
Scheduling and Optimization
of Fault-Tolerant Distributed

Embedded Systems

Viacheslav Izosimov

ISBN 91-85643-72-6 ISSN 0280-7971
PRINTED IN LINKÖPING, SWEDEN

BY LINKÖPINGS UNIVERSITET

COPYRIGHT © 2006 VIACHESLAV IZOSIMOV

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Scheduling and Optimization of Fault-Tolerant
Embedded Systems

by

Viacheslav Izosimov

November 2006
ISBN 91-85643-72-6

Linköping Studies in Science and Technology
Thesis No. 1277
ISSN 0280-7971

LiU-Tek-Lic-2006:58

ABSTRACT

Safety-critical applications have to function correctly even in presence of faults. This thesis
deals with techniques for tolerating effects of transient and intermittent faults. Re-
execution, software replication, and rollback recovery with checkpointing are used to
provide the required level of fault tolerance. These techniques are considered in the context
of distributed real-time systems with non-preemptive static cyclic scheduling.

Safety-critical applications have strict time and cost constrains, which means that not only
faults have to be tolerated but also the constraints should be satisfied. Hence, efficient
system design approaches with consideration of fault tolerance are required.

The thesis proposes several design optimization strategies and scheduling techniques that
take fault tolerance into account. The design optimization tasks addressed include, among
others, process mapping, fault tolerance policy assignment, and checkpoint distribution.

Dedicated scheduling techniques and mapping optimization strategies are also proposed to
handle customized transparency requirements associated with processes and messages. By
providing fault containment, transparency can, potentially, improve testability and
debugability of fault-tolerant applications.

The efficiency of the proposed scheduling techniques and design optimization strategies is
evaluated with extensive experiments conducted on a number of synthetic applications and
a real-life example. The experimental results show that considering fault tolerance during
system-level design optimization is essential when designing cost-effective fault-tolerant
embedded systems.

This work has been partially supported by the National Graduate School in Computer Sci-
ence (CUGS) of Sweden.

To My Parents

Abstract

SAFETY-CRITICAL APPLICATIONS HAVE to function correctly
even in presence of faults. This thesis deals with techniques for
tolerating effects of transient and intermittent faults. Re-execu-
tion, software replication, and rollback recovery with check-
pointing are used to provide the required level of fault tolerance.
These techniques are considered in the context of distributed
real-time systems with non-preemptive static cyclic scheduling.

Safety-critical applications have strict time and cost con-
strains, which means that not only faults have to be tolerated
but also the constraints should be satisfied. Hence, efficient sys-
tem design approaches with consideration of fault tolerance are
required.

The thesis proposes several design optimization strategies
and scheduling techniques that take fault tolerance into
account. The design optimization tasks addressed include,
among others, process mapping, fault tolerance policy assign-
ment, and checkpoint distribution.

Dedicated scheduling techniques and mapping optimization
strategies are also proposed to handle customized transparency
requirements associated with processes and messages. By pro-
viding fault containment, transparency can, potentially,
improve testability and debugability of fault-tolerant applica-
tions.

The efficiency of the proposed scheduling techniques and
design optimization strategies is evaluated with extensive
experiments conducted on a number of synthetic applications
and a real-life example. The experimental results show that con-
sidering fault tolerance during system-level design optimization
is essential when designing cost-effective fault-tolerant embed-
ded systems.

Acknowledgements

I WOULD LIKE to thank my advisors Zebo Peng, Petru Eles,
and Paul Pop for guiding me through the long thorny path of
graduate studies and for their valuable comments on this thesis.
Despite having four sometimes contradictory points of view,
after long discussions, we could always find a common agree-
ment.

Many thanks to the CUGS graduate school for supporting my
research and providing excellent courses, and to the ARTES++
graduate school for supporting my travelling.

I also would like to express many thanks to my current and
former colleagues at ESLAB and IDA for creating a nice friendly
working environment.

I am also grateful to my sister, my brother, and all my friends
who have supported me during writing of the thesis.

Finally, I devote this thesis to my parents who have been
encouraging me during my 20 years of studies. Last, but not
least, my deepest gratitude is towards my girlfriend, Yevgeniya
Kyselova, for her love, patience, and support.

Contents

1. Introduction 1

1.1 Motivation 2

1.1.1 Transient and Intermittent Faults 2

1.1.1 Fault Tolerance and Design Optimization 4

1.2 Contributions 5

1.3 Thesis Overview 6

2. Background and Related Work 9

2.1 Design and Optimization 9

2.1.1 Optimization Heuristics 11

2.2 Fault Tolerance Techniques 13

2.2.1 Error Detection Techniques 13

2.2.2 Re-execution 15

2.2.3 Rollback Recovery with Checkpointing 16

2.2.4 Active and Passive Replication 18

2.3 Transparency 19

2.4 Design Optimization with Fault Tolerance 20

2.4.1 Design Flow with Fault Tolerance Techniques 22

3. Preliminaries 25

3.1 System Model 25

3.1.1 Application Model 25

3.1.2 System Architecture 26

3.2 Fault Model and Basic Fault Tolerance Techniques 29

3.3 Recovery in the Context of Static Cyclic Scheduling 31

3.3.1 Re-execution 31

3.3.2 Rollback Recovery with Checkpointing 32

4. Scheduling with Fault Tolerance Requirements 35

4.1 Performance/Transparency Trade-offs 36

4.2 Fault-Tolerant Conditional Process Graph 41

4.2.1 Generation of FT-CPG 44

4.3 Conditional Scheduling 50

4.3.1 Schedule Table 50

4.3.2 Conditional Scheduling Algorithm 53

4.4 Shifting-based Scheduling 58

4.4.1 Shifting-based Scheduling Algorithm 59

4.5 Experimental Results 65

4.6 Conclusions 69

5. Process Mapping and Fault Tolerance Policy Assignment 71

5.1 Fault Tolerance Policy Assignment 72

5.1.1 Motivational Examples 74

5.1.2 Mapping with Fault Tolerance 76

5.1.3 Design Optimization Strategy 77

5.1.4 Scheduling and Replication 78

5.1.5 Optimization Algorithms 80

5.1.6 Experimental Results 84

5.2 Mapping Optimization with Transparency 88

5.2.1 Motivational Examples 89

5.2.2 Optimization Strategy 92

5.2.3 Iterative Mapping 94

5.2.4 Schedule Length Estimation 96

5.2.5 Experimental Results 98

5.3 Conclusions 101

6. Checkpointing 103

6.1 Optimizing the Number of Checkpoints 103

6.1.1 Local Checkpointing 104

6.1.2 Global Checkpointing 107

6.2 Policy Assignment with Checkpointing 108

6.2.1 Motivational Examples 111

6.2.2 Scheduling with Checkpointing and Replication 113

6.2.3 Optimization Strategy 115

6.2.4 Optimization Algorithms 116

6.2.5 Experimental Results 118

6.3 Conclusions 123

7. Conclusions and Future Work 125

7.1 Conclusions 125

7.2 Future Work 127

Appendix I 129

References 133

INTRODUCTION

1

Chapter 1
Introduction

THIS THESIS DEALS with the design and optimization of fault-
tolerant distributed embedded systems for safety-critical appli-
cations. Such distributed embedded systems are responsible for
critical control functions in aircraft, automobiles, robots, tele-
communication and medical equipment. Therefore, they have to
function correctly even in the presence of faults.

Faults in a distributed embedded system can be permanent,
intermittent or transient (also known as soft errors). Permanent
faults cause long-term malfunctioning of components. Transient
and intermittent faults appear for a short time. Causes of inter-
mittent faults are within system boundaries, while causes of
transient faults are external to the system. The effects of tran-
sient and intermittent faults, even though they appear for a
short time, can be as devastating as the effects of permanent
faults. They may corrupt data or lead to logic miscalculations,
which can result in a fatal failure.

Due to their higher rate, transient and intermittent faults
cannot be addressed in a cost-effective way by applying tradi-
tional hardware-based fault tolerance techniques suitable for
tolerating permanent faults. In this thesis we deal with tran-

CHAPTER 1

2

sient and intermittent faults and consider several software-
based fault tolerance techniques, including re-execution, soft-
ware replication, and rollback recovery with checkpointing.

Embedded systems with fault tolerance have to be carefully
designed and optimized, in order to satisfy strict timing require-
ments without exceeding a certain limited amount of resources.
Moreover, not only performance and cost-related requirements
have to be considered but also other issues such as debugability
and testability have to be taken into account.

In this introductory chapter, we motivate the importance of
considering transient and intermittent faults during the design
optimization of embedded systems. We introduce a set of design
optimization problems and present the contributions of our
work. An overview of the thesis with short descriptions of the
chapters is also presented.

1.1 Motivation
In this section we discuss the main sources of transient and
intermittent faults and how to consider such faults during
design optimization.

1.1.1 TRANSIENT AND INTERMITTENT FAULTS

There are several reasons why the rate of transient and inter-
mittent faults is increasing in modern electronic systems: high
complexity, smaller transistor sizes, higher operational fre-
quency, and lower voltage levels [Mah04, Con03, Har01].

The rate of transient faults is often much higher compared to
the rate of permanent faults. Transient-to-permanent fault
ratios can vary between 2:1 and 50:1 [Sos94], and more recently
100:1 or higher [Kop04]. Automobiles, for example, are largely
affected by transient faults [Cor04, Han02] and proper fault tol-
erance techniques against transient faults are needed.

INTRODUCTION

3

Intermittent faults are also very common in automotive sys-
tems. It is observed that already now more than 50% of automo-
tive electronic components returned to the vendor have no
physical defects, and the malfunctioning is the result of inter-
mittent faults produced by other components [Kim99].

Causes of transient and intermittent faults can vary a lot. At
first, we will list possible causes of transient faults, which are
outside of system boundaries and may include several external
factors such as:
 • (solar) radiation (mostly neutrons) that can affect electronic

systems not only on the Earth orbit and in space but also on
the ground [Sri96, Nor96, Tan96, Ros05, Bau01];

 • electromagnetic interference by mobile phones, wireless com-
munication equipment [Str06], power lines, and radar
[Han02];

 • lightning storms that can affect power supply, current lines,
or directly electronic components [Hei05].

In contrast to transient faults, the causes of intermittent
faults are within the system boundaries. They can be triggered,
for example, by one device affecting other components through
radio emission or via the power supply. One such component can
create several intermittent faults at the same time. There are
several possible causes of intermittent faults listed in literature:
 • internal electromagnetic interference [Wan03];
 • crosstalk between two or more internal wires [Met98];
 • ion particles in the silicon that are generated by radioactive

elements naturally present in the silicon [May78];
 • temperature variations [Wei04];
 • power supply fluctuations due to influence of internal compo-

nents [Jun04];
 • software errors (also called Heisenbugs) that manifest them-

selves under rare circumstances and, therefore, are difficult
to find during software testing [Kop04].

From the fault tolerance point of view, transient faults and
intermittent faults manifest themselves in a similar manner:

CHAPTER 1

4

they happen for a short time and then disappear without caus-
ing a permanent damage. Hence, fault tolerance techniques
against transient faults are also applicable for tolerating inter-
mittent faults and vice versa. Therefore, from now, we will refer
to both types of faults as transient faults and we will talk about
fault tolerance against transient faults, meaning tolerating both
transient and intermittent faults.

1.1.2 FAULT TOLERANCE AND DESIGN OPTIMIZATION

Safety-critical applications have strict time and cost constraints,
which means that not only faults have be to tolerated but also
the imposed constraints have to be satisfied.

Traditionally, hardware replication was used as a fault-toler-
ance technique against transient faults. For example, in the
MARS [Kop90, Kop89] approach each fault-tolerant component
is composed of three computation units, two main units and one
shadow unit. Once a transient fault is detected, the faulty com-
ponent must restart while the system is operating with the non-
faulty component. This architecture can tolerate one permanent
fault and one transient fault at a time, or two transient faults.
Another example is the XBW [Cla98] architecture, where hard-
ware duplication is combined with double process execution.
Four process replicas are run in total. Such an architecture can
tolerate either two transient faults or one transient fault with
one permanent fault. Interesting implementations can be also
found in avionics. For example, the JAS 39 Gripen [Als01] archi-
tecture contains seven hardware replicas that can tolerate up to
three transient faults. However, such a solution is very costly
and can be used only if the amount of resources is virtually
unlimited. In other words, existing architectures are either too
costly or are unable to tolerate multiple transient faults.

In order to reduce cost, other techniques are required such as
software replication [Xie04, Che99], recovery with checkpoint-
ing [Jie96, Pun97, Yin06], and re-execution [Kan03a]. However,

INTRODUCTION

5

if applied in a straightforward manner to an existing design,
techniques against transient faults introduce significant time
overheads, which can lead to unschedulable solutions. On the
other hand, using faster components or a larger number of
resources may not be affordable due to cost constraints. There-
fore, efficient design optimization techniques are required in
order to meet time and cost constraints in the context of fault
tolerant systems.

Transient faults are also common for communication chan-
nels, even though we do not deal with them explicitly. Fault tol-
erance against multiple transient faults affecting
communications have already been studied. Solutions such as a
cyclic redundancy code (CRC) are implemented in communica-
tion protocols available on the market [Kop93, Fle04].

1.2 Contributions
In our approach, an embedded system is represented as a set of
processes communicating by sending messages. Processes are
mapped on computation nodes connected to the communication
infrastructure. The mapping of processes is decided using opti-
mization algorithms such that the performance is maximized.
Processes and communication schedules are determined off-line
by static cyclic scheduling. Our design optimization thoroughly
considers the impact of communications on the overall system
performance.

To provide resiliency against transient faults, processes are
assigned with re-execution, replication, or recovery with check-
pointing. Design optimization algorithms consider various over-
heads introduced with fault tolerance techniques. In addition to
performance and cost-related requirements, debugability and
testability of embedded systems are also taken into account dur-
ing design optimization. In this thesis, we relate the two latter
properties to transparency, which provides fault containment

CHAPTER 1

6

and, thus, potentially, can improve the debugability and testa-
bility of the system.

The main contributions of this thesis are:
 • a static cyclic scheduling framework [Izo05] to schedule

processes and messages, providing fault isolation of compu-
tation nodes;

 • a conditional static scheduling framework [Izo06b] that
creates more efficient schedules than the ones generated
with the above mentioned technique. This approach also
allows to trade-off between transparency and schedule
length;

 • a technique for schedule length estimation of condi-
tional schedules [Izo06a] that evaluates design solutions
in terms of performance without the need of extensive com-
putation;

 • mapping and fault tolerance policy assignment strate-
gies [Izo05, Izo06a] for mapping of processes to computation
nodes and assigning of a proper combination of fault toler-
ance techniques to processes, such that the performance is
maximized;

 • an approach to the optimization of checkpoint distri-
bution in rollback recovery [Izo06c].

1.3 Thesis Overview
The thesis is structured as follows:

 • Chapter 2 introduces basic concepts of fault tolerance in the
context of system-level design and optimization algorithms.
It also provides reference sources of related work.

 • Chapter 3 presents our hardware architecture, application
model, and fault model. We introduce the notion of transpar-
ency and frozenness, related to testability and debugability
requirements of applications. This chapter also presents how

INTRODUCTION

7

to model fault tolerance techniques in the context of static
cyclic scheduling.

 • Chapter 4 presents two static cyclic scheduling techniques
with fault tolerance requirements, including scheduling with
transparency/performance trade-offs. These scheduling tech-
niques are used by design optimization strategies presented
in the later chapters to derive fault-tolerant schedule tables.

 • Chapter 5 discusses mapping and policy assignment optimi-
zation issues. First, we propose a mapping and fault toler-
ance policy assignment strategy that combines software
replication with re-execution. Second, we present a mapping
optimization strategy that can handle transparency proper-
ties during design optimization and supports transparency/
performance trade-offs. An efficient schedule length estima-
tion technique used as a cost function for the mapping opti-
mization strategy with transparency is proposed.

 • Chapter 6 introduces our checkpoint distribution strategies.
We also present mapping and policy assignment optimiza-
tion with checkpointing and rollback recovery.

 • Chapter 7, finally, presents our conclusions and directions
for future work.

CHAPTER 1

8

BACKGROUND AND RELATED WORK

9

Chapter 2
Background and

Related Work

THIS CHAPTER presents background and related work in the
area of system-level design, including a generic design flow for
embedded systems. We also discuss classic fault tolerance tech-
niques. Finally, we present relevant research work on design
optimization for fault tolerant systems and suggest a possible
design flow enhanced with fault tolerance techniques.

2.1 Design and Optimization
System-level design of embedded systems is typically composed
of several steps, as illustrated in Figure 2.1. In the first, “System
Specification”, step, an abstract system model is developed. In
our application model, functional blocks are represented as proc-
esses and communication data is encapsulated into messages.
Time constraints are imposed in form of deadlines assigned to
the whole application, to individual processes or to groups of
dependent processes.

CHAPTER 2

10

The hardware architecture is selected in the next, “Architec-
ture Selection”, step. The architecture for automotive applica-
tions that we consider in this thesis consists of a set of
computation nodes connected to a bus. The computation nodes
are heterogeneous and have different performance characteris-
tics. They also have different costs, depending on their perform-
ance, reliability, power consumption and other parameters.
Designers should choose an architecture with a good price-to-
quality ratio within the imposed cost constraints.

In the “Mapping & Hardware/Software Partitioning” step,
mapping of application processes on computation nodes has to
be decided such that the performance of the system is maxi-
mized and certain design constraints are satisfied [Pra94c,
Pop04c, Pop04a]. These constraints can include memory con-
straints, power constraints, as well as security- and safety-
related constraints. To further improve performance, some proc-
esses can be implemented in hardware using ASICs or FPGAs.
The decision on whether to implement processes in hardware is
taken during hardware/software partitioning of the application
[Cho95, Ele97, Ern93, Bol97, Dav99, Lak99].

System Specification

Architecture Selection

Mapping & Hardware/

Scheduling

Back-end Synthesis

Figure 2.1: Generic Design Flow

Feedback
loops

Software Partitioning

BACKGROUND AND RELATED WORK

11

After mapping and partitioning, the execution order and start
times of processes are analysed in the “scheduling” step. Sched-
uling can be either static or dynamic. In the case of dynamic
scheduling, start times are obtained on-line based on priorities
assigned to the processes [Liu73, Tin94, Aud95]. In static cyclic
scheduling [Kop97, Jia00], start times of processes and sending
times of messages are pre-defined off-line and stored in the form
of schedule tables. In this thesis we focus on non-preemptive
static cyclic scheduling. Researchers have developed several
algorithms to efficiently produce static schedules off-line. Many
of the algorithms are based on list scheduling heuristics [Cof72,
Deo98, Jor97, Kwo96].

If, according to the resulted schedule, deadlines are not satis-
fied, then either mapping or partitioning should be changed at
first (see a feedback line in Figure 2.1). If no schedulable solu-
tion can be found by optimizing process mapping and/or schedul-
ing, then the hardware architecture needs to be modified and
the optimization will be performed again.

Eventually, a schedulable solution will be found and the
actual back-end system synthesis of a prototype will begin in
both hardware and software (shown as the last step in the
design flow).

If the prototype does not meet requirements, then either the
design or specification will have to be changed. However, re-
design of the prototype has to be avoided as much as possible
with efficient design optimization on early design stages (with
mapping and scheduling) to reduce design costs.

2.1.1 OPTIMIZATION HEURISTICS

In general, design optimization by mapping and partitioning is
an NP-hard problem [Gar03]. Therefore, exact approaches, pro-
ducing optimal solutions, such as constraint-logic programming

CHAPTER 2

12

(CLP) [Hen96], integer-linear programming (ILP) [Pra94c], or
branch-and-bound approaches [Kas84], are very time-consum-
ing and impractical for many real-life applications.

To overcome the complexity of mapping and partitioning opti-
mization, various heuristics that provide near-optimal but effi-
cient design solutions were proposed. Usually, in these
heuristics, mapping and partitioning are changed incrementally
with small modifications, or moves, until a schedulable design
solution is found.

There are several general-purpose optimization heuristics
[Ree93] that can be used for system-level design optimization,
such as simulated annealing [Met53, Col95, Rab93, Ele97], tabu
search [Glo86, Han86, Ele97, Man04], and genetic algorithms
[Hol75, Gol89, Con05, Bax95]. Many researchers either adapt
general-purpose heuristics or develop custom algorithms that
are often greedy-based and, possibly, with some methods to
recover from local optima.

At first, system-level design optimization heuristics were
applied to solve simple hardware/software partitioning of an
application mapped on a monoprocessor system, where some
functions were implemented on ASICs or FPGAs for accelera-
tion [Cho95, Gup95, Axe96, Ele97, Ern93]. More advanced
approaches consider the design of complex and heterogeneous
systems [Bol97, Dav98, Dav99, Dic98, Lak99]. Later, these
approaches were extended towards the design of distributed
embedded systems [Pop03]. For example, the design of multi-
cluster distributed systems was considered in [Pop04a] and
[Pop04b]. Moreover, issues related to the design optimization of
fault-tolerant systems have recently received a close attention
from the research community. In Section 2.4, after presenting
basic fault tolerance techniques, we will discuss related work on
design optimization with fault tolerance, highlighting the limi-
tations of approaches proposed so far.

BACKGROUND AND RELATED WORK

13

2.2 Fault Tolerance Techniques
In this section, we present several error-detection techniques
that can be applied for transient faults. Then, we discuss soft-
ware-based fault tolerance techniques such as re-execution, roll-
back recovery with checkpointing, and software replication.

2.2.1 ERROR DETECTION TECHNIQUES

In order to achieve fault tolerance, a first requirement is that
transient faults have to be detected. Researchers have proposed
several error-detection techniques against transient faults:
watchdogs, assertions, signatures, duplication, memory protec-
tion codes, and few others.

Signatures. Signatures [Nah02a, Jie92, Mir95, Sci98, Nic04]
are one of the most powerful error detection techniques. In this
technique, a set of logic operations can be assigned with pre-
computed “check symbols” (or “checksum”) that indicate
whether a fault has happened during those logic operations. Sig-
natures can be implemented either in hardware, as a parallel
test unit, or in software. Both hardware and software signatures
can be systematically applied without knowledge of implemen-
tation details.

Watchdogs. In the case of watchdogs [Ben03, Mah88, Mir95],
program flow or transmitted data is periodically checked for the
presence of errors. The simplest watchdog schema, watchdog
timer, monitors the execution time of processes, whether it
exceeds a certain limit [Mir95]. Another approach is to incorpo-
rate simplified signatures into a watchdog. For example, it is
possible to calculate a general “checksum” that indicates correct
behaviour of a computation node [Sos94]. Then the watchdog
will periodically test the computation node with that checksum.
Watchdogs can be implemented either in hardware as a separate
processor [Ben03, Mah88] or in software as a special test pro-
gram.

CHAPTER 2

14

Assertions. Assertions [Gol03, Hil00, Pet05] are an applica-
tion-level error-detection technique, where logical test state-
ments indicate erroneous program behaviour (for example, with
an “if” statement: if not <assertion> then <error>). The logical
statements can be either directly inserted into the program or
can be implemented in an external test mechanism. In contrast
to watchdogs, assertions are purely application-specific and
require extensive knowledge of the application details. However,
assertions are able to provide much higher error coverage than
watchdogs.

Duplication. If the results produced by duplicated entities
are different, then this indicates the presence of a fault. Exam-
ples of duplicated entities are duplicated instructions [Nah02b],
functions [Gom06], procedure calls [Nah02c], and whole proc-
esses. Duplication is usually applied on top of other error detec-
tion techniques to increase error coverage.

Memory protection codes. Memory units, which store pro-
gram code or data, can be protected with error detection and cor-
rection codes (EDACs) [Shi00, Pen95]. EDAC code separately
protects each memory block to avoid propagation of errors. A
common schema is “single-error-correcting, double-error-detect-
ing” (SEC-DEC) [Pen95] that can correct one error and detect
two errors simultaneously in each protected memory block.

Other error-detection techniques. There are several other
error-detections techniques, for example, transistor-level cur-
rent monitoring [Tsi01] or the widely-used parity-bit check.

Error coverage of error-detection techniques has to be as high
as possible. Therefore, several error-detection techniques are
often applied together. For example, hardware signatures can be
combined with transistor-level current monitoring, memory pro-
tection codes and watchdogs. In addition, the application can
contain assertions and duplicated procedure calls.

Error-detection techniques introduce an error-detection over-
head α, which is the time needed for detecting faults. The error-
detection overhead can vary a lot with the error-detection tech-

BACKGROUND AND RELATED WORK

15

nique used. In our work, unless other specified, we account the
error-detection overhead in the worst-case execution time of
processes.

2.2.2 RE-EXECUTION

Once a fault is detected with error-detection techniques, a fault
tolerance mechanism has to be invoked to handle this fault. The
simplest fault tolerance technique to recover from fault occur-
rences is re-execution [Kan03a]. In re-execution, a process is
executed again if affected by faults.

The time needed for the detection of faults is accounted for by
error-detection overhead α. When a process is re-executed after a
fault was detected, the system restores all initial inputs of that
process. The process re-execution operation requires some time
for this that is captured by the recovery overhead µ. In order to
be restored, the initial inputs to a process have to be stored
before the process is executed first time. For the sake of simplic-
ity, however, we will ignore this particular overhead, except for
the discussion of rollback recovery with checkpointing in Chap-
ter 6.1

Figure 2.2 shows re-execution of process P1 in the presence of
a single fault. As illustrated in Figure 2.2a, the process has the
worst-case execution time of 60 ms, which includes the error-

1. The overhead due to saving process inputs does not influence the
design decisions during mapping and policy assignment optimization
when re-execution is used. However, we will consider this overhead in
rollback recovery with checkpointing as part of the checkpointing over-
head during the discussion in Chapter 6.

a) b)P1

C1 = 60 ms

α =10 ms

Figure 2.2: Re-execution

P1/1 P1/2

µ = 10 ms

CHAPTER 2

16

detection overhead α of 10 ms. In Figure 2.2b process P1 experi-
ences a fault and is re-executed. We will denote the j-th execu-
tion of process Pi as Pi/j. Accordingly, the first execution of
process P1 is denoted as P1/1 and its re-execution P1/2. The recov-
ery overhead µ = 10 ms is depicted as a light grey rectangle in
Figure 2.2.

2.2.3 ROLLBACK RECOVERY WITH CHECKPOINTING

The time overhead due to re-execution can be reduced with more
complex fault tolerance techniques such as rollback recovery
with checkpointing [Pun97, Yin06, Ora94]. The main principle of
this technique is to restore the last non-faulty state of the failing
process, i.e., to recover from faults. The last non-faulty state, or
checkpoint, has to be saved in advance in the static memory and
will be restored if the process fails. The part of the process
between two checkpoints or between a checkpoint and the end of
the process is called execution segment.

There are several approaches to distribute checkpoints. One
approach is to insert checkpoints in the places where saving of
process states is the fastest [Ziv97]. However, this approach is
application-specific and requires knowledge of application
details. Another approach is to systematically insert check-
points, for example, at equal intervals, which is easier for system
design and optimization [Yin06, Pun97, Kwa01].

An example of rollback recovery with checkpointing is pre-
sented in Figure 2.3. We consider processes P1 with the worst-
case execution time of 60 ms and error-detection overhead α of
10 ms, as depicted in Figure 2.3a. In Figure 2.3b, two check-

Figure 2.3: Rollback Recovery with Checkpointing

a) b) P1 P1
1 2

χ = 5 ms

c)

µ = 10 ms

P1 P1/1
1 2

P1/2
2P1

C1 = 60 ms

α =10 ms

BACKGROUND AND RELATED WORK

17

points are inserted at equal intervals. The first checkpoint is the
initial state of process P1. The second checkpoint, placed in the
middle of process execution, is for storing an intermediate proc-
ess state. Thus, process P1 is composed of two execution seg-
ments. We will name the k-th execution segment of process Pi as

. Accordingly, the first execution segment of process P1 is
and its second segment is . Saving process states, including
saving initial inputs, at checkpoints, takes a certain amount of
time that is considered in the checkpointing overhead χ, depicted
as a black rectangle.

In Figure 2.3c, a fault affects the second execution segment
 of process P1. This faulty segment is executed again starting

from the second checkpoint. Note that the error-detection over-
head α is not considered in the last recovery in the context of
rollback recovery with checkpointing because, in this example,
we assume that a maximum of one faults can happen.

We will denote the j-th execution of k-th execution segment of
process Pi as . Accordingly, the first execution of execution
segment has the name and its second execution is
named . Note that we will not use the index j if we only
have one execution of a segment or a process, as, for example,
P1’s first execution segment in Figure 2.3c.

When recovering, similar to re-execution, we consider a recov-
ery overhead µ, which includes the time needed to restore check-
points. In Figure 2.3c, the recovery overhead µ, depicted with a
light gray rectangle, is 10 ms for process P1.

The fact that only a part of a process has to be restarted for
tolerating faults, not the whole process, can considerably reduce
the time overhead of rollback recovery with checkpointing com-
pared to simple re-execution.

Pi
k P1

1

P1
2

P1
2

Pi/ j
k

P1
2 P1/1

2

P1/2
2

P1
1

CHAPTER 2

18

2.2.4 ACTIVE AND PASSIVE REPLICATION

The disadvantage of recovery techniques is that they are unable
to explore spare capacity of available computation nodes and, by
this, to possibly reduce the schedule length. If the process expe-
riences a fault, then it has to recover on the same computation
node. In contrast to recovery and re-execution, active and pas-
sive replication techniques can utilize spare capacity of other
computation nodes. Moreover, active replication provides the
possibility of spatial redundancy, e.g. the ability to execute proc-
ess replicas in parallel on different computation nodes.

In the case of active replication [Xie04], all replicas of proc-
esses are executed independently of fault occurrences. In the
case of passive replication, also known as primary-backup
[Ahn97], on the other hand, replicas are executed only if faults
occur. In Figure 2.4 we illustrate primary-backup and active
replication. We consider process P1 with the worst-case execu-
tion time of 60 ms and error-detection overhead α of 10 ms, see
Figure 2.4a. Process P1 will be replicated on two computation
nodes N1 and N2, which is enough to tolerate a single fault. We
will name the j-th replica of process Pi as Pi(j). Note that, for the
sake of uniformity, we will consider the original process as the

N1

N2

N1

N2

N1

N2

N1

N2

Figure 2.4: Active Replication (b) and Primary-Backup (c)

P1

C1 = 60 ms

α =10 ms

P1(1)

P1(2)

P1(1)

P1(2)

P1(1)P1(1)

P1(2)

a)

b1)

b2)

c1)

c2)

BACKGROUND AND RELATED WORK

19

first replica. Hence, the replica of process P1 is named P1(2) and
process P1 itself is named as P1(1).

