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Abstract!

In this paper we propose an approach to the design optimization of
fault-tolerant hard real-time embedded systems, which combines
hardware and software fault tolerance techniques. We trade-off
between selective hardening in hardware and process re-execution
in software to provide the required levels of fault tolerance against
transient faults with the lowest-possible system costs. We propose
a system failure probability (SFP) analysis that connects the
hardening level with the maximum number of re-executions in
software. We present design optimization heuristics, to select the
fault-tolerant architecture and decide process mapping such that
the system cost is minimized, deadlines are satisfied, and the
reliability requirements are fulfilled.

1. Introduction

Safety-critical embedded systems have to satisfy cost and performance
constraints even in the presence of faults. In this paper we deal with
transient and intermittent faults> (also known as “soft errors”), which
are very common in modern electronic systems. Their number is in-
creasing with smaller transistor sizes and higher frequencies. Transient
faults appear for a short time, cause miscalculation in logic, corruption
of data, and then disappear without physical damage to the circuit.
Causes of transient faults can be electromagnetic interference, radia-
tion, temperature variations, software “bugs”, etc. [8]. Transient faults
can be addressed in hardware with hardening techniques, i.e., improv-
ing the hardware architecture to reduce the soft error rate, or in software
with techniques such as re-execution, replication, or checkpointing.

In the context of fault-tolerant real-time systems, researchers
have tried to integrate fault tolerance techniques and task schedul-
ing [3, 11, 24]. A static cyclic scheduling framework for design of
fault-tolerant embedded control systems with masking of fault pat-
terns through active replication is proposed in [14]. Girault et al.
[5] propose a generic approach to address multiple failures with ac-
tive replication. Process criticality is used as a metric for selective
replication in [20]. Transparent re-execution and constructive map-
ping and scheduling for fault tolerance have been proposed in [9].
In [8, 7, 15] we have proposed scheduling and fault tolerance pol-
icy assignment techniques for distributed real-time systems, such
that the required level of fault tolerance is achieved and real-time
constraints are satisfied with a limited amount of resources.

The research mentioned above is focused on software fault tol-
erance techniques. However, with increased error rate due to new
technologies and/or in the case of particular harsh conditions (e.g.
high radiation), pure software techniques are not sufficient in order
to achieve the required level of fault tolerance [13, 16].

Researchers have recently proposed a variety of hardware hard-
ening techniques. Zhang et al. [21] propose an approach to selective
hardening of flip-flops, resulting in a small area overhead and signif-
icant reduction in the error rate. Mohanram and Touba [12] have stud-
ied selective hardening of combinatorial circuits. Zhou et al. [23]
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have later proposed a “filtering technique” for hardening of combina-
torial circuits. Zhou and Mohanram [22] have studied the problem of
gate resizing as a technique to reduce the error rate. Garg et al. [4]
have connected diodes to the duplicated gates to implement an effi-
cient and fast voting mechanism. Finally, a selective hardening ap-
proach to be applied in early design stages has been presented in [6],
which is based on the transient fault detection probability analysis.

However, hardening comes with a significant overhead in terms
of cost and speed [13, 19]. The factors which affect the cost are the in-
creased silicon area for fault tolerance, additional design effort, lower
production quantities, excessive power consumption, and protection
mechanisms against radiation such as shields. Hardened processors
are also significantly slower than the regular ones. The manufacturers
of hardened processors are using technologies few generations back
[13, 19], and hardening enlarges the critical path on the circuit e.g. be-
cause of voting mechanism [4] and increased silicon area.

In this work, we combine selective hardening with software fault
tolerance in order to achieve the lowest-possible system costs while sat-
isfying hard deadlines and fulfilling the reliability requirements. We use
process re-execution to tolerate transient faults in software. To ensure
that the system architecture meets the reliability requirements, we pro-
pose a system failure probability (SFP) analysis. This analysis connects
the levels of redundancy (maximum number of re-executions) in soft-
ware to the levels of redundancy in hardware (hardening levels). We
also propose a set of design optimization heuristics in order to decide the
hardening levels of computation nodes, the mapping of processes on
computation nodes, and the number of re-executions on each computa-
tion node. Processes and messages are scheduled using an approach we
have presented in [7, 15]. Experimental results show an improvement of
up 55% on synthetic applications in terms of the number of schedulable
and reliable fault-tolerant solutions with the acceptable cost; and an im-
provement of 66% for a realistic application in terms of cost.

