
Abstract
In this paper we present an approach to the scheduling of fault-tolerant
embedded systems for safety-critical applications. Processes and mes-
sages are statically scheduled, and we use process re-execution for re-
covering from multiple transient faults. If process recovery is
performed such that the operation of other processes is not affected, we
call it transparent recovery. Although transparent recovery has the ad-
vantages of fault containment, improved debugability and less memory
needed to store the fault-tolerant schedules, it will introduce delays
that can violate the timing constraints of the application. We propose a
novel algorithm for the synthesis of fault-tolerant schedules that can
handle the transparency/performance trade-offs imposed by the de-
signer, and makes use of the fault-occurrence information to reduce the
overhead due to fault tolerance. We model the application as a condi-
tional process graph, where the fault occurrence information is repre-
sented as conditional edges and the transparent recovery is captured
using synchronization nodes.

1. Introduction
Safety-critical applications have to function correctly and meet their
timing constraints even in the presence of faults. Such faults can be
permanent (i.e., damaged microcontrollers or communication links),
transient (e.g., caused by electromagnetic interference), or intermittent
(appear and disappear repeatedly). The transient faults are the most
common, and their number is increasing due to the raising level of in-
tegration in semiconductors.

Researchers have proposed several hardware architecture solutions,
such as MARS [13], TTA [14] and XBW [3], that rely on hardware rep-
lication to tolerate a single permanent fault in any of the components of a
fault-tolerant unit. Such approaches can be used for tolerating transient
faults as well, but they incur very large hardware cost if the number of
transient faults is larger than one. An alternative to such purely hardware-
based solutions are approaches such as re-execution, replication, check-
pointing.

Several researchers have shown how the schedulability of an appli-
cation can be guaranteed at the same time with appropriate levels of
fault-tolerance using pre-emptive online scheduling [1, 2, 8, 18]. Con-
sidering their high degree of predictability, researchers have proposed
approaches for integrating fault-tolerance into the framework of static
scheduling [12]. A simple heuristic for combining several static sched-
ules in order to mask fault-patterns through replication is proposed in
[4], without, however, considering any timing constraints. This ap-
proach is used as the basis for cost and fault-tolerance trade-offs within
the Metropolis environment [15].

Fohler [5] proposes a method for joint handling of aperiodic and pe-
riodic processes by inserting slack for aperiodic processes in the static
schedule, such that the timing constraints of the periodic processes are
guaranteed. In [6] he equates the aperiodic processes with fault-toler-
ance techniques that have to be invoked on-line in the schedule table
slack to handle faults. Overheads due to several fault-tolerance tech-
niques, including replication, re-execution and recovery blocks, are
evaluated.

When re-execution is used in a distributed system, Kandasamy [10] pro-
poses a list-scheduling technique for building a static schedule that can
mask the occurrence of faults, making the re-execution transparent. Slacks

are inserted into the schedule in order to allow the re-execution of process-
es in case of faults. The faulty process is re-executed, and the processor
switches to an alternative schedule that delays the processes on the corre-
sponding processor, making use of the slack introduced. The authors pro-
pose an algorithm for reducing the necessary slack for re-execution. This
algorithm has later been applied to the fault-tolerant transmission of mes-
sages on a time-division multiple-access bus [11].

In [9] we have shown how re-execution and active replication can be
combined in an optimized implementation that leads to a schedulable
fault-tolerant application without increasing the amount of employed re-
sources. There, we have extended the scheduling algorithm in [10] to
produce the fault-tolerant schedules for a given combination of fault-tol-
erant policies. We have considered transparent re-execution, where a
fault occurring on one processor is masked to the other processors in the
system, i.e., the recovery in case of a fault is transparent. Such fault
masking has several advantages: provides fault-containment, improves
debugability, and reduces the memory required for storing the fault-tol-
erant schedules. However, its main disadvantage is that it introduces de-
lays into the schedule, needed to mask fault occurrences, which can lead
to timing constraints violations.

In this paper, we consider a very different trade-off, namely, transpar-
ency versus performance and memory. We propose a fine-grained ap-
proach to transparency, by handling fault-containment at the
application-level instead of resource-level, thus offering the designer
the possibility to trade-off transparency for performance.