In the case of active replication, illustrated in Figure 2.4b,
replicas P1(1) and P1(2) are executed in parallel, which, in this
case, improves system performance. However, active replication
occupies more resources compared to primary-backup because
P1(1) and P1(2) have to run even if there is no fault, as shown in
Figure 2.4b1. In the case of primary-backup, illustrated in
Figure 2.4c, the “backup” replica P1(2) is activated only if a fault
occurs in P1(1). However, if faults occur, primary-backup takes
more time to complete compared to active replication as shown
in Figure 2.4c2, compared to Figure 2.4b2.

In our work, we are mostly interested in active replication.
This type of replication provides the possibility of spatial redun-
dancy, which is lacking in re-execution and recovery. Moreover,
re-execution, in fact, is a restricted case of primary-backup
where replicas are only allowed to execute on the same compu-
tation node with the original process.

2.3 Transparency
Tolerating transient faults leads to many execution scenarios,
which are dynamically adjusted in the case of fault occurrences.
The number of execution scenarios grows exponentially with the
number of processes and the number of tolerated transient
faults. In order to debug, test, or verify the system, all its execu-
tion scenarios have to be taken into account. Therefore, debug-
ging, verification and testing become very difficult. A possible
solution against this problem is transparency.

Originally, Kandasamy et al. [Kan03a] propose transparent
re-execution, where recovering from a transient fault on one
computation node is hidden from other nodes. Transparency has
the advantage of fault containment and increased debugability.
Since the occurrence of faults in certain process does not affect

CHAPTER 2

20

the execution of other processes, the total number of execution
scenarios is reduced. Therefore, less number of execution alter-
natives have to be considered during debugging, testing, and
verification. However, transparency can increase the worst-case
delay of processes, reducing performance of the embedded sys-
tem.

2.4 Design Optimization with Fault Tolerance
Fault-tolerant embedded systems have to be optimized in order
to meet time and cost constraints. Researchers have shown that
schedulability of an application can be guaranteed for pre-emp-
tive on-line scheduling under the presence of a single transient
fault [Ber94, Bur96, Han03, Yin06].

Liberato et al. [Lib00] propose an approach for design optimi-
zation of monoprocessor systems in the presence of multiple
transient faults and in the context of pre-emptive earliest-dead-
line-first (EDF) scheduling.

Hardware/software co-synthesis with fault tolerance is
addressed in [Sri95] in the context of event-driven fixed priority
scheduling. Hardware and software architectures are synthe-
sized simultaneously, providing a specified level of fault toler-
ance and meeting the performance constraints. Safety-critical
processes are re-executed in order to tolerate transient fault
occurrences. This approach, in principle, also addresses the
problem of tolerating multiple transient faults, but does not con-
sider static cyclic scheduling.

Xie et al. [Xie04] propose a technique to decide how replicas
can be selectively inserted into the application, based on process
criticality. Introducing redundant processes into a pre-designed
schedule is used in [Con05] in order to improve error detection.
Both approaches only consider one single fault.

Power-related optimization issues in fault-tolerant applica-
tions are tackled in [Yin04] and [Jia05]. Ying Zhang et al.

BACKGROUND AND RELATED WORK

21

[Yin04] study fault tolerance and dynamic power management.
Rollback recovery with checkpointing is used in order to tolerate
multiple transient faults in the context of message-passing dis-
tributed systems. Fault tolerance is applied on top of a pre-
designed system, whose process mapping ignores the fault toler-
ance issue.

Kandasamy et al. [Kan03a] propose constructive mapping and
scheduling algorithms for transparent re-execution on multi-
processor systems. The work was later extended with fault-tol-
erant transmission of messages on a time-division multiple
access bus [Kan03b]. Both papers consider only one fault per
computation node. Only process re-execution is used.

Very few research work is devoted to general design optimiza-
tion in the context of fault tolerance. For example, Pinello et al.
[Pin04] propose a simple heuristic for combining several static
schedules in order to mask fault patterns. Passive replication is
used in [Alo01] to handle a single failure in multiprocessor sys-
tems so that timing constraints are satisfied. Multiple failures
are addressed with active replication in [Gir03] in order to guar-
antee a required level of fault tolerance and satisfy time con-
straints.

None of these previous work is considering optimal assign-
ment of fault tolerance policies. Several other limitations of pre-
vious research, which we will also overcome in this thesis, are
the following:

 • design optimization of embedded systems with fault toler-
ance is very limited, as, for example, process mapping is not
considered together with fault tolerance issues;

 • multiple faults are not addressed in the framework of static
cyclic scheduling; and

 • transparency, if at all addressed, is restricted to a whole com-
putation node and is not flexible.

CHAPTER 2

22

2.4.1 DESIGN FLOW WITH FAULT TOLERANCE TECHNIQUES

In Figure 2.5 we enhance the generic design flow presented in
Figure 2.1, with the consideration of fault tolerance techniques.

In the “System Specification” step, designers specify the max-
imum number of faults, which have to be tolerated. They intro-
duce transparency (debugability) requirements in order to
improve debugability and testability of the system.

Specifying the maximum
number of faults

Introducing transparency
(debugability) requirements

Assigning a proper combination
of fault tolerance techniques

to processes

Figure 2.5: Design Flow with Fault Tolerance

System Specification

Architecture Selection

Mapping & Hardware/

Scheduling

Back-end Synthesis

Feedback
loops

Software PartitioningMapping replicas of a process
on different computation

nodes

Allocation of recovery slacks

Accounting fault tolerance

Accommodation of
transparency properties

Scheduling replicas

overheads

Prototype of a fault tolerant
embedded system

Selecting the fault-
tolerant architecture

BACKGROUND AND RELATED WORK

23

In the second step, the fault-tolerant architecture with the
sufficient level of redundancy needs to be chosen. For example,
in order to tolerate a single permanent fault, designers can
decide to duplicate computation nodes and the bus, as in the
Time-Triggered Architecture (TTA) [Kop03].

In the “Mapping & Hardware/Software Partitioning” step,
processes are assigned with fault-tolerance techniques against
transient faults. We call the assignment of fault tolerance tech-
niques to processes fault-tolerance policy assignment. For exam-
ple, some processes can be assigned with re-execution, some
with active replication, and some with a combination of re-exe-
cution and replication. Designers also choose such a mapping
that replicas of a process are mapped on different computation
nodes.

Besides the classical scheduling task, our scheduling algo-
rithms for fault tolerance perform

 • an allocation of recovery slacks on computation nodes for re-
execution and rollback recovery;

 • accounting for recovery, checkpointing, and error-detection
overheads;

 • an accommodation of transparency properties of processes
and messages into schedules;

 • scheduling replicas of a process and their outputs.

In the last step, “Back-end Synthesis”, the fault-tolerant
design is synthesized into a prototype.

CHAPTER 2

24

PRELIMINARIES

25

Chapter 3
Preliminaries

IN THIS CHAPTER we introduce our application model, hard-
ware architecture, and fault model. We also present our
approach to process recovery.

3.1 System Model
In this section we present details regarding our application
model and system architecture.

3.1.1 APPLICATION MODEL

We consider a set of real-time periodic applications Ak. Each
application Ak is represented as an acyclic directed graph
Gk(Vk,Ek). Each process graph is executed with period Tk. The
graphs are merged into a single graph with a period T obtained
as the least common multiple (LCM) of all application periods
Tk. This graph corresponds to a virtual application A, captured
as a directed, acyclic graph G(V, E). Each node Pi ∈V represents a
process and each edge eij ∈ E from Pi to Pj indicates that the out-
put of Pi is the input of Pj.

CHAPTER 3

26

Processes are non-preemptable and cannot be interrupted by
other processes. Processes send their output values encapsu-
lated in messages, when completed. All required inputs have to
arrive before activation of the process. Precedence constraints,
e.g. that one process cannot start before the others terminate,
are introduced with edges without messages. Figure 3.1a shows
a simple application represented as a graph composed of five
nodes (processes P1 to P5) connected with five edges (messages
m1, m2, and m3, plus two precedence constraints).

In this thesis, we will consider hard real-time applications,
common for safety-critical systems. Time constraints are
imposed with a global hard deadline D, which is an interval of
time within which the application A has to complete. Some proc-
esses may also have local deadlines dlocal. We model such dead-
lines by inserting a dummy node between a process, that has a
local deadline, and the sink node of process graph G. The dummy
node is a process with execution time Cdummy = D − dlocal, which,
however, is not allocated to any resource [Pop03].

3.1.2 SYSTEM ARCHITECTURE

The real-time application is assumed to run on a hardware
architecture, which is composed of a set of computation nodes
connected to a communication infrastructure. Each node con-
sists of a memory subsystem, a communication controller, and a

Figure 3.1: A Simple Application and
a Hardware Architecture

N1 N2N1 N2P2
m2

m1

P3

P4 P5

m3

P1

P2
m2

m1

P3

P4 P5

m3

P1precedence
constraints

N2

P2
P3
P4

N1

40 60

P5

60 X
40 60
40 60

P1 20 30
N2

P2
P3
P4

N1

40 60

P5

60 X
40 60
40 60

P1 20 30

WCET

WCTT
m1
m2
m3

10
5

10

WCTT
m1
m2
m3

10
5

10

(a)
(b)

(c)
(d)

PRELIMINARIES

27

central processing unit (CPU). For example, an architecture
composed of two computation nodes (N1 and N2) connected to a
bus is shown in Figure 3.1b.

The application processes have to be mapped (allocated) on
the computation nodes. The mapping of an application process is
determined by a function M: V → N, where N is the set of nodes in
the architecture. We consider that the mapping of the application
is not fixed and has to be determined as part of the design opti-
mization.

We consider that for each process its worst-case execution
time (WCET) is given. Using WCET guarantees predictable
behaviour, which is important for safety-critical systems.
Although finding the WCET of a process is not trivial, there
exists an extensive portfolio of methods that can provide design-
ers with safe worst-case execution time estimations [Erm05,
Sun95, Hea02, Jon05, Gus05, Lin00, Col03, Her00].

Figure 3.1c shows the worst-case execution times of processes
of the application depicted in Figure 3.1a. For example, process
P2 has the worst-case execution time of 40 ms if mapped on com-
putation node N1 and 60 ms if mapped on computation node N2.
By “X” we show mapping restrictions. For example, process P3
cannot be mapped on computation node N2.

In the case of processes mapped on the same computation
node, message transmission time between them is accounted for
in the worst-case execution time of the sending process. If proc-
esses are mapped on different computation nodes, then mes-
sages between them are sent through the communication
network. We consider that the worst-case transmission time
(WCTT) of messages is given. The worst-case transmission time
of messages, however, does not include waiting time in the queue
of the communication controller. Figure 3.1d shows the worst-
case transmission times of messages for the application depicted
in Figure 3.1a.

CHAPTER 3

28

In this thesis, we consider a static non-preemptive scheduling
approach, where both communications and processes are stati-
cally scheduled. The start times of processes and sending times
of messages are determined off-line using scheduling heuristics.
These start and sending times are stored in form of schedule
tables on each computation node. Then the real-time scheduler of
a computation node will use the schedule table of that node in
order to invoke processes and send messages on the bus.

In Figure 3.2b we depict a static schedule for the application
and the hardware architecture presented in Figure 3.1 in the
case where this application is mapped as shown in Figure 3.2a.
Processes P1, P3 and P5 are mapped on computation node N1
(grey circles), while processes P2 and P4 are mapped on N2 (white
circles). The schedule table of the computation node N1 contains
start times of processes P1, P3 and P5, which are 0, 20, and 90 ms,
respectively. The schedule table of N2 contains start times of P2
and P4, 20 and 80 ms, plus sending time of message m2, which is
80 ms. According to the static schedule, the application will com-
plete at 140 ms, which satisfies the deadline D of 200 ms.

Although, so far, we have illustrated the generation of a single
schedule for a single execution scenario, in general, an applica-
tion can have different execution scenarios. For example, some
parts of the application might not be executed under certain con-
ditions. In this case, several execution scenarios, corresponding
to different conditions, have to be stored. At execution time, the

Figure 3.2: A Static Schedule
(a) (b)

P2
m2

m1

P3

P4 P5

m3

P1 P3

P2 P4

P5

m
2

N1

N2

bus

deadline D = 200

P1

20 40 60 80 100 120 140 160 180 time

PRELIMINARIES

29

real-time scheduler will choose the appropriate schedule that cor-
responds to the actual conditions. If the conditions change, the
real-time scheduler will accordingly switch to the appropriate
schedule. This mechanism will be exploited in the following sec-
tions for capturing the behaviour of fault-tolerant applications.
In the case of fault-tolerant systems and if the alternative sce-
narios are due to fault occurrences, the corresponding schedules
are called contingency schedules.

3.2 Fault Model and Basic Fault Tolerance
Techniques

We assume that a maximum number k of transient faults can
happen during a system period T. This model is an extension of
the single fault model proposed in [Kan03a]. For example, in
Figure 3.3a we show a simple application of two processes that
has to tolerate the maximum number of two faults, e.g. k = 2.

Overheads due to fault tolerance techniques have to be
reflected in a system architecture. Error detection itself intro-
duces a certain time overhead, which is denoted with αi for a
process Pi. Usually, unless otherwise specified, we account the
error-detection overhead in the worst-case execution time of
processes. In the case of re-execution or rollback recovery with
checkpointing, a process restoration or recovery overhead µi has
to be considered for a process Pi. The recovery overhead includes

Figure 3.3: Fault Model and Fault Tolerance Techniques

P1 P2

k = 2

P1

C1 = 60 ms

P2

C2 = 60 ms

χ α µ
10 5 5

5 5 10

P1

P2

(a)
(b)

P1

P1

P1 P2 P2 P2
1 2 21

P2
2 2

P2 P2 P2

(c)

(d)

CHAPTER 3

30

the time needed to restore the process state. Rollback recovery
with checkpointing is also characterized by a checkpointing
overhead χi, which is related to the time needed to store interme-
diate process states.

We consider that the worst-case time overheads related to the
particular fault tolerance techniques are given. For example,
Figure 3.3b shows recovery, detection and checkpointing over-
heads associated with the processes of the simple application
depicted in Figure 3.3a. The worst-case fault scenarios of this
application in the presence of two faults, if re-execution and roll-
back recovery with checkpointing are applied, are shown in
Figure 3.3c and Figure 3.3d, respectively.1 As can be seen, the
overheads related to the fault tolerance techniques have a sig-
nificant impact on the overall system performance. In
Figure 3.3d, for example, overheads contribute to a delay of 75
ms, while the execution of processes without overheads would
take only 180 ms.

As discussed in Section 2.3, such fault tolerance techniques as
re-execution and rollback recovery with checkpointing make
debugging, testing, and verification potentially difficult. Trans-
parency is one possible solution to this problem. Our approach to
handling transparency is by introducing the notion of frozenness
applied to a process or a message. A frozen process or a frozen
message has to be scheduled at the same start time in all fault
scenarios, independently of external fault occurrences2. We con-

1. The overhead due to saving process inputs is ignored in the context of
re-execution, as discussed in Section 2.2.2.

2. External, i.e., outside the frozen process or message.

P1 P2 P2 P2P1 P1

P1 P2P1 P1 no faultsa)

b)

Figure 3.4: Transparency and Frozenness

PRELIMINARIES

31

sider also that transparency requirements are given with a func-
tion T: W → {Frozen, Regular}, where W is the set of all processes
and messages sent over the bus.

For example, Figure 3.4 shows the non-fault scenario and the
worst-case fault scenario of the application depicted in
Figure 3.3a, if re-execution is applied and process P2 is frozen.
Process P2 is scheduled at 145 ms in both execution scenarios
independently of external fault occurrences, e.g., faults in proc-
ess P1. However, if faults occurrences are internal, i.e., within
process P2, process P2 has to be re-executed as shown in
Figure 3.4b.

3.3 Recovery in the Context of Static Cyclic
Scheduling

In the context of static cyclic scheduling, each execution scenario
has to be explicitly modelled [Ele00]. Tolerating transient faults
with re-execution and rollback recovery with checkpointing
leads to a large number of execution scenarios. In this section,
we present our approach to model re-execution and rollback
recovery with checkpointing in the context of static scheduling.

3.3.1 RE-EXECUTION

In the case of re-execution, faults lead to different execution sce-
narios that correspond to a set of alternative contingency sched-
ules. For example, considering the same application as in
Figure 3.1a, with a maximum number of faults k = 1, re-execu-
tion will require three alternative schedules as depicted in
Figure 3.5a. The fault scenario in which P2 experiences a fault is
shown with shaded circles. In the case of a fault in P2, the real-
time scheduler switches from the non-fault schedule S0 to the
schedule S2 corresponding to a fault in process P2.

CHAPTER 3

32

Similarly, in the case of multiple faults, every fault occurrence
will trigger a switching to the corresponding alternative contin-
gency schedule. Figure 3.5b represents a tree of constructed
alternative schedules for the same application of two processes,
if two transient faults can happen at maximum, i.e. k = 2. For
example, as depicted with shaded circles, if process P1 experi-
ences a fault, the real-time scheduler switches from the non-
fault schedule S0 to contingency schedule S1. Then, if process P2
experiences a fault, the real-time scheduler switches to schedule
S4.

3.3.2 ROLLBACK RECOVERY WITH CHECKPOINTING

In a static schedule, similar to re-execution, every recovery
action of rollback recovery with checkpointing will lead to differ-
ent execution scenarios and will correspond to a set of alterna-
tive contingency schedules.

S0

S1 S2

S0

S1

S3 S4

S2

S5

P1 P2

P1
P2

P1 P2 P2

Figure 3.5: Contingency Schedules for Re-execution

a) b)

Figure 3.6: Contingency Schedules for Rollback Recovery
with Checkpointing

S0

S1

S5 S6 S7 S8 S9 S10 S11

S2

S12 S13

S3

S14

S4

P1
1

P1
1

P1
2 P2

1
P2

2 P1
2

P2
1

P2
2

P2
1

P2
2 P2

2

P1
2

P2
1

P2
2

PRELIMINARIES

33

Figure 3.6 represents a tree of constructed alternative sched-
ules for the application in Figure 3.1a and the rollback recovery
schema with two checkpoints as in Figure 3.3d. In the schedule,
every execution segment is considered as a “small process”
that is recovered in case of fault occurrences. Therefore, the
number of contingency schedules is larger than it is in the case
of pure re-execution. In Figure 3.6 we highlight the fault sce-
nario presented in Figure 3.1d with shaded circles. The real-
time scheduler switches between schedules S0, S4, and S14.

Pi
j

CHAPTER 3

34

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

35

Chapter 4
Scheduling with Fault

Tolerance Requirements

IN THIS CHAPTER we propose two scheduling techniques for
fault-tolerant embedded systems, namely conditional schedul-
ing and shifting-based scheduling. Conditional scheduling pro-
duces shorter schedules than the shifting-based scheduling, and
also allows to trade-off transparency for performance. Shifting-
based scheduling, however, has the advantage of low memory
requirements for storing contingency schedules and fast sched-
ule generation time.

Both scheduling techniques are based on a fault-tolerant con-
ditional process graph (FT-CPG) representation, which is used
to generate fault-tolerant schedule tables.

Although the proposed scheduling algorithms are applicable
for a variety of fault tolerance techniques, such as replication,
re-execution, and rollback recovery with checkpointing, for the
sake of simplicity, in this chapter we will discuss them in the
context of only re-execution.

CHAPTER 4

36

4.1 Performance/Transparency Trade-offs
As defined in Section 3.2, transparency refers to the mechanism
of masking fault occurrences. The notion of transparency has
been introduced with the notion of frozenness applied to proc-
esses and messages, where a frozen process or a frozen message
has to be scheduled independently of external fault occurrences.

Increased transparency makes a system easier to debug and,
in principle, safer. Moreover, since transparency reduces the
number of execution scenarios, the amount of memory required
to store contingency schedules corresponding to these scenarios
is less. However, transparency increases the worst-case delays of
processes, which can violate timing constraints of the applica-
tion. These delays can be reduced by trading-off transparency
for performance.

Let us illustrate such a trade-off with the example in
Figure 4.1, where we have an application consisting of four proc-
esses, P1 to P4 and three messages, m1 to m3, mapped on an
architecture with two computation nodes, N1 and N2. Messages
m1 and m2 are sent from P1 to processes P4 and P3, respectively.
Message m3 is sent from P2 to P3. The worst-case execution
times of each process are depicted in the figure, and the deadline
of the application is 210 ms. We consider a fault scenario where
two transient faults (k = 2) can occur.

Whenever a fault occurs, the faulty process has to be re-exe-
cuted. As discussed in Section 3.3, in the context of static cyclic
scheduling, each fault scenario will correspond to an alternative
static schedule. Thus, the real-time scheduler in a computation
node that experiences a fault has to switch to another schedule
with a new start time for that process. For example, according to
the schedule in Figure 4.1a1, the processes are scheduled at
times indicated by the white rectangles in the Gantt chart. Once
a fault occurs in P3, the scheduler on node N2 will have to switch
to another schedule. In this schedule, P3 is delayed with C3 + µ

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

37

to account for the fault, where C3 is the worst-case execution
time of process P3 and µ is the recovery overhead. If, during the
second execution of P3, a second fault occurs, the scheduler has
to switch to another schedule illustrated in Figure 4.1a2.

P2 P2

m
1

P1 P1 P1

P4 P4

m
2

P4

P2

m
3

P3 P3 P3

N1

N2

Bus

a1)

265P2 P2

m
1

P1 P1 P1

P4 P4

m
2

P4

P2

m
3

P3 P3 P3a2)

N1

N2

Bus

Figure 4.1: Trading-off Transparency for Performance

Deadline 210 ms

N1 N2
P1
P2
P3

N1

30 X
20
X

X
20

N2

P4 X 30

µ = 5 ms

k = 2

P2

P3

P1

P4m2

m1

m3

P2

P3

P1

P4m2

m1

m3

A: G

P2

m
1

P1

m
2

m
3

P4 P3

N1

N2

Bus

b1)
1P

F
2PF

156P2

m
1

P1

m
2

m
3

P4 P3

P1

P4b2)

1P
F

2PF
1P

F

N1

N2

Bus

P2

m
1

P1

m
2

m
3

P4 P3

N1

N2

Bus

c1)
1P

F

206

c2)

P2P1

m
2

m
3

P3 P3

m
1

P4 P3

1P
F

N1

N2

Bus

CHAPTER 4

38

In Figure 4.1a1, we have constructed the schedule such that
each execution of a process Pi is followed by a recovery slack,
which is idle time on the computation node, needed to recover
(re-execute) the process, in the case that it fails. For example, for
P3 on node N2, we introduce a recovery slack of k × (C3 + µ) = 50
ms to make sure that we can recover P3 even in the case it expe-
riences the maximum number of faults (Figure 4.1a2). Thus, a
fault occurrence that leads to the re-execution of any process Pi
will impact only Pi. We call such an approach fully transparent
because fault occurrences in a process are transparent to all
other processes on the same or other computation nodes.

In Figure 4.1 we illustrate three alternative scheduling strate-
gies, representing different transparency/performance trade-offs.
For each alternative, we show the schedule when no faults occur
(a1–c1) and depict the corresponding worst-case scenario, resulting
in the longest schedule (a2–c2). The end-to-end worst-case delay
of an application will be given by the maximum finishing time of
any alternative schedule, since this is a situation that can hap-
pen in the worst-case scenario. Thus, we would like to have in
a2–c2 schedules of the worst-case scenario that meet the dead-
line of 210 ms depicted with a thick vertical line.

In general, a fully transparent approach, as depicted in
Figure 4.1a1 and 4.1a2, has the drawback of producing unneces-
sarily large delays. In the case of full transparency, the largest
delay is produced by the scenario depicted in Figure 4.1a2,
which has to be activated when two faults happen in P3. Faults
in the other processes are masked within the recovery slacks
allocated between processes. The worst-case end-to-end delay in
the case of full transparency is 265 ms, which will miss the dead-
line.

To meet the deadline, another approach, depicted in
Figure 4.1b1 and 4.1b2, is not to isolate the effect of fault occur-
rences at all. Figure 4.1b1 shows the execution scenario if no
fault occurs. In this case, a fault occurrence in process Pi can
affect the schedule of another process Pj. For example, a fault

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

39

occurrence in P1 on N1 will cause another node N2 to switch to
an alternative schedule that delays the activation of P4, which
receives message m1 from P1. This is done via the error message

, depicted as a black rectangle on the bus, which broadcasts
the error occurrence on P1 to other computation nodes. This
would lead to a worst-case scenario of only 156 ms, depicted in
Figure 4.1b2, that meets the deadline.

However, transparency (masking fault occurrences) is highly
desirable because it makes the application easier to debug, and a
designer would like to introduce as much transparency as possi-
ble without violating the timing constraints. Thus, an approach
is required, which allows to fine-tune the application properties
such that the deadlines are satisfied and transparency is pre-
served as much as possible. An example of such an approach is
depicted in Figure 4.1c1 and 4.1c2, where tolerating faults in the
other processes is transparent to process P3 and its input mes-
sages m2 and m3, but not to P1, P2, P4 and m1. In this case, P3,
m2 and m3 are said to be frozen, i.e., they have the same start
time in all schedules. The debugability is improved because it is
easier to observe the behaviour of P3 in the alternative sched-
ules. Its start time does not change due to the occurrence and
handling of faults. Moreover, the memory needed to store the
alternative schedules is also reduced with transparency, since
there are less start times to store. In this case, the worst-case
end-to-end delay of the application is 206, as depicted in
Figure 4.1c2, and the deadline is met.

In Figure 4.2, we present fault scenarios to illustrate changes
of start times of processes and messages in the case of the cus-
tomized transparency depicted in Figure 4.1c1 and 4.1c2.
Figure 4.2a repeats the fault-free scenario as in Figure 4.1c1. In
Figure 4.2b, we show that, if process P1 is affected by faults, the
start times of regular process P2 and regular message m1 are
changed. However, the start times of frozen messages m2 and
m3, as well as process P3, are not affected. In Figure 4.2c, proc-
ess P4 is affected by faults, however, the start time of frozen

FP1

CHAPTER 4

40

process P3 is calculated such that the fault occurrences in proc-
ess P4 cannot disrupt it.

In this thesis, we propose an approach to transparency, which
offers the designer the possibility to trade-off transparency with
performance. Given an application A(V, E) we will capture the
transparency using the function T: W → {Frozen, Regular}, where
W is the set of all processes and messages sent over the bus. In a
fully transparent system, all messages and processes are frozen.
Our approach allows the designer to specify the frozen status for
individual processes and messages considering, for example, the
difficulty to trace them during debugging, achieving thus a
desired transparency/performance trade-off.

The conditional scheduling will handle these transparency
requirements by allocating the same start time1 for vi in all the
alternative schedules of application A. For example, to handle

1. A frozen process Pi with a start time ti, if affected by a fault, will be re-
executed at a start time ti* = ti + Ci + µ.

Figure 4.2: Fault Scenarios for Customized Transparency

P2

m
1

P1

m
2

m
3

P4 P3

N1

N2

Bus

a)

1P
F

b)

P2P1

m
2

m
3

m
1

P4 P3

1P
F

N1

N2

Bus

P1 P1

1P
F

c)

P2P1

m
2

m
3

m
1

P4 P3

1P
F

N1

N2

Bus

P4 P4

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

41

the situation in Figure 4.1c, where P3 and its inputs m2 and m3
are not affected by faults, T(m2), T(m3) and T(P3) will have to be
set to “frozen”.

The shifting-based scheduling will consider only one transpar-
ency set-up, where all messages sent on the bus and only those
messages are set to “frozen”, e.g. T(m1), T(m2), and T(m3) for the
set-up in Figure 4.1. The same start time will be preserved for
the “frozen” messages in the schedule table.

4.2 Fault-Tolerant Conditional Process Graph
The scheduling techniques presented in this chapter are based
on a fault-tolerant conditional process graph (FT-CPG) repre-
sentation. FT-CPG captures alternative schedules in the case of
different fault scenarios. Every possible fault occurrence is con-
sidered as a condition, which is “true” if the fault happens and
“false” if the fault does not happen. Graphically, an FT-CPG is a
fork-and-join structure, where each branch corresponds to a
change of conditions. These branches would meet in the case of
frozen processes and messages.

Definition. Formally, an FT-CPG is a directed acyclic graph
G(VP∪VC∪VT, ES∪EC). We will denote a node in the FT-CPG with

 that will correspond to the mth copy of process Pi ∈ A. Each
node ∈ VP with simple edges at the output is a regular node.
A node ∈ VC with conditional edges at the output is a condi-
tional process that produces a condition.

Each node ∈ VT is a synchronization node and represents
the synchronization point corresponding to a frozen process or
message (i.e., T(vi) = frozen). We denote with the synchroni-
zation node of process Pi ∈ A and with the synchronization
node of message mi ∈ A. Synchronization nodes will take zero
time to execute.

Pi
m

Pi
m

Pi
m

vi

Pi
S

mi
S

CHAPTER 4

42

ES and EC are the sets of simple and conditional edges, respec-
tively. An edge ∈ ES from to indicates that the output
of is the input of . Synchronization nodes and are
also connected through edges to regular and conditional proc-
esses and other synchronization nodes:
 • ∈ ES from to ;
 • ∈ ES from to ;
 • ∈ ES from to ;
 • ∈ ES from to ;
 • ∈ ES from to ;
 • ∈ ES from to ;
 • ∈ ES from to ; and
 • ∈ ES from to .

P3

P4

P1
P2

P2

6
5

3

2

1

3

2

1

P1

P1

P2P2

P2
P2

4

m3

m2

P4

P4

P4

P4

P4

1

2

3

4

5
6

m1

m1

m1

FP1
2FP1
2

FP1
1FP1
1

FP2
2FP2
2

FP1
1FP1
1

FP2
1FP2
1

FP2
2FP2
2

FP4
1FP4
1

FP4
2FP4
2

FP1
1FP1
1

FP1
2FP1
2

FP1
2FP1
2

FP2
4FP2
4

FP2
1FP2
1

FP1
1FP1
1

FP2
4FP2
4

FP4
1FP4
1

FP4
2FP4
2

FP3
1FP3
1 FP3

2FP3
2

FP4
4FP4
4

FP1
2FP1
2

FP4
4FP4
4

1

2

3

S
S

S

m2
m3

P3
1

P3
2 P3

3

b)

Figure 4.3: Fault-Tolerant Conditional Process Graph

a)
P2

P1

P4
m2

m1

m3

P3

P2

P1

P4
m2

m1

m3

P3

eij
mn Pi

m Pj
n

Pi
m Pj

n Pi
S mi

S

eij
mS Pi

m Pj
S

eij
Sn Pi

S Pj
n

eij
mSm Pi

m mj
S

eij
Smn mi

S Pj
n

eij
SS Pi

S Pj
S

eij
SmS mi

S Pj
S

eij
SSm Pi

S mj
S

eij
SmSm mi

S mj
S

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

43

Edges ∈ EC, ∈ EC, and ∈ EC are conditional
edges and have an associated condition value. The condition
value produced is “true” (denoted with) if experiences a
fault, and “false” (denoted with) if does not experience a
fault. Alternative paths starting from such a process, which cor-
respond to complementary values of the condition, are disjoint1.
Note that edges , , , , , and coming from a
synchronization node cannot be conditional.