The next two sections present our application model and fault
tolerance techniques, respectively. In Section 4, we outline our problem
formulation. Section 5 illustrates hardening/re-execution trade-offs.
Our heuristics are discussed in Section 6 and experimental results are
presented in Section 7. In Appendix A we present our SFP analysis.

2. Application and System Model

We model an application A as a set of directed, acyclic graphs G(¥},
E,) € A Each node P; € 7 represents one process. An edge e; €
from P; to P; indicates that the output of P;is the input of P;. A process
can be activated after all its inputs, required for the execution, have
arrived. The process issues its outputs when it terminates. Processes
cannot be preempted during their execution.

We consider that the application is running on a set of computation
nodes A connected to a bus. Processes mapped on different computa-
tion nodes communicate with messages sent over the bus. We consider
that the worst-case size of messages is given, which implicitly can be
translated into the worst-case transmission time on the bus. In this pa-
per we assume that communications are fault tolerant (i.e., we use a
communication protocol such as TTP [10]).
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Transient faults can affect processes executed on a computation
node, which would lead to a process failure. To reduce the probability
of process failure, the designer can choose to use a hardened, i.e., a
more reliable, version (h-version) of the computation node. Thus, each
node N;is available in several versions, with different hardening levels,
denoted with h. We denote N, ! the h-version of node N, and with C} h
the cost associated with N;". h A pair {P,, N } indicates that process P
is mapped to the A- vers1on of node N;. The worst-case execution time
(WCET) of P; executed on N; Iis denoted ;5 The probability of failure
of a single execution of process P;onN; "'is denoted Pijn- WCETS (¢) are
determined with worst-case analysis tools [2], while process failure
probabilities (p) are determined using fault injection tools [1, 18].

In Fig. 1 we have an application 4 consisting of the process graph
G, with four processes, P, P,, P;, and P,. The deadline of the applica-
tion graph D =360 ms. The execution times (¢) and failure probabilities
(p) for the processes on different A-versions of computation nodes N,
and N, are shown in the tables. The corresponding costs are associated
with these versions (given at the bottom of the tables).

3. Fault Tolerance Techniques

As a software fault tolerance mechanism we use process re-execution.
‘We assume that the error detection and fault tolerance mechanisms are
themselves fault tolerant. The time needed for detection of faults is ac-
counted for as part of the WCET of the processes. The process re-ex-
ecution operation requires an additional overhead captured as 1. For
example, (Lis 15 ms for the application 4 in Fig. 1.

Safety-critical embedded systems have to be designed such that
they meet a certain reliability goal p = 1 —7. In this paper we con-
sider that y is the maximum probability of a system failure due to
transient faults on any computation node within a time unit, e.g.
one hour of functionality. For example, the reliability goal for the
application 4 in Fig. 1 is 1 — 107 within one hour.

With sufficiently hardened nodes, the reliability goal can be
achieved without any re-execution at software level, since the probabil-
ity of the hardware failing is acceptably small. As the level of hardening
decreases, the probability of faults being propagated to the software lev-
el is increasing. Thus, in order to achieve the reliability goal, a certain
number of re-executions have to be introduced at software level.

In Fig. 2, we consider a process P, executed on a node N,; with
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three h-versions. The worst-case execution scenario is different for
the different h-versions. In the first version, two re-executions, k; =
2, have to be introduced into software in order to meet the reliability
goal. The faults will be tolerated with re-execution as presented in
Fig. 2a. The first execution of P,, denoted P, is affected by a fault
and is re-executed as P,,, after a worst-case recovery overhead [l =
5 ms. The second execution P, ,, in the worst case, also fails and is
re-executed. Finally, the third execution P,,; will complete without
faults. In the second version with a higher hardening level, only one
re-execution, k, = 1, has to be added into software, which will corre-
spond to the worst-case scenario with one re-execution in Fig. 2b. In
the most hardened version, k; =0, and process P, is executed without
re-executions at software level.

