrial
Electronics, 49(6), 1240-1250, 2002.

BIBLIOGRAPHY

239

[Har01] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walsta,
and Changhong Dai, “Impact of CMOS Process Scal-
ing and SOI on the Soft Error Rates of Logic Proc-
esses”, Proc. Symp. on VLSI Technology, 73-74, 2001.

[Hay07] J. P. Hayes, I. Polian, B. Becker, “An Analysis Frame-
work for Transient-Error Tolerance”, Proc. IEEE
VLSI Test Symp., 249-255, 2007.

[Hea02] C. A. Healy and D. B. Whalley, “Automatic Detection
and Exploitation of Branch Constraints for Timing
Analysis”, IEEE Trans. on Software Engineering,
28(8), 763-781, 2002.

[Hei05] P. Heine, J. Turunen, M. Lehtonen, and A. Oika-
rinen, “Measured Faults during Lightning Storms”,
Proc. IEEE PowerTech’2005, Paper 72, 5p., 2005.

[Her00] A. Hergenhan and W. Rosenstiel, “Static Timing
Analysis of Embedded Software on Advanced Proces-
sor Architectures”, Proc. Design, Automation and
Test in Europe Conf. (DATE), 552-559, 2000.

[Hil00] M. Hiller, “Executable Assertions for Detecting Data
Errors in Embedded Control Systems”, Proc. Intl.
Conf. on Dependable Systems and Networks (DSN),
24-33, 2000.

[Izo05] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Design
Optimization of Time- and Cost-Constrained Fault-
Tolerant Distributed Embedded Systems”, Proc.
Design, Automation and Test in Europe Conf.
(DATE), 864-869, 2005.

[Izo06a] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Mapping of
Fault-Tolerant Applications with Transparency on
Distributed Embedded Systems”, Proc. 9th Euromi-
cro Conf. on Digital System Design (DSD), 313-320,
2006.

240

[Izo06b] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Synthesis of
Fault-Tolerant Schedules with Transparency/Per-
formance Trade-offs for Distributed Embedded Sys-
tems”, Proc. Design, Automation and Test in Europe
Conf. (DATE), 706-711, 2006.

[Izo06c] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Synthesis of
Fault-Tolerant Embedded Systems with Checkpoint-
ing and Replication”, Proc. 3rd IEEE Intl. Workshop
on Electronic Design, Test & Applications (DELTA),
440-447, 2006.

[Izo08a] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Scheduling
of Fault-Tolerant Embedded Systems with Soft and
Hard Timing Constraints”, Proc. Design, Automa-
tion, and Test in Europe Conf. (DATE), 915-920,
2008.

[Izo08b] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Synthesis of
Flexible Fault-Tolerant Schedules with Pre-emption
for Mixed Soft and Hard Real-Time Systems”, Proc.
11th Euromicro Conf. on Digital System Design
(DSD), 71-80, 2008.

[Izo09] V. Izosimov, I. Polian, P. Pop, P. Eles, and Z. Peng,
“Analysis and Optimization of Fault-Tolerant
Embedded Systems with Hardened Processors”,
Proc. Design, Automation, and Test in Europe Conf.
(DATE), 682-687, 2009.

[Izo10a] V. Izosimov, P. Eles, and Z. Peng, “Value-based Sched-
uling of Distributed Fault-Tolerant Real-Time Sys-
tems with Soft and Hard Timing Constraints”,
Submitted for publication, 2010.

BIBLIOGRAPHY

241

[Izo10b] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Scheduling
and Optimization of Fault-Tolerant Embedded Sys-
tems with Transparency/Performance Trade-Offs”,
Submitted for publication, 2010.

[Jia00] Jia Xu and D. L. Parnas, “Priority Scheduling Versus
Pre-Run-Time Scheduling”, Real Time Systems,
18(1), 7-24, 2000.

[Jia05] Jian-Jun Han and Qing-Hua Li, “Dynamic Power-
Aware Scheduling Algorithms for Real-Time Task
Sets with Fault-Tolerance in Parallel and Distrib-
uted Computing Environment”, Proc. of Intl. Parallel
and Distributed Processing Symp., 6-16, 2005.

[Jie92] Jien-Chung Lo, S. Thanawastien, T. R. N. Rao, and
M. Nicolaidis, “An SFS Berger Check Prediction ALU
and Its Application to Self-Checking Processor
Designs”, IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems (CAD), 11(4), 525-
540, 1992.

[Jie96] Jie Xu and B. Randell, “Roll-Forward Error Recovery
in Embedded Real-Time Systems”, Proc. Intl. Conf.
on Parallel and Distributed Systems, 414-421, 1996.

[Jon05] Jong-In Lee, Su-Hyun Park, Ho-Jung Bang, Tai-Hyo
Kim, and Sung-Deok Cha, “A Hybrid Framework of
Worst-Case Execution Time Analysis for Real-Time
Embedded System Software”, Proc. IEEE Aerospace
Conf., 1-10, 2005.

[Jon08] M. Jonsson and K. Kunert, “Reliable Hard Real-Time
Communication in Industrial and Embedded Sys-
tems”, Proc. 3rd IEEE Intl. Symp. on Industrial
Embedded Systems, 184-191, 2008.

242

[Jor97] P. B. Jorgensen and J. Madsen, “Critical Path Driven
Cosynthesis for Heterogeneous Target Architec-
tures”, Proc. Intl. Workshop on Hardware/Software
Codesign, 15-19, 1997.

[Jun04] D. B. Junior, F. Vargas, M. B. Santos, I. C. Teixeira,
and J. P. Teixeira, “Modeling and Simulation of Time
Domain Faults in Digital Systems”, Proc. 10th IEEE
Intl. On-Line Testing Symp., 5-10, 2004.

[Kan03a] N. Kandasamy, J. P. Hayes, and B. T. Murray, “Trans-
parent Recovery from Intermittent Faults in Time-
Triggered Distributed Systems”, IEEE Trans. on
Computers, 52(2), 113-125, 2003.

[Kan03b] N. Kandasamy, J. P. Hayes, and B. T. Murray
“Dependable Communication Synthesis for Distrib-
uted Embedded Systems,” Proc. Computer Safety,
Reliability and Security Conf., 275–288, 2003.

[Kim99] K. Kimseng, M. Hoit, N. Tiwari, and M. Pecht, “Phys-
ics-of-Failure Assessment of a Cruise Control Mod-
ule”, Microelectronics Reliability, 39, 1423-1444,
1999.

[Kop89] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W.
Schwabl, C. Senft, and R. Zainlinger, “Distributed
Fault-Tolerant Real-Time Systems: The MARS
Approach”, IEEE Micro, 9(1), 25-40, 1989.

[Kop90] H. Kopetz, H. Kantz, G. Grunsteidl, P. Puschner, and
J. Reisinger, “Tolerating Transient Faults in MARS”,
Proc. 20th Intl. Symp. on Fault-Tolerant Computing,
466-473, 1990.