A boolean expression , called guard, can be associated to
each node in the graph. The guard captures the necessary
activation conditions in a given fault scenario.

In Figure 4.3a we have an application A modelled as a process
graph G, which can experience at most two transient faults (for
example, during the execution of processes P2 and P4). Trans-
parency requirements are depicted with rectangles on the appli-
cation graph, where process P3, message m2 and message m3 are
set to be frozen. For scheduling purposes we will convert the
application A to a fault-tolerant conditional process graph (FT-
CPG) G, represented in Figure 4.3b. In an FT-CPG the fault
occurrence information is represented as conditional edges and
the frozen processes/messages are captured using synchroniza-
tion nodes. One of the conditional edges is to in
Figure 4.3b, with the associated condition denoting that
has no faults. Message transmission on conditional edges takes
place only if the associated condition is satisfied.

The FT-CPG in Figure 4.3b captures all the fault scenarios
that can happen during the execution of application A in
Figure 4.3a. The subgraph marked with thicker edges and
shaded nodes in Figure 4.3b captures the execution scenario
when processes P2 and P4 experience one fault each. We will
refer to every such subgraph corresponding to a particular exe-
cution scenario as an alternative path of the FT-CPG. The fault

1. They can only meet in a synchronization node.

eij
mn eij

mS eij
mSm

FPi
m Pi

m

FPi
m Pi

m

eij
Sn eij

Smn eij
SS eij

SmS eij
SSm eij

SmSm

KPi
m

Pi
m

P1
1 P4

1

FP1
1 P1

1

CHAPTER 4

44

scenario for a given process execution, for example , the first
execution of P4, is captured by the conditional edges (fault)
and (no-fault). The transparency requirement that, for exam-
ple, P3 has to be frozen, is captured by the synchronization node

 inserted before the conditional edge with copies of process P3.
In Figure 4.3b, process is a conditional process because it
“produces” condition , while is a regular process. In the
same figure, and , like , are synchronization nodes
(depicted with a rectangle).

Regular and conditional processes are activated when all their
inputs have arrived. A synchronization node can be activated
after inputs coming on one of the alternative paths, correspond-
ing to a particular fault scenario, have arrived. For example, one
alternative path with faults in processes P2 and P4 is marked
with thicker edges in Figure 4.3b. In this path, a transmission
on the edge will be enough to activate .

A guard is associated to each node in the graph. In
Figure 4.3b, an example of a guard associated to a node is, for
example, = , which means that will be activated
in the fault scenario where P2 experienced a fault, while P1 did
not. A node is activated only when the value of the associated
guard is true.

4.2.1 GENERATION OF FT-CPG

In Figure 4.3b we depict the FT-CPG G, which is the result of
transforming the application A in Figure 4.3a. Each process Pi is
transformed into a structure which models all possible fault
occurrence scenarios with Pi, consisting of a number of condi-
tional nodes and their corresponding conditional edges, and a
set of regular nodes.

In Figure 4.4 we outline the BuildFTCPG algorithm that
traces processes in the merged graph G with transparency
requirements T in the presence of k faults, transforming them
into corresponding sub-structures of the FT-CPG G. In the first

P4
1

FP4
1

FP4
1

P3
S

P1
1

FP1
1 P1

3

m2
S m3

S P3
S

FP2
1 m2

S

KP2
2 FP1

1 FP2
1∧ P2

2

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

45

step, BuildFTCPG places the root process into the FT-CPG (line
2). Then, re-executions of the root process are inserted, con-
nected through “faulty” conditional edges with the “true” condi-

Figure 4.4: Generation of FT-CPG

 BuildFTCPG(G, T, k)
 1 G = ∅
 2 Pi = RootNode(G); Insert(, G); AssignFaults(, k) -- insert the root node

 3 for f = k − 1 downto 0 do -- insert re-executions of the root node

 4 Insert(, G); Connect(,); AssignFaults(, f)
 5 end for
 6 L = ∅ -- add successors of the root node to the ready list

 7 for ∀Succ(Pi) ∈ G do L = L ∪ Succ(Pi)
 8 while L ∅ do -- trace all processes in the merged graph G

 9 Pi = ExtractProcess(L)
 10 VC = GetValidPredCombinations(Pi, G)
 11 for vcn ∈ VC do -- insert copies of process Pi

 12 Insert(,G); Connect(, ∀ ∈vcn); AssignFaults(,k− jointfaults(vcn))
 13 end for
 14 for ∀mj ∈ InputMessages(Pi) if T(mj) do -- transform frozen messages

 15 Insert(, G); ReConnect(∀ (mj),) -- insert synchronization node

 16 MergeCopies(); Connect(,); AssignFaults(, k)
 17 end for
 18 if T(Pi) then -- if process Pi is frozen, then insert corresponding synchronization node

 19 Insert(, G); ReConnect(∀ ,)
 20 MergeAllCopies(); Connect(,); AssignFaults(, k)
 21 end if
 22 for ∀ do -- add re-executions of copies of process Pi

 23 for f = faults()− 1 downto 0 do
 24 Insert(, G); Connect(,); AssignFaults(, f)
 25 end for
 26 end for
 27 ReLabel(∪) -- re-label copies of process Pi and their re-executions

 28 for ∀Succ(Pi) ∈ G do -- add successors of process Pi to the ready list

 29 if ∀Succ(Pi) L then L = L ∪ Succ(Pi)
 30 end for
 31 end while
 32 return G
 end BuildFTCPG

Pi
1 Pi

1

Pi
k f– 1+ Pi

k f– Pi
k f– 1+ Pi

k f– 1+

≠

Pi
n Pi

n Px
m Pi

n

mj
S exi

mn mj
S

Pi
n{ } Pi

n{ } Pi
n{ } mj

S Pi
n{ }

Pi
S exi

mn Pi
S

Pi
1 Pi

n{ } Pi
1 Pi

S Pi
1

Pi
n Pi

n

Pi
n

Pi
n f() Pi

n f() Pi
n f 1–() Pi

n f()

Pi
n{ } Pi

n f(){ } Pi
n

∉

CHAPTER 4

46

tion value (lines 3-5). The copy of the root process and its re-
executions are assigned with k, k− 1, k− 2, ..., 0 faults, respec-
tively, which will be used in the later steps. In Figure 4.5, we
show an intermediate state of generation of the FT-CPG
depicted in Figure 4.3b. The result after the first step is high-
lighted with a dashed line. After the first step, processes ,
and are inserted, connected with two conditional edges
and .

In the next step, BuildFTCPG places successors of the root
process into the ready list L (line 7). For generation of the FT-
CPG, the order of processes in the ready list L is not important
and BuildFTCPG extracts the first available process Pi for trans-
formation (line 9).

For each process Pi, extracted from the ready list L, Build-
FTCPG prepares a set of valid combinations VC of predecessor
processes (line 10). The combinations are valid if the predecessor
processes in each combination vcn ∈ VC correspond to a common
set of condition values and, all together, do not experience more
than k faults. For example, in Figure 4.5, the combination of
predecessors of process P3 consisting of processes and is
valid, while combination of and is not. and belong
to a fault scenario (a set of conditions), where process P1 does not
experience faults. However, and belong to two contradic-
tory fault scenarios: (1) no faults happen in P1 and (2) a fault,
marked as , happens in the first execution of P1.1 Similarly,
the combination consisting of and is valid but the combi-
nation of and is not. However, for example, the combina-
tion of and is also not valid, even though processes
and belong to a common set of conditions, e.g. fault occur-
rences do not contradict with each other. This combination is not

1. In Figure 4.5, “faulty” edges with “true” conditions are thick, while
the “non-faulty” edges are thin. For the actual names of “false” condi-
tions associated to “non-faulty” edges, look into Figure 4.3b.

P1
1 P1

2

P1
3 e11

12

e11
23

P2
1 P4

1

P2
1 P4

4 P2
1 P4

1

P2
1 P4

4

FP1
1

FPi
n

FPi
n

P2
2 P4

2

P2
4 P4

6

P2
2 P4

3 P2
2

P4
3

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

47

valid because and , taken together, experience 3 faults,
which is more than k = 2.

For each valid combination vcn ∈ VC , BuildFTCPG inserts a
copy of process Pi and assign it to all the predecessors in vcn
with corresponding conditional and unconditional edges (lines
11-13). The conditional edges are “non-faulty” with the “false”
conditional value. These conditional and unconditional edges
can carry copies of input messages to process Pi. For example, in
Figure 4.5, conditional edge , connecting and , carries
a copy of message m1.

Each copy can experience at most f = k − joint_faults(vcn)
faults (see AssignFaults function, line 12). For example, the copy

 of process P3, corresponding to the combination of and
, can experience f = 2 − 0 = 2 faults, but the copy of P3, cor-

responding to the combination of and , will not experience
faults because f = 2 − 2 = 0.

If any of the input messages mj to process Pi is frozen, then a
synchronization node is introduces (lines 14-17). Edges con-
taining the message mj are re-connected to (both conditional
and unconditional); message mj is also removed from these

P2
2 P4

3

Pi
n

e14
11 P1

1 P4
1

Figure 4.5: FT-CPG Generation without
Synchronization Nodes

m2

1

2

3

6 6

44

55

1

1

2

3

2

3

1 2 3 4 5 6 7 9 10
P3

P4

P4

P4

P1

P2

P2

P2

P3 P3P3 P3 P3

P4

P4

P1

P2

P2

P3

P4

P1

P2

m1
1

10

m1
3

m3
10

FP1
1FP1
1

FP2
1FP2
1

FP4
4FP4
4 FP 4

2FP 4
2FP2

2FP2
2

FP4
1FP4
1

FP4
2FP4
2

FP2
1FP2
1

m1
2

8P3 P3 P3

m3
9

m3
8

m3
7

m3
6

m3
5

m3
3

m3
2m3

1

m3
4

m2
9m2

7

m2
8

m2
6

m2
5

m2
4

m2
3m2

2
m2

1

f = 2

f = 1

f = 0

f = 2f = 2

f = 1

f = 2

f = 1

f = 0
f = 0

f = 1 f = 1 f = 1

f = 1 f = 1

f = 0 f = 0 f = 0 f = 0

f = 0 f = 0

f = 0

f = 0 f = 0

f = 0

After the first step

Pi
n

P3
1 P2

1

P4
1 P3

4

P2
2 P4

2

mj
S

mj
S

CHAPTER 4

48

edges (see ReConnect function, line 15). Copies of process Pi,
that differ only in the conditions passed through those edges
(with mj), are merged (MergeCopies function, line 16). The
remaining copies of Pi are connected to with uncondi-

Pi
n

Pi
n mj

S

P3 P3 P3 P3

f = 0

1

2

3

6 6

44

55

1

1

2

3

2

3

1 2 3 4 5 7 8 10
P3

P4

P4

P4

P1

P2

P2

P2

P3 P3P3 P3

P4

P1

P2

P2
P4

P1

P2

m1
1

m1
3

FP 1
1FP 1
1

FP 2
1FP 2
1

FP4
4FP4
4 FP4

2FP4
2FP 2

2FP 2
2

FP4
1FP4
1

FP4
2FP4
2

FP 2
1FP 2
1

m1
2

9 P3

f = 2

f = 1

f = 0

f = 2f = 2

f = 1 f = 1

f = 0

f = 1 f = 1

f = 0 f = 0
f = 0 f = 0

m2
S

P4

6

m3
10

m3
9

m3
8m3

7

m3
5

m3
4

m3
6

m3
3

m3
2

m3
1

m2
10

m2
9m2

8m2
7m2

6m2
5m2

3m2
2m2

1 m2
4

f = 2 f = 1 f = 1 f = 1f = 0 f = 0 f = 0 f = 0 f = 0 f = 0

a)

Figure 4.6: Inserting Synchronization Nodes

FP 2
4FP 2
4

FP2
2FP2
2

FP2
1FP2
1

FP 1
1FP 1
1 P2

P2

6
5

3

2

1

3

2

1P1

P1

P1

P2P2

P2
P2

4

m3m2

P4

P4

P4

P4

P4

P4

P3P3 P3P3P3P3

1

2

3

4

5
6

3 52 641

m1

m1

m1

FP 1
2FP 1
2

FP 4
1FP 4
1

FP4
2FP4
2

FP 4
4FP 4
4

1

2

3

S
S

m2
1 m3

1

m2
2 m3

2 m2
3 m3

3
m2

4 m3
4

m2
5 m3

5

m2
6
m3

6

f = 2

f = 1

f = 0

f = 2

f = 2

f = 1

f = 1

f = 1

f = 1

f = 1 f = 1

f = 0

f = 0
f = 0

f = 0f = 0

f = 0

f = 0 f = 0 f = 0f = 2

b)

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

49

tional edges carrying message mj. BuildFTCPG performs this
operation for every frozen input message. In Figure 4.6, we show
how frozen messages m2 and m3 are introduced for the applica-
tion A depicted in Figure 4.3a. First, for message m2, synchroni-
zation node is inserted into the structure depicted in
Figure 4.5, as shown in Figure 4.6a, and copies of process P3 are
re-connected to this synchronization node. Note that none of the
copies is merged in this case because the conditions associated to
all of them are different. Second, for message m3, we introduce
synchronization node , as illustrated in Figure 4.6b. In this
case, 10 copies of process P3, in Figure 4.6a, are merged into 6
copies, which are, then, connected to the synchronization node

.
If process Pi is frozen, then synchronization node is intro-

duced (lines 18-21). All edges that connect copies of Pi to com-
binations of valid predecessors vcn ∈ VC and synchronization
nodes are re-connected to (ReConnect function, line 19).
All copies of Pi are merged into a single copy , which is
connected to the synchronization node through uncondi-
tional edge (MergeAllCopies function, line 19). The maximum
number of faults f = k is associated to . For example, the
application A in Figure 4.3a has frozen process P3. Once this
process is reached by the FT-CPG generation algorithm, after
introducing frozen message m3, synchronization node is cre-
ated. Then, all copies of process P3, in Figure 4.6b, are merged
into single copy connected to , as shown in the FT-CPG in
Figure 4.3b.

After copies of process Pi are introduced and, if needed,
merged, BuildFTCPG adds re-executions of Pi’s copies against
possible fault occurrences (lines 22-26). The number of faults f
has been associated to each copy of process Pi in the previous
steps. To tolerate these faults, f re-executions are inserted, con-
nected through “faulty” conditional edges. Note that the first re-
execution is connected to the copy of process Pi, while
every other re-execution is connected to the previous process re-

m2
S

m3
S

m3
S

Pi
S

Pi
n

mj
S Pi

S

Pi
n Pi

1

Pi
S

Pi
1

P3
S

P3
1 P3

S

Pi
n

Pi
n f 1–() Pi

n

CHAPTER 4

50

execution, e.g. the second re-execution is connected to the first,
the third to the second, and so on. The number of faults is
accordingly associated to the re-executions, e.g. first re-execu-
tion is associated with f− 1 faults, second re-execution

 with f− 2 faults, and the last re-execution with 0
faults. The numbers of faults associated to re-executions will be
later used for transforming successors of process Pi.

After re-labelling (line 27), re-executions of copy will have
indices following the index of copy , e.g. , , and so
on. The original copies are re-labelled accordingly. In
Figure 4.5, for example, the copy of process P4 can be re-exe-
cuted two times with re-executions labelled as and ; the
copy can be re-executed once with re-execution ; the copy

 of process P4 is not re-executed.
When process Pi has been finally transformed, its successors

are placed into the ready list L (lines 28-30). BuildFTCPG contin-
ues until all processes in the merged graph G are transformed
into corresponding sub-structures of the FT-CPG G.

4.3 Conditional Scheduling
The problem that we are addressing with conditional scheduling
can be formulated as follows. Given an application A, mapped on
an architecture consisting of a set of hardware nodes N intercon-
nected via a broadcast bus B, and a set of transparency require-
ments on the application T(A), we are interested to determine
the schedule table S such that the worst-case end-to-end delay
δG, by which the application completes execution is minimized,
and the transparency requirements captured by T are satisfied.
If the resulting delay is smaller than the deadline, the system is
schedulable.

Pi
n f 1–()

Pi
n f 2–() Pi

n 0()

Pi
n

Pi
n Pi

n 1+ Pi
n 2+

Pi
n

P4
1

P4
2 P4

3

P2
4 P2

5

P4
6

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

51

4.3.1 SCHEDULE TABLE

The output produced by the FT-CPG scheduling algorithm is a
schedule table that contains all the information needed for a dis-
tributed run time scheduler to take decisions on activation of
processes. It is considered that, during execution, a very simple
non-preemptive scheduler located in each node decides on proc-
ess and communication activation depending on the actual val-
ues of conditions.

Only one part of the table has to be stored in each node,
namely, the part concerning decisions that are taken by the cor-
responding scheduler. Figure 4.7 presents the schedules for the
nodes N1 and N2 produced by the conditional scheduling algo-
rithm in Figure 4.8 for the FT-CPG in Figure 4.3. In each table
there is one row for each process and message from application
A. A row contains activation times corresponding to different
values of conditions. In addition, there is one row for each condi-
tion whose value has to be broadcasted to other computation
nodes. Each column in the table is headed by a logical expression
constructed as a conjunction of condition values. Activation
times in a given column represent starting times of the proc-
esses and transmission of messages when the respective expres-
sion is true.

According to the schedule for node N1 in Figure 4.7, process P1
is activated unconditionally at the time 0, given in the first col-
umn of the table. Activation of the rest of the processes, in a cer-
tain execution cycle, depends on the values of the conditions, i.e.,
the unpredictable occurrence of faults during the execution of
certain processes. For example, process P2 has to be activated at
t = 30 if is true, at t = 100 if is true, etc.FP1

1 FP1
1 FP1

2∧

CHAPTER 4

52

F
ig

u
re

 4
.7

:
C

on
di

ti
on

al
 S

ch
ed

u
le

 T
ab

le
s

N
2

tr
ue

1 1PF

1 1PF

2 1

1 1
P

P
F

F
∧

2 1

1 1
P

P
F

F
∧

4 4

2 1
1 1

P
P

P
F

F
F

∧
∧

4 4
2 1

1 1
P

P
P

F
F

F
∧

∧
1 4

1 1
P

P
F

F
∧

2 4

1 4

1 1
P

P
P

F
F

F
∧

∧
2 4

1 4

1 1
P

P
P

F
F

F
∧

∧

1 4

1 1
P

P
F

F
∧

1 3PF

2 3

1 3
P

P
F

F
∧

P
3

13

6
(

8 3P
)

13

6
(

1 3
P

)
13

6
(

1 3
P

)

13
6

(
1 3

P
)

13
6

(
1 3

P
)

13
6

(
1 3

P
)

16
1

(
2 3P

)
18

6
(

3 3P
)

P
4

36
 (

1 4P
)

10
5

(
6 4P
)

71
 (

4 4P
)

10
6

(
5 4P
)

71

 (
2 4P

)
10

6
(

3 4P
)

N
1

tr
ue

1 1PF

1 1PF

2 1

1 1
P

P
F

F
∧

2 1

1 1
P

P
F

F
∧

4 2

2 1
1 1

P
P

P
F

F
F

∧
∧

4 2

2 1
1 1

P
P

P
F

F
F

∧
∧

1 2
1 1

P
P

F
F

∧

2 2
1 2

1 1
P

P
P

F
F

F
∧

∧

2 2
1 2

1 1
P

P
P

F
F

F
∧

∧

1 2
1 1

P
P

F
F

∧

P
1

0
(

1 1P
)

35
 (

2 1P
)

70

 (
3 1P

)

P
2

30
 (

1 2P
)

10
0

(
6 2P

)
65

 (
4 2P

)
90

 (
5 2P

)

55
 (

2 2P
)

80
 (

3 2P
)

m
1

31
 (

1 1
m

)
10

0
(

3 1
m

)
66

 (
2 1

m
)

m
2

10
5

10
5

10
5

m
3

12

0

12
0

12
0

12

0
12

0
12

0
1 1P

F

30

2 1PF

65

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

53

At a certain moment during the execution, when the values of
some conditions are already known, they have to be used to take
the best possible decisions on process activations. Therefore,
after the termination of a process that produces a condition, the
value of the condition is broadcasted from the corresponding
computation node to all other computation nodes. This broad-
cast is scheduled as soon as possible on the communication
channel, and is considered together with the scheduling of the
messages. The scheduler in a node knows from its schedule table
when to expect a condition message.

To produce a deterministic behaviour, which is globally con-
sistent for any combination of conditions (faults), the table has
to fulfil several requirements:

1. No process will be activated if, for a given execution cycle,
the conditions required for its activation are not fulfilled.

2. Activation times have to be uniquely determined by the con-
ditions.

3. Activation of a process Pi at a certain time t has to depend

only on condition values which are determined at the respec-
tive moment t and are known to the processing element
which executes Pi.

4.3.2 CONDITIONAL SCHEDULING ALGORITHM

According to our application model, some processes can only be
activated if certain conditions (i.e., fault occurrences), produced
by previously executed processes, are fulfilled. Thus, at a given
activation of the system, only a certain subset of the total
amount of processes is executed and this subset differs from one
activation to the other. As the values of the conditions are unpre-
dictable, the decision on which process to activate and at which
time has to be taken without knowing which values the condi-
tions will later get. On the other side, at a certain moment dur-
ing execution, when the values of some conditions are already

CHAPTER 4

54

known, they have to be used in order to take the best possible
decisions on when and which process to activate, in order to
reduce the schedule length.

Optimal scheduling has been proven to be an NP-complete
problem [Ull75] in even simpler contexts. Hence, heuristic algo-
rithms have to be developed to produce a schedule of the proc-
esses such that the worst case delay is as small as possible. Our
strategy for the synthesis of fault-tolerant schedules is pre-
sented in Figure 4.8. The FTScheduleSynthesis function takes as
input the application A with the transparency requirements T,
the number k of transient faults that have to be tolerated, the
architecture consisting of computation nodes N and bus B, the
mapping M, and produces the schedule table S.

Our synthesis approach employs a list scheduling based heu-
ristic, FTCPGScheduling, presented in Figure 4.10, for scheduling
each alternative fault-scenario. However, the fault scenarios
cannot be independently scheduled: the derived schedule table
has to fulfil the requirements (1) to (3) presented in Section
4.3.1, and the synchronization nodes have to be scheduled at the
same start time in all alternative schedules.

 FTScheduleSynthesis(A, T, k,N, B, M)
 1 S = ∅; G = BuildFTCPG(A, k)
 2 LS = GetSynchronizationNodes(G)
 3 PCPPriorityFunction(G, LS)
 4 for each Si ∈ LS do
 5 tmax = 0;KSi = ∅
 6 FTCPGScheduling(0, G, Si, source, k)
 7 for each Kj ∈ KSi do
 8 Insert(S, Si, tmax, Kj)
 9 end for
 10 end for
 11 return S
 end FTScheduleSynthesis

Figure 4.6: Fault-Tolerant Schedule Synthesis StrategyFigure 4.8:

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

55

In the first line of the FTScheduleSynthesis algorithm, we ini-
tialize the schedule table S and build the FT-CPG G as presented
in Section 4.2.1 List scheduling heuristics use priority lists from
which ready processes are extracted in order to be scheduled at
certain moments. A process is ready if all its predecessors have
been scheduled. We use the partial critical path (PCP) priority
function [Ele00] in order to assign priorities to processes (line 3).

A synchronization node Si, in order to mask fault occurrences,
must have the same start time ti in the schedule S, regardless of
the guard KSi under which it is scheduled. For example, the syn-
chronization node in Figure 4.9 has the same start time of
105, in each corresponding column of the table in Figure 4.7. In
order to determine the start time ti of a synchronization node

1. For efficiency reasons, the actual implementation is slightly different
from the one presented here. In particular, the FT-CPG is not explicitly
generated as a preliminary step of the scheduling algorithm. Instead,
during the scheduling process, the currently used nodes of the FT-CPG
are generated on the fly.

Figure 4.8: Alternative paths investigated by
FTCPGScheduling for the synchronization node m2

S

6

3

2

1P1

P1

P1

P2

m2

FP 1
2

FP 1
1

6

3

2

1P1

P1

P1

P2

m2

FP 1
2FP 1
2

FP 1
1FP 1
1

2

1P1

P1

P2
4

m2

FP1
2

FP 1
2

FP 1
1

2

1P1

P1

P2
4

m2

FP1
2FP1
2

FP 1
2FP 1
2

FP 1
1FP 1
1 P2

1

1P1

m2

FP 1
1FP 1
1

FP1
1FP1
1

1
1P

F2
1

1
1 PP

FF ∧ 2
1

1
1 PP

FF ∧

Figure 4.9:

S S S

m2
S

CHAPTER 4

56

Si∈LS, where LS is the list of synchronization nodes, we will
have to investigate all the alternative fault-scenarios (modelled
as different alternative paths through the FT-CPG) that lead to
Si. Figure 4.9 depicts the three alternative paths that lead to
for the graph in Figure 4.3b. These paths are generated using
the FTCPGScheduling function (called in line 6, Figure 4.8), which
records the maximum start time tmax of Si over the start times

m2
S

Figure 4.9: Conditional Scheduling

 FTCPGScheduling(t, G, S, L, f)
 1for each R ∈ N ∪ {B} do
 2 LR = LocalReadyList(L, R)
 3 while LR ≠ ∅ do
 4 Pi := Head(LR)
 5 t = ResourceAvailable(R, t) -- the earliest time when R is free
 6 K = KnownConditions(R, t) -- the conditions known to R at time t
 7 if Pi = S then -- synchronization node currently under investigation
 8 if t > tmax then
 9 tmax = t -- the latest start time is recorded
 10 KSi = KSi ∪ {K} -- the guard of the synchronization node is recorded
 11 end if
 12 return -- exploration stops at the synchronization node S
 13 else if Pi ∈ VT and Pi unscheduled then -- other synchronization nodes
 14 return -- are not scheduled at the moment
 15 end if Pi ∈ EC and BroadcastCondition(Pi) = false then
 16 return -- the condition does not have to be broadcast to other nodes
 17 end if
 18 Insert(S, Pi, t, K) -- the node is placed in the schedule
 19 if Pi ∈ VC and f > 0 then -- conditional process and faults can still occur
 20 -- schedule the faulty branch
 21 FTCPGScheduling(t, G, L ∪ GetReadyNodes(Pi, true), f - 1)
 22 -- schedule the non-faulty branch
 23 FTCPGScheduling(t, G, L ∪ GetReadyNodes(Pi, false), f)
 24 else
 25 L = L ∪ GetReadyNodes(Pi)
 26 end if
 27 end for
 end FTCPGScheduling

Figure 4.10:

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

57

in all the alternative paths. In addition, FTCPGScheduling also
records the guards KSi under which Si has to be scheduled. The
synchronization node Si is then inserted into the schedule table
in the columns corresponding to the guards in the set KSi at the
unique time tmax (line 10 in Figure 4.10). For example, is
inserted at time tmax = 105 in the columns corresponding to
Km2 = { , , }.

The FTCPGScheduling function is recursive and calls itself for
each conditional node in order to separately schedule the nodes in
the faulty branch, and those in the true branch (lines 21 and 23,
Figure 4.10). Thus, the alternative paths are not activated
simultaneously and resource sharing is correctly achieved. During
the exploration of the FT-CPG it is important to eliminate
alternative paths that are not possible to occur. This requirement
is handled by introducing the parameter f, which represents the
number of faults that still can occur. f is decremented for each call
of FTCPGScheduling that explores a faulty (true) branch. Thus, only
if f > 0 (line 19), we will continue to investigate branches through
recursions.

For each resource R, the highest priority node is removed from
the head of the local priority list LR (line 2). If the node is the
currently investigated synchronization node S, the largest start
time and the current guards are recorded (lines 9–10). If other
unscheduled synchronization nodes are encountered, they will
not be scheduled yet (lines 13–14), since FTCPGScheduling inves-
tigates one synchronization node at a time. Otherwise, the cur-
rent node Pi is placed in the schedule S at time t under guards K.
The time t is the time when the resource R is available. Our def-
inition of resource availability is different from classical list
scheduling. Since we enforce the synchronization nodes to start
at their latest time tmax to accommodate all the alternative
paths, we might have to insert idle time on the resources on
those alternative paths that finish sooner than tmax. Thus, our
ResourceAvailable function will determine the first contiguous
segment of time which is available on R, large enough to accom-

m2
S

FP1
1 FP1

1 FP1
2∧ FP1

1 FP1
2∧

CHAPTER 4

58

modate Pi. For example, m2 is scheduled first at 105 on the bus,
thus time 0–105 is idle time on the bus. We will later schedule
m1 at times 66, 31 and 100, within this idle segment. The sched-
uling of Pi will be done under the currently known conditions K,
determined at line 6 on the resource R. Our approach eliminates
from K those conditions that, although known to R at time t, will
not influence the execution of Pi.

4.4 Shifting-based Scheduling
Shifting-based scheduling is the second scheduling technique for
synthesis of fault-tolerant schedules proposed in this thesis.
This scheduling technique is an extension of the transparent
recovery against single faults proposed in [Kan03a].

The problem that we are addressing with shifting-based
scheduling can be formulated as follows. Given an application A,
mapped on an architecture consisting of a set of hardware nodes
N interconnected via a broadcast bus B, we are interested to
determine the schedule table S with a fixed execution order of
processes such that the worst-case end-to-end delay δG , by which
the application completes execution is minimized, and the trans-
parency requirements with all messages on the bus frozen are
satisfied. If the resulting delay is smaller than the deadline, the
system is schedulable.

In shifting-based scheduling, a fault occurring on one computa-
tion node is masked to the other computation nodes in the system
but can impact processes on the same computation node. On a
computation node Ni where a fault occurs, the scheduler has to
switch to an alternative schedule that delays descendants of the
faulty process running on the same computation node Ni. How-
ever, a fault happening on another computation node is not visible
on Ni, even if the descendants of the faulty process are mapped on
Ni.

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

59

Due to the imposed restrictions, the size of schedule tables for
shifting-based scheduling is much smaller than the size of
schedule tables produced with conditional scheduling. Moreover,
shifting-based scheduling is significantly faster than the condi-
tional scheduling algorithm presented in Section 4.3.2. However,
first of all, shifting-based scheduling does not allow to trade-off
transparency for performance, e.g. all messages on the bus, and
only those, are frozen. Secondly, because of the fixed execution
order of processes, which does not change with fault occurrences,
schedules generated with shifting-based scheduling are longer
than those produced by conditional scheduling.