Note that the worst-case execution time of process P, has in-
creased with the hardening. Nevertheless, in the example, an in-
creased level of hardening has resulted in smaller worst-case delays
(which is not necessarily the case in general). In Appendix A we
show how the maximum number of re-executions k; which have to
be introduced at software level on node N, is connected to the reli-
ability goal and the hardening level of the computation nodes.

4. Problem Formulation

As an input we get an application 4, represented as a set of acyclic di-
rected graphs G, € A. Application Aruns on a bus-based architecture as
discussed in Section 2. The reliability goal p, the deadline, and the re-
covery overhead L are given. Given is also a set of available computa-
tion nodes each with its available hardened A-versions and the
corresponding costs. We know the worst-case execution times, and the
failure probabilities are obtained with fault injection experiments [1,
18] for each process on each h-version of computation node. The max-
imum transmission time of all messages, if sent over the bus, is given.

As an output, the following has to be produced: (1) a selection of
the computation nodes and their hardening level; (2) a mapping of
the processes to the nodes of the selected architecture; (3) the maxi-
mum number of re-executions on each computation node; and (4) a
schedule of the processes and communications.

The selected architecture, the mapping and the schedule should
be such that the total cost of the nodes is minimized, all deadlines are
satisfied, and the reliability goal p is achieved. Achieving the reliabil-
ity goal implies that hardening levels are selected and the number of
re-executions are chosen on each node N; such that the elaborated
schedule, in the worst case, satisfies the deadlines.

5. Motivational Examples

The first example, depicted in Fig. 3, shows how hardening can im-
prove schedulability if the error rate is high. In Fig. 3, we consider one
process, P,, and one processor, N, with three h-versions, N 11 without
hardening and N, and N,* progressively more hardened. The corre-
sponding failure probabilities, the WCET and costs are depicted in the
table. We have to meet a deadline of 360 ms and the reliability goal of
1 — 107 within one hour. As shown in Appendix A, the hardening lev-
els are connected to the number of re-executions in software, to satisfy
the reliability goal. Thus, using N 11, we have to introduce 6 re-execu-
tions to reach the reliability goal, as depicted in Fig. 3a, which, in the
worst case, will miss the deadline of 360 ms. However, with the h-ver-
sion N,?, the failure probability is reduced by two orders of magnitude,
and only two re-executions are needed for satisfying the reliability
goal p. This solution will already meet the deadline as shown in Fig.
3b. In case of the most hardened architecture depicted in Fig. 3c, only
one re-execution is needed. However, using N13 will cost twice as
much as the previous solution with less hardening. Moreover, due to
performance degradation, the solution with the maximal hardening
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will complete in the worst-case scenario exactly at the same time as the
less hardened one. Thus, the architecture with N 12 should be chosen.
In Fig. 4 we consider several architecture selection alternatives for
the application 4, presented in Fig. 1, composed of four processes,
which can be mapped on three A-versions of nodes N, and N,. The
cheapest two-processor solution that meets the deadline and reliability
goal is depicted in Fig. 4a. The architecture consists of the h-versions
N,* and N, and costs 72 units. Based on our SFP calculations, the re-
liability goal can be achieved with one re-execution on each proces-
sor. Let us evaluate next some possible monoprocessor architectures.
With the architecture composed of only N 12, presented in Fig. 4b, ac-
cording to the SFP analysis, the reliability goal is achieved with k| =
2 re-executions at software level. As can be seen in the figure, the ap-
plication is unschedulable. Similarly, the application is also unsched-
ulable with the architecture composed of only N, presented in Fig.
4c. Fig. 4d and Fig. 4e depict the solutions obtained with the mono-
processor architecture composed of the most hardened versions of the
nodes. In both cases, the reliability goal is achieved without re-execu-
tions at software level (kj = 0). It is interesting to observe that even
with k, = 0 with the architecture consisting of N,?, the application is
unschedulable. This is because of the performance degradation due to
the hardening. This degradation, however, is smaller in the case of N23
and, thus, the solution in Fig. 4e is schedulable. If we compare the two
schedulable alternatives in Fig. 4a and 4e, we observe that the one
consisting of less hardened nodes (Fig. 4a) is more cost efficient than
the monoprocessor alternative with the most hardened node (Fig. 4e).
The decision on how much hardening to use is crucial in pro-
viding cost-efficient and schedulable fault-tolerant architectures.
We have to account for cost, performance degradation, and the
number of re-executions in software. The analysis, which connects
the hardening levels, process failure probabilities, and the maxi-
mum number of re-executions k;, is presented in Appendix A.
6. Design Strategy and Algorithms
Our design strategy is outlined in Fig. 5. As an input we get the appli-
cation graph G the set of computation nodes A deadline D, and the re-
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liability goal p. The strategy will return the architecture AR composed
of the selected set of nodes, the hardening levels corresponding to each
node, the number of re-executions to be supported in software, the
mapping of the application, and, finally, the static schedule.