[Kop93] H. Kopetz and G. Grunsteidl, “TTP - A Time-Trig-
gered Protocol for Fault-Tolerant Real-Time Sys-
tems”, Proc. 23rd Intl. Symp. on Fault-Tolerant
Computing, 524-533, 1993.

BIBLIOGRAPHY

243

[Kop97] H. Kopetz, Real-Time Systems-Design Principles for
Distributed Embedded Applications, Kluwer Aca-
demic Publishers, 1997.

[Kop03] H. Kopetz and G. Bauer, “The Time-Triggered Archi-
tecture”, Proc. of the IEEE, 91(1), 112-126, 2003.

[Kop04] H. Kopetz, R. Obermaisser, P. Peti, and N. Suri,
“From a Federated to an Integrated Architecture for
Dependable Embedded Real-Time Systems”, Tech.
Report 22, Technische Universität Wien, 2004.

[Kor07] I. Koren and C. M. Krishna, “Fault-Tolerant Sys-
tems”, Morgan Kaufmann Publishers, 2007.

[Kwa01] S. W. Kwak, B. J. Choi, and B. K. Kim, “An Optimal
Checkpointing-Strategy for Real-Time Control Sys-
tems under Transient Faults”, IEEE Trans. on Relia-
bility, 50(3), 293-301, 2001.

[Kri93] C. M. Krishna and A. D. Singh, “Reliability of Check-
pointed Real-Time Systems Using Time Redun-
dancy”, IEEE Trans. on Reliability, 42(3), 427-435,
1993.

[Kwo96] Y. K. Kwok and I. Ahmad, “Dynamic Critical-Path
Scheduling: an Effective Technique for Allocating
Task Graphs to Multiprocessors”, IEEE Trans. on
Parallel and Distributed Systems, 7(5), 506-521,
1996.

[Lib00] F. Liberato, R. Melhem, and D. Mosse, “Tolerance to
Multiple Transient Faults for Aperiodic Tasks in
Hard Real-Time Systems”, IEEE Trans. on Comput-
ers, 49(9), 906-914, 2000.

[Lin00] M. Lindgren, H. Hansson, and H. Thane, “Using
Measurements to Derive the Worst-Case Execution
Time”, Proc. 7th Intl. Conf. on Real-Time Computing
Systems and Applications, 15-22, 2000.

244

[Liu73] C. L. Liu and J. W. Layland, “Scheduling Algorithms
for Multiprogramming in a Hard Real-Time Environ-
ment”, J. of the ACM, 20(1), 46-61, 1973.

[Mah04] A. Maheshwari, W. Burleson, and R. Tessier, “Trad-
ing Off Transient Fault Tolerance and Power Con-
sumption in Deep Submicron (DSM) VLSI Circuits”,
IEEE Trans. on Very Large Scale Integration (VLSI)
Systems, 12(3), 299-311, 2004.

[Mah88] A. Mahmood and E. J. McCluskey, “Concurrent Error
Detection Using Watchdog Processors - A Survey”,
IEEE Trans. on Computers, 37(2), 160-174, 1988.

[May78] T. C. May and M. H. Woods, “A New Physical Mecha-
nism for Soft Error in Dynamic Memories”, Proc. 16th

Intl. Reliability Physics Symp., 33-40, 1978.

[Mel04] R. Melhem, D. Mosse, and E. Elnozahy, “The Inter-
play of Power Management and Fault Recovery in
Real-Time Systems”, IEEE Trans. on Computers,
53(2), 217-231, 2004.

[Mel00] P. M. Melliar-Smith, L. E. Moser, V. Kalogeraki, and
P. Narasimhan, “Realize: Resource Management for
Soft Real-Time Distributed Systems”, Proc. DARPA
Information Survivability Conf., 1, 281–293, 2000.

[Met98] C. Metra, M. Favalli, and B. Ricco, “On-line Detection
of Logic Errors due to Crosstalk, Delay, and Tran-
sient Faults”, Proc. Intl. Test Conf. (ITC), 524-533,
1998.

[Mir05] B. Miramond and J.-M. Delosme, “Design Space
Exploration for Dynamically Reconfigurable Archi-
tectures”, Proc. Design, Automation and Test in
Europe (DATE), 366-371, 2005.

BIBLIOGRAPHY

245

[Mir95] G. Miremadi and J. Torin, “Evaluating Processor-
Behaviour and Three Error-Detection Mechanisms
Using Physical Fault-Injection”, IEEE Trans. on
Reliability, 44(3), 441-454, 1995.

[Moh03] K. Mohanram and N. A. Touba, “Cost-Effective
Approach for Reducing Soft Error Failure Rate in
Logic Circuits”, Proc. Intl. Test Conf. (ITC), 893-901,
2003.

[Nah02a] Nahmsuk Oh, P. P. Shirvani, and E. J. McCluskey,
“Control-Flow Checking by Software Signatures”,
IEEE Trans. on Reliability, 51(2), 111-122, 2002.

[Nah02b] Nahmsuk Oh, P. P. Shirvani, and E. J. McCluskey,
“Error Detection by Duplicated Instructions in
Super-Scalar Processors”, IEEE Trans. on Reliability,
51(1), 63-75, 2002.

[Nah02c] Nahmsuk Oh and E. J. McCluskey, “Error Detection
by Selective Procedure Call Duplication for Low
Energy Consumption”, IEEE Trans. on Reliability,
51(4), 392-402, 2002.

[Nic04] B. Nicolescu, Y. Savaria, and R. Velazco, “Software
Detection Mechanisms Providing Full Coverage
against Single Bit-Flip Faults”, IEEE Trans. on
Nuclear Science, 51(6), 3510-3518, 2004.

[Nor96] E. Normand, “Single Event Upset at Ground Level”,
IEEE Trans. on Nuclear Science, 43(6), 2742-2750,
1996.

[Ora94] A. Orailoglu and R. Karri, “Coactive Scheduling and
Checkpoint Determination during High Level Syn-
thesis of Self-Recovering Microarchitectures”, IEEE
Trans. on VLSI Systems, 2(3), 304-311, 1994.

[Pat08] P. Patel-Predd, “Update: Transistors in Space”, IEEE
Spectrum, 45(8), 17-17, 2008.

246

[Pen95] L. Penzo, D. Sciuto, and C. Silvano, “Construction
Techniques for Systematic SEC-DED Codes with
Single Byte Error Detection and Partial Correction
Capability for Computer Memory Systems”, IEEE
Trans. on Information Theory, 41(2), 584-591, 1995.

[Pet05] P. Peti, R. Obermaisser, and H. Kopetz, “Out-of-Norm
Assertions”, Proc. 11th IEEE Real-Time and Embed-
ded Technology and Applications Symp. (RTAS), 209-
223, 2005.