We propose a novel algorithm for the synthesis of fault tolerant sched-
ules that can handle the transparency/performance trade-offs imposed by
the designer. Our approach makes use of the fault-occurrence informa-
tion to reduce the overhead due to fault tolerance in order to fulfill the
timing constraints. We use a fault-tolerant conditional process graph
(FT-CPG) to model the application: conditional edges are used for mod-
elling fault occurrences, while synchronization nodes capture the fine-
grained transparency requirements. The synthesis problem is formulated
as a FT-CPG scheduling problem. The proposed algorithm not only han-
dles fine-grained transparency, but, as the experimental results will
show, also significantly outperforms the existing approach [9] in terms
of the quality of the produced schedules.

The next two sections present the system architecture and the applica-
tion model, respectively. Section 4 highlights the importance of support-
ing transparency/performance trade-offs. Section 5 introduces the FT-
CPG model, and Section 6 presents the proposed FT-CPG scheduling al-
gorithm. The evaluation of the proposed approaches, including a real-life
example is presented in Section 7.

2. System Model
We consider architectures composed of a set N of nodes which share a
broadcast communication channel. The communication channel is stat-
ically scheduled such that one node at a time has access to the bus, ac-
cording to the schedule determined off-line.

We have designed a software architecture which runs on the CPU in
each node, and which has a real-time kernel as its main component.

P1 C1 = 30 ms
µ1 = 5 ms

k = 2
N1 P1 P1 P1P1

Figure 1. Re-execution

Synthesis of Fault-Tolerant Schedules with Transparency/Performance
Trade-offs for Distributed Embedded Systems

Viacheslav Izosimov, Paul Pop, Petru Eles, Zebo Peng
Computer and Information Science Dept., Linköping University, Sweden

{viaiz|paupo|petel|zebpe}@ida.liu.se

The processes activation and message transmission is done based on
the local schedule tables.

In this paper we are interested in fault-tolerance techniques for tol-
erating transient faults, which are the most common faults in today’s
embedded systems. We have generalized the fault-model from [10]
that assumes that one single transient fault may occur on any of the
nodes in the system during the application execution. In our model, we
consider that at most k transient faults may occur anywhere in the sys-
tem during one operation cycle of the application. The number of faults
can be larger than the number of processors in the system. Several tran-
sient faults may occur simultaneously on several processors as well as
several faults may occur on the same processor.

The error detection and fault-tolerance mechanisms are part of the
software architecture. We assume a combination of hardware-based
(e.g., watchdogs, signature checking) and software-based error detec-
tion methods, systematically applicable without any knowledge of the
application (i.e., no reasonableness and range checks) [3]. The error
detection overhead is considered as part of the process worst-case ex-
ecution time. We assume that all faults can be found using such detec-
tion methods, i.e., no byzantine faults which need voting on the output
of replicas for detection. The software architecture, including the real-
time kernel, error detection and fault-tolerance mechanisms are them-
selves fault-tolerant. In addition, we assume that message fault-toler-
ance is achieved at the communication level, for example through
hardware replication of the bus.

We use re-execution for tolerating faults. Let us consider the example
in Fig. 1, where we have process P1 and a fault-scenario consisting of
k = 2 transient faults that can happen during one cycle of operation. In
the worst-case fault scenario depicted in Fig. 1, the first fault happens
during the process P1’s first execution, and is detected by the error de-
tection mechanism. After a worst-case recovery overhead of µ1 = 5
ms, depicted with a light gray rectangle, P1 will be executed again. Its
second execution in the worst-case could also experience a fault. Final-
ly, the third execution of P1 will take place without fault.

3. Application Model
We model an application A(V, E) as a set of directed, acyclic, polar
graphs Gi(Vi, Ei) ∈ A. Each node Pi ∈ V represents one process. An
edge eij ∈ E from Pi to Pj indicates that the output of Pi is the input of
Pj. A process can be activated after all its inputs have arrived and it is-
sues its outputs when it terminates. Processes are non-preemptable and
thus cannot be interrupted during its execution. Fig. 2 depicts an appli-
cation A consisting of a graph G1 with four processes, P1 to P4.

The communication time between processes mapped on the same pro-
cessor is considered to be part of the process worst-case execution time
and is not modeled explicitly. Communication between processes
mapped to different processors is performed by message passing over the
bus. Such message passing is modeled as a communication process in-
serted on the arc connecting the sender and the receiver process, and is de-
picted with black dots in the graph in Fig. 2.