The design heuristic explores the set of architectures, and eventually
selects that architecture, which minimizes cost, while still meeting the
schedulability and reliability requirements of the application. The heu-
ristic starts with the monoprocessor architecture (n = 1), composed of
only one (fastest) node (lines 1-2). The mapping, selection of software
and hardware redundancy (re-executions and hardening levels) and the
schedule are obtained for this architecture (lines 5-9). If the application
is unschedulable, the number of computation nodes is directly in-
creased, and the fastest architecture with n = n + 1 nodes is chosen (line
15). If the application is schedulable on that architecture with n nodes,
i.e., SL <D, the cost C of that architecture is stored as the best-so-far cost
Cp.sr- The next fastest architecture with n nodes (in the case of no hard-
ening) is then selected (line 18). If on that architecture the application is
schedulable (after hardening is introduced) and the cost C < C,,,, it is
stored as the best-so-far. The procedure continues until the architecture
with the maximum number of nodes is reached and evaluated.

If the cost of the next selected architecture with the minimum
hardening levels is higher than the best-so-far cost C,,,, such ar-
chitecture will be ignored (line 6).

The evaluation of an architecture is done at each iteration step with
the MappingAlgorithm function. MappingAlgorithm receives as an
input the selected architecture, produces the mapping, and returns the
schedule corresponding to that mapping. The cost function used for
optimization is also given as a parameter. We use two cost functions:
(1) schedule length, which produces the shortest-possible schedule
length SL for the selected architecture for the best-possible mapping
(line 7), and (2) architecture cost, in which the mapping algorithm
takes an already schedulable application as an input and then
optimizes the mapping to improve the cost of the application without
impairing the schedulability (line 9). MappingAlgorithm tries a set of
possible mappings (as, for example, in Fig. 4), and for each mapping
it optimizes the levels of redundancy in software and hardware, which
are required to meet the reliability goal p. The levels of redundancy
are optimized inside the mapping algorithm with the
RedundancyOpt heuristic presented in Sect. 6.3, which returns the
levels of hardening and the number of re-executions in software. The
function dependencies are shown in Fig. 5. The re-executions in
software are obtained with ReExecutionOpt heuristic, called inside

DesignStrategy(G A( D, p)
1 n=1
2 AR = SelectArch(; n)
3 Cho= MAX_COST
4 while n<|4(| do
5  SetMinHardening(A%)
6
7
8

if Cps > GetCost(A%) then
SL = MappingAlgorithm(GAR®,D,p, ScheduleLength)

if SL<Dthen
9 C = MappingAlgorithm(g AR, D,p, Cost)
10 if C < Cpes; then
11 Crest = MappingAlgorithm
12 ARpest = AR
13 end if RedundancyOpt
14 else ,
15 n=n+1 ReExecutionOpt
16 end if
17 endif Scheduling
18 AR = SelectNextArch(a; n)
19 end while
20 return AR, Scheduling
end DesignStrategy