[Pet06] P. Peti, R. Obermaisser, and H. Paulitsch, “Investi-
gating Connector Faults in the Time-Triggered
Architecture”, Proc. IEEE Conf. on Emerging Tech-
nologies and Factory Automation (ETFA), 887-896,
2006.

[Pin04] C. Pinello, L. P. Carloni, and A. L. Sangiovanni-Vin-
centelli, “Fault-Tolerant Deployment of Embedded
Software for Cost-Sensitive Real-Time Feedback-
Control Applications”, Proc. Design, Automation and
Test in Europe Conf. (DATE), 1164–1169, 2004.

[Pin08] C. Pinello, L. P. Carloni, and A. L. Sangiovanni-Vin-
centelli, “Fault-Tolerant Distributed Deployment of
Embedded Control Software”, IEEE Trans. on Com-
puter-Aided Design of Integrated Circuits and Sys-
tems (CAD), 27(5), 906-919, 2008.

[Pir06] E. Piriou, C. Jego, P. Adde, R. Le Bidan, and M. Jez-
equel, “Efficient Architecture for Reed Solomon
Block Turbo Code”, In Proc. IEEE Intl. Symp. on Cir-
cuits and Systems (ISCAS), 4 pp., 2006.

[Pop03] P. Pop, “Analysis and Synthesis of Communication-
Intensive Heterogeneous Real-Time Systems”, Ph. D.
Thesis No. 833, Dept. of Computer and Information
Science, Linköping University, 2003.

BIBLIOGRAPHY

247

[Pop04a] P. Pop, P. Eles, Z. Peng, V. Izosimov, M. Hellring, and
O. Bridal, “Design Optimization of Multi-Cluster
Embedded Systems for Real-Time Applications”,
Proc. Design, Automation and Test in Europe Conf.
(DATE), 1028-1033, 2004.

[Pop04b] P. Pop, P. Eles, Z. Peng, and V. Izosimov, “Schedula-
bility-Driven Partitioning and Mapping for Multi-
Cluster Real-Time Systems”, Proc. 16th Euromicro
Conf. on Real-Time Systems, 91-100, 2004.

[Pop04c] P. Pop, P. Eles, Z. Peng, and T. Pop, “Scheduling and
Mapping in an Incremental Design Methodology for
Distributed Real-Time Embedded Systems”, IEEE
Trans. on Very Large Scale Integration (VLSI) Sys-
tems, 12(8), 793-811, 2004.

[Pop09] P. Pop, V. Izosimov, P. Eles, and Z. Peng, “Design
Optimization of Time- and Cost-Constrained Fault-
Tolerant Embedded Systems with Checkpointing
and Replication”, IEEE Trans. on Very Large Scale
Integrated (VLSI) Systems, 17(3), 389-402, 2009.

[Pop07] P. Pop, K. Poulsen, V. Izosimov, and P. Eles, “Schedul-
ing and Voltage Scaling for Energy/Reliability Trade-
offs in Fault-Tolerant Time-Triggered Embedded
Systems”, Proc. 5th Intl. Conf. on Hardware/Soft-
ware Codesign and System Synthesis
(CODES+ISSS), 233-238, 2007.

[Pra94] S. Prakash and A. Parker, “Synthesis of Application-
Specific Multiprocessor Systems Including Memory
Components”, J. of VLSI Signal Processing, 8(2), 97-
116, 1994.

248

[Pun97] S. Punnekkat and A. Burns, “Analysis of Checkpoint-
ing for Schedulability of Real-Time Systems”, Proc.
Fourth Intl. Workshop on Real-Time Computing Sys-
tems and Applications, 198-205, 1997.

[Ree93] C. R. Reevs, Modern Heuristic Techniques for Combi-
natorial Problems, Blackwell Scientific Publications,
1993.

[Ros05] D. Rossi, M. Omana, F. Toma, and C. Metra, “Multi-
ple Transient Faults in Logic: An Issue for Next Gen-
eration ICs?”, Proc. 20th IEEE Intl. Symp. on Defect
and Fault Tolerance in VLSI Systems, 352-360, 2005.

[Sav97] T. Savor and R. E. Seviora, “An Approach to Auto-
matic Detection of Software Failures in Real-Time
Systems”, In Proc. 3rd IEEE Real-Time Technology
and Applications Symp. (RTAS), 136-146, 1997.

[Sci98] D. Sciuto, C. Silvano, and R. Stefanelli, “Systematic
AUED Codes for Self-Checking Architectures”, Proc.
IEEE Intl. Symp. on Defect and Fault Tolerance in
VLSI Systems, 183-191, 1998.

[Shi00] P. P. Shirvani, N. R. Saxena, and E. J. McCluskey,
“Software-Implemented EDAC Protection against
SEUs”, IEEE Trans. on Reliability, 49(3), 273-284,
2000.

[Shy07] A. Shye, T. Moseley, V. J. Reddi, J. Blomstedt, and D.
A. Connors, “Using Process-Level Redundancy to
Exploit Multiple Cores for Transient Fault Toler-
ance”, In Proc. Intl. Conf. on Dependable Systems and
Networks (DSN), 297-306, 2007.

BIBLIOGRAPHY

249

[Sil07] V. F Silva, J. Ferreira, and J. A. Fonseca, “Master
Replication and Bus Error Detection in FTT-CAN
with Multiple Buses”, In Proc. IEEE Conf. on Emerg-
ing Technologies & Factory Automation (ETFA),
1107-1114, 2007.

[Sos94] J. Sosnowski, “Transient Fault Tolerance in Digital
Systems”, IEEE Micro, 14(1), 24-35, 1994.

[Sri95] S. Srinivasan and N. K. Jha, “Hardware-Software
Co-Synthesis of Fault-Tolerant Real-Time Distrib-
uted Embedded Systems”, Proc. of Europe Design
Automation Conf., 334-339, 1995.

[Sri96] G. R. Srinivasan, “Modeling the Cosmic-Ray-induced
Soft-Error Rate in Integrated Circuits: An Over-
view”, IBM J. of Research and Development, 40(1),
77-89, 1996.

[Sta97] R. P. Stanley, “Enumerative Combinatorics”, Vol. I,
Cambridge Studies in Advanced Mathematics 49,
Cambridge University Press, 1997.

[Ste07] L. Sterpone, M. Violante, R.H. Sorensen, D. Merodio,
F. Sturesson, R. Weigand, and S. Mattsson, “Experi-
mental Validation of a Tool for Predicting the Effects
of Soft Errors in SRAM-Based FPGAs”, IEEE Trans.
on Nuclear Science, 54(6), Part 1, 2576-2583, 2007.

[Sto96] N. Storey, “Safety-Critical Computer Systems”, Addi-
son-Wesley, 1996.