The mapping of a process in the application is determined by a function
M: V → N, where N is the set of nodes in the architecture. For a process Pi

∈ V , M(Pi) is the node to which Pi is assigned for execution. We consider
that the mapping is given, and we know the worst-case execution time

of process Pi, when executed on M(Pi). We also consider that the size
of the messages is given. In Fig. 2, the mapping is given in the table be-
sides the application graph.

All processes and messages belonging to a process graph Gi have the
same period Ti = TGi

which is the period of the process graph. A
deadline DGi

 ≤ TGi
 is imposed on each process graph Gi. In addition,

processes can have associated individual release times and deadlines.
If communicating processes are of different periods, they are combined
into a hyper-graph capturing all process activations for the hyper-
period (LCM of all periods).

4. Transparency/Performance Trade-offs
Although transparent recovery has the advantages of fault contain-
ment, improved debugability and less memory needed to store the
fault-tolerant schedules, it will introduce delays that can violate the
timing constraints of the application. These delays can be reduced by
trading-off transparency for performance.

Let us consider the example in Fig. 2, where we have an application
consisting of four processes, P1 to P4 and three messages, m1 to m3,
mapped on an architecture with two processors, N1 and N2. Messages m1

and m2 are sent from P1 to processes P4 and P3, respectively. Message m3

is sent from P2 to P3. The worst-case execution times of each process are
depicted in the table, and the deadline of the application is 210 ms. We
consider a fault scenario where two transient faults (k = 2) can occur.

Whenever a fault occurs, the faulty process has to be re-executed.
Thus, the scheduler in a processor that experiences a fault has to switch
to another schedule containing a different start time for that process.
For example, according to the schedule in Fig. 2a1, processes are
scheduled at times indicated by the white rectangles in the Gantt chart.
Once a fault occurs in P3, the scheduler on node N1 will have to switch
to another schedule, where P3 is delayed with C3 + µ to account for the
fault. If, during the execution of P3, a second fault occurs, the scheduler
has to switch to another schedule illustrated in Fig. 2a2.

All the alternative schedules needed to run the application in case of
faults are produced off-line by the scheduling algorithm. The end-to-
end worst-case delay of an application is given by the maximum fin-
ishing time of any schedule, since this is a situation that can happen in
the worst-case scenario. For the application in Fig. 2a1, the largest de-
lay is produced by the schedule depicted in Fig. 2a2, which has to be
activated when two faults happen in P3.

In Fig. 2 we illustrate four alternative scheduling strategies, represent-
ing different transparency/performance trade-offs. For each alternative,
on the left side (a1–d1) we show the schedule when no faults occur, while
the right side (a2–d2) depicts the corresponding worst-case scenario, re-
sulting in the longest schedule. Thus, we would like to have in a2–d2

schedules that meet the deadline of 210 ms depicted with a thick verti-
cal line.

Depending on how the schedule table is constructed, the re-execution
of a process has a certain impact on the execution of other processes. In
Fig. 2a1, we have constructed the schedule such that each execution of
a process Pi is followed by a recovery slack, which is idle time on the
processor, needed to recover (re-execute) the failed process. For exam-
ple, for P3 on node N2, we introduce a recovery slack of k × (C3 + µ) =
50 ms to make sure that we can recover P3 even in the case it experienc-
es the maximum number faults (Fig. 2a2). Thus, a fault occurrence that
leads to the re-execution of any process Pi will impact only Pi. We call
such an approach fully transparent because fault occurrence in a process
is transparent to all other processes on the same or other processors.

However, this approach has the drawback of introducing unneces-
sarily large delays into the schedule table. The end-to-end delay in this
case is 265 ms, corresponding to the schedule in Fig. 2a2, which will
miss the deadline. The straightforward way to reduce the end-to-end
delay is to share the re-execution slacks among several processes [9].
For example, in Fig. 2b1, processes P1 and P2 share the same re-execution
slack on processor N1. This shared slack has to be large enough to ac-
commodate the recovery of the largest process (in our case P1) in the
case of k faults. This slack can then handle k faults also in P2, which
takes less to execute than P1.