Figure 5. General Design Strategy



RedundancyOpt for each vector of hardening levels. Then the
obtained alternative of redundancy levels is evaluated in terms of
schedulability by the off-line scheduling algorithm Scheduling,
which is shortly described in Sect. 6.4. After completion of
RedundancyOpt, Scheduling is called again to determine the
schedule for each selected mapping alternative in MappingAlgorithm.
6.1 Illustrative Example

The basic idea behind our design strategy is that the change of the
mapping immediately triggers the change of the hardening levels.
Thus, there is no need to directly change hardening since it can be
guided by the mapping. To illustrate this, let us consider the applica-
tion 4 in Fig. 1 and mapping in Fig. 4a. Processes P, and P, are
mapped on N;, while processes P; and P, are mapped on N,. Both
nodes, N, and N,, have the second hardening level (h = 2), N, and
sz. With this architecture, according to our SFP calculation, one re-
execution is needed on each node in order to meed the reliability goal.
As can be seen in Fig. 4a, the deadlines are satisfied in this case. If,
however, processes P; and P, are moved (re-mapped) onto node N,,
resulting in the mapping in Fig. 4e, then using the third hardening lev-
el (h = 3) is the only option to guarantee the timing and reliability re-
quirements, and this alternative will be chosen by our algorithm for
the respective mapping. If, for a certain mapping, the application is
not schedulable with any available hardening level, for example, the
mapping in Fig. 4d, this mapping will be discarded by our algorithm.
6.2 Mapping Optimization

In our design strategy we use the MappingAlgorithm heuristic with
two cost functions, schedule length and the cost. We have extended the
algorithm from [7, 15] to consider the different hardening and re-exe-
cution levels. The mapping heuristic investigates the processes on the
critical path. Thus, at each iteration, processes on the critical part are
selected for the re-mapping. Processes recently re-mapped are marked
as “tabu” (by setting up the “tabu” counter) and are not touched. Pro-
cesses, which have been waiting for a long time to be re-mapped, are
assigned with the waiting priorities and will be re-mapped first. The
heuristic changes the mapping of a process if it leads to (1) the solution
that is better than the best-so-far (including “tabu” processes), or (2) to
the solution that is worse than the best-so-far but is better than the other
possible solutions. At every iteration, the waiting counters are in-
creased and the “tabu” counters are decreased. The heuristic stops af-
ter a certain number of steps without any improvement.

Moreover, in order to evaluate a particular mapping, for this
mapping we have to obtain the hardening levels in hardware and the
maximum number of re-executions in software. This is performed in
the RedundancyOpt function, presented in the next section.

6.3 Hardening/Re-execution Trade-off

Every time we evaluate a mapping move by the MappingAlgorithm,
we run RedundancyOpt to obtain hardening levels in hardware and
the number of re-executions in software (the latter obtained with
ReExecutionOpt). The heuristic takes as an input the architecture 4K
with the minimum hardening levels and the given mapping M.

At first, the heuristic increases the schedulability of the application
by increasing the hardening levels in a greedy fashion, obtaining the
number of re-executions for each vector of hardening. The
schedulability is evaluated with the Scheduling heuristic. Once a
schedulable solution is reached, we iteratively reduce hardening by
one level for each node, again, at the same time obtaining the
corresponding numbers of re-executions. For example, in Fig. 4a, we
can reduce from N,? to N,', and from N,” to N,'. If the application
becomes unschedulable, for example, in the case we reduce from N, 12

to N 11, such a solution is not accepted. Among the schedulable
hardened alternatives, we choose the one with the lowest cost and
continue. The heuristic iterates while improvement is possible, i.e.,
there is at least one schedulable alternative. In Fig. 4a, the heuristic
will stop once h-versions N, to N,? have been reached, since the
solutions with less hardening are not schedulable.