[Str06] B. Strauss, M. G. Morgan, Jay Apt, and D. D. Stancil,
“Unsafe at Any Airspeed?”, IEEE Spectrum, 43(3),
44-49, 2006.

[Sun95] Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang,
Byung-Do Rhee, Sang Lyul Min, Chang Yun Park,
Heonshik Shin, Kunsoo Park, Soo-Mook Moon, and

250

Chong Sang Kim, “An Accurate Worst Case Timing
Analysis for RISC Processors”, IEEE Trans. on Soft-
ware Engineering, 21(7), 593-604, 1995.

[Sze05] D. Szentivanyi, S. Nadjm-Tehrani, and J. M. Noble,
“Optimal Choice of Checkpointing Interval for High
Availability”, Proc. 11th Pacific Rim Dependable
Computing Conf., 8pp., 2005.

[Tan96] H. H. K. Tang, “Nuclear Physics of Cosmic Ray Inter-
action with Semiconductor Materials: Particle-
Induced Soft Errors from a Physicist’s Perspective”,
IBM J. of Research and Development, 40(1), 91-108,
1996.

[Tin94] K. Tindell and J. Clark, “Holistic Schedulability
Analysis for Distributed Hard Real-Time Systems”,
Microprocessing and Microprogramming, 40, 117-
134, 1994.

[Tri05] S. Tripakis, “Two-phase Distributed Observation
Problems”, In Proc. 5th Intl. Conf. on Application of
Concurrency to System Design, 98-105, 2005.

[Tro06] I. A. Troxel, E. Grobelny, G. Cieslewski, J. Curreri,
M. Fischer, and A. George, “Reliable Management
Services for COTS-based Space Systems and Appli-
cations”, Proc. Intl. Conf. on Embedded Systems and
Applications (ESA), 169-175, 2006.

[Tsi01] Y. Tsiatouhas, T. Haniotakis, D. Nikolos, and C. Efs-
tathiou, “Concurrent Detection of Soft Errors Based
on Current Monitoring”, Proc. Seventh Intl. On-Line
Testing Workshop, 106-110, 2001.

[Ull75] D. Ullman, “NP-Complete Scheduling Problems,”
Computer Systems Science, 10, 384–393, 1975.

[Vel07] R. Velazco, P. Fouillat, and R. Reis, (Editors) “Radia-
tion Effects on Embedded Systems”, Springer, 2007.

BIBLIOGRAPHY

251

[Vra97] H. P. E. Vranken, M. P. J. Stevens, and M. T. M. Seg-
ers, “Design-for-Debug in Hardware/Software Co-
Design”, In Proc. 5th Intl. Workshop on Hardware/
Software Codesign, 35-39, 1997.

[Wan03] J. B. Wang, “Reduction in Conducted EMI Noises of a
Switching Power Supply after Thermal Management
Design,” IEE Proc. - Electric Power Applications,
150(3), 301-310, 2003.

[Wat04] N. Wattanapongsakorn and S. P. Levitan, “Reliability
Optimization Models for Embedded Systems with
Multiple Applications”, IEEE Trans. on Reliability,
53(3), 406-416, 2004.

[Wei04] Wei Huang, M. R. Stan, K. Skadron, K. Sankarana-
rayanan, S. Ghosh, and S. Velusam, “Compact Ther-
mal Modeling for Temperature-Aware Design,” Proc.
41st Design Automation Conf. (DAC), 878-883, 2004.

[Wei06] T. Wei, P. Mishra, K. Wu, and H. Liang, “Online
Task-Scheduling for Fault-Tolerant Low-Energy
Real-Time Systems”, In Proc. IEEE/ACM Intl. Conf.
on Computer-Aided Design (ICCAD), 522-527, 2006.

[Wil08] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S.
Thesing, D. Whalley, G. Bernat, C. Ferdinand, R.
Heckmann, F. Mueller, I. Puuat, P. Puschner, J. Stas-
chulat, and P. Stenström, “The Worst-Case Execu-
tion-Time Problem — Overview of Methods and
Survey of Tools”, ACM Trans. on Embedded Comput-
ing Systems (TECS), 7(3), 36.1-36.53, 2008.

[Xie04] Y. Xie, L. Li, M. Kandemir, N. Vijaykrishnan, and M.
J. Irwin, “Reliability-Aware Co-synthesis for Embed-
ded Systems”, Proc. 15th IEEE Intl. Conf. on Applica-
tion-Specific Systems, Architectures and Processors,
41-50, 2004.

252

[Yin03] Ying Zhang and K. Chakrabarty, “Fault Recovery
Based on Checkpointing for Hard Real-Time Embed-
ded Systems”, Proc. IEEE Intl. Symp. on Defect and
Fault Tolerance in VLSI Systems, 320-327, 2003.

[Yin04] Ying Zhang, R. Dick, and K. Chakrabarty, “Energy-
Aware Deterministic Fault Tolerance in Distributed
Real-Time Embedded Systems”, Proc. 42nd Design
Automation Conf. (DAC), 550-555, 2004.

[Yin06] Ying Zhang and K. Chakrabarty, “A Unified
Approach for Fault Tolerance and Dynamic Power
Management in Fixed-Priority Real-Time Embed-
ded Systems”, IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 25(1),
111-125, 2006.

[Zha06] M. Zhang, S. Mitra, T. M. Mak, N. Seifert, N. J. Wang,
Q. Shi, K. S. Kim, N. R. Shanbhag, and S. J. Patel,
“Sequential Element Design With Built-In Soft Error
Resilience”, IEEE Trans. on Very Large Scale Inte-
grated (VLSI) Systems, 14(12), 1368-1378, 2006.

[Zho06] Q. Zhou and K. Mohanram, “Gate Sizing to Radia-
tion Harden Combinational Logic”, IEEE Trans. on
Computer-Aided Design of Integrated Circuits and
Systems (CAD), 25(1), 155-166, 2006.

[Zho08] Q. Zhou, M. R. Choudhury, and K. Mohanram, “Tun-
able Transient Filters for Soft Error Rate Reduction
in Combinational Circuits”, Proc. 13th European Test
Symp. (ETS), 179-184, 2008

[Zhu05] D. Zhu, R. Melhem, and D. Mosse, “Energy Efficient
Configuration for QoS in Reliable Parallel Servers”,
In Lecture Notes in Computer Science, 3463, 122-139,
2005.

BIBLIOGRAPHY

253

[Ziv97] A. Ziv and J. Bruck, “An On-Line Algorithm for
Checkpoint Placement”, IEEE Trans. on Computers,
46(9), 976-985, 1997.

Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology

No 14 Anders Haraldsson: A Program Manipulation

System Based on Partial Evaluation, 1977, ISBN 91-
7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verification
of Time Margins in Digital Designs, 1977, ISBN 91-
7372-157-3.

No 18 Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt språk, 1977, ISBN 91- 7372-
168-9.