4.4.1 SHIFTING-BASED SCHEDULING ALGORITHM

The shifting-based scheduling algorithm is based on the FT-CPG
representation, on top of which an additional ordering is intro-
duced.

Let us illustrate the ordering with an example in Figure 4.11a
showing an application A composed of five processes mapped on
two computation nodes. Processes P1, P2 and P4 are mapped on
computation node N1. Processes P3 and P5 are mapped on com-
putation node N2. Message m1 is frozen since it is transmitted
through the bus. In this example, we introduce the following
order relations: (1) process P4 cannot start before completion of
process P1; (2) P2 cannot start before completion of P4; and (3) P3
cannot start before completion of P5. The resulting FT-CPG with
introduced order relations, when k = 2 transient faults can hap-
pen at maximum, is presented in Figure 4.11b. The introduced
precedence constraints order the execution of processes assigned
to the computation node. This order can be obtained using a pri-
ority function, for example, the partial critical path (PCP)
[Ele00].

For the shifting-based scheduling, the FT-CPG is not explicitly
generated. Instead, only a root schedule is obtained off-line. The
root schedule consists of start times of processes in the non-

CHAPTER 4

60

faulty scenario and sending times of messages. In addition, it
has to provide idle times for process recovering, called recovery
slacks. The root schedule is later used by the on-line scheduler
for extracting the execution scenario corresponding to a particu-
lar fault occurrence (which corresponds to a branch of the
ordered FT-CPG). Such an approach significantly reduces the
amount of memory required to store schedule tables.

Generation of the Root Schedule. The algorithm for gener-
ation of the root schedule is presented in Figure 4.12 and takes
as input the application A, the number k of transient faults that
have to be tolerated, the architecture consisting of computation
nodes N and bus B, the mapping M, and produces the root sched-
ule RS.

P1

P4

P4

P4

P2

P2

P2
P2

P2

P2

P1

P1 P4

P4

P2

P2

P2

P4

P2

m1
S

P5

P3

P3

P3

P5

P5P3

P3 P3

m1

m1

m1

FP 1
1

FP1
2

FP 1
1

FP 1
1

FP 1
1

FP1
2

FP1
2

FP1
1

FP 1
2

FP 4
1

FP 4
2

1

2

3

1

2

3
1

2

3
4

5
6

4

56

7

8

910

FP4
1

FP 4
2

FP 2
1

FP2
2FP2

1 FP2
2

FP 4
4

FP 4
4

FP 2
4

FP2
4

FP2
8

FP2
8

1

2

3

1

2

3

4

5 6

FP 5
1

FP5
2

FP 3
4

FP 3
1

FP 3
2

FP 5
1

FP 5
2

P1

P4

P4

P4

P2

P2

P2
P2

P2

P2

P1

P1 P4

P4

P2

P2

P2

P4

P2

m1
S

P5

P3

P3

P3

P5

P5P3

P3 P3

m1

m1

m1

FP 1
1FP 1
1

FP1
2FP1
2

FP 1
1FP 1
1

FP 1
1FP 1
1

FP 1
1FP 1
1

FP1
2FP1
2

FP1
2FP1
2

FP1
1FP1
1

FP 1
2FP 1
2

FP 4
1FP 4
1

FP 4
2FP 4
2

1

2

3

1

2

3
1

2

3
4

5
6

4

56

7

8

910

FP4
1FP4
1

FP 4
2FP 4
2

FP 2
1FP 2
1

FP2
2FP2
2FP2

1FP2
1 FP2

2FP2
2

FP 4
4FP 4
4

FP 4
4FP 4
4

FP 2
4FP 2
4

FP2
4FP2
4

FP2
8FP2
8

FP2
8FP2
8

1

2

3

1

2

3

4

5 6

FP 5
1FP 5
1

FP5
2FP5
2

FP 3
4FP 3
4

FP 3
1FP 3
1

FP 3
2FP 3
2

FP 5
1FP 5
1

FP 5
2FP 5
2

P1

P2 P5

P3

P4

m1

P1

P2

P5P3

P4

m1

P4 after P1

P2 after P4

P3 after P5

mapped on N1

mapped on N2

P1

P2 P5

P3

P4

m1

P1

P2 P5

P3

P4

m1

P1

P2

P5P3

P4

m1

P4 after P1

P2 after P4

P3 after P5

mapped on N1

mapped on N2

Figure 4.10: Ordered FT-CPG

a) b)

Figure 4.11:

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

61

At first, the order of process execution is introduced with the
partial critical path (PCP) priority function [Ele00] (line 2). Ini-
tial recovery slacks for all processes Pi ∈ A are calculated as
s0(Pi)=k× (Ci + µ) (lines 3-5). Then, recovery slacks of processes
mapped on the same computation node are merged to reduce
timing overhead.

The process graph A is traversed starting from the root node
(line 7). Process p is selected from the ready list L according to the
priority function (line 9). The last scheduled process r on the
computation node, on which p is mapped, is extracted from the
root schedule S (line 11). Process p is scheduled and its start time

Figure 4.11: Generation of Root Schedules

 RootScheduleGeneration(A, k,N, B, M)
 1 RS = ∅
 2 IntroduceOrdering(A) -- process ordering
 3 for ∀Pi ∈ A do -- obtaining initial recovery slacks
 4 s(Pi) = k × (Ci + µ)
 5 end for
 6 -- adjusting recovery slacks
 7 L = { RootNode(A) }
 8 while L ≠ ∅ do
 9 p = SelectProcess(L) -- select process from the ready list
 10 -- the last scheduled process on the computation node, where p is mapped
 11 r = CurrentProcess(RS {M(p)})
 12 ScheduleProcess(p, RS {M(p)}) -- scheduling of process p
 13 b = start(p) - end(r) -- calculation of the idle time r and p
 14 s(p) = max{s(p), s(r) - b} -- adjusting the recovery slack of process p
 15 -- schedule messages sent by process p at the end of its recovery slack s
 16 ScheduleOutgoingMessages(p, s(p), RS{M(p)})
 17 Remove(p, L) -- remove p from the ready list
 18 -- add successors of p to the ready list
 19 for ∀Succ(p) do
 20 if Succ(p) ∈ L then Add(Succ(p), L)
 21 end for
 22 end while
 23 return RS
 end RootScheduleGeneration

Figure 4.12:

CHAPTER 4

62

is recorded in the root schedule. Then, its recovery slack s(p) is
adjusted such that it can accomodate recovering of processes
scheduled before process p on the same computation node (lines
13-14). The adjustment is performed in two steps:

1. The idle time b between process p and the last scheduled
process r is calculated (line 13).

2. The recovery slack s(p) of process p is changed, if recovery
slack s(r) of process r substracted with the idle time b is larg-
er than the initial slack s0(p). Otherwise, the initial slack

s0(p) is preserved as s(p) (line 14).

If no process is scheduled before p, the initial slack s0(p) is pre-
served as s(p). Outgoing messages sent by process p are sched-
uled at the end of recovery slack s(p) (line 16).

After the adjustment of the recovery slack, process p is
removed from the ready list L (line 17) and its successors are
added to the list (lines 19-21). After scheduling of all the proc-
esses in the application graph A, the algorithm returns a root
schedule RS with start times of processes, sending times of mes-
sages, and recovery slacks (line 23).

In Figure 4.13 we present an example of the generated root
schedule with recovery slacks. Application A is composed of four

P2

m
1

P1

m
2

m
3

P4 P3

N1

N2

Bus

P1 P1

Worst-case scenario for P1

Recovery slack for P1 and P2

P1
P2
P3

N1

30 X
20
X

X
20

N2

P4 X 30

P2

P3

P1

P4m2

m1

m3

A: G

k = 2

Figure 4.12: Example of a Root ScheduleFigure 4.13:

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

63

processes, where processes P1 and P2 are mapped on N1 and
processes P3 and P4 are mapped on N2. Messages m1, m2 and m3
are frozen, according to the requirements of shifting-based
scheduling. Processes P1 and P2 have start times 0 and 30 ms,
respectively, and share a recovery slack of 70 ms, which is
obtained as max{2 × (30 + 5) - 0, 2 × (20 + 5)} (see the algorithm).
Processes P3 and P4 have start times of 95 and 125 ms and share
a recovery slack of 70 ms. Messages m1, m2 and m3 are sent at
90, 95, and 110 ms, respectively, at the end of the worst-case
recovery intervals of sender processes.

Extracting Execution Scenarios. In Figure 4.14, we show
an example, where we extract one execution scenario from the
root schedule of the application A, depicted in Figure 4.13. In
this execution scenario, process P4 experiences two faults. P4
starts at 95 ms according to the root schedule. Then, since a
fault has happened, P4 has to be re-executed. The start time of
P4’s re-execution, is obtained as 95+30+5 = 130 ms, where 30 is
the worst-case execution time of P4 and 5 is the recovery over-
head µ. The re-execution experiences a fault and the start
time of P4’s second re-execution is 130+30+5= 165 ms. Pro-
cess P3 will be delayed because of the re-executions of process
P4. The current time tc of the scheduler, at the moment when P2
is activated, is 165+30 = 195 ms, which is more than 125 ms that

P1
P2
P3

N1

30 X
20
X

X
20

N2

P4 X 30

P2

P3

P1

P4m2

m1

m3

A: G

k = 2

Figure 4.13: Example of Execution ScenarioFigure 4.14:

P2

m
1

P1

m
2

m
3

P4/1 P3P4/2 P4/3

225N1

N2

Bus

P4
1

P4
2

CHAPTER 4

64

is the schedule time of P2 according to the root schedule. There-
fore, process P2 will be executed at tc = 195 ms. The application A
will complete execution at 225 ms.

The run-time algorithm for extracting execution scenarios
from the root schedule RS is presented in Figure 4.15. The real-
time scheduler runs on each computation node Ni ∈ N and exe-
cutes processes according to the order in the root schedule of
node Ni until the last process in that root schedule is executed.

In the initialization phase, the current time tc of the scheduler
running on node Ni is set to 0 (line 1) and the first process p is
extracted from the root schedule of node Ni (line 2). This process
is executed at its start time in the root schedule (line 4). If p
fails, then it is restored (line 6) and executed again with the time
shift of its worst-case execution time Cp (line 7). It can be re-exe-
cuted at most k times in the presence of k faults. When p is
finally completed, its output messages are placed into the output
buffer of the communication controller (line 9). The output mes-
sages will be sent according to its sending times in the root
schedule. After completion of process p, the next process is

Figure 4.14: Extracting Execution Scenarios

 ExtractScenario(RS, Ni)
 1 tc = 0
 2 p = GetFirstProcess(RS {Ni})
 3 while p = ∅ do
 4 Execute(p, tc)
 5 while fault(p) do
 6 Restore(p)
 7 Execute(p, tc + Cp)
 8 end while
 9 PlaceIntoCommBuffer(OutputMessages(p))
 10 p = GetNextProcess(RS {Ni})
 11 end while
 end ExtractScenario

Figure 4.15:

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

65

extracted from the root schedule of node Ni (line 10) and the
algorithm continues with execution of this process.

Re-executions against faults usually delay executions of the
next processes in the root schedule. We have accommodated
process delays into recovery slacks of the root schedule with the
RootScheduleGeneration algorithm (Figure 4.12). Therefore, if
process p is delayed due to re-executions of previous processes
and cannot be executed at the start time pre-defined in the root
schedule, it is immediately executed after been extracted, within
its recovery slack (Execute function, line 7 in Figure 4.15).

4.5 Experimental Results
For the evaluation of our algorithms we used applications of 20,
40, 60, and 80 processes mapped on architectures consisting of 4
nodes. We have varied the number of faults, considering 1, 2,
and 3 faults, which can happen during one execution cycle. The
duration µ of the recovery time has been set to 5 ms. Fifteen
examples were randomly generated for each application dimen-
sion, thus a total of 60 applications were used for experimental
evaluation. Execution times and message lengths were assigned
randomly within the 10 to 100 ms, and 1 to 4 bytes ranges,
respectively. The experiments were done on Sun Fire V250 com-
puters.

We were first interested to evaluate how well the conditional
scheduling algorithm handles the transparency/performance
trade-offs imposed by the designer. Hence, we have scheduled
each application, on its corresponding architecture, using the
conditional scheduling (CS) strategy from Figure 4.8. In order to
evaluate CS, we have considered a reference non-fault tolerant
implementation, NFT. NFT executes the same scheduling algo-
rithm but considering that no faults occur (k = 0). Let δCS and
δNFT be the end-to-end delays of the application obtained using

CHAPTER 4

66

CS and NFT, respectively. The fault tolerance overhead is defined
as 100 × (δCS – δNFT) / δNFT.

For the experiments, we considered that the designer is inter-
ested to maximize the amount of transparency for the inter-
processor messages, which are critical to a distributed fault-tol-
erant system. Thus, we have considered five transparency sce-
narios, depending on how many of the inter-processor messages
have been set as frozen: 0, 25, 50, 75 or 100%. Table 4.1 presents
the average fault-tolerance overheads for each of the five trans-
parency requirements. We can see that, as the transparency
requirements are relaxed, the fault-tolerance overheads are
reduced. For example, for application graphs of 60 processes
with three faults, we have obtained an 86% overhead for 100%
frozen messages, which was reduced to 58% for 50% frozen mes-
sages.

Table 4.2 presents the average memory1 space per computa-
tion node (in kilobytes) required by the schedule tables. Often,
one entity has the same start time under different conditions.
Such entries into the table can be merged into a single table
entry, headed by the union of the logical expressions. Thus,
Table 4.2 reports the memory required after such a straightfor-
ward compression. We can observe that as the transparency
increases, the memory requirements decrease. For example, for
60 processes and three faults, increasing the number of frozen

1. Considering an architecture where an integer and a pointer are repre-
sented on two bytes.

Table 4.1: Fault-Tolerance Overheads (CS), %
20 processes 40 processes 60 processes 80 processes

k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3
100% 48 86 139 39 66 97 32 58 86 27 43 73
75% 48 83 133 34 60 90 28 54 79 24 41 66
50% 39 74 115 28 49 72 19 39 58 14 27 39
25% 32 60 92 20 40 58 13 30 43 10 18 29
0% 24 44 63 17 29 43 12 24 34 8 16 22

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

67

messages from 50% to 100% reduces the memory needed from
18K to 4K.

The CS algorithm runs in less than three seconds for large
applications (80 processes) when only one fault has to be toler-
ated. Due to the nature of the problem, the execution time
increases exponentially with the number of faults that have to be
handled. However, even for graphs of 60 processes, for example,
and three faults, the schedule synthesis algorithm finishes in
under 10 minutes.

Shifting-based scheduling, discussed in Section 4.4, can only
handle a setup with 100% transparency for inter-processor mes-
sages. As a second set of experiments, we have compared the
conditional scheduling approach with the shifting-based sched-
uling approach, namely SBS, considering this 100% scenario. In
order to compare the two algorithms, we have produced the end-
to-end delay δSBS of the application when using SBS. When com-
paring the delay δCS, obtained with conditional scheduling, to
δSBS in the case of k = 2, for example, conditional scheduling out-
performs SBS on average with 13, 11, 17, and 12% for applica-
tion dimensions of 20, 40, 60 and 80 processes, respectively.
However, shifting-based scheduling generates schedules for
these applications in less than quota of a second and can pro-

Table 4.2: Memory Requirements (CS), Kbytes

20 processes 40 processes 60 processes 80 processes
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3

100% 0.13 0.28 0.54 0.36 0.89 1.73 0.71 2.09 4.35 1.18 4.21 8.75
75% 0.22 0.57 1.37 0.62 2.06 4.96 1.20 4.64 11.55 2.01 8.40 21.11
50% 0.28 0.82 1.94 0.82 3.11 8.09 1.53 7.09 18.28 2.59 12.21 34.46
25% 0.34 1.17 2.95 1.03 4.34 12.56 1.92 10.00 28.31 3.05 17.30 51.30
0% 0.39 1.42 3.74 1.17 5.61 16.72 2.16 11.72 34.62 3.41 19.28 61.85

Table 4.3: Memory Requirements (SBS), Kbytes

20 processes 40 processes 60 processes 80 processes
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3

100% 0.016 0.034 0.054 0.070

CHAPTER 4

68

duce root schedules for large graphs of 80, 100, and 120 proc-
esses with 4, 6, and 8 faults in that time. The schedule
generation time does not exceed 0.2 sec. even for 120 processes
and 8 faults. Therefore, shifting-based scheduling can be effec-
tively used in design optimization strategies, where transpar-
ency-related trade-offs are not considered.

The amount of memory needed to store root schedules is also
very small as shown in Table 4.3. Moreover, due to the nature of
the shifting-based scheduling algorithm, the amount of memory
needed to store the root schedule does not change with the
number of faults. Because of low memory requirements, shift-
ing-based scheduling is suitable for synthesis of fault-tolerant
schedules run even on small microcontrollers.

Finally, we considered a real-life example implementing a
vehicle cruise controller (CC). The process graph that models the
CC has 32 processes, and is described in [Pop03]. The CC was
mapped on an architecture consisting of three nodes: Electronic
Throttle Module (ETM), Anti-lock Breaking System (ABS) and
Transmission Control Module (TCM). We have considered a
deadline of 300 ms, k = 2 and µ = 2 ms.

Considering 100% transparency for the messages on the bus,
SBS produced an end-to-end delay of 384 ms, larger than the
deadline. The CS approach reduced this delay to 346 ms, given
that all inter-processor messages are frozen, which is still
unschedulable. If we relax this transparency requirement and
select only half of the messages as frozen, we are able to further
reduce the delay to 274 ms which meets the deadline. The
designer can use our scheduling synthesis approach to explore
several design alternatives to find that one which provides the
most useful transparency properties. For example, the CC is still
schedulable even with 70% frozen messages.

SCHEDULING WITH FAULT TOLERANCE REQUIREMENTS

69

4.6 Conclusions
In this chapter, we have proposed two novel scheduling
approaches for fault-tolerant embedded systems in the presence
of multiple transient faults: conditional scheduling and shifting-
based scheduling.

The main contribution of the first approach is the ability to
handle performance versus transparency and memory size
trade-offs. This scheduling approach generates the most effi-
cient schedule tables.

The second scheduling approach handles only a fixed trans-
parency set-up, transparent recovery, where all messages on the
bus have to be sent at fixed times, regardless of fault occur-
rences. However, this scheduling approach is much faster than
conditional scheduling and requires less memory to store the
generated schedule tables. These advantages make this schedul-
ing technique suitable for microcontroller systems with strict
memory constraints.

CHAPTER 4

70

PROCESS MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

71

Chapter 5
Process Mapping and

Fault Tolerance Policy
Assignment

IN THIS CHAPTER we discuss two optimization problems
regarding the design of fault-tolerant embedded systems: map-
ping with fault tolerance policy assignment and mapping with
performance/transparency trade-offs.

For optimization of policy assignment, presented in the first
part of this chapter, we combine re-execution that provides time
redundancy with replication that provides spatial redundancy.
The mapping and policy assignment optimization algorithms
decide a process mapping and fault tolerance policy assignment
such that the overheads due to fault tolerance are minimized.
The application is scheduled using the shifting-based scheduling
technique presented in Section 4.4.

In the second part of this chapter we present an approach for
mapping optimization of fault-tolerant embedded systems with
performance/transparency trade-offs. In order to speed-up the
optimization process, we propose a schedule length estimation

CHAPTER 5

72

heuristic that evaluates design solutions without the need to
generate the complete schedule tables, thus reducing the run-
time.

5.1 Fault Tolerance Policy Assignment
In this thesis, by policy assignment we denote the decision on
which fault tolerance techniques should be applied to a process.
In this chapter, we will consider two fault tolerance techniques:
re-execution and replication (see Figure 5.1).

The fault tolerance policy assignment is defined by three func-
tions, P, Q, and R, as follows:

P: V → {Replication, Re-execution, Replication & Re-execution}
determines whether a process is replicated, re-executed, or rep-
licated and re-executed. When active replication is used for a proc-
ess Pi, we introduce several replicas into the application A, and
connect them to the predecessors and successors of Pi.

The function Q: V → Ν indicates the number of replicas for each
process. For a certain process Pi, if P(Pi)= Replication, then Q(Pi) =
k; if P(Pi) = Re-execution, then Q(Pi)= 0; if P(Pi) = Replication & Re-
execution, then 0 < Q(Pi) < k.

Let VR be the set of replica processes introduced into the appli-
cation. Replicas can be re-executed as well, if necessary. The
function R: V ∪ VR → Ν determines the number of re-executions for

Figure 5.1: Policy Assignment: Re-execution + Replication

P1/1 P1/2 P1/3

P1(1)

P1(2)

P1(3)

a) Re-execution b) Replication

P1

N1

N1

N2

N3

C1 = 30 ms

µ=10 ms

k=2
P1(1)/1 P1(1)/2N1

P1(2)N2

c) Re-execution and
replication

PROCESS MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

73

each process or replica. In Figure 5.1c, for example, we have
P(P1)=Replication & Re-execution, R(P1(1)) = 1 and R(P1(2)) = 0.1

Each process Pi ∈ V, besides its worst-case execution time Ci
on each computation node, is characterized by a recovery over-
head µi.

The mapping of a process in the application is given by a func-
tion M: V ∪ VR → N, where N is the set of nodes in the architec-
ture. The mapping M is not fixed and will have to be obtained
during design optimization.

Thus, our problem formulation is as follows:
 • As an input we have an application A given as a set of proc-

ess graphs (Section 3.1) and a system consisting of a set of
nodes N connected to a bus B.

 • The parameter k denotes the total number of transient faults
that can appear in the system during one cycle of execution.

We are interested to find a system configuration ψ such that
the k transient faults are tolerated and the imposed deadlines
are guaranteed to be satisfied, within the constraints of the
given architecture N.

Determining a system configuration ψ = <F, M, S> means:

1. finding the fault-tolerance policy assignment, given by F =
<P, Q, R>, for the application A;

2. deciding on a mapping M for each process Pi in the applica-

tion A;
3. deciding on a mapping M for each replica in VR;
4. deriving the set S of schedule tables on each computation

node.
We will discuss policy assignment based on transparent recov-

ery with replication, where all messages on the bus are set to be
frozen, except those that are sent by replica processes. The shift-
ing-based scheduling presented in Section 4.4 with small modi-

1. For the sake of uniformity, in the case of replication, we name the origi-
nal process Pi as the first replica of process Pi, denoted with Pi(1), see
Section 2.2.4.

CHAPTER 5

74

fications, which will be discussed in Section 5.1.4, is used to
derive schedule tables for the application A.

5.1.1 MOTIVATIONAL EXAMPLES

Let us, first, illustrate some of the issues related to policy
assignment. In the example presented in Figure 5.2 we have the
application A1 with three processes, P1 to P3, and an architec-
ture with two nodes, N1 and N2. The worst-case execution times
on each node are given in a table to the right of the architecture.
Note that N1 is faster than N2. The fault model assumes a single
fault, thus k = 1. The recovery overhead µ is 10 ms. The applica-
tion A1 has a deadline of 160 ms depicted with a thick vertical
line. We have to decide which fault-tolerance technique to use.

In Figure 5.2 we depict the schedules1 for each node. Compar-
ing the schedules in Figure 5.2a1 and Figure 5.2b1, we can
observe that using (a1) active replication the deadline is missed.

1. The schedules depicted are optimal.

Figure 5.2: Comparison of Replication and Re-execution

N1 N2N1 N2
P1

P3

P2

m1

P1

P3

P2

m1

P1(1)N1

N2

bus

P1(2)

P2(1)

P2(2)

P3(1)

P3(2)

N1

N2

bus

P1 P2

m
1(

2)

P3

a1)

b1)

k = 1

µ= 10 ms

k = 1

µ= 10 ms

Re-execution slack
for P1 and P2

P1
P2
P3

N1 N2

40 50
40
60

50
70

P1
P2
P3

N1 N2

40 50
40
60

50
70

Deadline

Missed

Met

P1(1)N1

N2

bus

P1(2)

P2(1)

P2(2)

N1

N2

bus

P1 P2 P3

P3(1)

P3(2)a2)

b2)

Deadline

Missed

Met

Re-execution slack
for P1, P2 , P3

P1 P3P2

m1 m2
P1 P3P2

m1 m2

A2

A1

m
1(

1)

m
1(

1)
m

1(
2)

m
2(

1)
m

2(
2)

PROCESS MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

75

An additional delay is introduced with messages m1(1) and m1(2)
sent from replicas P1(1) and P1(2) of process P1, respectively, to
replicas P2(2) and P2(1) of process P2. In order to guarantee that
time constraints are satisfied in the presence of faults, all re-
executions of processes, which are accommodated in re-execu-
tion slacks, have to finish before the deadline. Using (b1) re-exe-
cution we are able to meet the deadline. However, if we consider
a modified application A2 with process P3 data dependent on P2,
the imposed deadline of 200 ms is missed in Figure 5.2b2 if re-
execution is used, and it is met when replication is used as in
Figure 5.2a2.

This example shows that the particular technique to use has
to be carefully adapted to the characteristics of the application.
Moreover, the best result is most likely to be obtained when both
techniques are used together, some processes being re-executed,
while others replicated.

Let us consider the example in Figure 5.3, where we have an
application with four processes mapped on an architecture of
two nodes. In Figure 5.3a all processes are re-executed, and the
depicted schedule is optimal for re-execution, yet missing the

Figure 5.3: Combining Re-execution and Replication

b)

P1

P4

P2 P3

m1 m2

m3

P1

P4

P2 P3

m1 m2

m3

N1

N2 P1

P3

P4P2

N1

N2

P1(1)

P1(2)

bus

k = 1k = 1

P1
P2
P3

N1 N2

40 50
60
60

80
80

P4 40 50

P1
P2
P3

N1 N2

40 50
60
60

80
80

P4 40 50

Deadline

Missed

Met

bus m
2

N1 N2N1 N2

m
1(

1)
m

2(
2)

a)

µ = 10 ms

P4P2

P3

CHAPTER 5

76

deadline. However, combining re-execution with replication, as
in Figure 5.3b where process P1 is replicated, will meet the dead-
line. In this case, message m2 does not have to be delayed to
mask the failure of process P1. Instead, P2 will have to receive
message m1(1) from replica P1(1) of process P1, and process P3
will have to receive message m2(2) from replica P1(2). Even
though transmission of these messages will introduce a delay
due to the inter-processor communication on the bus, this delay
is compensated by the gain in performance because of replication
of process P1.

5.1.2 MAPPING WITH FAULT TOLERANCE

In general, fault-tolerance policy assignment cannot be done
separately from process mapping. Consider the example in
Figure 5.4. Let us suppose that we have applied a mapping algo-

Figure 5.4: Mapping and Fault Tolerance

P1N1

N2

bus

P2

P3

N1

N2

bus

P1 P2 P3

m
2

k = 1

µ = 10 ms

k = 1

µ = 10 ms

Deadline

Missed

Met

P1

P4

P2 P3

m1 m2

m3 m4

P1

P4

P2 P3

m1 m2

m3 m4

P1
P2
P3
P4

N1 N2

40 X
60
60
40

70

X
70

P1
P2
P3
P4

N1 N2

40 X
60
60
40

70

X
70

P4

P4

m
4

P1N1

N2

bus

P2

P3

P4

m
4

m
2

a)

b)

c)

k = 0

µ = 0 ms

k = 0

µ = 0 ms

Best mapping without
considering fault-tolerance

N1 N2N1 N2

PROCESS MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

77

rithm without considering the fault-tolerance aspects, and we
have obtained the best possible mapping, depicted in
Figure 5.4a, which has the shortest execution time. If we apply
on top of this mapping a fault-tolerance technique, for example,
re-execution as in Figure 5.4b, we miss the deadline.

The re-execution has to be considered during mapping of proc-
esses, and then the best mapping will be the one in Figure 5.4c
which clusters all processes on the same computation node in
order to reduce the re-execution slack and the delays due to the
masking of faults. In this thesis, we will consider the assignment
of fault-tolerance policies at the same time with the mapping of
processes to computation nodes in order to improve the quality
of the final design.

5.1.3 DESIGN OPTIMIZATION STRATEGY

The design problem formulated in the previous section is NP
complete (both the scheduling and the mapping problems, con-
sidered separately, are already NP-complete [Gar03]). Our strat-
egy is outlined in Figure 5.5 and has three steps:

1. In the first step (lines 1–2) we decide very quickly on an

initial fault-tolerance policy assignment F0 and mapping M0.
The initial mapping and fault-tolerance policy assignment

Figure 5.5: Design Optimization Strategy for
Fault Tolerance Policy Assignment

MPAOptimizationStrategy(A, N)
 1 Step 1: ψ0 = InitialMPA(A, N)

 2 if S0 is schedulable then stop end if

 3 Step 2: ψ= GreedyMPA(A, N, ψ0)

 4 if S is schedulable then stop end if

 5 Step 3: ψ = TabuSearchMPA(A, N, ψ)

 6 return ψ

end MPAOptimizationStrategy

CHAPTER 5

78

algorithm (InitialMPA line 1 in Figure 5.5) assigns a re-
execution policy to each process in the application A and
produces a mapping that tries to balance the utilization
among nodes. The application is then scheduled using the
shifting-based scheduling algorithm presented in Section
4.4. If the application is schedulable the optimization
strategy stops.

2. The second step consists of a greedy heuristic GreedyMPA
(line 3), discussed in Section 5.1.4, that aims to improve the
fault-tolerance policy assignment and mapping obtained in
the first step.

3. If the application is still not schedulable, we use, in the third
step, a tabu search-based algorithm TabuSearchMPA presented
in Section 5.1.4.

If after these three steps the application is unschedulable, we
assume that no satisfactory implementation could be found with
the available amount of resources.

5.1.4 SCHEDULING AND REPLICATION

In Section 4.4, we presented the shifting-based scheduling algo-
rithm for re-execution. For scheduling applications that combine
re-execution and replication, this algorithm has to be slightly
modified to capture properties of replica descendants, as illus-
trated in Figure 5.6. The notion of “ready process” will be differ-
ent in the case of processes waiting inputs from replicas. In that
case, a successor process Ps of replicated process Pi can be placed
in the root schedule at the earliest time moment t, at which at
least one valid message mi(j) can arrive from a replica Pi(j) of
process Pi.

1 We also include in the set of valid messages mi(j) the
output from replica Pi(j) to successor Ps passed through the
shared memory (if replica Pi(j) and successor Ps are mapped on
the same computation node).