The ReExecutionOpt heuristic is called in every iteration of
RedundancyOpt to obtain the number of re-executions in software.
The heuristic takes as an input the architecture AR, mapping M, and the
hardening levels #£ It starts without any re-executions in software and
increases the number of re-executions in a greedy fashion. The heuristic
uses the SFP analysis and gradually increases the number of re-
executions until the reliability goal p is reached. The exploration of the
number of re-executions is guided towards the largest increase in the
system reliability. For example, if increasing the number of re-
executions by one on node N, will increase the system reliability from
1-102 to 1-10™ and, at the same time, increasing re-executions by one
on node N, will increase the system reliability from 1-10 to 1-5-107,
the heuristic will choose to introduce one more re-execution on node N,.
6.4 Scheduling
In this paper we adapt an off-line scheduling strategy, which we
have proposed in [7, 15], that uses “recovery slack” in order to ac-
commodate the time needed for re-executions in case of faults. Af-
ter each process P; we assign a slack equal to (Z;;; +u) x k;, where
k; is the number of re-executions on the computation node N; with
hardening &. The slack is shared between processes in order to re-
duce the time allocated for recovering from faults.

The Scheduling heuristic is used by the RedundancyOpt and
mapping optimization heuristics to determine the schedulability of
the evaluated solution, and produces the best possible schedule for
the final architecture.

7. Experimental Results

For the experiments, we have generated 150 synthetic applications
with 20 and 40 processes. The worst-case execution times (WCETSs)
of processes, considered on the fastest node without any hardening,
have been varied between 1 and 20 ms. The recovery overhead [ has
been randomly generated between 1 and 10% of process WCET.

Regarding the architecture, we consider nodes with five different
levels of hardening. The failure probabilities of processes running on
different h-versions of computation nodes have been obtained using
fault injection experiments. We have considered three fabrication tech-
nologies with the average transient (soft) error rates (SER) per clock
cycle at the minimum hardening level of 10’10, 10", and 10’12, respec-
tively, where 107'° corresponds to the technology with the highest level
of integration and the smallest transistor sizes.

The hardening performance degradation (HPD) from the mini-
mum to the maximum hardening level has been varied from 5% to
100%, increasing linearly with the hardening level. For a HPD of 5%,
the WCET of processes increases with each hardening level with 1, 2,
3, 4, and 5%, respectively; for HPD = 100%, the increases will be 1,
25, 50, 75, and 100% for each level, respectively. Initial processor
costs (without hardening) have been generated between 1 and 6 cost
units. We have assumed that the hardware cost increases linearly with
the hardening level. The system reliability requirements have been
varied between p = 1 —7.5-10® and 1 — 2.5-10 within one hour. The
deadlines have been assigned to all the applications independent of the
transient error rates and hardening performance degradation of the
computation nodes. The experiments have been run on a Pentium 4
2.8 GHz processor with 1Gb memory.
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Figure 6. Experimental Results

In our experimental evaluation, we compare our design
optimization strategy from Section 6, denoted OPT, to the two
strategies, in which the hardening optimization step has been
removed from the mapping algorithms. In the first strategy,
denoted MIN, we use only computation nodes with the minimum
hardening levels. In the second strategy, denoted MAX, only the
computation nodes with the maximum hardening levels are used.

The experimental results are presented in Fig. 6, which demon-
strates the efficiency of our design approaches in terms of the appli-
cations (in percentage) accepted out of all considered applications.
By the acceptable application we mean an application that meets its
reliability goal, is schedulable, and does not exceed the maximum
architectural cost (ArC) provided. In Fig. 6a, for SER = 10! and ArC
= 20 units, we show how our strategies perform with an increasing
performance degradation due to hardening. The MIN strategy always
provides the same result because it uses the nodes with the minimum
hardening levels and applies only software fault tolerance tech-
niques. The efficiency of the MAX strategy is lower than for MIN and
is further reduced with the increase of performance degradation. The
OPT gives 18% improvement on top of MIN, if HPD = 5%, 10% im-
provement if HPD = 25%, and 8% improvement for 50% and 100%.
More detailed results for ArC = 15 and ArC =25 cost units are shown
in the table in Fig. 6b, which demonstrate similar trends.