In Fig. 2b we consider transparent recovery, where the fault occurring
on one processor is masked to the other processors in the system but can
impact processes on the same processor. This is the approach that we
have used for scheduling in [9] where we focused only on the optimiza-
tion of fault-tolerance policy assignment. On a processor Ni where a fault
occurs, the scheduler has to switch to an alternative schedule that delays
descendants of the faulty process running on the same processor Ni.
However, a fault happening on another processor is not visible on Ni,

CPi

even if the descendants of the faulty process are mapped on Ni. For ex-
ample, in Fig. 2b1, where we assume that no faults occur, in order to iso-
late node N2 from the occurrence of a fault on node N1, messages m1 and
m2 from P1 to P4 and P3, respectively, cannot be transmitted at the end of
P1’s execution. Messages m1 and m2 have to arrive at the destination at a
fixed time, regardless of what happens on node N1, i.e., transparently.
Consequently, the messages can only be transmitted after a time
k × (C1 + µ) , at the end of the recovery of P1 in the worst-case scenario.
However, a fault in P1 will delay process P2 which is on the same pro-
cessor. This approach will lead to a reduced delay of 225 ms (still great-
er than the deadline) for the worst-case scenario, which corresponds to
two faults happening in P4, as depicted in Fig. 2b2.

To meet the deadline, another approach, depicted in Fig. 2c, is not to
mask fault occurrences at all. In this case, even the processes on the
other processors will be affected by the fault occurrence. For example,
the information about a fault occcurence in P1 on N1 will have to be
sent to processor N2 in order to switch to an alternative schedule that
delays the scheduling of P4, which receives message m1 from P1. This
is done via the error message , depicted as a black rectangle on the
bus, which broadcasts the error occurrence on P1 to other processors
(see Section 6 for details). This would lead to a worst-case scenario of
only 156 ms, depicted in Fig. 2c2, that meets the deadline.

However, transparency (masking fault occurrences) is highly desirable
for the reasons outlined in the introduction of this section, and a designer
would like to introduce as much transparency as possible without violat-
ing the timing constraints. Thus, a more fine-grained approach to trans-
parency is required. Such an approach is depicted in Fig. 2d, where faults
are transparent to process P3 and its input messages m2 and m3, but not to
P1, P2, P4 and m1. In this case, P3, m2 and m3 are said to be frozen, i.e.,
they have the same start time in all the schedules. The debugability is im-
proved because it is easier to observe the behavior of P3 in the alternative
schedules. Its start time does not change due to the handling of faults.
Moreover, the memory needed to store the alternative schedules is also
improved with transparency, since there are less start times to store. In this
case, the end-to-end delay of the application is 206, as depicted in
Fig. 2d2, and the deadline is met.

In this paper, we propose a fine-grained approach to transparency of-
fering the designer the possibility to trade-off transparency for perfor-
mance. Given an application A(V, E) we will capture the transparency
using the function T: V → frozen, where vi ∈ V is a node in the appli-
cation graph, which can be either a process or a communication mes-
sage. In a fully transparent system, all messages and processes are
frozen. A system with transparent recovery has all the inter-processor
messages frozen. Our approach allows the designer to specify the fro-
zen status for individual processes and messages considering, for ex-
ample, the difficulty to trace them during debugging, achieving thus a
desired transparency/performance trade-off.

Our scheduling algorithm will handle these transparency require-
ments by allocating the same start time1 for vi in all the alternative fault-
tolerant schedules of application A. For example, to handle the situation
in Fig. 2d, where P3 and its inputs m2 and m3 are not affected by faults,
T(m2), T(m3) and T(P3) will have to be set to “frozen”.

5. Fault-Tolerant Conditional Process Graph
In Fig. 2 we have an application A modeled as a process graph G1,
mapped on an architecture of two nodes, which can experience at most
two transient faults. For scheduling purposes we will convert the appli-
cation A to a fault-tolerant conditional process graph (FT-CPG) G. In
an FT-CPG the fault occurrence information is represented as condi-
tional edges and the frozen processes/messages are captured using syn-
chronization nodes. The FT-CPG in Fig. 3 captures all the fault
scenarios that can happen during the execution of application A in
Fig. 2, considering the transparency requirements in Fig. 2d. For ex-
ample, the subgraph marked with thicker edges and shaded nodes in
Fig. 3 captures the worst-case schedule in Fig. 2d2. The fault scenario
for a given process execution, for example , the first execution of
P4, is captured by the conditional edges (fault) and (no-fault).
The transparency requirement that, for example, P3 has to be frozen, is
captured by the synchronization node .