1. We consider the original process Pi as a first replica, denoted with Pi(1).

PROCESS MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

79

Let us consider the example in Figure 5.6, where P2 is repli-
cated and we use a shifting-based scheduling without the above
modification. In this case, P3, the successor of P2, is scheduled at
the latest moment, when any of the messages to P2 can arrive.
Therefore, P3 has to be placed in the schedule, as illustrated in
Figure 5.6a, after message m2(2) for replica P2(2) has arrived. Of
course, we should also introduce recovery slack for process P3 if
it experiences a fault.

However, the root schedule can be shortened by placing P3 as
in Figure 5.6b, immediately following replica P2(1) on N1, if we
use the updated notion of “ready process” for successors of repli-
cated processes. In this root schedule, process P3 will start
immediately after replica P2(1) in the case that no fault occurred
in P2(1). If replica P2(1) fails, then, in the corresponding contin-
gency schedule, process P3 will be delayed until it receives mes-
sage m2(2) from replica P2(2) on N2 (shown with the thick-margin
rectangle). In the root schedule, we should accommodate this
delay into the recovery slack of process P3 as shown in
Figure 5.6b. Process P3 can also experience faults. However,
processes can experience at maximum k faults during one appli-
cation run. In this example, P2 and P3 cannot be faulty at the

Figure 5.6: Scheduling Replica Descendants

k = 1

µ = 10 ms

k = 1

µ = 10 ms

P1
P2
P3

N1 N2

40 40
80
50

80
50

P1
P2
P3

N1 N2

40 40
80
50

80
50

P1

P3

P2

m1

m2

P1

P3

P2

m1

m2N1

N2

bus

P1 P3P2(1)

P2(2)

P3

N1

N2

bus

P1 P3P2(1)

P2(2)

m
1

Deadline

Missed

Met

N1 N2N1 N2

m
2(

2)
m

2(
2)

m2(1)

m2(1)

m
1

a)

b)

CHAPTER 5

80

same time because k = 1. Therefore, process P3 will not need to
be re-executed if it is delayed in order to receive message m2(2)
(since, in this case, P2(1) has already failed). The only scenario,
in which process P3 can experience a fault, is the one where
process P3 is scheduled immediately after replica P2(1). In this
case, however, re-execution of process P3 is accommodated into
the recovery slack. The same is true for the case if P1 fails and,
due to its re-execution, P2(1) and P3 have to be delayed. As can be
seen, the resulting root schedule depicted in Figure 5.6b is
shorter than the one in Figure 5.6a and the application will
meet its deadline.

5.1.5 OPTIMIZATION ALGORITHMS

For the optimization of the mapping and fault-policy assignment
we perform two steps, see Figure 5.5. One is based on a greedy
heuristic, GreedyMPA. If this step fails, we use, in the next step,
a tabu search-based approach, TabuSearchMPA.

Both approaches investigate in each iteration all the processes
on the critical path of the merged application graph G (see Sec-
tion 3.1), and use design transformations (moves) to change a
design such that the critical path is reduced. Let us consider the
example in Figure 5.7, where we have an application of four
processes that has to tolerate one fault, mapped on an architec-
ture of two nodes. Let us assume that the current solution is the
one depicted in Figure 5.7a. In order to generate neighbouring
solutions, we perform design transformations that change the
mapping of a process, and/or its fault-tolerance policy. Thus, the
neighbour solutions generated starting from Figure 5.7a, are
the solutions presented in Figure 5.7b–5.7e. Out of these, the
solution in Figure 5.7c is the best in terms of schedule length.

The greedy approach selects in each iteration the best move
found and applies it to modify the design. The disadvantage of
the greedy approach is that it can “get stuck” into a local opti-

PROCESS MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

81

mum. To avoid this, we have implemented a tabu search algo-
rithm, presented in Figure 5.8.

Figure 5.7: Moves and Tabu History

N1

N2

bus

P1

P3

P4

m
2

P2

1101Wait

0021Tabu

P4P3P2P1

1101Wait

0021Tabu

P4P3P2P1

a)

N1

N2

bus

P1 P3

P4P2

m
1

N1

N2

P1(1)

P3

P4P2

P1(2)

bus

N1

N2

bus

P1 P3 P4

m
2

P2

N1

N2

bus

P1

P3(2)

P4P2 P3(1)

b)

c)

d)

e)

P1

P4

P2 P3

m1 m2

m3

P1

P4

P2 P3

m1 m2

m3

k = 1

µ = 10 ms

k = 1

µ = 10 ms

P1
P2
P3

N1 N2

40 50
60
60

75
75

P4 40 50

P1
P2
P3

N1 N2

40 50
60
60

75
75

P4 40 50

1200Wait

0012Tabu

P4P3P2P1

1200Wait

0012Tabu

P4P3P2P1

Current solution

1101Wait

0021Tabu

P4P3P2P1

1101Wait

0021Tabu

P4P3P2P1

1101Wait

0021Tabu

P4P3P2P1

1101Wait

0021Tabu

P4P3P2P1

1101Wait

0021Tabu

P4P3P2P1

1101Wait

0021Tabu

P4P3P2P1

Tabu move &
worse than best-so-far

Tabu move &
better than best-so-far

Non-tabu move &
worse than best-so-far

Non-tabu move &
worse than best-so-far

N1 N2N1 N2

m
2(

1)
m

1(
2)

m
2

CHAPTER 5

82

The tabu search takes as an input the merged application graph
G, the architecture N and the current implementation ψ, and pro-
duces a schedulable and fault-tolerant implementation xbest.
The tabu search is based on a neighbourhood search technique,
and thus in each iteration it generates the set of moves Nnow

Figure 5.8: Tabu Search Algorithm for Optimization of
Mapping and Fault Tolerance Policy Assignment

TabuSearchMPA(G, N, ψ)
 1 -- given a merged application graph G and an architecture N produces a policy
 2 -- assignment F and a mapping M such that G is fault-tolerant & schedulable
 3 xbest = xnow = ψ; BestCost = ListScheduling(G, N, xbest) -- Initialization
 4 Tabu = ∅; Wait = ∅ -- The selective history is initially empty
 5 while xbest not schedulable ∧ TerminationCondition not satisfied do

 6 -- Determine the neighboring solutions considering the selective history
 7 CP = CriticalPath(G); Nnow = GenerateMoves(CP)

 8 -- eliminate tabu moves if they are not better than the best-so-far
 9 Ntabu = {move(Pi) | ∀ Pi ∈CP ∧ Tabu(Pi)=0 ∧ Cost(move(Pi)) < BestCost}

 10 Nnon-tabu = N \ Ntabu

 11 -- add diversification moves

 12 Nwaiting = {move(Pi) | ∀ Pi ∈ CP ∧ Wait(Pi) > |G|}

 13 Nnow = Nnon-tabu ∪ Nwaiting

 14 -- Select a solution based on aspiration criteria
 15 xnow = SelectBest(Nnow);

 16 xwaiting = SelectBest(Nwaiting); xnon-tabu = SelectBest(Nnon-tabu)

 17 if Cost(xnow) < BestCost then x = xnow -- select xnow if better than best-so-far
 18 else if ∃ xwaiting then x = xwaiting -- otherwise diversify
 19 else x = xnon-tabu -- if no better and no diversification, select best non-tabu
 20 end if

 21 -- Perform selected move
 22 PerformMove(x); Cost = ListScheduling(G, N, x)

 23 -- Update the best-so-far solution and the selective history tables
 24 If Cost < BestCost then xbest = x; BestCost = Cost end if

 25 Update(Tabu); Update(Wait)

 26 end while

 27 return xbest

end TabuSearchMPA

PROCESS MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

83

that can be reached from the current solution xnow (line 7 in
Figure 5.8). In our implementation, we only consider changing
the mapping or fault-tolerance policy assignment of the proc-
esses on the critical path, corresponding to the current solution,
denoted with CP in Figure 5.8. We define the critical path as the
path through the merged graph G which corresponds to the long-
est delay in the schedule table. For example, in Figure 5.7a, the
critical path is formed by P1, m2 and P3.

The key feature of a tabu search is that the neighbourhood solu-
tions are modified based on a selective history of the states
encountered during the search. The selective history is imple-
mented in our case through the use of two tables, Tabu and Wait.
Each process has an entry in this tables. If Tabu(Pi) is non-zero, it
means that the process is “tabu”, i.e., should not be selected for
generating moves, while if Wait(Pi) is greater than the number of
processes in the graph |G|, the process has waited a long time
and should be selected for diversification. Thus (lines 9 and 10 of
the algorithm) a move will be removed from the neighbourhood
solutions if it is tabu. However, tabu moves are also accepted if
they are better than the best-so-far solution (line 10). In line 12
the search is diversified with moves which have waited a long
time without being selected.

In lines 14–20 we select the best one out of these solutions. We
prefer a solution that is better than the best-so-far xbest (line 17).
If such a solution does not exist, then we choose to diversify. If
there are no diversification moves, we simply choose the best
solution found in this iteration, even if it is not better than xbest.
Finally, the algorithm updates the best-so-far solution, and the
selective history tables Tabu and Wait. The algorithm ends
when a schedulable solutions has been found, or an imposed ter-
mination condition has been satisfied (as, if a time-limit has
been reached).

Figure 5.7 illustrates how the algorithm works. Let us con-
sider that the current solution xnow is the one presented in
Figure 5.7a, with the corresponding selective history presented

CHAPTER 5

84

to its right, and the best-so-far solution xbest is the one in
Figure 5.3a. The generated solutions are presented in
Figure 5.7b–5.7e. The solution (b) is removed from the set of con-
sidered solutions because it is tabu, and it is not better than
xbest. Thus, solutions (c)–(e) are evaluated in the current itera-
tion. Out of these, the solution in Figure 5.7c is selected, because
although it is tabu, it is better than xbest. The table is updated as
depicted to the right of Figure 5.7c in bold, and the iterations
continue with solution (c) as the current solution.

5.1.6 EXPERIMENTAL RESULTS

For the evaluation of our algorithms we used applications of 20,
40, 60, 80, and 100 processes (all unmapped and with no fault-
tolerance policy assigned) implemented on architectures consist-
ing of 2, 3, 4, 5, and 6 nodes, respectively. A time-division multi-
ple access (TDMA) bus with the time-triggered protocol (TTP)
[Kop03] has been used as a communication media. We have var-
ied the number of faults depending on the architecture size, con-
sidering 3, 4, 5, 6, and 7 faults for each architecture dimension,
respectively. The recovery overhead µ has been set to 5 ms. Fif-
teen examples were randomly generated for each application
dimension, thus a total of 75 applications were used for experi-
mental evaluation. We generated both graphs with random
structure and graphs based on more regular structures like
trees and groups of chains. Execution times and message
lengths were assigned randomly using both uniform and expo-
nential distribution within the 10 to 100 ms, and 1 to 4 bytes
ranges, respectively. The experiments were performed on Sun
Fire V250 computers.

We were first interested to evaluate the proposed optimization
strategy in terms of overheads introduced due to fault-tolerance.
Hence, we have implemented each application, on its corre-
sponding architecture, using the MPAOptimizationStrategy
(MXR) strategy from Figure 5.5. In order to evaluate MXR, we

PROCESS MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

85

have derived a reference non-fault tolerant implementation,
NFT, which ignores the fault tolerance issues. The NFT imple-
mentation is produced as result of an optimization similar to
MXR but without any moves related to fault tolerance policy
assignment. Compared to the NFT implementation thus
obtained, we would like MXR to produce a fault-tolerant design
with as little as possible overhead, using the same amount of
hardware resources (nodes). For these experiments, we have
derived the shortest schedule within an imposed time limit for
optimization: 10 minutes for 20 processes, 20 for 40, 1 hour for

Table 5.1: Fault Tolerance Overheads due to MXR
(Compared to NFT) for Different Applications

Number of
processes

k % maximum % average % minimum

20 3 98.36 70.67 48.87

40 4 116.77 84.78 47.30

60 5 142.63 99.59 51.90

80 6 177.95 120.55 90.70

100 7 215.83 149.47 100.37

Table 5.2: Fault Tolerance Overheads due to MXR for
Different Number of Faults in the Applications of 60

Processes Mapped on 4 Computation Nodes

k % maximum % average % minimum

2 52.44 32.72 19.52

4 110.22 76.81 46.67

6 162.09 118.58 81.69

8 250.55 174.07 117.84

10 292.11 219.79 154.93

CHAPTER 5

86

60, 2 hours and 20 minutes for 80 and 5 hours and 30 minutes
for 100 processes.

The first results are presented in Table 5.1. Applications of 20,
40, 60, 80, and 100 processes are mapped on 2, 3, 4, 5, and 6 com-
putation nodes, respectively. Accordingly, we change the number
of faults from 3 to 7. In the three last columns, we present max-
imum, average, and minimum time overheads introduced by
MXR compared to NFT. Let δMXR and δNFT be the schedule
lengths obtained using MXR and NFT. The overhead due to
introduced fault tolerance is defined as 100× (δMXR –δNFT) / δNFT.
We can see that the fault tolerance overheads grow with the
application size. The MXR approach can offer fault tolerance
within the constraints of the architecture at an average time
overhead of approximately 100%. However, even for applications
of 60 processes, there are cases where the overhead is as low as
52%.

We were also interested to evaluate our MXR approach in the
case of different number of faults, while the application size and
the number of computation nodes were fixed. We have consid-
ered applications with 60 processes mapped on four computation
nodes, with the number k of faults being 2, 4, 6, 8, or 10.
Table 5.2 shows that the time overheads due to fault tolerance
increase with the number of tolerated faults. This is expected,
since we need more replicas and/or re-executions if there are
more faults.

With a second set of experiments, we were interested to eval-
uate the quality of our MXR optimization approach. Thus,
together with the MXR approach we have also evaluated two
extreme approaches: MX that considers only re-execution, and
MR which relies only on replication for tolerating faults. MX and
MR use the same optimization approach as MRX, but, for fault
tolerance, all processes are assigned only with re-execution or
replication, respectively. In Figure 5.9 we present the average
percentage deviations of the MX and MR from MXR in terms of
overhead. We can see that by optimizing the combination of re-

PROCESS MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

87

execution and replication, MXR performs much better compared
to both MX and MR. On average, MXR is 77% and 17.6% better
than MR and MX, respectively. This shows that considering re-
execution at the same time with replication can lead to signifi-
cant improvements.

In Figure 5.9 we have also presented a straightforward strat-
egy SFX, which first derives a mapping without fault-tolerance
considerations (using MXR without fault-tolerance moves) and
then applies re-execution. This is a solution that can be obtained
by a designer without the help of our fault-tolerance optimiza-
tion tools. We can see that the overheads thus obtained are very
large compared to MXR, up to 58% on average. We can also
notice that, despite the fact that both SFX and MX use only re-
execution, MX is much better. This confirms that the optimiza-
tion of the fault-tolerance policy assignment has to be addressed
at the same time with the mapping of functionality.

Finally, we have considered a real-life example implementing
a vehicle cruise controller (CC), which was previously used to
evaluate scheduling techniques in Chapter 4. We have consid-

Figure 5.9: Comparing MXR with MX, MR and SFX

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

MR
SFX
MX

0

10

20

30

40

50

60

70

80

90

100

20 40 60 80 100

MR
SFX
MX

Number of processes

A
vg

. %
 d

ev
ia

ti
on

 f
ro

m
 M

X
R

CHAPTER 5

88

ered the same deadline of 300 ms, the maximum number of
faults k = 2, and a recovery overhead µ = 2 ms.

In this setting, the MXR produced a schedulable fault-tolerant
implementation with a worst-case system delay of 275 ms, and
with an overhead compared to NFT of 65%. If only one single
policy is used for fault-tolerance, as in the case of MX and MR,
the delay is 304 ms and 361 ms, respectively, and the deadline is
missed.

5.2 Mapping Optimization with Transparency
In this part of the chapter, we discuss mapping optimization
with the possibility of trading-off transparency for performance.
As discussed in Section 4.1, increased transparency makes a
system easier to debug. The amount of memory required to store
contingency schedules is also reduced with increasing transpar-
ency. However, as a drawback, transparency increases the
worst-case delays of processes.

The designer specifies the desired degree of transparency by
customizing transparency properties with declaring certain
processes and messages as frozen. As discussed earlier, a frozen
process or message has a fixed start time regardless of the occur-
rence of faults in the rest of application. These customized trans-
parency properties have to be taken into account during design
optimization, particularly mapping optimization, because they
introduce delays that can violate timing constrains of the appli-
cation.

Thus, in this part of the chapter, we are interested to find a
mapping of processes such that the delays introduced due to the
frozen processes and messages are reduced. The design strate-
gies proposed will be based on conditional scheduling, presented
in Section 4.3, that can accommodate customized transparency
properties into fault-tolerant schedules. In this section we
assume that fault tolerance is achieved by re-execution.

PROCESS MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

89

5.2.1 MOTIVATIONAL EXAMPLES

To illustrate the issues related to mapping with transparency,
we will discuss two examples, one with a frozen process, pre-
sented in Figure 5.10 and one with frozen messages, presented
in Figure 5.11. As before, we depict frozen processes and mes-
sages using squares.

In Figure 5.10 we consider an application consisting of six
processes, P1 to P6 that have to be mapped on an architecture
consisting of two computation nodes connected to a bus. We
assume that there can be at most k = 2 faults during one cycle of
operation. The worst-case execution times for each process on
each computation node are depicted in the table next to the
architecture. Furthermore, let us assume that process P2 is fro-
zen. We impose a deadline of 310 ms for the application (a thick
line crossing the figure). If we decide the mapping without con-
sidering the transparency requirement on P2, we obtain the
optimal mapping depicted in Figure 5.10a (processes P2, P4 and
P5 are mapped on node N1; while P1, P3 and P6 on node N2). If
transparency is ignored, the application is schedulable in all
possible fault scenarios; it meets the deadline even in case of the
worst-case fault scenario shown in Figure 5.10b.

If the same mapping determined in Figure 5.10a is used in the
case of transparency, the obtained solution is depicted in
Figure 5.10c, where the start time of P2, which should be frozen,
is delayed with respect to the worst-case fault scenario of P4.
However, in this case, the deadline will not be met due to the
delay introduced by the frozen process P2. A mapping that
makes the system schedulable even in the worst-case fault sce-
nario and with a frozen P2 is shown in Figure 5.10d. According
to this mapping, processes P1, P2 and P5 are mapped on node N1,
while processes P3, P4 and P6 are mapped on node N2. Counter-
intuitively, this mapping is not balanced and communications
are increased compared to the previous mapping, since we send
message m2, which is two times larger than message m1. How-

CHAPTER 5

90

ever, it gives a better solution that will meet the deadline even in
the worst-case fault scenario depicted in Figure 5.10d.1

1. Note that process P3 is scheduled between the first execution P4/1 of
process P4 and re-execution P4/2 of P4 because process P3 has higher
priority than process P4, according to the partial critical path (PCP)
[Ele00] priority function applied to list scheduling (Section 4.3).

Figure 5.10: Mapping with Frozen Processes

P4

P1 P3

P2

P6

P4

P1 P3

P2/1

P6

P2/2

P4/1

P1

P3 P6

m
2

k = 2

m
1

m
1

N1 N2N1 N2

N1

N2

N1

N2

bus

bus

N1

N2

bus

P5

P2/3 P5

P5P2

P4/2 P4/3

P3

P1

P4

m2

P6

m1

m4

P2

P5

m3

P3

P1

P4

m2

P6

m1

m4

P2

P5

m3

P1 P3

P2

P6

m
1

N1

N2

bus

P5P4 P4P4

N2

P1
P2
P3

N1

30 30

P4
P5

40 40
50 50
60 60
40 40

P6 50 50

N2

P1
P2
P3

N1

30 30

P4
P5

40 40
50 50
60 60
40 40

P6 50 50

a)

b)

c)

d)

µ = 10 ms

Deadline 310 ms

PROCESS MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

91

Another example, illustrating the importance of considering
frozen messages during the mapping process, is depicted in
Figure 5.11. The application consists also of six processes, P1 to
P6. We impose a deadline of 290 ms for the application. Let us
consider that all messages transmitted on the bus are frozen.

Figure 5.11: Mapping with Frozen Messages

P4

m
5

m
5

P6

P1 P2 P3
m

2

m
3

N1

N2

N1

N2

bus

bus

N1

N2

bus

P5

P4 P5

P2 P4 P5

P3

P6

P1/1 P2 P3

P6P1/2 P1/3P1/1

P1/3P1/2
m

5

N1

N2

bus

P4 P5 P6/1

P1 P2 P3

P6/2 P6/3

P1
m1

P2

P3

P4

P5

m3

m5

m4

m2

P6

m6

N2

P1
P2
P3

N1

P4
P5

40 60
20 30
20 30
40 60
40 60

P6 40 60

N2

P1
P2
P3

N1

P4
P5

40 60
20 30
20 30
40 60
40 60

P6 40 60

a)

b)

c)

d)

k = 2

N1 N2N1 N2

µ = 10 ms

Deadline 290 ms

CHAPTER 5

92

This means that messages will have the same start time on the
bus regardless of the particular fault scenario that happens. The
optimal mapping, ignoring transparency, is presented in
Figure 5.11a. The application meets the deadline even in the
worst case fault scenario as shown in Figure 5.11b. This map-
ping is balanced and communications are minimized. Once we
introduce transparency, the application becomes unschedulable,
as illustrated in Figure 5.11c. However, considering the trans-
parency requirements during mapping leads to a schedulable
solution depicted, with its worst-case scenario, in Figure 5.11d.
Counterintuitively, this solution is not balanced and, instead of
one message, two messages are sent via the bus.

The examples presented have shown that transparency prop-
erties have to be carefully considered during mapping and that
mapping alternatives which are optimal for non-transparent
solutions can be inefficient when transparency is introduced.

5.2.2 OPTIMIZATION STRATEGY

Our mapping optimization strategy, outlined in Figure 5.12,
determines a mapping M for application A on computation nodes
N such that the application is schedulable and the transparency
requirements T are satisfied. The optimization strategy receives
as input the application graph G, the maximum number of faults
k in the system period, the architecture N, transparency require-
ments T, and deadline D. The output of the algorithm is a map-
ping M of processes to nodes, and a conditional schedule table for
processes and messages, which is produced with the conditional
scheduling algorithm presented in Section 4.3.

The design problem outlined above is NP complete [Ull75].
Our strategy, presented in Figure 5.12, is to address separately
the mapping and scheduling. We start by determining an initial
mapping Minit with the InitialMapping function (line 1). This is a
straightforward mapping that balances computation node utili-
zation and minimizes communications. The schedulability of the

PROCESS MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

93

resulted system is evaluated with the conditional scheduling
algorithm (lines 2-3). If the initial mapping is unschedulable,
then we iteratively improve the mapping of processes on the
critical path of the worst-case fault scenario aiming at finding a
schedulable solution (lines 4-9). For this purpose, we use a hill-
climbing heuristic, which combines a greedy algorithm and a
method to recover from local optima.

A new mapping alternative Mnew is obtained with a greedy
algorithm, IterativeMapping (line 5) which is presented in the
next section. Since IterativeMapping is a greedy heuristic it will
very likely end up in a mapping Mnew, which is a local minimum.
In order to explore other areas of the design space, we will
restart the IterativeMapping heuristic with a new initial solution
Minit which should not lead to the same local minimum. As rec-
ommended in literature [Ree93], an efficient way to find such a
new initial mapping is the following: Given the actual solution
Mnew we apply an optimization run using a new cost function dif-
ferent from the global schedule length, which is used as a cost
function in the optimization so far. This optimization run will

Figure 5.12: Optimization Strategy for Mapping with
Performance/Transparency Trade-Offs

 OptimizationStrategy(G, k, N, T, D)

 1 Minit := InitialMapping(G)

 2 l := CondScheduling(G, k, N, Minit, T)

 3 if l < D then return Minit

 4 while not_termination do

 5 Mnew := IterativeMapping(G, k, N, Minit, T)

 6 l := CondScheduling(G, k, N, Mnew, T)

 7 if l < D then return Mnew

 8 Minit := FindNewInit(G, , Mnew)

 9 end while

 10 return no_solution

 end OptimizationStrategy

CHAPTER 5

94

produce a new mapping Minit and is implemented by the func-
tion FindNewInit (line 8). This function runs a simple greedy iter-
ative mapping, which is aiming at an optimal load balancing of
the nodes.

If the solution produced by IterativeMapping is schedulable,
then the optimization will stop (line 7). However, a termination
criterion is needed in order to terminate the mapping optimiza-
tion if no solution is found. A termination criterion, which we
obtained empirically and which produced very good results, is to
limit the number of iterations without any improvement to

, where Nproc is the number of processes,
Nnodes is the number of computation nodes, and k is the maxi-
mum number of faults in the system period.

5.2.3 ITERATIVE MAPPING

IterativeMapping depicted in Figure 5.13 is a greedy algorithm
that incrementally changes the mapping M until no further
improvement (line 3) is possible. Our approach is to tentatively
change the mapping of processes on the critical path of the appli-
cation graph G. The critical path CP is found by the function
FindCP (line 6). Each process Pi ∈ CP on the critical path is ten-
tatively moved to each node in N. We evaluate each move in
terms of schedule length, considering transparency properties T
and the number of faults k (line 11).

The calculation of the schedule length should, in principle, be
performed by conditional scheduling (ConditionalScheduling
function, see Section 4.3). However, conditional scheduling takes
too long time to be used inside such an iterative optimization
loop. Therefore, we have developed a fast schedule length esti-
mation heuristic, ScheduleLengthEstimation, which is used to

Nproc k× Nnodes()ln×

PROCESS MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

95

guide the InitialMapping heuristic. The estimation heuristic is
presented in the next section.

After evaluating possible alternatives, the best move com-
posed of the best process Pbest and the best computation node
Nbest is selected (lines 13-16). This move is executed if leading to
improvement (line 19). IterativeMapping will stop if there is no
further improvement.

Figure 5.13: Iterative Mapping Heuristic (IMH)

 IterativeMapping(G, k, N, M, T)
 1 improvement := true

 2 lbest := ScheduleLength(G, k, N, M, T)

 3 while improvement do

 4 improvement := false

 5 Pbest := ; Nbest :=

 6 CP := FindCP(G)

 7 SortCP(CP)

 8 for each Pi ∈CP do

 9 for each Nj Nc do

 10 ChangeMapping(M, Pi , Nj)

 11 lnew := ScheduleLengthEstimation(G, k, N, M, T)

 12 RestoreMapping(M)

 13 iflnew < lbest then

 14 Pbest := Pi; Nbest := Nj; lbest := lnew

 15 improvement := true

 16 end if

 17 end for

 18 end for

 19 if improvement then ChangeMapping(M, Pbest, Nbest)

 20 end while

 21 return M

 end IterativeMapping

∅ ∅

≠

CHAPTER 5

96

5.2.4 SCHEDULE LENGTH ESTIMATION

The worst-case fault scenario consists of a combination of k fault
occurrences that leads to the longest schedule. The conditional
scheduling algorithm, presented in Section 4.3, examines all the
fault scenarios captured by the fault-tolerant conditional
process graph (FT-CPG), produces the conditional schedule
table, and implicitly determines the worst-case fault scenario.

However, the number of alternative paths to investigate is
growing exponentially with the number of faults. Hence, the
execution time of the conditional scheduling algorithm is also
growing, as our experiments in Section 5.1.6 show. On one hand,
conditional scheduling is, therefore, too slow to be used inside
the mapping optimization loop. On the other hand, mapping
optimization does not require generation of complete schedule
tables. Instead, only the schedule length is needed in order to
evaluate the quality of the current design solution. Hence, in
this section, we are proposing a worst-case schedule length esti-
mation heuristic.

The main idea of the ScheduleLengthEstimation algorithm is to
avoid examining all fault scenarios, which is time-consuming.
Instead, the estimation heuristic incrementally builds a fault
scenario, which is as close as possible (in terms of resulted
schedule length) to the worst case.

Considering a fault scenario X(m) where m faults have
occurred, we construct the fault scenario X(m+1) with m+1
faults in a greedy fashion. Each fault scenario X(m) corresponds
to a partial FT-CPG GX(m), which includes only paths corre-
sponding to the m fault occurrences considered in X(m). Thus,
we investigate processes from GX(m) to determine the process
Pi∈ GX(m) that introduces the largest delay if it experiences the
(m+1)th fault (and has to be re-executed). A fault occurrence in
Pi is then considered as part of the fault-scenario X(m+1), and
the iterative process continues until we reach k faults.

PROCESS MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

97

In order to speed up the estimation, we do not investigate all
the processes in GX(m). Instead, our heuristic selects processes
whose re-executions will likely introduce the largest delay. Can-
didate processes are those which have a long worst-case execu-
tion time and those which are located on the critical path.

The ScheduleLengthEstimation heuristic is outlined in
Figure 5.14. The set of all synchronization nodes Ls is generated
(line 1). Priorities are assigned to all synchronization nodes (line
2). For priority assignment we use the partial critical path
function outlined in [Ele00]. The estimation chooses
synchronization nodes according to the assigned priorities such
that it can derive their fixed start time. For each
synchronization node, ScheduleLengthEstimation selects a set of

Figure 5.14: Schedule Length Estimation

 ScheduleLengthEstimation(G, T, k,N, M)
 1 LS = GetSynchronizationNodes(G)

 2 PCPPriorityFunction(G, LS)

 3 X(0) := ; ψ := SinkNode(G)

 4 for each Si ∈ LS and ψ do

 5 tmax := 0

 6 Z := SelectProcesses(Si, G)

 7 for m := 1...k do

 8 for each Pi ∈ Z do

 9 GX(m), i := CreatePartialFTCPG(X(m - 1), Pi)

 10 t = ListScheduling(GX(m), i , Si)

 11 end for

 12 if tmax < t then

 13 tmax := t i; Pworst := Pi

 14 end if

 15 X(m) := X(m - 1) + Pi

 16 end for

 17 Schedule(Si, tmax)

 18 end for

 19 l est := completion_time(ψ)

 20 return l est

 end ScheduleLengthEstimation

∅

CHAPTER 5

98

processes that will potentially introduce the largest delay (line
6).

Re-executions of the selected processes are considered when
the partial FT-CPG is generated (line 9). Fault scenarios are
evaluated with a ListScheduling heuristic that stops once it
reaches a synhronization node (line 10). The fault scenario that
led to the greatest start time tmax is saved (line 15). Once the
fault scenario for k faults X(k) is obtained, the synchronization
node is scheduled.

When all synchronization nodes are scheduled, the algorithm
returns the estimated worst-case schedule length.