No 22 Jaak Urmi: A Machine Independent LISP Compiler
and its Implications for Ideal Hardware, 1978, ISBN
91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File Queries in
a Meta-Database System 1978, ISBN 91- 7372-232-4.

No 51 Erland Jungert: Synthesizing Database Structures
from a User Oriented Data Model, 1980, ISBN 91-
7372-387-8.

No 54 Sture Hägglund: Contributions to the Development
of Methods and Tools for Interactive Design of
Applications Software, 1980, ISBN 91-7372-404-1.

No 55 Pär Emanuelson: Performance Enhancement in a
Well-Structured Pattern Matcher through Partial
Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Human-
Computer Interface in Commercial Systems, 1981,
ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Abstract
Prolog Machine and its Application to Partial
Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Techniques
and Tools for Expert Systems, 1981, ISBN 91-7372-
489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiability in
large Software Systems, 1982, ISBN 91- 7372-527-7.

No 94 Hans Lunell: Code Generator Writing Systems, 1983,
ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Programming
Environment based on Incremental Compilation,
1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372- 805-5.

No 155 Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-7870-
133-3.

No 165 James W. Goodwin: A Theory and System for Non-
Monotonic Reasoning, 1987, ISBN 91-7870-183-X.

No 170 Zebo Peng: A Formal Methodology for Automated
Synthesis of VLSI Systems, 1987, ISBN 91-7870-225-9.

No 174 Johan Fagerström: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-7870-
301-8.

No 192 Dimiter Driankov: Towards a Many Valued Logic of
Quantified Belief, 1988, ISBN 91-7870-374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for an
Object Oriented Knowledge Base, 1989, ISBN 91-
7870-485-5.

No 214 Tony Larsson: A Formal Hardware Description and
Verification Method, 1989, ISBN 91-7870-517-7.

No 221 Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN 91-
7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design Support
and Discourse Management in User Interface
Management Systems, 1991, ISBN 91-7870-720-X.

No 244 Henrik Eriksson: Meta-Tool Support for Knowledge
Acquisition, 1991, ISBN 91-7870-746-3.

No 252 Peter Eklund: An Epistemic Approach to Interactive
Design in Multiple Inheritance Hierarchies, 1991,
ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic
Formalism with Explicit Defaults, 1991, ISBN 91-
7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic
Debugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-
Cognitive and Computational Aspects, 1992, ISBN
91-7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Abstract
Machines: Contributions to a Methodology for the
Implementation of Logic Programs, 1992, ISBN 91-
7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of Tense-
bound Object References, 1992, ISBN 91-7870-873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI Data
Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn Clause
Logic with External Polymorphic Functions, 1992,
ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge Manage-
ment Systems with an Active Expert Methodology,
1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complexity of
Reasoning about Plans, 1992, ISBN 91-7870-979-2.

No 292 Mats Wirén: Studies in Incremental Natural
Language Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic Slicing
with Applications to Debugging and Testing, 1993,
ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using
Classification and Defaults, 1993, ISBN 91-7871-078-2

No 312 Arne Jönsson: Dialogue Management for Natural
Language Interfaces - An Empirical Approach, 1993,
ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in Physical
Environments: Compositional Modelling and Frame-
work for Verification, 1994, ISBN 91-7871-237-8.

No 371 Bengt Savén: Business Models for Decision Support
and Learning. A Study of Discrete-Event
Manufacturing Simulation at Asea/ABB 1968-1993,
1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-7871-516-
4.

No 383 Andreas Kågedal: Exploiting Groundness in Logic
Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Description,
Identification and Recovery from Problematic
Control Situations, 1995, ISBN 91-7871-603-9.

No 413 Mikael Pettersson: Compiling Natural Semantics,
1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996, ISBN
91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996, ISBN
91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Industrial
Training from an Organisational Learning
Perspective - Development and Evaluation of the
SSIT Method, 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning:
Algorithms and Complexity, 1996, ISBN 91-7871-704-
3.

No 437 Johan Boye: Directional Types in Logic
Programming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-7871-
728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in
Description Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsborn: On Extensible and Object-Relational
Database Technology for Finite Element Analysis
Applications, 1996, ISBN 91-7871-827-9.

No 459 Olof Johansson: Development Environments for
Complex Product Models, 1996, ISBN 91-7871-855-4.

No 461 Lena Strömbäck: User-Defined Constructions in
Unification-Based Formalisms, 1997, ISBN 91-7871-
857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Program-
ming: A Multi-Level View of Query Answering,
1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrning -
En studie av hur ekonomiska styrsystem utformas
och används efter företagsförvärv, 1997, ISBN 91-
7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of Require-
ments-Driven Impact Analysis in Object-Oriented
Software Evolution, 1997, ISBN 91-7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The Coop-
erative Perspective on Knowledge-Based Decision
Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management
Systems for Monitoring and Control, 1997, ISBN 91-
7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri Nets in
a CLP framework, 1997, ISBN 91-7219-011-6.

No 498 Thomas Drakengren: Algorithms and Complexity
for Temporal and Spatial Formalisms, 1997, ISBN 91-
7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of Heteroge-
neous Real-Time Systems, 1997, ISBN 91-7219-035-3.

No 503 Johan Ringström: Compiler Generation for Data-
Parallel Programming Languages from Two-Level
Semantics Specifications, 1997, ISBN 91-7219-045-0.

No 512 Anna Moberg: Närhet och distans - Studier av kom-
munikationsmönster i satellitkontor och flexibla
kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a
Parallel Data Server for Telecom Applications, 1998,
ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault Prevention
- An Empirical Study in Software Engineering, 1998,
ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for
Prioritizing Software Requirements, 1998, ISBN 91-
7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for Lazy
Functional Languages, 1998, ISBN 91-7219-197-x.

No 555 Jonas Hallberg: Timing Issues in High-Level Synthe-
sis, 1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data - From
Discrete to Continuous, 1999, ISBN 91-7219-402-2.

No 563 Eva L Ragnemalm: Student Modelling based on Col-
laborative Dialogue with a Learning Companion,
1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On geo-
graphical dispersion in organisations, 1999, ISBN 91-
7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and
Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating
Inhibitory Mechanisms in Mental Image
Reinterpretation - Towards Cooperative Human-
Computer Creativity, 1999, ISBN 91-7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Narratives,
1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organizational
Aspects of Requirements Engineering Methods - A
practice-oriented approach, 1999, ISBN 91-7219-541-
X.

No 595 Jörgen Hansson: Value-Driven Multi-Class Overload
Management in Real-Time Database Systems, 1999,
ISBN 91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in the
Design of Information Systems and Services in the
Public Sector: A Methods Approach, 1999, ISBN 91-
7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective on the
Analysis of Impacts of Information Technology:
From Case Studies in Health-Care towards General
Models and Theories, 1999, ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in Computer-
Supported Taskforce Training, 1999, ISBN 91-7219-
547-9.