Formally, an FT-CPG is a directed acyclic graph G(VP∪VC∪VT, ES∪EC).
Each node ∈ VP is a regular node. A node ∈ VC with conditional
edges at the output is a conditional process that produces a condition. The
condition value produced is “true” (denoted with) if experienc-
es a fault, and “false” (denoted with) if does not experience a
fault. Alternative paths starting from such a process, which correspond
to complementary values of the condition, are disjoint2. In Fig. 3, process

 is a conditional process because it “produces” condition , while
 is a regular process. Each node ∈ VT is a synchronization node

and represents a frozen process or message (i.e., T(vi) = frozen). In Fig. 3,
 and are synchronization nodes (depicted with a rectangle) rep-

resenting a message and a process, respectively. Synchronization nodes
take zero time to execute.

Regular and conditional processes are activated when all their inputs
have arrived. However, a synchronization node can be activated (the
process started or the message transmitted) after inputs coming on one
of the alternative paths have arrived. For example, a transmission on
the edge will be enough to activate . Moreover, a boolean ex-
pression KPi

, called guard, can be associated to each node Pi in the
graph. The guard captures the necessary activation conditions in a giv-
en fault scenario. In Fig. 3, for example, = means that

will be activated in the fault scenario where P2 experienced a fault,

Figure 2. Transparency/Performance Trade-offs

265

156

P2 P2

m
1

P1 P1 P1

P4 P4

m
2

P4

P2

m
3

P3 P3 P3

P2 P2

m
1

P1 P1 P1

P4 P4

m
2

P4

P2

m
3

P3 P3 P3

P2

m
1

P1

m
2

m
3

P4 P3

P2

m
1

P1

m
2

m
3

P4 P3P4 P4

P2

m
1

P1

m
2

m
3

P4 P3

P2

m
1

P1

m
2

m
3

P4 P3

P1

P4

P2

m
1

P1

m
2

m
3

P4 P3

225

Deadline: 210

N1 N2N1 N2

P1
P2
P3

N1

30 X
20
X

X
20

N2

P4 X 30

P1
P2
P3

N1

30 X
20
X

X
20

N2

P4 X 30

206

N1

N2

Bus

a1)

N1

N2

Bus

b1)

N1

N2

Bus

c1)

N1

N2

Bus

d1)

a2)

b2)

c2)

d2)

µ = 5 ms

k = 2

µ = 5 ms

k = 2

P2

P3

P1

P4m2

m1

m3

P2

P3

P1

P4m2

m1

m3

P2P1

m
2

m
3

P3 P3

m
1

P4 P3

P1 P1

1P
F

2PF

1P
F

1P
F

1P
F

2PF
1P

F

A: G1

Worst-case scenario for P1

Recovery slack for P1 and P2

FP1

1. A frozen process Pi with a start time ti, if affected by a fault, will be re-executed at a start
time ti = Ci + µ.

2. They can only meet in a synchronization node.

P4
1

FP4
1 FP4

1

P3
S

Pi
j Pi

j

FPi
j Pi

j

FPi
j Pi

j

P1
1 FP1

1

P1
3 vi

m2
S P3

S

FP1
1 m2

S

KP2
2 FP1

1 FP2
1∧

P2
2

while P1 did not. A node is activated only when the value of the asso-
ciated guard is true.

ES and EC are the sets of simple and conditional edges, respectively. An
edge eij ∈ ES from Pi to Pj indicates that the output of Pi is the input of Pj.
An edge eij ∈ EC is a conditional edge and has an associated condition
value. Such an edge is to in Fig. 3, with the associated condition

 as being “false”. Transmission on conditional edges takes place
only if the associated condition is satisfied.