5.2.5 EXPERIMENTAL RESULTS

For evaluation of our mapping optimization strategy we used
applications of 20, 30, and 40 processes (all unmapped), respec-
tively, implemented on an architecture of 4 computation nodes.
We have varied the number of faults from 2 to 4 within one exe-
cution cycle. The recovery overhead µ was set to 5 ms. Thirty
examples were randomly generated for each dimension, both
with random structure and graphs based on more regular struc-
tures, like trees and groups of chains. Execution times and mes-
sage lengths were assigned randomly using uniform distribution
within the interval 10 to 100 ms, and 1 to 4 bytes, respectively.
We have selected a transparency level with 25% frozen processes
and 50% frozen messages. The experiments were done on Pen-
tium 4 at 2.8 GHz with 1 Gb of memory.

We were first interested to evaluate the proposed heuristic for
schedule length estimation (ScheduleLengthEstimation in
Figure 5.14, denoted with SE), in terms of monotonicity, relative
to the ConditionalScheduling (CS) algorithm presented in Section
4.3. SE is monotonous with respect to CS if for two alternative
mapping solutions M1 and M2 it is true that if CS(M1) ≤ CS(M2)
then also SE(M1) ≤ SE(M2).

PROCESS MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

99

For the purpose of evaluating the monotonicity of SE, 50 ran-
dom mapping changes were performed for each application.
Each of those mapping changes was evaluated with both SE and
CS. The results are depicted in Table 5.2. As we can see, in over
90% of the cases, SE correctly evaluates the mapping decisions,
i.e. in the same way as CS. The rate of monotonicity decreases
slightly with the application dimension. However, it is not influ-
enced by increasing the number of faults.

Another important property of SE is its execution time, pre-
sented on Table 5.3. Execution time of the SE is growing linearly
with the number of faults and application size. Over all graph
dimensions, the execution time of SE is always less than 1 sec.
In comparison, the execution time of CS is growing exponen-

Table 5.1: Monotonicity (%)Table 5.2:

Table 5.1: Execution Time (sec)Table 5.3:

Table 5.1: Mapping Improvement (%)Table 5.4:

Number of
processes

2 faults 3 faults 4 faults

20 94.20 90.58 91.65
30 89.54 88.90 91.48
40 88.91 86.93 86.32

2 faults 3 faults 4 faults Number of
processes SE CS SE CS SE CS

20 0.01 0.07 0.02 0.28 0.04 1.37
30 0.13 0.39 0.19 2.93 0.26 31.50
40 0.32 1.34 0.50 17.02 0.69 318.88

Number of
processes

2 faults 3 faults 4 faults

20 32.89 32.20 30.56
30 35.62 31.68 30.58
40 28.88 28.11 28.03

CHAPTER 5

100

tially with the number of processes and the number of faults and
can reach 318.88 seconds for 40 processes and 4 faults. This
shows that the conditional scheduling cannot be used inside the
optimization loop, while the scheduling heuristic is well-suited
for design space exploration.

We were also interested to evaluate our mapping optimization
strategy. Table 5.4 shows the improvement by mapping optimi-
zation that considers fault tolerance with transparency over
straightforward mapping (InitialMapping in Figure 5.13), which
does not consider the fault tolerance aspects. Thus, we deter-
mined using ConditionalScheduling the schedule length for two
mapping alternatives: InitialMapping and the mapping obtained
by our OptimizationStrategy in Figure 5.12. Table 5.4 presents
the percentage improvement in terms of schedule length of our
mapping optimization compared to the straightforward solution.
The schedule length obtained with our mapping optimization
algorithm is 30% shorter on average. This confirms that consid-
ering the fault tolerance and transparency aspects leads to sig-
nificantly better design solutions and that the ES heuristic can
be successfully used inside an optimization loop.

We were also interested to compare the solutions obtained
using ES with the case where CS is used for evaluating the map-
ping alternatives during optimization. However, this compari-
son was possible only for applications of 20 processes. We chose
15 synthetic applications with 25% frozen processes and 50%
frozen messages. In terms of schedule length, in case of 2 faults,
the CS-based strategy was only 3.18% better than the ES-based.
In case of 3 faults, the difference was 9.72%, while for 4 faults
the difference in terms of obtained schedule length was of 8.94%.

Finally, we have considered a real-life example implementing
a vehicle cruise controller (CC), which was previously used to
evaluate scheduling techniques in Chapter 4. We have consid-
ered the same deadline of 300 ms, k = 2 and µ = 2 ms. The
straightforward solution was unschedulable even with only 25%
frozen messages and no frozen processes. However, the applica-

PROCESS MAPPING AND FAULT TOLERANCE POLICY ASSIGNMENT

101

tion optimized with our mapping strategy, was easily schedula-
ble with 85% frozen messages. Moreover, we could additionally
introduce 20% frozen processes without violating timing con-
straints.

5.3 Conclusions
In the first part of this chapter, we have proposed a strategy for
fault tolerance policy assignment and mapping. We decided on
which fault tolerance technique or which combination of tech-
niques to assign to a certain process in the application. The fault
tolerance technique can be re-execution, which provides time-
redundancy, or active replication, which provides space-redun-
dancy. The fault tolerance policy assignment has to be jointly
optimized with mapping. We have implemented a tabu search-
based algorithm that assigns fault tolerance techniques to proc-
esses and decides on the mapping of processes, including repli-
cas.

In the second part of the chapter, we have proposed a mapping
optimization strategy that supports performance/transparency
trade-offs during the design process. Since the conditional
scheduling algorithm is computation-intensive and cannot be
used inside an optimization loop, we have proposed a fast esti-
mation heuristic which is able to accurately evaluate a given
mapping decision. The proposed mapping algorithm based on
the estimation heuristic is able to produce effective design solu-
tions for a given transparency set-up.

CHAPTER 5

102

CHECKPOINTING

103

Chapter 6
Checkpointing

IN THIS CHAPTER we extend our previous techniques based on
re-execution by introducing checkpoints. We, first, present our
approach to optimize the number of checkpoints. Secondly, we
extend the optimization strategy for fault tolerance policy
assignment presented in Section 5.1 with checkpoint optimiza-
tion.

6.1 Optimizing the Number of Checkpoints
Re-execution is a recovery technique with only one checkpoint,
where a faulty process is restarted from the initial process state.
In the general case of rollback recovery with checkpointing, how-
ever, a faulty process can be recovered from several checkpoints
inserted into the process, which, potentially, will lead to smaller
fault tolerance overheads. The number of checkpoints has a sig-
nificant impact on the system performance and has to be opti-
mized, as will be shown in this section.

CHAPTER 6

104

6.1.1 LOCAL CHECKPOINTING

First, we will illustrate issues of checkpoint optimization when
processes are considered in isolation. In Figure 6.1 we have
process P1 with a worst-case execution time of C1 = 50 ms. We
consider a fault scenario with k = 2, the recovery overhead µ1
equal to 15 ms, and checkpointing overhead χ1 equal to 5 ms.
The error-detection overhead α1 is considered equal to 10 ms.
Recovery, checkpointing and error-detection overheads are
shown with light grey, black, and dark grey rectangles, respec-
tively.

In the previous chapters, the error-detection overhead was
considered to be part of the worst-case execution time of proc-
esses. Throughout this chapter, however, we will explicitly con-
sider the error-detection overhead since it directly influences the
decision regarding the number of checkpoints introduced.

In Figure 6.1 we depict the execution time needed for P1 to tol-
erate two faults, considering from one to five checkpoints. Since
P1 has to tolerate two faults, the recovery slack S1 has to be dou-
ble the size of P1 including the recovery overhead, as well as the
error-detection overhead α1 that has to be considered for the

Figure 6.1: Locally Optimal Number of Checkpoints

µ1 = 15 ms

k = 2

χ1 = 5 ms

α1 = 10 ms

P1 C1 = 50 ms

P1

P1 P1

P1 P1 P1

P1 P1 P1 P1

P1 P1 P1 P1 P1

N
o.

 o
f

ch
ec

kp
oi

nt
s

1

2

3

4

5

1 2

1 2

1 2 3 4

1 2 3 4 5

3

E1(1) S1(1)

E1(5) S1(5)

CHECKPOINTING

105

first re-execution of the process. Thus, for one checkpoint, the
recovery slack S1 of process P1 is (50 + 15) × 2 + 10 = 140 ms.

If two checkpoints are introduced, process P1 will be split into
two execution segments and . In general, the execution
segment is a part of the process execution between two check-
points or a checkpoint and the end of the process. In the case of
an error in process P1, only the segments or have to be
recovered, not the whole process, thus the recovery slack S1 is
reduced to (50/2 + 15) × 2 + 10 = 90 ms.

By introducing more checkpoints, the recovery slack S1 can be
thus reduced. However, there is a point over which the reduction
in the recovery slack S1 is offset by the increase in the overhead
related to setting each checkpoint. We will name this overhead
as a constant checkpointing overhead denoted as Oi for process
Pi. In general, this overhead is the sum of checkpointing over-
head χi and the error-detection overhead αi. Because of the over-
head associated with each checkpoint, the actual execution time
E1 of process P1 is constantly increasing with the number of
checkpoints (as shown with thick-margin rectangles around the
process P1 in Figure 6.1).

For process P1 in Figure 6.1, going beyond three checkpoints
will enlarge the total execution time R1 = S1 + E1, when two
faults occur.

In general, in the presence of k faults, the execution time Ri in
the worst-case fault scenario of process Pi with ni checkpoints
can be obtained with the formula:

P1
1 P1

2

P1
1 P1

2

Ri ni() Ei ni() Si ni()+=

Ei ni() Ci ni αi χi+()×+=

Si ni()
Ci
ni
----- µi+

 
 
 

k αi k 1–()×+×=

where

and

(6.1)

CHAPTER 6

106

where Ei(ni) is the execution time of process Pi with ni check-
points in the case of no faults. Si(ni) is the recovery slack of proc-
ess Pi. Ci is the worst-case execution time of process Pi.

 is the overhead introduced with ni checkpoints to
the execution of process Pi. In the recovery slack Si(ni),

 is the time needed to recover from a single fault,
which has to be multiplied by k for recovering from k faults. The
error-detection overhead αi of process Pi has to be additionally
considered in k − 1 recovered execution segments for detecting
possible fault occurrences (except the last, kth, recovery, where
all k faults have already happened and been detected).

Let now be the optimal number of checkpoints for Pi, when
Pi is considered in isolation. Punnekkat et al. [Pun97] derive a
formula for in the context of preemptive scheduling and sin-
gle fault assumption:

where Oi is a constant checkpointing overhead and Ci is the
computation time of Pi (the worst-case execution time in our
case).

We have extended formula (6.2) to consider k faults and
detailed checkpointing overheads χi and αi for process Pi, when
process Pi is considered in isolation:

ni αi χi+()×

Ci ni⁄ µi+

ni
0

ni
0

, if

, if

ni
+

Ci
Oi
-----=

ni
–

Ci
Oi
-----= Ci ni

– ni
– 1+()Oi≤

Ci ni
– ni

– 1+()Oi>

ni
0= (6.2)

, if

, if

ni
+ kCi

χi αi+
---------------=

ni
–

kCi
χi αi+
---------------= Ci ni

– ni
– 1+()

χi αi+

k
---------------≤

Ci ni
– ni

– 1+()
χi αi+

k
--------------->

ni
0= (6.3)

CHECKPOINTING

107

The proof of formula (6.3) can be found in Appendix I.
Formula (6.3) allows us to calculate the optimal number of

checkpoints for a certain process considered in isolation. For
example, in Figure 6.1, = 3:

6.1.2 GLOBAL CHECKPOINTING

Calculating the number of checkpoints for each individual proc-
ess will not produce a solution which is globally optimal for the
whole application because processes share recovery slacks.

Let us consider the example in Figure 6.2, where we have two
processes, P1 and P2 on a single computation node. We consider
two transient faults. The worst-case execution times and the
fault-tolerance overheads are depicted in the figure. In
Figure 6.2a, processes P1 and P2 are assigned with the locally
optimal number of checkpoints, = 3 and = 3, and share
one recovery slack, depicted as a shaded rectangle. The size of
the shared slack is equal to the individual recovery slack of proc-
ess P2 because its slack, which is (60 / 3 + 10) × 2 + 5 = 65 ms, is
larger than the slack of P1, which is (50 / 3 + 10) × 2 + 5=58.3 ms.

n1
0

2 2 1+()× 5 10+
2

--------------- 45 50<=n1
– 2 50×

10 5+
--------------- 2= = n1

0 3=

Figure 6.2: Globally Optimal Number of Checkpoints

P1 P1 P1
1 2 3 P2 P2 P2

P1 P2 P2P1

1 2 3

1 2 1 2

a)

b)

P2P1

m1
χ α µ

10 5 10
10 5 10

P1
P2

P1 C1 = 50 ms

P2 C2 = 60 ms

k = 2

265

255

n1
0 n2

0

CHAPTER 6

108

The resulting schedule length is the sum of actual execution
times of processes P1 and P2 and the size of their shared recov-
ery slack of 65 ms:

[50 + 3 × (5 + 10)] + [60 + 3 × (5 + 10)] + 65 = 265 ms.

However, if we reduce the number of checkpoints to 2 for both
processes, as shown in Figure 6.2b, the resulting schedule
length is 255 ms, which is shorter than in the case of the locally
optimal number of checkpoints. The shared recovery slack, in
this case, is also equal to the individual recovery slack of process
P2 because its recovery slack, (60 / 2 + 10) × 2 + 5 = 85 ms, is
larger than P1’s recovery slack, (50 / 3 + 10) × 2 + 5 = 75 ms. The
resulting schedule length in Figure 6.2b is, hence, obtained as

[50 + 2 × (5 + 10)] + [60 + 2 × (5 + 10)] + 85 = 255 ms.

In general, slack sharing leads to a smaller number of check-
points associated to processes, or, at a maximum, this number is
the same as indicated by the local optima. This is the case
because the shared recovery slack, obviously, cannot be larger
than the sum of individual recovery slacks of the processes that
share it. Therefore, the globally optimal number of checkpoints
is always less or equal to the locally optimal number of check-
points obtained with formula (6.3). Thus, formula (6.3) provides
us with an upper bound on the number of checkpoints associated
to individual processes. We will use this formula in order to
bound the number of checkpoints explored with the optimization
algorithm presented in Section 6.2.4.

6.2 Policy Assignment with Checkpointing
In this section we extend the fault tolerance policy assignment
algorithm presented in Section 5.1 with checkpoint optimiza-
tion. Here rollback recovery with checkpointing1 will provide
time redundancy, while the spatial redundancy is provided with

CHECKPOINTING

109

replication, as shown in Figure 6.3. The combination of fault-tol-
erance policies to be applied to each process is given by four
functions:
 • P: V → {Replication, Checkpointing, Replication & Checkpoint-

ing} determines whether a process is replicated, check-
pointed, or replicated and checkpointed. When active
replication is used for a process Pi, we introduce several repli-
cas into the application A, and connect them to the predecessors
and successors of Pi.

 • The function Q: V → Ν indicates the number of replicas for each
process. For a certain process Pi, if P(Pi) = Replication, then
Q(Pi) = k; if P(Pi) = Checkpointing, then Q(Pi) = 0; if P(Pi) = Repli-
cation & Checkpointing, then 0 < Q(Pi) < k.

 • Let VR be the set of replica processes introduced into the
application. Replicas can be checkpointed as well, if neces-
sary. The function R: V ∪ VR → Ν determines the number of
recoveries for each process or replica. In Figure 6.3c, for exam-
ple, we have P(P1) = Replication & Checkpointing, R(P1(1)) = 0
and R(P1(2)) = 1.

 • The fourth function X: V ∪ VR → Ν decides the number of
checkpoints to be applied to processes in the application and
the replicas in VR. We consider equidistant checkpointing,

1. From here and further on we will call the rollback recovery with check-
pointing shortly checkpointing.

Figure 6.3: Policy Assignment: Checkpointing +Replication

a) Checkpointing P1 C1 = 30 ms

µ1 = 5 ms

k = 2

χ1 = 5 ms

α1 = 5 ms

b) Replication

N1

N2

N3

P1(1)

P1(2)

P1(3)

c) Checkpointed replicas

N1

N2

P1(1)

P1(2) P1(2)N1 P1 P1 P1
1 2 3 1 2

CHAPTER 6

110

thus the checkpoints are equally distributed throughout the
execution time of the process. If process Pi ∈ V or replica
Pi(j) ∈ VR is not checkpointed, then we have X(Pi) = 0 or
X(Pi(j)) = 0, respectively.

Each process Pi ∈ V , besides its worst execution time Ci for each
computation node, is characterized by an error detection overhead
αi, a recovery overhead µi, and checkpointing overhead χi.

The mapping of a process in the application is given by a func-
tion M: V ∪ VR → N, where N is the set of nodes in the architec-
ture. The mapping M is not fixed and will have to be obtained
during design optimization.

Thus, our problem formulation for mapping and policy assign-
ment with checkpointing is as follows:

 • As an input we have an application A given as a set of proc-
ess graphs (Section 3.1) and a system consisting of a set of
nodes N connected to a bus B.

 • The parameter k denotes the maximal number of transient
faults that can appear in the system during one cycle of exe-
cution.

We are interested to find a system configuration ψ such that
the k transient faults are tolerated and the imposed deadlines
are guaranteed to be satisfied, within the constraints of the
given architecture N.

Determining a system configuration ψ = <F, X, M, S> means:

1. finding a fault tolerance policy assignment, given by F = <P,
Q, R, X>, for each process Pi in the application A; this also in-
cludes the decision on the number of checkpoints X for each
process Pi in the application A and each replica in VR;

2. deciding on a mapping M for each process Pi in the applica-
tion A;

3. deciding on a mapping M for each replica in VR;

4. deriving the set S of schedule tables on each computation
node.

CHECKPOINTING

111

We will discuss policy assignment based on transparent recov-
ery with replication, where all messages on the bus are set to be
frozen, except those that are sent by replica processes. The shift-
ing-based scheduling presented in Section 4.4 with small modi-
fications, which were discussed in Section 5.1.4, is used to derive
schedule tables for the application A. We calculate recovery
slacks in the root schedule and introduce checkpointing over-
heads as discussed in Section 6.1. Some particular details of
scheduling with checkpointing and replication are presented in
Section 6.2.2.

6.2.1 MOTIVATIONAL EXAMPLES

Let us illustrate some of the issues related to policy assignment
with checkpointing. In the example presented in Figure 6.4 we
have the application A1 with three processes, P1 to P3, and an
architecture with two nodes, N1 and N2. The worst-case execu-
tion times on each node are given in a table to the right of the

Figure 6.4: Comparison of Checkpointing and Replication

N1

N2

bus

N1

N2

bus

a2)

b2)

P1 P1 P3 P3

P1(1)

P1(2)

P2(1)

P2(2)

P3(1)

P3(2)

P2 P2
1 2 1 2 1 2

Deadline

Missed

Met

a1)

b1)

P1(1)N1

N2

bus

P1(2)

P2(1)

P2(2)

P3(1)

P3(2)

N1

N2

bus

Deadline

Missed

MetP1 P1 P2 P2
1 2 1 2

P3 P3
1 2

P1

P3

P2

m1

P1

P3

P2

m1 P1 P3P2

m1 m2
P1 P3P2

m1 m2

A2A1

P1
P2
P3

N1 N2

30 30
40
40

40
40

P1
P2
P3

N1 N2

30 30
40
40

40
40

N1 N2

µ = 5 ms

α = 5 msk = 1

χ = 5 ms µ = 5 msµ = 5 ms

α = 5 msα = 5 msk = 1k = 1

χ = 5 msχ = 5 ms

m
1(

1)
m

1(
2)

m
1(

1)
m

1(
2)

m
2(

2)
m

2(
1)

CHAPTER 6

112

architecture, and processes can be mapped to any node. The
fault model assumes a single fault, thus k = 1, and the fault-tol-
erance overheads are presented in the figure. The application A1
has a deadline of 140 ms depicted with a thick vertical line. We
have to decide which fault-tolerance technique to use.

In Figure 6.4a1, a2, b1 and b2 we depict the root schedules1 for
each node and the bus. Comparing the schedules in Figure 6.4a1
and Figure 6.4b1, we can observe that using active replication
(a1) the deadline is missed. However, using checkpointing (b1)
we are able to meet the deadline. Each process has an optimal
number of two checkpoints in Figure 6.4b1. If we consider appli-
cation A2, similar to A1 but with process P3 data dependent on

1. The schedules depicted are optimal.

Figure 6.5: Combining Checkpointing and Replication

P2 P3

P1m1 m2

P2 P3

P1m1 m2 P1
P2
P3

N1

60 60
60
60

60
60

N2

P1
P2
P3

N1

60 60
60
60

60
60

N2

N1

N2

bus

N1

N2

bus

a)

b)

Deadline

Met

MissedP1 P1 P1
1 2 3

P2 P2 P2
1 2 3

P3 P3 P3
1 2 3

P1(1)

P1(2) P1(2)
1 2

P3 P3 P3
1 2 3

P2 P2 P2
1 2 3

N1 N2

m
2

µ = 5 msµ = 5 ms

α = 5 msα = 5 msk = 2k = 2

χ = 5 msχ = 5 ms

m
2(

1)

m
1(

2)

CHECKPOINTING

113

P2, as illustrated in the right lower corner of Figure 6.4, the
deadline of 180 ms is missed in Figure 6.4a2 if checkpointing is
used, and it is met when replication is used as in Figure 6.4b2.

This example shows that the particular technique to use has
to be carefully adapted to the characteristics of the application.
Moreover, the best result is often to be obtained when both tech-
niques are used together, some processes being checkpointed,
while others replicated.

Let us now consider the example in Figure 6.5, where we have
an application with three processes, P1 to P3, mapped on an
architecture of two nodes, N1 and N2. The processes can be
mapped to any node, and the worst-case execution times on each
node are given in a table. In Figure 6.5a all processes are using
checkpointing, and the depicted root schedule is optimal for this
case. Note that m2 has to be delayed to mask two potential faults
of P1 to node N2. With this setting, using checkpointing will miss
the deadline. However, combining checkpointing with replica-
tion, as in Figure 6.5b where process P1 is replicated, will meet
the deadline. P1(1) is a simple replica without checkpointing and
message m2(1) from this replica is sent directly after completion
of P1(1). In second replica P1(2) of process P1, one fault has to be
masked, which delays the message m1(2). However, the delay of
message m1(2) is less then the delay of message m2 in
Figure 6.5a.

6.2.2 SCHEDULING WITH CHECKPOINTING AND REPLICATION

Some additional discussion is needed to understand generation
of the root schedule in Figure 6.5b. As discussed in Section 5.1.4,
scheduling of replica descendants is slightly different from regu-
lar scheduling of re-executed processes. The same applies for
checkpointing and replication. In Figure 6.5b, process P2 is
scheduled directly after replica P1(1) of process P1.

Initially, we suppose that the shared recovery slack on the
node N1 is equal to the individual recovery slack of process P2. In

CHAPTER 6

114

Figure 6.6a, we show a fault scenario, where two faults happen
in process P2 and accommodated into the initial shared recovery
slack. However, if a fault corrupts replica P1(1) of process P1,
process P2 has to wait until message m1(2) arrives regardless of

Figure 6.6: Generation of the Root Schedule Combining
Replication and Checkpointing

N1

N2

bus

d)

P1(1)

P1(2) P1(2)
1 2

P3 P3 P3
1 2 3

P2 P2/1 P2
1 2 3

m
1(

2)

m
2(

1)
N1

N2

bus

b)

P1(1)

P1(2)/1 P1(2)/2
1 1

P3 P3 P3
1 2 3

P2 P2 P2
1 2 3

m
1(

2)

m
2(

1)

N1

N2

bus

c)

P2/2
2

P1(2)
2

N1

N2

bus

a)

P1(1)

P1(2) P1(2)
1 2

P3 P3 P3
1 2 3

P2 P2/1 P2/1
1 2 3

m
1(

2)

m
2(

1)

P2/2
2

P2/2
3

P1(1)

P3/2 P3 P3
2 3

P2 P2 P2
1 2 3

m
1(

2)

m
2(

1)

P1(2) P1(2)
1 2

P3/1
1 1

initial recovery slack

CHECKPOINTING

115

whether and how faults occur on node N2. This situation is illus-
trated in Figure 6.6b, where replica P1(2) is recovered from a
fault, and in Figure 6.6c, where second execution segment of
process P3 is affected. If there is no fault occurrences on the node
N2, one more fault can happen on the node N1 and affect execu-
tion of process P2. Therefore, the shared recovery slack on the
node N1 has to be adjusted accordingly. In Figure 6.6d, we show
a fault scenario where both replica P1(1) and process P2 are
affected by faults, which is the worst-case fault scenario of the
considered application from Figure 6.5. This fault scenario has
been accommodated into the adjusted shared recovery slack on
the node N1, depicted in Figure 6.5b.

6.2.3 OPTIMIZATION STRATEGY

The design problem formulated in the beginning of this section
is NP-complete (both the scheduling and the mapping problems,
considered separately, are already NP-complete [Gar03]). There-
fore, our strategy is to utilize a heuristic and divide the problem
into several, more manageable, subproblems. Our optimization
strategy which produces the configuration ψ leading to a schedu-
lable fault-tolerant application is outlined in Figure 6.7 and has
two steps:

1. In the first step (lines 1–3) we quickly decide on an initial

fault-tolerance policy assignment given by F0, and an initial

P3
2

Figure 6.7: Design Optimization Strategy for
Fault Tolerance Policy Assignment with Checkpointing

 OptimizationStrategy(A, N)
 1 Step 1: <M0, F0> = InitialMPA(A, N)
 2 S0 = ListScheduling(A, N, M0, F0)
 3 if S0 is schedulable then return ψ0 end if
 4 Step 2: ψ = TabuSearchMPA(A, N, ψ0)
 5 if S is schedulable then return ψ end if
 6 return ψ
 end OptimizationStrategy

CHAPTER 6

116

mapping M0. The initial mapping and fault-tolerance policy
assignment algorithm (InitialMPA line 2 in Figure 6.7) as-
signs a checkpointing policy with a locally optimal number of
checkpoints (using the equation in Figure 6.1b) to each proc-
ess in the application A and produces a mapping that tries to
balance the utilization among nodes and buses. The applica-
tion is then scheduled using the shifting-based scheduling al-
gorithm (see Section 4.4). If the application is schedulable
the optimization strategy stops.

2. If the application is not schedulable, we use, in the second
step, a tabu search-based algorithm discussed in the next sec-
tion.

If after these two steps the application is unschedulable, we
assume that no satisfactory implementation could be found with
the available amount of resources.

6.2.4 OPTIMIZATION ALGORITHMS

For deciding the mapping and fault tolerance policy assignment
with checkpointing we use a tabu search based heuristic
approach, TabuSearchMPAChk, which is adaptation of the
TabuSearchMPA algorithm, presented in Section 5.1.5. In
addition to mapping and fault tolerance policy assignment,
TabuSearchMPAChk will handle checkpoint distribution.

TabuSearchMPAChk uses design transformations (moves) to
change a design such that the end-to-end delay of the root sched-
ule is reduced. In order to generate neighboring solutions, we
perform the following types of transformations:
 • changing the mapping of a process;
 • changing the combination of fault-tolerance policies for a

process;
 • changing the number of checkpoints used for a process.

The algorithm takes as an input the merged application graph
G, the architecture N and the current implementation ψ , and
produces a schedulable and fault-tolerant implementation xbest.

CHECKPOINTING

117

The tabu search is based on a neighbourhood search technique,
and, thus, in each iteration it generates the set of moves Nnow

that can be performed from the current solution xnow. The cost
function to be minimized by the tabu search is the end-to-end
delay of the root schedule produced by the list scheduling algo-
rithm. In order to reduce the huge design space, in our imple-
mentation, we only consider changing the mapping or fault-
tolerance policy of the processes on the critical path correspond-
ing to the current solution. We define the critical path as the
path through the merged graph G which corresponds to the long-
est delay in the schedule table.

Moreover, we also try to eliminate moves that change the
number of checkpoints if it is clear that they do not lead to better
results. Consider the example in Figure 6.8 where we have four
processes, P1 to P4 mapped on two nodes, N1 and N2. The worst-
case execution times of processes and their fault-tolerance over-

Figure 6.8: Restricting the Moves for Setting
the Number of Checkpoints

k = 2

N1 N2

k = 2

N1 N2N1 N2

m
2

N1

N2

bus

N1

N2

bus

a)

b)

Met

Missed

P1 P1 P4 P4P2

P3

P1

m
2

P3

P2 P4 P4 P4

1 2 21

1 2 3

P1

P4

P2 P3

m1 m2

m3

P1

P4

P2 P3

m1 m2

m3
P1

P2
P3

P4

χ α µ
10 10 10
5 5 5

10 30 10
15 15 20

P1

P2
P3

P4

χ α µ
10 10 10
5 5 5

10 30 10
15 15 20

Deadline

P1
P2
P3

N1 N2

50 50
30
X

30
40

P4 120 X

P1
P2
P3

N1 N2

50 50
30
X

30
40

P4 120 X

CHAPTER 6

118

heads are also given in the figure, and we can have at most two
faults. The number of checkpoints calculated using the formula
(6.3) are: = 2, = 2, = 1 and = 3. Let us assume that
our current solution is the one depicted in Figure 6.8a, where we
have X(P1) = 2, X(P2) = 1, X(P3) = 1 and X(P4) = 2. Given a process
Pi, with a current number of checkpoints X(Pi), our tabu search
approach will generate moves with all possible checkpoints
starting from 1, up to . Thus, starting from the solution
depicted in Figure 6.8a, we can have the following moves that
modify the number of checkpoints: (1) decrease the number of
checkpoints for P1 to 1; (2) increase the number of checkpoints
for P2 to 2; (3) increase the number of checkpoints for P4 to 3; (4)
decrease the number of checkpoints for P4 to 1. Moves (1) and (3)
will lead to the optimal number of checkpoints depicted in
Figure 6.8b.

In order to reduce optimization time, our heuristic will not try
moves (2) and (4), since they cannot lead to a shorter critical
path, and, thus, a better root schedule. Regarding move (2), by
increasing the number of checkpoints for P2 we can reduce its
recovery slack. However, P2 shares its recovery slack with P1
and segments of P4, which have a larger execution time, and
thus even if the necessary recovery slack for P2 is reduced, it will
not affect the size of the shared slack (and implicitly, of the root
schedule) which is given by the largest process (or process seg-
ment) that shares the slack. Regarding move (4), we notice that
by decreasing for P4 the number of checkpoints to 1, we increase
the recovery slack, which, in turn, increases the length of the
root schedule.