In Fig. 6¢ and Fig. 6d, we illustrate the performance of our design
strategies as a function of the error rate. The experiments in Fig. 6¢
have been performed for HPD = 5%, while the ones in Fig. 6d cor-
respond to HPD = 100%. The maximum architectural cost is 20
units. In the case of a small error rate SER = 10", the MIN strategy
is as good as our OPT due to the fact that the reliability requirements
can be achieved exclusively with only software fault tolerance tech-

niques. However, as SER is increased to 107!, our OPT strategy al-
ready outperforms MIN. For SER = 107'%, OPT is significantly better
than both other strategies since in this case finding a proper trade-off
between the levels of redundancy in hardware and the levels of soft-
ware re-execution becomes more important.

The execution time of our OPT strategy for the examples that
have been considered is between 3 minutes and 60 minutes.

‘We have also run our experiments on a real-life example, a vehi-
cle cruise controller (CC) composed of 32 processes [8]. The CC
considers an architecture consisting of three nodes: Electronic Throt-
tle Module (ETM), Anti-lock Braking System (ABS) and Transmis-
sion Control Module (TCM). We have set the system reliability
requirements to p = 1 —1.2-10” within one hour and considered . be-
tween 1 and 10% of process average-case execution times. The SER
for the least hardened versions of modules has been set to 2:107'%;
five h-versions have been considered with HPD = 25% and linear
cost functions. We have considered a deadline of 300 ms. We have
found that CC is not schedulable if the MIN strategy with the mini-
mum hardening levels has been used. However, CC is schedulable
with the MAX and OPT approaches. Moreover, our OPT strategy
with the trading-off between hardware and software redundancy lev-
els has produced results 66% better than the MAX in terms of cost.

8. Conclusions

In this paper we have considered hard real-time applications mapped
on distributed embedded architectures. We were interested to derive
the least costly implementation that meets imposed timing and reli-
ability constraints. We have considered two options for increasing
the reliability: hardware redundancy and software re-execution.

We have proposed a design optimization strategy for minimiz-
ing of the overall system cost by trading-off between processor
hardening and software re-execution. Our experimental results
have shown that, by selecting the appropriate level of hardening in
hardware and re-executions in software, we can satisfy the reliabil-
ity and time constraints of the applications while minimizing the
cost of the architecture. The optimization relies on a system failure
probability analysis, which connects the level of hardening in hard-
ware with the number of re-executions in software.

9. Appendix A
A.1 System Failure Probability (SFP) Analysis

In this appendix we present an analysis that determines the system failure
probability, based on the number of re-executions in software and the process
failure probabilities on the computation nodes with different hardening levels.

The process failure probability p;;, of process P;, executed on com-
putation node N; with hardening level £, is obtained with simulation us-
ing fault injection tools such as [1, 18]. Mapping of a process P; on the
h-version of computation node N; will be denoted as M(P,) = Njh.

In the analysis, first, we calculate the probability Pr(0; Njh) of no
faults occurring (no faulty processes) during one iteration of the applica-
tion on the s-version of node N;, which is the probability that all process-
es mapped on Njh will be executed correctly:
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To account for faulty processes and re-executions, we will first refer to
f-fault scenarios as to combinations with repetitions of ffaults on the num-
ber I'(V)) of processes mapped on the computation node N;. Under a com-
bination with repetitions of n on m, we will understand the process of
selecting n elements from a set of m elements, where each element can be
selected more than once and the order of selection does not matter [17].

For example, an application 4 is composed of processes P, P,, and P;,
which are mapped on node N,. k;= 3 transient faults may occur, e.g. f=3. Let



us consider one possible fault scenario. Process P, fails and is re-executed,
its re-execution fails but then it is re-executed again without faults. Process
P, fails once and is re-executed without faults. Thus, in this fault scenario,
from a set of processes P,, P, and P;, processes P; and P, are selected; more-
over, process P, is selected twice, which corresponds to one repetition.