Before applying the transformation of an application A to an FT-
CPG G, we merge the application graphs Gi ∈ A into one single merged
graph G, as detailed in [16], with a period equal to the LCM of all con-
stituent graphs. In Fig. 3 we depict the FT-CPG G, which is the result
of transforming the application A in Fig. 2, considering the transparen-
cy/trade-off requirements T(A) in Fig. 2d.
• Each process Pi is transformed into a structure which models the

possible fault occurrence scenario in Pi, consisting of k conditional
nodes and their corresponding conditional edges, and one regular
node. For example, process P4 from Fig. 2, which has to handle two
transient faults, is transformed to conditional processes and ,
conditional edges labelled , , and , and regular process

. We denote with the jth copy of Pi ∈ A. In Fig. 3, is the first
execution of P4, is second execution of P4, and is the last
execution, which will not experience a fault, since k = 2.

• Each frozen process Pi ∈ T(A) or frozen message mi ∈ T(A) is
transformed into a synchronization node. For example, frozen
message m2 from Fig. 2 is transformed to the synchronization node

 in Fig. 3.
• Each edge eij with its regular message mi is copied into the new FT-

CPG, into as many places as necessary, to connect the structures
resulted from the transformations in the first two steps (see Fig. 3).

6. Scheduling FT-CPGs
The problem that we are addressing in this paper can be formulated as
follows. Given an application A, mapped on an architecture consisting
of a set of hardware nodes N interconnected via a broadcast bus B, and

a set of transparency requirements on the application T(A), we are in-
terested to determine the schedule table S such that the worst-case end-
to-end delay δG , by which the application completes execution is min-
imized, and the transparency requirements captured by T are satisfied.
If the resulting delay is smaller than the deadline, the system is sched-
ulable.

6.1 Schedule Table
The output produced by the FT-CPG scheduling algorithm is a sched-
ule table that contains all the information needed for a distributed run
time scheduler to take decisions on activation of processes. It is con-
sidered that, during execution, a very simple non-preemptive scheduler
located in each node decides on process and communication activation
depending on the actual values of conditions.

Only one part of the table has to be stored in each node, namely, the part
concerning decisions that are taken by the corresponding scheduler. Fig. 4
presents the schedules for the nodes N1 and N2 produced by our schedul-
ing algorithm in Fig. 5 for the FT-CPG in Fig. 3. In each table there is one
row for each process and message from application A. A row contains ac-
tivation times corresponding to different values of conditions. In addition,
there is one row for each condition whose value has to be broadcasted to
other processors. Each column in the table is headed by a logical expres-
sion constructed as a conjunction of condition values. Activation times in
a given column represent starting times of the processes and transmission
of messages when the respective expression is true.

According to the schedule for node N1 in Fig. 4, process P1 is activated
unconditionally at the time 0, given in the first column of the table.
Activation of the rest of the processes, in a certain execution cycle,
depends on the values of the conditions, i.e., the unpredictable occurrence
of faults during the execution of certain processes. For example, process
P2 has to be activated at t = 30 if is true, at t = 100 if is
true, etc. At a certain moment during the execution, when the values of
some conditions are already known, they have to be used to take the best
possible decisions on process activations. Therefore, after the termination
of a process that produces a condition, the value of the condition is
broadcasted from the corresponding processor to all other processors.
This broadcast is scheduled as soon as possible on the communication
channel, and is considered together with the scheduling of the messages.
The scheduler in a node knows from its schedule table when to expect a
condition message.

To produce a deterministic behavior, which is globally consistent for
any combination of conditions (faults), the table has to fulfill several re-
quirements:
1. No process will be activated if, for a given execution cycle, the

conditions required for its activation are not fulfilled.
2. Activation times have to be uniquely determined by the conditions.
3. Activation of a process Pi at a certain time t has to depend only on

condition values which are determined at the respective moment t
and are known to the processing element which executes Pi.