6.2.5 EXPERIMENTAL RESULTS

For the evaluation of our algorithms we used applications of 20,
40, 60, 80, and 100 processes (all unmapped and with no fault-
tolerance policy assigned) implemented on architectures consist-
ing of 3, 4, 5, 6, and 7 nodes, respectively. A time-division multi-

n1
0 n2

0 n3
0 n4

0

ni
0

CHECKPOINTING

119

ple access (TDMA) bus with the time-triggered protocol (TTP)
[Kop03] has been used as a communication media. We have var-
ied the number of faults depending on the architecture size, con-
sidering 4, 5, 6, 7, and 8 faults for each architecture dimension,
respectively. The recovery overhead µ was set to 5 ms. We have
also varied the fault-tolerance overheads (checkpointing and
error-detection) for each process, from 1% of its worst-case exe-
cution time up to 30%. Fifteen examples were randomly gener-
ated for each application dimension, thus a total of 75
applications were used for experimental evaluation. The experi-
ments were performed on Sun Fire V250 computers.

We were first interested to evaluate the proposed optimization
strategy in terms of overheads introduced due to fault-tolerance.
For this, we have implemented each application without any
fault-tolerance concerns. This non-fault-tolerant implementa-
tion, NFT, has been obtained using an approach similar to the
algorithm in Figure 6.7 but without fault-tolerance techniques.
The same applications have been implemented, on the same
amount of resources, using the optimization strategy in
Figure 6.7, with multiple checkpoints and replication (MCR).
Together with the MCR approach we have also evaluated two
extreme approaches: MC that considers only checkpointing, and
MR which relies only on replication for tolerating faults. MC and
MR use the same optimization approach as MCR, but besides
the mapping moves, they consider assigning only checkpointing

Table 6.1: Fault Tolerance Overheads

Number of
processes

% maximum
overhead

% average
overhead

% minimum
overhead

20 98.36 70.67 48.87

40 116.77 84.78 47.30

60 142.63 99.59 51.90

80 177.95 120.55 90.70

100 215.83 149.47 100.37

CHAPTER 6

120

(including the optimization of the number of checkpoints) or
only replication, respectively. In addition, we have also imple-
mented a checkpointing-only strategy, namely MC0, similar to
MC, but where the number of checkpoints is fixed based on the
formula (6.3), updated from [Pun97]. For these experiments, we
have derived the shortest schedule within an imposed time limit
for optimization: 1 minute for 20 processes, 10 for 40, 30 for 60, 2
hours and 30 minutes for 80 and 6 hours for 100 processes.

Let δMCR and δNFT be the lengths of the root schedules
obtained using MCR and NFT, respectively. The overhead is
defined as 100 × (δMCR – δNFT) / δNFT. The fault-tolerance over-
heads of MCR compared to NFT are presented in Table 6.1.1 The

1. Note that checkpointing overhead χ and error-detection overhead α are
explicitly accounted for in the value of fault tolerance overheads pre-
sented in Table 6.1.

Figure 6.9: Deviation of MC and MCR from MC0
with Varying Application Size

0

5

10

15

20

25

30

35

40

45

40 60 80 100

MC

MCR

Number of processes

A
vg

. %
 d

ev
ia

ti
on

 f
ro

m
 M

C
0

CHECKPOINTING

121

MCR approach can offer fault-tolerance within the constraints
of the architecture at an average overhead of 88.49%. In the case
only replication is used (MR), the overheads compared to NFT
are very large (e.g., 306.51% on average for applications 100
processes).

We were interested to compare the quality of MCR to MC0 and
MC. In Figures 6.9-6.10 we show the average percentage devia-
tion of overheads obtained with MCR and MC from the baseline
represented by MC0 (larger deviation means smaller overhead).
From Figures 6.9-6.10 we can see that by optimizing the combi-
nation of checkpointing and replication MCR performs much
better compared to MC and MC0. This shows that considering
checkpointing at the same time with replication can lead to sig-
nificant improvements. Moreover, by considering the global opti-
mization of the number of checkpoints, with MC, significant

Figure 6.10: Deviation of MC and MCR from MC0
with Varying the Number of Transient Faults

A
vg

. %
 d

ev
ia

ti
on

 f
ro

m
 M

C
0

Number of transient faults k

0

5

10

15

20

25

2 3 4 5 6

MC

MCR

CHAPTER 6

122

improvements can be gained over MC0 which computes the opti-
mal number of checkpoints for each process in isolation.

In Figure 6.9 we consider 4 computation nodes, 3 faults, and
vary the application size from 40 to 100 processes. As the
amount of available resources per application decreases, the
improvement due to replication (part of MCR) will diminish,
leading to a result comparable to MC.

In Figure 6.11, we were interested to evaluate our MCR
approach in case the constant checkpointing overheads O (i.e.,
χ+α) associated to processes are varied. We have considered
applications with 40 processes mapped on four computation
nodes, and we have varied the constant checkpointing overhead
from 2% of the worst-case execution time of a process up to 60%.
We can see that, as the amount of checkpointing overheads
increases, our optimization approaches are able to find increas-
ingly better quality solutions compared to MC0.

Figure 6.11: Deviation of MC and MCR from MC0
with Varying Checkpointing Overheads

A
vg

. %
 d

ev
ia

ti
on

 f
ro

m
 M

C
0

Checkpointing overheads (%), χ + α

0

5

10

15

20

25

2 10 20 30 40 50 60

MC

MCR

CHECKPOINTING

123

We have also evaluated the MCR and MC approaches with
increasing number of transient faults. We have considered appli-
cations with 40 processes mapped on 4 computation nodes, and
varied k from 2 to 6, see Figure 6.10. As the number of faults
increases, the improvement achieved over MC0 will stabilize to
about 10% improvement (e.g., for k = 10, not shown in the figure,
the improvement due to MC is 8.30%, while MCR improves with
10.29%).

Finally, we considered a real-life example implementing a
vehicle cruise controller (CC), which was used to evaluate sched-
uling techniques in Chapter 4. We have considered a deadline of
300 ms, k = 2 faults and the constant checkpointing overheads
are 10% of the worst-case execution time of the processes.

In this setting, the MCR produced a schedulable fault-tolerant
implementation with a worst-case system delay of 265 ms, and
with an overhead compared to NFT (which produces a non-fault-
tolerant schedule of length 157 ms) of 69%. If we globally opti-
mize the number of checkpoints using MC we obtain a schedula-
ble implementation with a delay of 295 ms, compared to 319 ms
produced by MC0 which is larger than the deadline. If replica-
tion only is used, as in the case of MR, the delay is 369 ms,
which, again, is greater than the deadline.

6.3 Conclusions
In this chapter we have addressed the problem of checkpoint
optimization. First, we have discussed issues related to local
optimization of checkpoint placement. Second, we have shown
that global optimization of checkpoint distribution significantly
outperforms the local optimization. We have extended the fault
tolerance policy assignment and mapping optimization strategy
presented in Chapter 5 with a global optimization of checkpoint
distribution.

CHAPTER 6

124

CONCLUSIONS AND FUTURE WORK

125

Chapter 7
Conclusions and

Future Work

IN THIS THESIS we have presented several strategies for
scheduling, mapping and policy assignment of fault-tolerant
embedded systems. Emphasis has been also placed on debuga-
bility and testability properties of fault-tolerant applications by
considering transparency requirements. We have proposed
scheduling and mapping approaches that can handle transpar-
ency as well as the trade-off transparency vs. performance.

In this final chapter, we summarize the work presented in the
thesis and point out ideas for future work.

7.1 Conclusions
In this thesis we have considered hard real-time systems, where
the hardware architecture consists of a set of heterogeneous
computation nodes connected to a communication channel. The
real-time application is represented as a set of processes com-
municating by messages. The processes are scheduled by static

CHAPTER 7

126

cyclic scheduling. To provide fault tolerance against transient
faults, processes are assigned with re-execution, replication, or
recovery with checkpointing.

Scheduling. We have proposed two novel scheduling
approaches for fault-tolerant embedded systems in the presence
of multiple transient faults: conditional scheduling and shifting-
based scheduling.

The main contribution of the first approach is the ability to
handle performance versus transparency and memory size
trade-offs. This scheduling approach generates the most effi-
cient schedule tables.

The second scheduling approach handles only a fixed trans-
parency set-up, transparent recovery, where all messages on the
bus have to be sent at fixed times, regardless of fault occur-
rences. This scheduling approach is much faster than condi-
tional scheduling and requires less memory to store the
generated schedule tables. These advantages make this schedul-
ing technique suitable for microcontroller systems with strict
memory constraints.

Mapping and fault tolerance policy assignment. We have
developed several algorithms for policy assignment and map-
ping, including mapping with performance/transparency trade-
off.

At fault tolerance policy assignment, we decide on which fault
tolerance technique or which combination of techniques to
assign to a certain process in the application. The fault tolerance
technique can be either re-execution or rollback recovery, which
provides time-redundancy, or active replication, which provides
space-redundancy. We have implemented a tabu search-based
optimization approach that decides the mapping of processes to
the nodes in the architecture and the assignment of fault-toler-
ance policies to processes.

CONCLUSIONS AND FUTURE WORK

127

Transparency is a very important property that makes a sys-
tem easier to debug and, in principle, safer. The amount of mem-
ory required to store contingency schedules is also less. We have
shown how performance/transparency trade-offs imposed by
designers can be supported during the design process. The main
contribution of this approach is the ability to consider the trans-
parency requirements imposed by the designer during the map-
ping optimization. The mapping is driven by a schedule
estimation heuristic which is able to accurately evaluate a given
mapping decision. Considering the fault-tolerance and transpar-
ency requirements during the mapping optimization process we
have been able to provide transparency-aware fault tolerance
under limited resources.

Checkpoint optimization. We have also addressed the prob-
lem of checkpoint optimization. We have shown that by globally
optimizing the number of checkpoints, as opposed to the
approach when processes were considered in isolation, signifi-
cant improvements can be achieved. We have also integrated
checkpoint optimization into a fault tolerance policy assignment
and mapping optimization strategy, and an optimization algo-
rithm based on tabu-search has been implemented.

All proposed algorithms have been implemented and evalu-
ated on numerous synthetic applications and a real-life example
from automotive electronics. The results obtained have shown
the efficiency of the proposed approaches and methods.

7.2 Future Work
The work that has been presented in this thesis can be used as a
foundation for future research in the area of design optimization
of fault-tolerant embedded systems. We see several directions
for the future work based on this thesis.

128

Soft real-time. The main focus in this thesis was on hard real-
time embedded systems. However, soft real-time systems that do
not need to strictly guarantee that the application meets dead-
lines are emerging in many industrial areas. The design optimi-
zation with fault tolerance can be important for providing the
appropriate level of quality of service in such systems. Another
interesting aspect is the integration between soft real-time and
hard real-time applications. Design optimization with fault tol-
erance can be important for designing efficient and reliable
embedded systems with mixed soft-and-hard real-time proc-
esses.

Probabilistic fault model. In this thesis, we have considered a
deterministic fault model, where a maximum number of k faults
can happen during one cycle of application execution. This
model can be extended to capture variations of fault occurrence
rates over time and different behaviour of faults on different
computation nodes. Using a probability distribution function of
fault occurrences is one possible suggestion. In the future, we
can adapt approaches presented in this thesis to capture a prob-
abilistic fault model, which can, potentially, lead to more effi-
cient design solutions.

Fault-tree analysis. Some faults are not activated and, at the
same time, one fault may cause several errors. This can be cap-
tured in a fault tree, where it is possible to investigate a com-
plete chain of events from a fault to a failure. Moreover, faults
and failures can be ranked according to their criticality. The
fault tree will become different after re-designing the system by
changing mapping and fault tolerance policy assignment, or cus-
tomizing transparency properties. Considering the fault tree
and its changes during design optimization can improve accu-
racy and reduce costs of design solutions. Non-critical faults can
be ignored, while the critical will receive a close attention.

APPENDIX I

129

 Appendix I

FORMULA (6.3) IN CHAPTER 6. In the presence of k faults, for
process Pi with the worst-case execution time Ci, error-detection
overhead αi, recovery overhead µi, and checkpointing overhead
χi, the optimum number of checkpoints , when process Pi is
considered in isolation, is given by

Proof:1 We consider process Pi in isolation in the presence of k
faults. The execution time Ri of process Pi with checkpoints
in the worst-case fault scenario is obtained with formula (6.1):

1. This proof, in general terms, follows the proof of Theorem 2 (formula
(6.2) in Section 6.1) in [Pun97].

ni
0

, if

, if

ni
+ kCi

χi αi+
---------------=

ni
–

kCi
χi αi+
---------------= Ci ni

– ni
– 1+()

χi αi+

k
---------------≤

Ci ni
– ni

– 1+()
χi αi+

k
--------------->

ni
0=

ni
0

130

The problem of finding the optimum number of checkpoints
for process Pi, when we consider Pi in isolation, reduces to the
following minimization problem:

The conditions for minima in a continuous system are

Since has to be integer, we have

We have to choose among these two values of .

Ri ni
0() Ei ni

0() Si ni
0()+=

Ri ni
0() Ci ni

0 αi χi+()×+()
Ci

ni
0

----- µi+
 
 
 

k αi k 1–()×+×
 
 
 
 

+=

ni
0

Ri ni
0() Ci ni

0 αi χi+()×+()
Ci

ni
0

----- µi+
 
 
 

k αi k 1–()×+×
 
 
 
 

+=

Minimize

with respect to ni
0

ni
0d

dRi
0=

ni
0()2

2

d

d Ri
0>

ni
0d

dRi
0=

ni
0()2

2

d

d Ri 2kCi

ni
0()3

-----------=

αi χi

Ci

ni
0()2

----------- k×–+ 0=

αi χi+
Ci

ni
0()2

----------- k×= ni
0

kCi
αi χi+
---------------=

Also,

ni
0()2

2

d

d Ri 0> since Ci 0> , k 0> , and ni
0 0>

ni
0

ni
–

kCi
αi χi+
---------------= ni

+ kCi
αi χi+
---------------=

ni
0

APPENDIX I

131

which means that if , we select the floor

value as locally optimal number of checkpoints. If

, we select the ceiling.

When , the execution time Ri of process
Pi in the worst-case fault scenario will be the same if we select

 or if . However, in this situation, we prefer to choose
because the lower number of checkpoints, caeteris paribus,
reduces the number of possible execution scenarios and com-
plexity.

ni
–

kCi
αi χi+
---------------=Let

Ci ni
– αi χi+()×+()

Ci

ni
–

------ µi+
 
 
 

k αi k 1–()×+×
 
 
 
 

+

Ri ni
–() is better than Ri ni

– 1+() if

Ci ni
– 1+() αi χi+()×+()

Ci

ni
– 1+

--------------- µi+
 
 
 

k αi k 1–()×+×
 
 
 
 

+

<

kCi

ni
–

-------- αi χi+()
kCi

ni
– 1+

---------------+< Ci ni
– ni

– 1+()
χi αi+

k
---------------<

Ci ni
– ni

– 1+()
χi αi+

k
---------------<

Ci ni
– ni

– 1+()
χi αi+

k
--------------->

Ci ni
– ni

– 1+()
χi αi+

k
---------------=

ni
– ni

+ ni
–

132

REFERENCES

133

References

[Als01] K. Alstrom and J. Torin, “Future Architecture for
Flight Control Systems”, Proc. 20th Conf. on Digital
Avionics Systems, 1B5/1-1B5/10, 2001.

[Alo01] R. Al-Omari, A.K. Somani, and G. Manimaran, “A
New Fault-Tolerant Technique for Improving Sched-
ulability in Multiprocessor Real-Time Systems”,
Proc. 15th Intl. Parallel and Distributed Processing
Symp., 23-27, 2001.

[Ahn97] KapDae Ahn, Jong Kim, and SungJe Hong, “Fault-
Tolerant Real-Time Scheduling Using Passive Repli-
cas”, Proc. Pacific Rim Intl. Symp. on Fault-Tolerant
Systems, 98-103, 1997.

[Aud95] N. C. Audsley et al., “Fixed Priority Pre-emptive
Scheduling: An Historical Perspective”, Real-Time
Systems, 8, 173-198, 1995.

[Axe96] J. Axelsson, “Hardware/Software Partitioning Aim-
ing at Fulfilment of Real-Time Constraints”, Systems
Architecture, 42, 449-464, 1996.

134

[Bau01] R. C. Baumann and E. B. Smith, “Neutron-Induced
10B Fission as a Major Source of Soft Errors in High
Density SRAMs”, Microelectronics Reliability, 41(2),
211-218, 2001.

[Bax95] M. J. Baxter, M. O. Tokhi, and P. J. Fleming, “Task-
Processor Mapping for Real-Time Parallel Systems
Using Genetic Algorithms with Hardware-in-the-
Loop”, Proc. First Intl. Conf. on Genetic Algorithms in
Engineering Systems: Innovations and Applications,
158-163, 1995.

[Ben03] A. Benso et al., “A Watchdog Processor to Detect
Data and Control Flow Errors”, Proc. 9th IEEE On-
Line Testing Symp., 144 - 148, 2003.

[Ber94] A. Bertossi and L. Mancini, “Scheduling Algorithms
for Fault-Tolerance in Hard-Real Time Systems”,
Real Time Systems, 7(3), 229–256, 1994.

[Bol97] I. Bolsens et al., “Hardware/Software Co-Design of
Digital Telecommunication Systems”, Proc. of the
IEEE, 85(3), 391-418, 1997.

[Bur96] A. Burns et al., “Feasibility Analysis for Fault-Toler-
ant Real-Time Task Sets”, Proc. Euromicro Workshop
on Real-Time Systems, 29–33, 1996.

[Che99] P. Chevochot and I. Puaut, “Scheduling Fault-Toler-
ant Distributed Hard Real-Time Tasks Independ-
ently of the Replication Strategies”, Proc. 6th Intl.
Conf. on Real-Time Computing Systems and Applica-
tions, 356-363, 1999.

[Cho95] P. H. Chou, R. B. Ortega, and G. Borriello, “The Chi-
nook Hardware/Software Co-Synthesis System”,
Proc. Int. Symp. on System Synthesis, 22-27, 1995.

REFERENCES

135

[Cla98] V. Claesson, S. Poledna, and J. Soderberg, “The XBW
Model for Dependable Real-Time Systems”, Proc.
Intl. Conf. on Parallel and Distributed Systems, 130-
138, 1998.

[Cof72] E. G. Coffman Jr. and R. L. Graham, “Optimal
Scheduling for Two Processor Systems”, Acta Infor-
matica, 1, 200-213, 1972.

[Col95] M. Coli and P. Palazzari, “A New Method for Optimi-
zation of Allocation and Scheduling in Real-Time
Applications”, Proc. 7th Euromicro Workshop on Real-
Time Systems, 262-269, 1995.

[Col03] A. Colin and S. M. Petters, “Experimental Evaluation
of Code Properties for WCET Analysis”, Proc. 24th

IEEE Real-Time Systems Symp., 190-199, 2003.

[Con05] J. Conner et al., “FD-HGAC: A Hybrid Heuristic/
Genetic Algorithm Hardware/Software Co-synthesis
Framework with Fault Detection”, Proc. Asia and
South Pacific Design Automation Conf., 709-712,
2005.

[Con03] C. Constantinescu, “Trends and Challenges in VLSI
Circuit Reliability”, IEEE Micro, 23(4), 14-19, 2003.

[Cor04] F. Corno et al., “Evaluating the Effects of Transient
Faults on Vehicle Dynamic Performance in Automo-
tive Systems”, Proc. Intl. Test Conference, 1332-1339,
2004.

[Dav98] B. P. Dave and N. K. Jha, “COHRA: Hardware-Soft-
ware Cosynthesis of Hierarchical Heterogeneous Dis-
tributed Systems”, IEEE Trans. on CAD, 17(10), 900-
919, 1998.

136

[Dav99] B. P. Dave, G. Lakshminarayana, and N. J. Jha,
“COSYN: Hardware-Software Co-Synthesis of Heter-
ogeneous Distributed Embedded Systems”, IEEE
Trans. on VLSI Systems, 7(1), 92-104, 1999.

[Deo98] J. S. Deogun, R. M. Kieckhafer, and A. W. Krings,
“Stability and Performance of List Scheduling with
External Process Delays”, Real Time Systems, 15(1),
5-38, 1998.

[Dic98] R. P. Dick and N. K. Jha, “CORDS: Hardware-Soft-
ware Co-Synthesis of Reconfigurable Real-Time Dis-
tributed Embedded Systems”, Proc. Intl. Conf. on
CAD, 1998.

[Ele97] P. Eles et al., “System Level Hardware/Software Par-
titioning Based on Simulated Annealing and Tabu
Search”, Design Automation for Embedded Systems,
2(1), 5-32, 1997.

[Ele00] P. Eles et al., “Scheduling with Bus Access Optimiza-
tion for Distributed Embedded Systems”, IEEE
Trans. on VLSI Systems, 8(5), 472-491, 2000.

[Erm05] A. Ermedahl, F. Stappert, and J. Engblom, “Clus-
tered Worst-Case Execution-Time Calculation”,
IEEE Trans. on Computers, 54(9), 1104-1122, 2005.

[Ern93] R. Ernst, J. Henkel, and T. Benner, “Hardware/soft-
ware co-synthesis for microcontrollers”, IEEE Design
& Test of Computers, 10(3), 64-75, 1993.

[Fle04] FlexRay, Protocol Specification, Ver. 2.0, FlexRay
Consortium, 2004.

[Gar03] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-Complete-
ness, W. H. Freeman and Company, 2003.

REFERENCES

137

[Gir03] A. Girault et al., “An Algorithm for Automatically
Obtaining Distributed and Fault-Tolerant Static
Schedules”, Proc. Intl. Conf. on Dependable Systems
and Networks, 159-168, 2003.

[Glo86] F. Glover, “Future Paths for Integer Programming
and Links to Artificial Intelligence”, Computers and
Operations Research, 13(5), 533-549, 1986.

[Gol89] D. E. Goldberg, Genetic Algorithms in Search, Opti-
mization, and Machine Learning, Addison-Wesley,
1989.

[Gol03] O. Goloubeva et al., “Soft-error Detection Using Con-
trol Flow Assertions”, Proc. 18th IEEE Intl. Symp. on
Defect and Fault Tolerance in VLSI Systems, 581-
588, 2003.

[Gom06] M. A. Gomaa and T. N. Vijaykumar, “Opportunistic
Transient-Fault Detection”, IEEE Micro, 26(1), 92-
99, 2006.

[Gup95] R. K. Gupta, Co-Synthesis of Hardware and Software
for Digital Embedded Systems, Kluwer Academic Pub-
lishers, 1995.

[Gus05] J. Gustafsson, A. Ermedahl, and B. Lisper, “Towards
a Flow Analysis for Embedded System C Programs”,
Proc. 10th IEEE Intl. Workshop on Object-Oriented
Real-Time Dependable Systems, 287-297, 2005.

[Han03] C. C. Han, K. G. Shin, and J. Wu, “A Fault-Tolerant
Scheduling Algorithm for Real-Time Periodic Tasks
with Possible Software Faults”, IEEE Trans. on Com-
puters, 52(3), 362–372, 2003.

[Han86] P. Hansen, “The Steepest Ascent Mildest Descent
Heuristic for Combinatorial Programming”, Congress
on Numerical Methods in Combinatorial Optimiza-
tion, 1986.

138

[Han02] H. A. Hansson et al., “Integrating Reliability and
Timing Analysis of CAN-based Systems”, IEEE
Trans. on Industrial Electronics, 49(6), 1240-1250,
2002.

[Har01] S. Hareland et al., “Impact of CMOS Process Scaling
and SOI on the Soft Error Rates of Logic Processes”,
Proc. Symp. on VLSI Technology, 73-74, 2001.

[Hea02] C. A. Healy and D. B. Whalley, “Automatic Detection
and Exploitation of Branch Constraints for Timing
Analysis”, IEEE Trans. on Software Engineering,
28(8), 763-781, 2002.

[Hei05] P. Heine et al., “Measured Faults during Lightning
Storms”, Proc. IEEE PowerTech’2005, Paper 72, 5p.,
2005.

[Hen96] P. van Hentenryck and V. Saraswat, “Strategic Direc-
tions in Constraint Programming”, ACM Computing
Surveys, 28(4), 701-726, 1996.

[Her00] A. Hergenhan and W. Rosenstiel, “Static Timing
Analysis of Embedded Software on Advanced Proces-
sor Architectures”, Proc. Design, Automation and
Test in Europe Conf., 552-559, 2000.

[Hil00] M. Hiller, “Executable Assertions for Detecting Data
Errors in Embedded Control Systems”, Proc. Intl.
Conf. on Dependable Systems and Networks, 24-33,
2000.

[Hol75] J. H. Holland, Adaptation in Natural and Artificial
Systems, University of Michigan Press, 1975.

[Izo05] V. Izosimov et al., “Design Optimization of Time- and
Cost-Constrained Fault-Tolerant Distributed
Embedded Systems”, Proc. Design Automation and
Test in Europe Conf., 864-869, 2005.

REFERENCES

139

[Izo06a] V. Izosimov et al., “Mapping of Fault-Tolerant Appli-
cations with Transparency on Distributed Embedded
Systems”, Proc. 9th Euromicro Conf. on Digital Sys-
tem Design, 313-320, 2006.

[Izo06b] V. Izosimov et al., “Synthesis of Fault-Tolerant
Schedules with Transparency/Performance Trade-
offs for Distributed Embedded Systems”, Proc.
Design Automation and Test in Europe Conf., 706-
711, 2006.

[Izo06c] V. Izosimov et al., “Synthesis of Fault-Tolerant
Embedded Systems with Checkpointing and Replica-
tion”, Proc. 3rd IEEE Intl. Workshop on Electronic
Design, Test & Applications, 440-447, 2006.

[Jia00] Jia Xu and D. L. Parnas, “Priority Scheduling Versus
Pre-Run-Time Scheduling”, Real Time Systems,
18(1), 7-24, 2000.

[Jie92] Jien-Chung Lo et al., “An SFS Berger Check Predic-
tion ALU and Its Application to Self-Checking Proc-
essor Designs”, IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 11(4),
525-540, 1992.

[Jie96] Jie Xu and B. Randell, “Roll-Forward Error Recovery
in Embedded Real-Time Systems”, Proc. Intl. Conf.
on Parallel and Distributed Systems, 414-421, 1996.

[Jon05] Jong-In Lee et al., “A Hybrid Framework of Worst-
Case Execution Time Analysis for Real-Time Embed-
ded System Software”, Proc. IEEE Aerospace Conf.,
1-10, 2005.

[Jor97] P. B. Jorgensen and J. Madsen, “Critical Path Driven
Cosynthesis for Heterogeneous Target Architec-
tures”, Proc. Intl. Workshop on Hardware/Software
Codesign, 15-19, 1997.

140

[Jun04] D. B. Junior et al., “Modeling and Simulation of Time
Domain Faults in Digital Systems”, Proc. 10th IEEE
Intl. On-Line Testing Symp., 5-10, 2004.

[Kan03a] N. Kandasamy, J. P. Hayes, and B. T. Murray, “Trans-
parent Recovery from Intermittent Faults in Time-
Triggered Distributed Systems”, IEEE Trans. on
Computers, 52(2), 113-125, 2003.

[Kan03b] N. Kandasamy, J. P. Hayes, and B. T. Murray
“Dependable Communication Synthesis for Distrib-
uted Embedded Systems,” Proc. Computer Safety,
Reliability and Security Conf., 275–288, 2003.

[Kas84] H. Kasahara and S. Narita, “Practical Multiproces-
sor Scheduling Algorithms for Efficient Parallel
Processing”, IEEE Trans. on Computers, 33(11),
1023-1029, 1984.

[Kim99] K. Kimseng et al., “Physics-of-Failure Assessment of
a Cruise Control Module”, Microelectronics Reliabil-
ity, 39, 1423-1444, 1999.

[Kop89] H. Kopetz et al., “Distributed Fault-Tolerant Real-
Time Systems: The MARS Approach”, IEEE Micro,
9(1), 25-40, 1989.

[Kop90] H. Kopetz et al., “Tolerating Transient Faults in
MARS”, Proc. 20th Intl. Symp. on Fault-Tolerant
Computing, 466-473, 1990.

[Kop93] H. Kopetz and G. Grunsteidl, “TTP - A Time-Trig-
gered Protocol for Fault-Tolerant Real-Time Sys-
tems”, Proc. 23rd Intl. Symp. on Fault-Tolerant
Computing, 524-533, 1993.

[Kop97] H. Kopetz, Real-Time Systems-Design Principles for
Distributed Embedded Applications, Kluwer Aca-
demic Publishers, 1997.

REFERENCES

141

[Kop03] H. Kopetz and G. Bauer, “The Time-Triggered Archi-
tecture”, Proc. of the IEEE, 91(1), 112-126, 2003.

[Kop04] H. Kopetz et al. “From a Federated to an Integrated
Architecture for Dependable Embedded Real-Time
Systems”, Tech. Report 22, Technische Universität
Wien, 2004.

[Kwa01] S. W. Kwak, B. J. Choi, and B. K. Kim, “An Optimal
Checkpointing-Strategy for Real-Time Control Sys-
tems under Transient Faults”, IEEE Trans. on Relia-
bility, 50(3), 293-301, 2001.

[Kwo96] Y. K. Kwok and I. Ahmad, “Dynamic Critical-Path
Scheduling: an Effective Technique for Allocating
Task Graphs to Multiprocessors”, IEEE Trans. on
Parallel and Distributed Systems, 7(5), 506-521,
1996.

[Lak99] G. Lakshminarayana, K. S. Khouri, and N. K. Jha,
“Wawesched: A Novel Scheduling Technique for Con-
trol-Flow Intensive Designs”, IEEE Trans. on Com-
puter-Aided Design of Integrated Circuits and
Systems, 18(5), 1999.

[Lib00] F. Liberato, R. Melhem, and D. Mosse, “Tolerance to
Multiple Transient Faults for Aperiodic Tasks in
Hard Real-Time Systems”, IEEE Trans. on Comput-
ers, 49(9), 906-914, 2000.

[Lin00] M. Lindgren, H. Hansson, and H. Thane, “Using
Measurements to Derive the Worst-Case Execution
Time”, Proc. 7th Intl. Conf. on Real-Time Computing
Systems and Applications, 15-22, 2000.

[Liu73] C. L. Liu and J. W. Layland, “Scheduling Algorithms
for Multiprogramming in a Hard Real-Time Environ-
ment”, J. of the ACM, 20(1), 46-61, 1973.

142

[Mah04] A. Maheshwari, W. Burleson, and R. Tessier, “Trad-
ing Off Transient Fault Tolerance and Power Con-
sumption in Deep Submicron (DSM) VLSI Circuits”,
IEEE Trans. on VLSI Systems, 12(3), 299-311, 2004.

[Mah88] A. Mahmood and E. J. McCluskey, “Concurrent Error
Detection Using Watchdog Processors - A Survey”,
IEEE Trans. on Computers, 37(2), 160-174, 1988.

[Man04] S. Manolache, P. Eles, and Z. Peng, “Optimization of
Soft Real-Time Systems with Deadline Miss Ratio
Constraints”, Proc. 10th IEEE Real-Time and
Embedded Technology and Applications Symp., 562-
570, 2004.