No 607 Magnus Merkel: Understanding and enhancing
translation by parallel text processing, 1999, ISBN 91-
7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to sensory
data, 1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i praktiken -
En studie av logiker i fyra projekt, 1999, ISBN 91-
7219-657-2.

No 627 Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented
Models in Scientific Computing, 2000, ISBN 91-7219-
709-9.

No 637 Esa Falkenroth: Database Technology for Control
and Simulation, 2000, ISBN 91-7219-766-8.

No 639 Per-Arne Persson: Bringing Power and Knowledge
Together: Information Systems Design for Autonomy
and Control in Command Work, 2000, ISBN 91-7219-
796-X.

No 660 Erik Larsson: An Integrated System-Level Design for
Testability Methodology, 2000, ISBN 91-7219-890-7.

No 688 Marcus Bjäreland: Model-based Execution
Monitoring, 2001, ISBN 91-7373-016-5.

No 689 Joakim Gustafsson: Extending Temporal Action
Logic, 2001, ISBN 91-7373-017-3.

No 720 Carl-Johan Petri: Organizational Information Provi-
sion - Managing Mandatory and Discretionary Use
of Information Technology, 2001, ISBN-91-7373-126-
9.

No 724 Paul Scerri: Designing Agents for Systems with Ad-
justable Autonomy, 2001, ISBN 91 7373 207 9.

No 725 Tim Heyer: Semantic Inspection of Software
Artifacts: From Theory to Practice, 2001, ISBN 91
7373 208 7.

No 726 Pär Carlshamre: A Usability Perspective on Require-
ments Engineering - From Methodology to Product
Development, 2001, ISBN 91 7373 212 5.

No 732 Juha Takkinen: From Information Management to
Task Management in Electronic Mail, 2002, ISBN 91
7373 258 3.

No 745 Johan Åberg: Live Help Systems: An Approach to
Intelligent Help for Web Information Systems, 2002,
ISBN 91-7373-311-3.

No 746 Rego Granlund: Monitoring Distributed Teamwork
Training, 2002, ISBN 91-7373-312-1.

No 757 Henrik André-Jönsson: Indexing Strategies for Time
Series Data, 2002, ISBN 917373-346-6.

No 747 Anneli Hagdahl: Development of IT-supported
Interorganisational Collaboration - A Case Study in
the Swedish Public Sector, 2002, ISBN 91-7373-314-8.

No 749 Sofie Pilemalm: Information Technology for Non-
Profit Organisations - Extended Participatory Design
of an Information System for Trade Union Shop
Stewards, 2002, ISBN 91-7373-318-0.

No 765 Stefan Holmlid: Adapting users: Towards a theory
of use quality, 2002, ISBN 91-7373-397-0.

No 771 Magnus Morin: Multimedia Representations of Dis-
tributed Tactical Operations, 2002, ISBN 91-7373-421-
7.

No 772 Pawel Pietrzak: A Type-Based Framework for Locat-
ing Errors in Constraint Logic Programs, 2002, ISBN
91-7373-422-5.

No 758 Erik Berglund: Library Communication Among Pro-
grammers Worldwide, 2002, ISBN 91-7373-349-0.

No 774 Choong-ho Yi: Modelling Object-Oriented Dynamic
Systems Using a Logic-Based Framework, 2002, ISBN
91-7373-424-1.

No 779 Mathias Broxvall: A Study in the Computational
Complexity of Temporal Reasoning, 2002, ISBN 91-
7373-440-3.

No 793 Asmus Pandikow: A Generic Principle for Enabling
Interoperability of Structured and Object-Oriented
Analysis and Design Tools, 2002, ISBN 91-7373-479-9.

No 785 Lars Hult: Publika Informationstjänster. En studie av
den Internetbaserade encyklopedins bruksegenska-
per, 2003, ISBN 91-7373-461-6.

No 800 Lars Taxén: A Framework for the Coordination of
Complex Systems´ Development, 2003, ISBN 91-
7373-604-X

No 808 Klas Gäre: Tre perspektiv på förväntningar och
förändringar i samband med införande av
informationssystem, 2003, ISBN 91-7373-618-X.

No 821 Mikael Kindborg: Concurrent Comics -
programming of social agents by children, 2003,
ISBN 91-7373-651-1.

No 823 Christina Ölvingson: On Development of
Information Systems with GIS Functionality in
Public Health Informatics: A Requirements
Engineering Approach, 2003, ISBN 91-7373-656-2.

No 828 Tobias Ritzau: Memory Efficient Hard Real-Time
Garbage Collection, 2003, ISBN 91-7373-666-X.

No 833 Paul Pop: Analysis and Synthesis of
Communication-Intensive Heterogeneous Real-Time
Systems, 2003, ISBN 91-7373-683-X.

No 852 Johan Moe: Observing the Dynamic Behaviour of
Large Distributed Systems to Improve Development
and Testing – An Empirical Study in Software
Engineering, 2003, ISBN 91-7373-779-8.

No 867 Erik Herzog: An Approach to Systems Engineering
Tool Data Representation and Exchange, 2004, ISBN
91-7373-929-4.

No 872 Aseel Berglund: Augmenting the Remote Control:
Studies in Complex Information Navigation for
Digital TV, 2004, ISBN 91-7373-940-5.

No 869 Jo Skåmedal: Telecommuting’s Implications on
Travel and Travel Patterns, 2004, ISBN 91-7373-935-9.

No 870 Linda Askenäs: The Roles of IT - Studies of
Organising when Implementing and Using
Enterprise Systems, 2004, ISBN 91-7373-936-7.

No 874 Annika Flycht-Eriksson: Design and Use of Ontolo-
gies in Information-Providing Dialogue Systems,
2004, ISBN 91-7373-947-2.

No 873 Peter Bunus: Debugging Techniques for Equation-
Based Languages, 2004, ISBN 91-7373-941-3.

No 876 Jonas Mellin: Resource-Predictable and Efficient
Monitoring of Events, 2004, ISBN 91-7373-956-1.

No 883 Magnus Bång: Computing at the Speed of Paper:
Ubiquitous Computing Environments for Healthcare
Professionals, 2004, ISBN 91-7373-971-5

No 882 Robert Eklund: Disfluency in Swedish human-
human and human-machine travel booking di-
alogues, 2004, ISBN 91-7373-966-9.

No 887 Anders Lindström: English and other Foreign
Linguistic Elements in Spoken Swedish. Studies of
Productive Processes and their Modelling using
Finite-State Tools, 2004, ISBN 91-7373-981-2.

No 889 Zhiping Wang: Capacity-Constrained Production-in-
ventory systems - Modelling and Analysis in both a
traditional and an e-business context, 2004, ISBN 91-
85295-08-6.

No 893 Pernilla Qvarfordt: Eyes on Multimodal Interaction,
2004, ISBN 91-85295-30-2.