P1
1 P4

1

FP1
1

P4
1 P4

2

FP4
1 FP4

1 FP4
2 FP4

2

P4
3 Pi

j P4
1

P4
2 P4

3

P3

P4

P1
P2

P2

6
5

3

2

1

3

2

1

P1

P1

P2P2

P2
P2

4

m3

m2

P4

P4

P4

P4

P4

1

2

3

4

5
6

m1

m1

m1

FP 1
2FP 1
2

FP1
1FP1
1

FP 2
2FP 2
2

FP1
1FP1
1

FP2
1FP2
1

FP2
2FP2
2

FP4
1FP4
1

FP 4
2FP 4
2

FP1
1FP1
1

FP1
2FP1
2

FP1
2FP1
2

FP2
4FP2
4

FP2
1FP2
1

FP 1
1FP 1
1

FP2
4FP2
4

FP 4
1FP 4
1

FP4
2FP4
2

FP3
1FP3
1 FP3

2FP3
2

FP4
4FP4
4

FP1
2FP1
2

FP4
4FP4
4

1

2

3

S
S

S

m2
m3

P3
1

P3
2 P3

3

Figure 3. FT-CPG

m2
S

N2 true 1
1P

F 1

1P
F 2

1
1
1 PP

FF ∧ 2
1

1
1 PP FF ∧ 4

4
2

1
1
1 PPP FFF ∧∧ 4

4
2

1
1

1 PPP FFF ∧∧ 1

4

1

1 PP
FF ∧ 2

4

1

4

1

1 PPP
FFF ∧∧ 2

4

1

4

1

1 PPP
FFF ∧∧ 1

4

1

1 PP
FF ∧ 1

3
P

F 2

3

1

3
PP

FF ∧

P3 136 (8
3P) 136 (1

3P) 136 (1
3P) 136 (1

3P) 136 (1
3P) 136 (1

3P) 161 (2
3P) 186 (3

3P)

P4 36 (1
4P) 105 (6

4P) 71 (4
4P) 106 (5

4P) 71 (2
4P) 106 (3

4P)

 Figure 4. Local Schedule Tables

N1 true 1
1P

F 1

1P
F 2

1
1

1 PP
FF ∧ 2

1
1

1 PP FF ∧ 4
2

2
1

1
1 PPP FFF ∧∧ 4

2
2

1
1
1 PPP FFF ∧∧ 1

2

1

1 PP
FF ∧ 2

2

1

2

1

1 PPP
FFF ∧∧ 2

2

1

2

1

1 PPP
FFF ∧∧ 1

2

1

1 PP
FF ∧

P1 0 (1
1P) 35 (2

1P) 70 (3
1P)

P2 30 (1
2P) 100 (6

2P) 65 (4
2P) 90 (5

2P) 55 (2
2P) 80 (3

2P)

m1 31 (1
1m) 100 (3

1m) 66 (2
1m)

m2 105 105 105
m3 120 120 120 120 120 120

1
1P

F 30

2

1
P

F 65

FP1
1 FP1

1 FP1
2∧

6.2 Scheduling Algorithm
According to our application model, some processes can only be activat-
ed if certain conditions (i.e., fault occurrences), produced by previously
executed processes, are fulfilled. Such process scheduling is complicat-
ed since at a given activation of the system, only a certain subset of the
total amount of processes is executed and this subset differs from one ac-
tivation to the other. As the values of the conditions are unpredictable,
the decision on which process to activate and at which time has to be tak-
en without knowing which values the conditions will later get. On the
other side, at a certain moment during execution, when the values of
some conditions are already known, they have to be used in order to take
the best possible decisions on when and which process to activate, in or-
der to reduce the schedule length.

Optimal scheduling has been proven to be an NP-complete problem
[17] in even simpler contexts. Hence, heuristic algorithms have to be de-
veloped to produce a schedule of the processes such that the worst case
delay is as small as possible. Our strategy for the synthesis of fault-toler-
ant schedules is presented in Fig. 5. The FTScheduleSynthesis function
takes as input the application A with the transparency requirements T, the
number k of transient faults that have to be tolerated, the architecture con-
sisting of processors N and bus B, the mapping M, and produces the
schedule table S.

Our synthesis approach employs a list scheduling based heuristic,
FTCPGScheduling, presented in Fig. 6, for scheduling each alternative
fault-scenario. However, the fault scenarios cannot be independently
scheduled: the derived schedule table has to fulfill the requirements (1) to
(3) presented in Section 6.2, and the synchronization nodes have to be
scheduled at the same start time in all alternative schedules.

In the first line of the FTScheduleSynthesis algorithm, we initialize the
schedule table S and build the FT-CPG G as presented in Section 5. List
scheduling heuristics use priority lists from which ready processes are ex-
tracted in order to be scheduled at certain moments. A process is ready if
all its predecessors have been scheduled. We use the partial critical path
(PCP) priority function [7] for ordering the ready list (line 3).