[May78] T. C. May and M. H. Woods, “A New Physical Mecha-
nism for Soft Error in Dynamic Memories”, Proc. 16th

Intl. Reliability Physics Symp., 33-40, 1978.

[Met53] N. Metropolis et al., “Equation of State Calculation
by Fast Computing Machines”, Chemical Physics, 21,
1087-1091, 1953.

[Met98] C. Metra, M. Favalli, and B. Ricco, “On-line Detection
of Logic Errors due to Crosstalk, Delay, and Tran-
sient Faults”, Proc. Intl. Test Conf., 524-533, 1998.

[Mir95] G. Miremadi and J. Torin, “Evaluating Processor-
Behaviour and Three Error-Detection Mechanisms
Using Physical Fault-Injection”, IEEE Trans. on
Reliability, 44(3), 441-454, 1995.

[Nah02a] Nahmsuk Oh, P. P. Shirvani, and E. J. McCluskey,
“Control-Flow Checking by Software Signatures”,
IEEE Trans. on Reliability, 51(2), 111-122, 2002.

[Nah02b] Nahmsuk Oh, P. P. Shirvani, and E. J. McCluskey,
“Error Detection by Duplicated Instructions in
Super-Scalar Processors”, IEEE Trans. on Reliability,
51(1), 63-75, 2002.

REFERENCES

143

[Nah02c] Nahmsuk Oh and E. J. McCluskey, “Error Detection
by Selective Procedure Call Duplication for Low
Energy Consumption”, IEEE Trans. on Reliability,
51(4), 392-402, 2002.

[Nic04] B. Nicolescu, Y. Savaria, and R. Velazco, “Software
Detection Mechanisms Providing Full Coverage
against Single Bit-Flip Faults”, IEEE Trans. on
Nuclear Science, 51(6), 3510-3518, 2004.

[Nor96] E. Normand, “Single Event Upset at Ground Level”,
IEEE Trans. on Nuclear Science, 43(6), 2742-2750,
1996.

[Ora94] A. Orailoglu and R. Karri, “Coactive Scheduling and
Checkpoint Determination during High Level Syn-
thesis of Self-Recovering Microarchitectures”, IEEE
Trans. on VLSI Systems, 2(3), 304-311, 1994.

[Pen95] L. Penzo, D. Sciuto, and C. Silvano, “Construction
Techniques for Systematic SEC-DED Codes with
Single Byte Error Detection and Partial Correction
Capability for Computer Memory Systems”, IEEE
Trans. on Information Theory, 41(2), 584-591, 1995.

[Pet05] P. Peti, R. Obermaisser, and H. Kopetz, “Out-of-Norm
Assertions”, Proc. 11th IEEE Real-Time and Embed-
ded Technology and Applications Symp., 209-223,
2005.

[Pin04] C. Pinello, L. P. Carloni, and A. L. Sangiovanni-Vin-
centelli, “Fault-Tolerant Deployment of Embedded
Software for Cost-Sensitive Real-Time Feedback-
Control Applications”, Proc. Design, Automation and
Test in Europe Conf., 1164–1169, 2004.

144

[Pop03] P. Pop, “Analysis and Synthesis of Communication-
Intensive Heterogeneous Real-Time Systems”, Ph. D.
Thesis No. 833, Dept. of Computer and Information
Science, Linköping University, 2003.

[Pop04a] P. Pop et al., “Design Optimization of Multi-Cluster
Embedded Systems for Real-Time Applications”,
Proc. Design, Automation and Test in Europe Conf.,
1028-1033, 2004.

[Pop04b] P. Pop et al., “Schedulability-Driven Partitioning and
Mapping for Multi-Cluster Real-Time Systems”,
Proc. 16th Euromicro Conf. on Real-Time Systems,
91-100, 2004.

[Pop04c] P. Pop et al., “Scheduling and Mapping in an Incre-
mental Design Methodology for Distributed Real-
Time Embedded Systems”, IEEE Trans. on VLSI
Systems, 12(8), 793-811, 2004.

[Pra94c] S. Prakash and A. Parker, “Synthesis of Application-
Specific Multiprocessor Systems Including Memory
Components”, VLSI Signal Processing, 8(2), 97-116,
1994.

[Pun97] S. Punnekkat and A. Burns, “Analysis of Checkpoint-
ing for Schedulability of Real-Time Systems”, Proc.
Fourth Intl. Workshop on Real-Time Computing Sys-
tems and Applications, 198-205, 1997.

[Rab93] D. J. Rabideau and A. O. Steinhardt, “Simulated
Annealing for Mapping DSP Algorithms onto Multi-
processors”, Proc. 27th Asilomar Conf. on Signals,
Systems and Computers, 668-672, 1993.

[Ree93] C. R. Reevs, Modern Heuristic Techniques for Combi-
natorial Problems, Blackwell Scientific Publications,
1993.

REFERENCES

145

[Ros05] D. Rossi et al., “Multiple Transient Faults in Logic:
An Issue for Next Generation ICs?”, Proc. 20th IEEE
Intl. Symp. on Defect and Fault Tolerance in VLSI
Systems, 352-360, 2005.

[Sci98] D. Sciuto, C. Silvano, and R. Stefanelli, “Systematic
AUED Codes for Self-Checking Architectures”, Proc.
IEEE Intl. Symp. on Defect and Fault Tolerance in
VLSI Systems, 183-191, 1998.

[Shi00] P. P. Shirvani, N. R. Saxena, and E. J. McCluskey,
“Software-Implemented EDAC Protection against
SEUs”, IEEE Trans. on Reliability, 49(3), 273-284,
2000.

[Sos94] J. Sosnowski, “Transient Fault Tolerance in Digital
Systems”, IEEE Micro, 14(1), 24-35, 1994.

[Sri95] S. Srinivasan and N. K. Jha, “Hardware-Software
Co-Synthesis of Fault-Tolerant Real-Time Distrib-
uted Embedded Systems”, Proc. of Europe Design
Automation Conf., 334-339, 1995.

[Sri96] G. R. Srinivasan, “Modeling the Cosmic-Ray-induced
Soft-Error Rate in Integrated Circuits: An Over-
view”, IBM J. of Research and Development, 40(1),
77-89, 1996.

[Str06] B. Strauss et al., “Unsafe at Any Airspeed?”, IEEE
Spectrum, 43(3), 44-49, 2006.

[Sun95] Sung-Soo Lim et al., “An Accurate Worst Case Tim-
ing Analysis for RISC Processors”, IEEE Trans. on
Software Engineering, 21(7), 593-604, 1995.

[Tan96] H. H. K. Tang, “Nuclear Physics of Cosmic Ray Inter-
action with Semiconductor Materials: Particle-
Induced Soft Errors from a Physicist’s Perspective”,
IBM J. of Research and Development, 40(1), 91-108,
1996.

CHAPTER

146

[Tin94] K. Tindell and J. Clark, “Holistic Schedulability
Analysis for Distributed Hard Real-Time Systems”,
Microprocessing and Microprogramming, 40, 117-
134, 1994.

[Tsi01] Y. Tsiatouhas et al., “Concurrent Detection of Soft
Errors Based on Current Monitoring”, Proc. Seventh
Intl. On-Line Testing Workshop, 106-110, 2001.

[Ull75] D. Ullman, “NP-Complete Scheduling Problems,”
Computer Systems Science, 10, 384–393, 1975.

[Wan03] J. B. Wang, “Reduction in Conducted EMI Noises of a
Switching Power Supply after Thermal Management
Design,” IEE Proc. - Electric Power Applications,
150(3), 301-310, 2003.

[Wei04] Wei Huang et al., “Compact Thermal Modeling for
Temperature-Aware Design,” Proc. 41st Design Auto-
mation Conf., 878-883, 2004.

[Xie04] Y. Xie et al., “Reliability-Aware Co-synthesis for
Embedded Systems”, Proc. 15th IEEE Intl. Conf. on
Application-Specific Systems, Architectures and Proc-
essors, 41-50, 2004.

[Yin04] Ying Zhang, R. Dick, and K. Chakrabarty, “Energy-
Aware Deterministic Fault Tolerance in Distributed
Real-Time Embedded Systems”, Proc. 42nd Design
Automation Conf., 550-555, 2004.

[Yin06] Ying Zhang and K. Chakrabarty, “A Unified
Approach for Fault Tolerance and Dynamic Power
Management in Fixed-Priority Real-Time Embed-
ded Systems”, IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 25(1),
111-125, 2006.

REFERENCES

147

[Ziv97] A. Ziv and J. Bruck, “An On-Line Algorithm for
Checkpoint Placement”, IEEE Trans. on Computers,
46(9), 976-985, 1997.

Nyckelord
Keywords

Rapporttyp
Report: category

Licentiatavhandling

C-uppsats
D-uppsats
Övrig rapport

Språk
Language

Svenska/Swedish
Engelska/English

ISBN

Serietitel och serienummer
Title of series, numbering

URL för elektronisk version

Titel
Title

Datum
Date

ISRN

Examensarbete
ISSN

x
x

0280-7971

LiU-Tek-Lic-

Thesis No.

91-

Författare
Author

Linköping Studies in Science and Technology

Sammandrag
Abstract

Avdelning, Institution
Division, department

Department of Computer and
Information Science

Institutionen för datavetenskap

LINKÖPINGS UNIVERSITET

2006-11-15

85643-72-6

2006:58

1277

http://www.ida.liu.se/~eslab

Scheduling and Optimization of Fault-Tolerant Embedded Systems

Viacheslav Izosimov

Safety-critical applications have to function correctly even in presence of faults. This thesis deals
with techniques for tolerating effects of transient and intermittent faults. Re-execution, software
replication, and rollback recovery with checkpointing are used to provide the required level of fault
tolerance. These techniques are considered in the context of distributed real-time systems with non-
preemptive static cyclic scheduling.

Safety-critical applications have strict time and cost constrains, which means that not only faults
have to be tolerated but also the constraints should be satisfied. Hence, efficient system design
approaches with consideration of fault tolerance are required.

The thesis proposes several design optimization strategies and scheduling techniques that take fault
tolerance into account. The design optimization tasks addressed include, among others, process
mapping, fault tolerance policy assignment, and checkpoint distribution.

Dedicated scheduling techniques and mapping optimization strategies are also proposed to handle
customized transparency requirements associated with processes and messages. By providing fault
containment, transparency can, potentially, improve testability and debugability of fault-tolerant
applications.

The efficiency of the proposed scheduling techniques and design optimization strategies is evaluated
with extensive experiments conducted on a number of synthetic applications and a real-life example.
The experimental results show that considering fault tolerance during system-level design optimiza-
tion is essential when designing cost-effective fault-tolerant embedded systems.

Embedded systems, Real-Time Systems, Design optimization, Fault tolerance, Transient faults,
Soft errors

Department of Computer and Information Science
Linköpings universitet

Linköping Studies in Science and Technology
Faculty of Arts and Sciences - Licentiate Theses

No 17 Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at:
FOA, Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)

No 28 Arne Jönsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Realizing Al-
gorithms, 1984.

No 29 Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.
No 48 Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.
No 52 Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.
No 60 Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.
No 71 Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.
No 72 Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.
No 73 Ola Strömfors: A Structure Editor for Documents and Programs, 1986.
No 74 Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulation, 1986.
No 104 Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Com-

puter Methodology, 1987.
No 108 Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.
No 111 Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.
No 113 Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.
No 118 Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-

grams, 1987.
No 126 Dan Strömberg: Transfer and Distribution of Application Programs, 1987.
No 127 Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Sys-

tems, 1987.
No 139 Christer Bäckström: Reasoning about Interdependent Actions, 1988.
No 140 Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.
No 146 Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.
No 150 Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.
No 165 Jonas Löwgren: Supporting Design and Management of Expert System User Interfaces, 1989.
No 166 Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.
No 174 Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.
No 177 Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.
No 181 Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.
No 184 Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.
No 187 Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.
No 189 Magnus Merkel: Temporal Information in Natural Language, 1989.
No 196 Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.
No 197 Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.
No 203 Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.
No 212 Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.
No 230 Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.
No 237 Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.
No 250 Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.
No 253 Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.
No 260 Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.
No 283 Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge-

Bases, 1991.
No 298 Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.
No 318 Lena Srömbäck: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algorithm

for Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.
No 319 Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denotatio-

nal Specification, 1992.
No 326 Andreas Kågedal: Logic Programming with External Procedures: an Implementation, 1992.
No 328 Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.
No 333 Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.
No 335 Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Support Sytems,

1992.
No 348 Ulf Cederling: Industrial Software Development - a Case Study, 1992.
No 352 Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-

plementation, 1992.
No 371 Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.
No 378 Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.
No 380 Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.
No 381 Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.
No 383 Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.
No 386 Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.
No 398 Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.

No 402 Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.
No 406 Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.
No 414 Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsledarutköp ur ett agent-

teoretiskt perspektiv, 1994.
No 417 Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.
No 436 Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.
No 437 Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.
No 440 Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.
FHS 3/94 Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett verksamhetsinrik-

tat och samskapande perspektiv, 1994.
FHS 4/94 Karin Pettersson: Informationssystemstrukturering, ansvarsfördelning och användarinflytande - En kompa-

rativ studie med utgångspunkt i två informationssystemstrategier, 1994.
No 441 Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet och region, 1994.
No 446 Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.
No 450 Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.
No 451 Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.
No 452 Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques,

1994.
No 455 Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System

Developers in Usability-Oriented Systems Development, 1994.
FHS 5/94 Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende ar-

betssätt och arbetsformer, 1994.
No 462 Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.
No 463 Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco Verktyg, 1994.
No 464 Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.
No 469 Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.
No 473 Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.
No 475 Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.
No 476 Bo Lagerström: Successiv resultatavräkning av pågående arbeten. - Fallstudier i tre byggföretag, 1995.
No 478 Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.
FHS 7/95 Anders Avdic: Arbetsintegrerad systemutveckling med kalkylkprogram, 1995.
No 482 Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Compani-

on, 1995.
No 488 Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based

Programming, 1995.
No 489 Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.
No 497 Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.
No 498 Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual

Generation, 1995.
No 503 Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.
FHS 8/95 Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap

och metodanalys, 1995.
FHS 9/95 Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och

ansvarsroller, 1995.
No 513 Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.
No 517 Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.
No 518 Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.
No 522 Jörgen Andersson: Bilder av småföretagares ekonomistyrning, 1995.
No 538 Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.
No 545 Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in

Scientific Computing, 1996.
No 546 Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.
FiF-a 1/96 Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod,

1996.
No 549 Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.
No 550 Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter från fyra svenska fö-

retag. 1996.
No 557 Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.
No 558 Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.
No 561 Anders Ekman: Exploration of Polygonal Environments, 1996.
No 563 Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.
No 567 Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.
No 575 Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.
No 576 Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.
No 587 Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.
No 589 Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,

1996.
No 591 Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.
No 595 Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.
No 597 Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.

No 598 Rego Granlund: C3Fire - A Microworld Supporting Emergency Management Training, 1997.
No 599 Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.
No 607 Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military Coalitions,

1997.
No 609 Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.
FiF-a 4 Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.
FiF-a 6 Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstruktion, värde-

ring och vidareutveckling i T50-bolag inom ABB, 1997.
No 615 Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.
No 623 Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.
No 626 David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.
No 627 Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.
No 629 Gunilla Ivefors: Krigsspel coh Informationsteknik inför en oförutsägbar framtid, 1997.
No 631 Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997
No 639 Jukka Mäki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.
No 640 Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.
No 643 Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.
No 653 Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.
FiF-a 13 Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet. Analys och vär-

dering av systemutvecklingsmodeller och dess användning, 1997.
No 674 Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,

1998.
No 676 Jan Håkegård: Hiera rchical Test Architecture and Board-Level Test Controller Synthesis, 1998.
No 668 Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets re-

kommendation om koncernredovisning (RR01:91), 1998.
No 675 Jimmy Tjäder: Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-

lingsprojekt, 1998.
FiF-a 14 Ulf Melin: Informationssystem vid ökad affärs- och processorientering - egenskaper, strategier och utveck-

ling, 1998.
No 695 Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.
No 700 Patrik Hägglund: Programming Languages for Computer Algebra, 1998.
FiF-a 16 Marie-Therese Christiansson: Inter-organistorisk verksamhetsutveckling - metoder som stöd vid utveckling

av partnerskap och informationssystem, 1998.
No 712 Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt

i personal inom skogsindustrin, 1998.
No 719 Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.
No 723 Henrik André-Jönsson: Indexing time-series data using text indexing methods, 1999.
No 725 Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.
No 730 Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i fem stora svenska

organisationers operativa informationsförsörjning, 1998.
No 731 Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.
No 733 Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.
No 734 Anders Bäckström: Värdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv,

1998.
FiF-a 21 Ulf Seigerroth: Integration av förändringsmetoder - en modell för välgrundad metodintegration, 1999.
FiF-a 22 Fredrik Öberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.
No 737 Jonas Mellin: Predictable Event Monitoring, 1998.
No 738 Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.
FiF-a 25 Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtaganden - En teori om

aktörsarenor i samverkan om utbyte av information, 1998.
No 742 Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.
No 748 Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.
No 751 Anders Ferntoft: Elektronisk affärskommunikation - kontaktkostnader och kontaktprocesser mellan kunder

och leverantörer på producentmarknader,1999.
No 752 Jo Skåmedal: Arbete på distans och arbetsformens påverkan på resor och resmönster, 1999.
No 753 Johan Alvehus: Mötets metaforer. En studie av berättelser om möten, 1999.
No 754 Magnus Lindahl: Bankens villkor i låneavtal vid kreditgivning till högt belånade företagsförvärv: En studie

ur ett agentteoretiskt perspektiv, 2000.
No 766 Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.
No 769 Jesper Andersson: Towards Reactive Software Architectures, 1999.
No 775 Anders Henriksson: Unique kernel diagnosis, 1999.
FiF-a 30 Pär J. Ågerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.
No 787 Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an

organisation, 1999.
No 788 Håkan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra revisionsbyråer,

2000.
No 790 Erik Berglund: Use-Oriented Documentation in Software Development, 1999.
No 791 Klas Gäre: Verksamhetsförändringar i samband med IS-införande, 1999.
No 800 Anders Subotic: Software Quality Inspection, 1999.
No 807 Svein Bergum: Managerial communication in telework, 2000.

No 809 Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.
FiF-a 32 Karin Hedström: Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter

från ett FOU-samarbete, 2000.
No 808 Linda Askenäs: Affärssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.
No 820 Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.
No 823 Lars Hult: Publika Gränsytor - ett designexempel, 2000.
No 832 Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.
FiF-a 34 Göran Hultgren: Nätverksinriktad Förändringsanalys - perspektiv och metoder som stöd för förståelse och

utveckling av affärsrelationer och informationssystem, 2000.
No 842 Magnus Kald: The role of management control systems in strategic business units, 2000.
No 844 Mikael Cäker: Vad kostar kunden? Modeller för intern redovisning, 2000.
FiF-a 37 Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av ”knowledge management”, 2000.
FiF-a 40 Henrik Lindberg: Webbaserade affärsprocesser - Möjligheter och begränsningar, 2000.
FiF-a 41 Benneth Christiansson: Att komponentbasera informationssystem - Vad säger teori och praktik?, 2000.
No. 854 Ola Pettersson: Deliberation in a Mobile Robot, 2000.
No 863 Dan Lawesson: Towards Behavioral Model Fault Isolation for Object Oriented Control Systems, 2000.
No 881 Johan Moe: Execution Tracing of Large Distributed Systems, 2001.
No 882 Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B

e-procurement, 2001.
No 890 Annika Flycht-Eriksson: Domain Knowledge Management inInformation-providing Dialogue systems,

2001.
Fif-a 47 Per-Arne Segerkvist: Webbaserade imaginära organisationers samverkansformer, 2001.
No 894 Stefan Svarén: Styrning av investeringar i divisionaliserade företag - Ett koncernperspektiv, 2001.
No 906 Lin Han: Secure and Scalable E-Service Software Delivery, 2001.
No 917 Emma Hansson: Optionsprogram för anställda - en studie av svenska börsföretag, 2001.
No 916 Susanne Odar: IT som stöd för strategiska beslut, en studie av datorimplementerade modeller av verksamhet

som stöd för beslut om anskaffning av JAS 1982, 2002.
Fif-a-49 Stefan Holgersson: IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och be-

slutsfattande som bygger på uppgifter hämtade från polisens IT-system, 2001.
Fif-a-51 Per Oscarsson:Informationssäkerhet i verksamheter - begrepp och modeller som stöd för förståelse av infor-

mationssäkerhet och dess hantering, 2001.
No 919 Luis Alejandro Cortes: A Petri Net Based Modeling and Verification Technique for Real-Time Embedded

Systems, 2001.
No 915 Niklas Sandell: Redovisning i skuggan av en bankkris - Värdering av fastigheter. 2001.
No 931 Fredrik Elg: Ett dynamiskt perspektiv på individuella skillnader av heuristisk kompetens, intelligens, mentala

modeller, mål och konfidens i kontroll av mikrovärlden Moro, 2002.
No 933 Peter Aronsson: Automatic Parallelization of Simulation Code from Equation Based Simulation Languages,

2002.
No 938 Bourhane Kadmiry: Fuzzy Control of Unmanned Helicopter, 2002.
No 942 Patrik Haslum: Prediction as a Knowledge Representation Problem: A Case Study in Model Design, 2002.
No 956 Robert Sevenius: On the instruments of governance - A law & economics study of capital instruments in li-

mited liability companies, 2002.
FiF-a 58 Johan Petersson: Lokala elektroniska marknadsplatser - informationssystem för platsbundna affärer, 2002.
No 964 Peter Bunus: Debugging and Structural Analysis of Declarative Equation-Based Languages, 2002.
No 973 Gert Jervan: High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems, 2002.
No 958 Fredrika Berglund: Management Control and Strategy - a Case Study of Pharmaceutical Drug Development,

2002.
Fif-a 61 Fredrik Karlsson: Meta-Method for Method Configuration - A Rational Unified Process Case, 2002.
No 985 Sorin Manolache: Schedulability Analysis of Real-Time Systems with Stochastic Task Execution Times,

2002.
No 982 Diana Szentiványi: Performance and Availability Trade-offs in Fault-Tolerant Middleware, 2002.
No 989 Iakov Nakhimovski: Modeling and Simulation of Contacting Flexible Bodies in Multibody Systems, 2002.
No 990 Levon Saldamli: PDEModelica - Towards a High-Level Language for Modeling with Partial Differential

Equations, 2002.
No 991 Almut Herzog: Secure Execution Environment for Java Electronic Services, 2002.
No 999 Jon Edvardsson: Contributions to Program- and Specification-based Test Data Generation, 2002
No 1000 Anders Arpteg: Adaptive Semi-structured Information Extraction, 2002.
No 1001 Andrzej Bednarski: A Dynamic Programming Approach to Optimal Retargetable Code Generation for

Irregular Architectures, 2002.
No 988 Mattias Arvola: Good to use! : Use quality of multi-user applications in the home, 2003.
FiF-a 62 Lennart Ljung: Utveckling av en projektivitetsmodell - om organisationers förmåga att tillämpa

projektarbetsformen, 2003.
No 1003 Pernilla Qvarfordt: User experience of spoken feedback in multimodal interaction, 2003.
No 1005 Alexander Siemers: Visualization of Dynamic Multibody Simulation With Special Reference to Contacts,

2003.
No 1008 Jens Gustavsson: Towards Unanticipated Runtime Software Evolution, 2003.
No 1010 Calin Curescu: Adaptive QoS-aware Resource Allocation for Wireless Networks, 2003.
No 1015 Anna Andersson: Management Information Systems in Process-oriented Healthcare Organisations, 2003.
No 1018 Björn Johansson: Feedforward Control in Dynamic Situations, 2003.
No 1022 Traian Pop: Scheduling and Optimisation of Heterogeneous Time/Event-Triggered Distributed Embedded

Systems, 2003.
FiF-a 65 Britt-Marie Johansson: Kundkommunikation på distans - en studie om kommunikationsmediets betydelse i

affärstransaktioner, 2003.
No 1024 Aleksandra Tesanovic: Towards Aspectual Component-Based Real-Time System Development, 2003.

No 1034 Arja Vainio-Larsson: Designing for Use in a Future Context - Five Case Studies in Retrospect, 2003.
No 1033 Peter Nilsson: Svenska bankers redovisningsval vid reservering för befarade kreditförluster - En studie vid

införandet av nya redovisningsregler, 2003.
Fif-a 69 Fredrik Ericsson: Information Technology for Learning and Acquiring of Work Knowledge, 2003.
No 1049 Marcus Comstedt: Towards Fine-Grained Binary Composition through Link Time Weaving, 2003.
No 1052 Åsa Hedenskog: Increasing the Automation of Radio Network Control, 2003.
No 1054 Claudiu Duma: Security and Efficiency Tradeoffs in Multicast Group Key Management, 2003.
Fif-a 71 Emma Eliasson: Effektanalys av IT-systems handlingsutrymme, 2003.
No 1055 Carl Cederberg: Experiments in Indirect Fault Injection with Open Source and Industrial Software, 2003.
No 1058 Daniel Karlsson: Towards Formal Verification in a Component-based Reuse Methodology, 2003.
FiF-a 73 Anders Hjalmarsson: Att etablera och vidmakthålla förbättringsverksamhet - behovet av koordination och

interaktion vid förändring av systemutvecklingsverksamheter, 2004.
No 1079 Pontus Johansson: Design and Development of Recommender Dialogue Systems, 2004.
No 1084 Charlotte Stoltz: Calling for Call Centres - A Study of Call Centre Locations in a Swedish Rural Region,

2004.
FiF-a 74 Björn Johansson: Deciding on Using Application Service Provision in SMEs, 2004.
No 1094 Genevieve Gorrell: Language Modelling and Error Handling in Spoken Dialogue Systems, 2004.
No 1095 Ulf Johansson: Rule Extraction - the Key to Accurate and Comprehensible Data Mining Models, 2004.
No 1099 Sonia Sangari: Computational Models of Some Communicative Head Movements, 2004.
No 1110 Hans Nässla: Intra-Family Information Flow and Prospects for Communication Systems, 2004.
No 1116 Henrik Sällberg: On the value of customer loyalty programs - A study of point programs and switching costs,

2004.
FiF-a 77 Ulf Larsson: Designarbete i dialog - karaktärisering av interaktionen mellan användare och utvecklare i en

systemutvecklingsprocess, 2004.
No 1126 Andreas Borg: Contribution to Management and Validation of Non-Functional Requirements, 2004.
No 1127 Per-Ola Kristensson: Large Vocabulary Shorthand Writing on Stylus Keyboard, 2004.
No 1132 Pär-Anders Albinsson: Interacting with Command and Control Systems: Tools for Operators and Designers,

2004.
No 1130 Ioan Chisalita: Safety-Oriented Communication in Mobile Networks for Vehicles, 2004.
No 1138 Thomas Gustafsson: Maintaining Data Consistency im Embedded Databases for Vehicular Systems, 2004.
No 1149 Vaida Jakoniené: A Study in Integrating Multiple Biological Data Sources, 2005.
No 1156 Abdil Rashid Mohamed: High-Level Techniques for Built-In Self-Test Resources Optimization, 2005.
No 1162 Adrian Pop: Contributions to Meta-Modeling Tools and Methods, 2005.
No 1165 Fidel Vascós Palacios: On the information exchange between physicians and social insurance officers in the

sick leave process: an Activity Theoretical perspective, 2005.
FiF-a 84 Jenny Lagsten: Verksamhetsutvecklande utvärdering i informationssystemprojekt, 2005.
No 1166 Emma Larsdotter Nilsson: Modeling, Simulation, and Visualization of Metabolic Pathways Using Modelica,

2005.
No 1167 Christina Keller: Virtual Learning Environments in higher education. A study of students’ acceptance of edu-

cational technology, 2005.
No 1168 Cécile Åberg: Integration of organizational workflows and the Semantic Web, 2005.
FiF-a 85 Anders Forsman: Standardisering som grund för informationssamverkan och IT-tjänster - En fallstudie

baserad på trafikinformationstjänsten RDS-TMC, 2005.
No 1171 Yu-Hsing Huang: A systemic traffic accident model, 2005.
FiF-a 86 Jan Olausson: Att modellera uppdrag - grunder för förståelse av processinriktade informationssystem i trans-

aktionsintensiva verksamheter, 2005.
No 1172 Petter Ahlström: Affärsstrategier för seniorbostadsmarknaden, 2005.
No 1183 Mathias Cöster: Beyond IT and Productivity - How Digitization Transformed the Graphic Industry, 2005.
No 1184 Åsa Horzella: Beyond IT and Productivity - Effects of Digitized Information Flows in Grocery Distribution,

2005.
No 1185 Maria Kollberg: Beyond IT and Productivity - Effects of Digitized Information Flows in the Logging

Industry, 2005.
No 1190 David Dinka: Role and Identity - Experience of technology in professional settings, 2005.
No 1191 Andreas Hansson: Increasing the Storage Capacity of Recursive Auto-associative Memory by Segmenting

Data, 2005.
No 1192 Nicklas Bergfeldt: Towards Detached Communication for Robot Cooperation, 2005.
No 1194 Dennis Maciuszek: Towards Dependable Virtual Companions for Later Life, 2005.
No 1204 Beatrice Alenljung: Decision-making in the Requirements Engineering Process: A Human-centered

Approach, 2005
No 1206 Anders Larsson: System-on-Chip Test Scheduling and Test Infrastructure Design, 2005.
No 1207 John Wilander: Policy and Implementation Assurance for Software Security, 2005.
No 1209 Andreas Käll: Översättningar av en managementmodell - En studie av införandet av Balanced Scorecard i ett

landsting, 2005.
No 1225 He Tan: Aligning and Merging Biomedical Ontologies, 2006.
No 1228 Artur Wilk: Descriptive Types for XML Query Language Xcerpt, 2006.
No 1229 Per Olof Pettersson: Sampling-based Path Planning for an Autonomous Helicopter, 2006.
No 1231 Kalle Burbeck: Adaptive Real-time Anomaly Detection for Safeguarding Critical Networks, 2006.
No 1233 Daniela Mihailescu: Implementation Methodology in Action: A Study of an Enterprise Systems Implemen-

tation Methodology, 2006.
No 1244 Jörgen Skågeby: Public and Non-public gifting on the Internet, 2006.
No 1248 Karolina Eliasson: The Use of Case-Based Reasoning in a Human-Robot Dialog System, 2006.
No 1263 Misook Park-Westman: Managing Competence Development Programs in a Cross-Cultural Organisation-

What are the Barriers and Enablers, 2006.
FiF-a 90 Amra Halilovic: Ett praktikperspektiv på hantering av mjukvarukomponenter, 2006.
No 1272 Raquel Flodström: A Framework for the Strategic Management of Information Technology, 2006.
No 1277 Viacheslav Izosimov: Scheduling and Optimization of Fault-Tolerant Embedded Systems, 2006.