No 910 Magnus Kald: In the Borderland between Strategy
and Management Control - Theoretical Framework
and Empirical Evidence, 2004, ISBN 91-85295-82-5.

No 918 Jonas Lundberg: Shaping Electronic News: Genre
Perspectives on Interaction Design, 2004, ISBN 91-
85297-14-3.

No 900 Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN 91-
85295-42-6.

No 920 Luis Alejandro Cortés: Verification and Scheduling
Techniques for Real-Time Embedded Systems, 2004,
ISBN 91-85297-21-6.

No 929 Diana Szentivanyi: Performance Studies of Fault-
Tolerant Middleware, 2005, ISBN 91-85297-58-5.

No 933 Mikael Cäker: Management Accounting as
Constructing and Opposing Customer Focus: Three
Case Studies on Management Accounting and
Customer Relations, 2005, ISBN 91-85297-64-X.

No 937 Jonas Kvarnström: TALplanner and Other
Extensions to Temporal Action Logic, 2005, ISBN 91-
85297-75-5.

No 938 Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual
Servoing for Unmanned Helicopter, 2005, ISBN 91-
85297-76-3.

No 945 Gert Jervan: Hybrid Built-In Self-Test and Test
Generation Techniques for Digital Systems, 2005,
ISBN: 91-85297-97-6.

No 946 Anders Arpteg: Intelligent Semi-Structured Informa-
tion Extraction, 2005, ISBN 91-85297-98-4.

No 947 Ola Angelsmark: Constructing Algorithms for Con-
straint Satisfaction and Related Problems - Methods
and Applications, 2005, ISBN 91-85297-99-2.

No 963 Calin Curescu: Utility-based Optimisation of
Resource Allocation for Wireless Networks, 2005,
ISBN 91-85457-07-8.

No 972 Björn Johansson: Joint Control in Dynamic
Situations, 2005, ISBN 91-85457-31-0.

No 974 Dan Lawesson: An Approach to Diagnosability
Analysis for Interacting Finite State Systems, 2005,
ISBN 91-85457-39-6.

No 979 Claudiu Duma: Security and Trust Mechanisms for
Groups in Distributed Services, 2005, ISBN 91-85457-
54-X.

No 983 Sorin Manolache: Analysis and Optimisation of
Real-Time Systems with Stochastic Behaviour, 2005,
ISBN 91-85457-60-4.

No 986 Yuxiao Zhao: Standards-Based Application
Integration for Business-to-Business
Communications, 2005, ISBN 91-85457-66-3.

No 1004 Patrik Haslum: Admissible Heuristics for
Automated Planning, 2006, ISBN 91-85497-28-2.

No 1005 Aleksandra Tešanovic: Developing Reusable and
Reconfigurable Real-Time Software using Aspects
and Components, 2006, ISBN 91-85497-29-0.

No 1008 David Dinka: Role, Identity and Work: Extending
the design and development agenda, 2006, ISBN 91-
85497-42-8.

No 1009 Iakov Nakhimovski: Contributions to the Modeling
and Simulation of Mechanical Systems with Detailed
Contact Analysis, 2006, ISBN 91-85497-43-X.

No 1013 Wilhelm Dahllöf: Exact Algorithms for Exact
Satisfiability Problems, 2006, ISBN 91-85523-97-6.

No 1016 Levon Saldamli: PDEModelica - A High-Level Lan-
guage for Modeling with Partial Differential Equa-
tions, 2006, ISBN 91-85523-84-4.

No 1017 Daniel Karlsson: Verification of Component-based
Embedded System Designs, 2006, ISBN 91-85523-79-8

No 1018 Ioan Chisalita: Communication and Networking
Techniques for Traffic Safety Systems, 2006, ISBN 91-
85523-77-1.

No 1019 Tarja Susi: The Puzzle of Social Activity - The
Significance of Tools in Cognition and Cooperation,
2006, ISBN 91-85523-71-2.

No 1021 Andrzej Bednarski: Integrated Optimal Code Gener-
ation for Digital Signal Processors, 2006, ISBN 91-
85523-69-0.

No 1022 Peter Aronsson: Automatic Parallelization of Equa-
tion-Based Simulation Programs, 2006, ISBN 91-
85523-68-2.

No 1030 Robert Nilsson: A Mutation-based Framework for
Automated Testing of Timeliness, 2006, ISBN 91-
85523-35-6.

No 1034 Jon Edvardsson: Techniques for Automatic
Generation of Tests from Programs and
Specifications, 2006, ISBN 91-85523-31-3.

No 1035 Vaida Jakoniene: Integration of Biological Data,
2006, ISBN 91-85523-28-3.

No 1045 Genevieve Gorrell: Generalized Hebbian
Algorithms for Dimensionality Reduction in Natural
Language Processing, 2006, ISBN 91-85643-88-2.

No 1051 Yu-Hsing Huang: Having a New Pair of Glasses -
Applying Systemic Accident Models on Road Safety,
2006, ISBN 91-85643-64-5.

No 1054 Åsa Hedenskog: Perceive those things which cannot
be seen - A Cognitive Systems Engineering
perspective on requirements management, 2006,
ISBN 91-85643-57-2.

No 1061 Cécile Åberg: An Evaluation Platform for Semantic
Web Technology, 2007, ISBN 91-85643-31-9.

No 1073 Mats Grindal: Handling Combinatorial Explosion in
Software Testing, 2007, ISBN 978-91-85715-74-9.

No 1075 Almut Herzog: Usable Security Policies for Runtime
Environments, 2007, ISBN 978-91-85715-65-7.

No 1079 Magnus Wahlström: Algorithms, measures, and
upper bounds for Satisfiability and related problems,
2007, ISBN 978-91-85715-55-8.

No 1083 Jesper Andersson: Dynamic Software Architectures,
2007, ISBN 978-91-85715-46-6.

No 1086 Ulf Johansson: Obtaining Accurate and
Comprehensible Data Mining Models - An
Evolutionary Approach, 2007, ISBN 978-91-85715-34-
3.

No 1089 Traian Pop: Analysis and Optimisation of
Distributed Embedded Systems with Heterogeneous
Scheduling Policies, 2007, ISBN 978-91-85715-27-5.

No 1091 Gustav Nordh: Complexity Dichotomies for CSP-
related Problems, 2007, ISBN 978-91-85715-20-6.

No 1106 Per Ola Kristensson: Discrete and Continuous Shape
Writing for Text Entry and Control, 2007, ISBN 978-
91-85831-77-7.

No 1110 He Tan: Aligning Biomedical Ontologies, 2007, ISBN
978-91-85831-56-2.

No 1112 Jessica Lindblom: Minding the body - Interacting so-
cially through embodied action, 2007, ISBN 978-91-
85831-48-7.