The probability of recovering from a particular combination of f
faults consists of two probabilities, the probability that this combination
of ffaults has happened and that all the processes, mapped on N,, will be
eventually (re-)executed without faults. The latter probability is, in fact,
the no fault probability Pr(0; N/-h). Thus, the probability of successful re-
covering from f faults in a particular fault scenario S* is

Pro(fND= PrOND - T] pupy @)
s € (Stm*)

where |(S*m®)|=F, (S*m*)=(S, m), SN, |S| = H(Nf), sup(m(@)|acS)=f.
The combination with repetitions is expressed here with a finite submul-
tiset (S* m*) of a multiset (S, m) [17]. Informally, a multiset is simply a
set with repetitions. Formally, in the present context, we define each our
finite multiset as a function m: S — NN on set S, which includes indices of
all processes mapped on Nih’ to the set N of (positive) natural numbers.
For each process P, with index a in S the number of repetitions is the
number m(a), which is less or equal to f faults (expressed as a supremum
of function m(a)). The number of elements in S* is f, e.g. the number of
faulty processes. Thus, if a is repeated f times, m(a) = f, i.e., P, fails f
times, S* will contain only repetitions of @ and nothing else.

From (2), the probability that the system recovers from all possible f
faults is a sum of probabilities of all f~fault recovery scenarios
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Suppose that we consider a situation with maximum k; re-executions
on the h-version of the node N;. The node fails if more than k; faults are
occurring. From (3) and (1), we will derive the failure probability of the
h-version of node N; with k; re-executions as

k;
Pr(f>k:N) = 1-Pr(o;Nf)-f;Pr(f;Nf) “@

where we subtract from the initial failure probability with only hardware
redundancy, 1 — Pr(O;N;' ) , the probabilities of all the possible successful
recovery scenarios provided with k; re-executions.

Finally, the probability that the system composed of # computation nodes
with k; re-executions on each node N; will not recover, in the case more than

faults have happened on any computation node N, can be obtained as follows:
i .

n
Pr(jgl (f>kj;N;'))= 1 -Jl‘!(l —Pr(f>k:ND) (5)

According to the problem formulation, the system non-failure probabili-
ty in the time unit T (i.e., one hour) of functionality has to be above the
reliability goal p = 1 — v, where 7 is the maximum probability of a sys-
tem failure due to transient faults within the time unit T. Considering that
the calculations above have been performed for one iteration of the ap-
plication (i.e., within a period T), we obtain the following condition for
our system to satisfy the reliability goal

n
(-G
A.2 Computation Example
To illustrate how the formulae (1)-(6) can be used in obtaining the num-
ber of re-execution be introduced at software level, we will consider the
architecture in Fig. 4a. At first, we compute the probability of no faulty
processes for both nodes N gz and N,%?
Pr(O;N,2) = \(1-1.2:10°)-(1- 1.3-10%) ) = 0.99997500015
Pr(0;N,2) = (1- 1.2:10%)-(1- 1.3-10°) J= 0.99997500015
1. The combinations of faults in the re-executions are mutually exclusive.
2. Symbols (“and ) indicate that numbers are rounded up with 10" accuracy; | and ) indicate that
numbers are rounded down with 107! accuracy. It is needed for pessimism of fault-tolerant design.
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>p (6)

According to formulae (4) and (5),
Pr(f>0; N,%) = 1 —0.99997500015 = 0.000024999844
Pr(f>0; N,?) = 1 —0.99997500015 = 0.000024999844
Pr((f>0; N2 U (f> 0; N2) = (1 = (1 - 0.000024999844) - (1 —
0.000024999844)% = 0.00004999907.
The system period 7 is 360 ms, hence system reliability is (1 —
0.00004999907)!%% = 0.60652871884, which means that the system
does not satisfy the reliability goal p = 1 — 1075,
Let us now consider k; =1 and k, = 1:
Pr(1:N, %)= 10.99997500015-(1.2-105+1.3-10%) ) = 0.00002499937
Pr(1;N,%)=10.99997500015-(1.2-10°+1.3-10°%) )= 0.00002499937
According to formulae (4) and (5),
Pr(f>L:N, %)= (1-0.99997500015 — 0.00002499937 | = 4.8-10°'°
Pr(f>1:N,%)=(1 - 0.99997500015 — 0.00002499937 | = 4.8-10"'°
Pr((f>1; N U(F>1; M) = 9.61071,
Hence, the system reliability is (1 —9.6-107'%)!%°= 0,.99999040004 and
the system meets its reliability goal p = 1 — 107,
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