No 1113 Pontus Wärnestål: Dialogue Behavior Management
in Conversational Recommender Systems, 2007,
ISBN 978-91-85831-47-0.

No 1120 Thomas Gustafsson: Management of Real-Time
Data Consistency and Transient Overloads in
Embedded Systems, 2007, ISBN 978-91-85831-33-3.

No 1127 Alexandru Andrei: Energy Efficient and Predictable
Design of Real-time Embedded Systems, 2007, ISBN
978-91-85831-06-7.

No 1139 Per Wikberg: Eliciting Knowledge from Experts in
Modeling of Complex Systems: Managing Variation
and Interactions, 2007, ISBN 978-91-85895-66-3.

No 1143 Mehdi Amirijoo: QoS Control of Real-Time Data
Services under Uncertain Workload, 2007, ISBN 978-
91-85895-49-6.

No 1150 Sanny Syberfeldt: Optimistic Replication with For-
ward Conflict Resolution in Distributed Real-Time
Databases, 2007, ISBN 978-91-85895-27-4.

No 1155 Beatrice Alenljung: Envisioning a Future Decision
Support System for Requirements Engineering - A
Holistic and Human-centred Perspective, 2008, ISBN
978-91-85895-11-3.

No 1156 Artur Wilk: Types for XML with Application to
Xcerpt, 2008, ISBN 978-91-85895-08-3.

No 1183 Adrian Pop: Integrated Model-Driven Development
Environments for Equation-Based Object-Oriented
Languages, 2008, ISBN 978-91-7393-895-2.

No 1185 Jörgen Skågeby: Gifting Technologies -
Ethnographic Studies of End-users and Social Media
Sharing, 2008, ISBN 978-91-7393-892-1.

No 1187 Imad-Eldin Ali Abugessaisa: Analytical tools and
information-sharing methods supporting road safety
organizations, 2008, ISBN 978-91-7393-887-7.

No 1204 H. Joe Steinhauer: A Representation Scheme for De-
scription and Reconstruction of Object
Configurations Based on Qualitative Relations, 2008,
ISBN 978-91-7393-823-5.

No 1222 Anders Larsson: Test Optimization for Core-based
System-on-Chip, 2008, ISBN 978-91-7393-768-9.

No 1238 Andreas Borg: Processes and Models for Capacity
Requirements in Telecommunication Systems, 2009,
ISBN 978-91-7393-700-9.

No 1240 Fredrik Heintz: DyKnow: A Stream-Based Know-
ledge Processing Middleware Framework, 2009,
ISBN 978-91-7393-696-5.

No 1241 Birgitta Lindström: Testability of Dynamic Real-
Time Systems, 2009, ISBN 978-91-7393-695-8.

No 1244 Eva Blomqvist: Semi-automatic Ontology Construc-
tion based on Patterns, 2009, ISBN 978-91-7393-683-5.

No 1249 Rogier Woltjer: Functional Modeling of Constraint
Management in Aviation Safety and Command and
Control, 2009, ISBN 978-91-7393-659-0.

No 1260 Gianpaolo Conte: Vision-Based Localization and
Guidance for Unmanned Aerial Vehicles, 2009, ISBN
978-91-7393-603-3.

No 1262 AnnMarie Ericsson: Enabling Tool Support for For-
mal Analysis of ECA Rules, 2009, ISBN 978-91-7393-
598-2.

No 1266 Jiri Trnka: Exploring Tactical Command and
Control: A Role-Playing Simulation Approach, 2009,
ISBN 978-91-7393-571-5.

No 1268 Bahlol Rahimi: Supporting Collaborative Work
through ICT - How End-users Think of and Adopt
Integrated Health Information Systems, 2009, ISBN
978-91-7393-550-0.

No 1274 Fredrik Kuivinen: Algorithms and Hardness Results
for Some Valued CSPs, 2009, ISBN 978-91-7393-525-8.

No 1281 Gunnar Mathiason: Virtual Full Replication for
Scalable Distributed Real-Time Databases, 2009,
ISBN 978-91-7393-503-6.

No 1290 Viacheslav Izosimov: Scheduling and Optimization
of Fault-Tolerant Distributed Embedded Systems,
2009, ISBN 978-91-7393-482-4.

Linköping Studies in Statistics
No 9 Davood Shahsavani: Computer Experiments De-

signed to Explore and Approximate Complex Deter-
ministic Models, 2008, ISBN 978-91-7393-976-8.

No 10 Karl Wahlin: Roadmap for Trend Detection and As-
sessment of Data Quality, 2008, ISBN 978-91-7393-
792-4

Linköping Studies in Information Science
No 1 Karin Axelsson: Metodisk systemstrukturering- att

skapa samstämmighet mellan informationssystem-
arkitektur och verksamhet, 1998. ISBN-9172-19-296-8.

No 2 Stefan Cronholm: Metodverktyg och användbarhet -
en studie av datorstödd metodbaserad
systemutveckling, 1998, ISBN-9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om
anveckling med kalkylprogram, 1999. ISBN-91-7219-
606-8.

No 4 Owen Eriksson: Kommunikationskvalitet hos infor-
mationssystem och affärsprocesser, 2000, ISBN 91-
7219-811-7.

No 5 Mikael Lind: Från system till process - kriterier för
processbestämning vid verksamhetsanalys, 2001,
ISBN 91-7373-067-X.

No 6 Ulf Melin: Koordination och informationssystem i
företag och nätverk, 2002, ISBN 91-7373-278-8.

No 7 Pär J. Ågerfalk: Information Systems Actability - Un-
derstanding Information Technology as a Tool for
Business Action and Communication, 2003, ISBN 91-
7373-628-7.

No 8 Ulf Seigerroth: Att förstå och förändra
systemutvecklingsverksamheter - en taxonomi för
metautveckling, 2003, ISBN91-7373-736-4.

No 9 Karin Hedström: Spår av datoriseringens värden –
 Effekter av IT i äldreomsorg, 2004, ISBN 91-7373-963-

4.
No 10 Ewa Braf: Knowledge Demanded for Action -

Studies on Knowledge Mediation in Organisations,
2004, ISBN 91-85295-47-7.

No 11 Fredrik Karlsson: Method Configuration method
and computerized tool support, 2005, ISBN 91-85297-
48-8.

No 12 Malin Nordström: Styrbar systemförvaltning - Att
organisera systemförvaltningsverksamhet med hjälp
av effektiva förvaltningsobjekt, 2005, ISBN 91-85297-
60-7.

No 13 Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,
motivation, IT-system och andra förutsättningar för
polisarbete, 2005, ISBN 91-85299-43-X.

No 14 Benneth Christiansson, Marie-Therese
Christiansson: Mötet mellan process och komponent
- mot ett ramverk för en verksamhetsnära
kravspecifikation vid anskaffning av
komponentbaserade informationssystem, 2006, ISBN
91-85643-22-X.