The property of a synchronization node Si is that, in order to mask fault
occurrences, it must have the same start time ti in the schedule S, regard-
less of the guard KSi

 under which is scheduled. For example, the synchro-
nization node m2 has the same start time of 105, in each corresponding
column of the table. In order to determine the start time ti of a synchro-
nization node Si ∈ LS, where LS is the list of synchronization nodes, we
will have to investigate all the alternative fault-scenarios (modeled as
different alternative paths through the FT-CPG) that lead to Si. Fig. 5, de-
picts the three alternative paths that lead to m2 for the graph in Fig. 3.
These paths are generated using the FTCPGScheduling function (called
in line 6), which records the maximum start time tmax of Si over the start
times in all the alternative paths. In addition, FTCPGScheduling also
records the guards KSi

 under which Si has to be scheduled. The synchro-
nization node Si is then inserted into the schedule table in the columns
corresponding to the guards in the set KSi

 at the unique time tmax (line 10
in Fig. 5). For example, m2 is inserted at time tmax = 105 in the columns
corresponding to Km2

= { , , }.
The FTCPGScheduling function is recursive and calls itself for each

conditional node in order to separately schedule the nodes in the faulty
branch, and those in the true branch (lines 21 and 23, Fig. 6). Thus, the

alternative paths are not activated simultaneously and resource sharing is
correctly achieved. During the exploration of the FT-CPG it is important
to eliminate alternative paths that are not possible to occur. This
requirement is handled by introducing the parameter f, which represents
the number of faults that still can occur. f is decremented for each call of
FTCPGScheduling that explores a faulty (true) branch. Thus, only if f > 0
(line 19), we will continue to investigate branches through recursions.

For each resource R, the highest priority node is removed from the
head of the local priority list LR (line 2). If the node is the currently in-
vestigated synchronization node S, the largest start time and the current
guards are recorded (lines 9–10). If other unscheduled synchronization
nodes are encountered, they will not be scheduled yet (lines 13–14),
since FTCPGScheduling investigates one synchronization node at a time.
Otherwise, the current node Pi is placed in the schedule S at time t under
guards K. The time t is the time when the resource R is available. Our
definition of resource availability is different from classical list schedul-
ing. Since we enforce the synchronization nodes to start at their latest
time tmax to accommodate all the alternative paths, we might have to in-
sert idle time on the resources on those alternative paths that finish soon-
er than tmax. Thus, our ResourceAvailable function will determine the
first contiguous segment of time which is available on R, large enough to
accommodate Pi. For example, m2 is scheduled first at 105 on the bus,
thus time 0–105 is idle time on the bus. We will later schedule m1 at times
66, 31 and 100, within this idle segment. The scheduling of Pi will be
done under the currently known conditions K, determined at line 6 on the
resource R. Our approach eliminates from K those conditions that al-
though known to R at time t, will not influence the execution of Pi.

For efficiency reasons, our implementation will use as input the non
fault-tolerant graph structure A presented in Section 3. Starting from A,
the GetReadyNodes functions (lines 21, 23 and 25) will insert nodes into
the ready lists as if our algorithm would visit the FT-CPG G. Moreover,
we have limited the levels of recursion to at most k.

7. Experimental Results
For the evaluation of our algorithms we used applications of 20, 40, 60,
and 80 processes mapped on architectures consisting of 4 nodes. We have
varied the number of faults, considering 1, 2, and 3 faults, which can hap-
pen during one execution cycle. The duration µ of the recovery time has
been set to 5 ms. Fifteen examples were randomly generated for each ap-
plication dimension, thus a total of 60 applications were used for experi-
mental evaluation. Execution times and message lengths were assigned
randomly within the 10 to 100 ms, and 1 to 4 bytes ranges, respectively.
The experiments were done on Sun Fire V250 computers.Figure 5. Fault-Tolerant Schedule Synthesis Strategy

6

3

2

1P1

P1

P1

P2

m2

FP 1
2

FP 1
1

6

3

2

1P1

P1

P1

P2

m2

FP 1
2FP 1
2

FP 1
1FP 1
1

2

1P1

P1

P2
4

m2

FP 1
2

FP 1
2

FP 1
1

2

1P1

P1

P2
4

m2

FP 1
2FP 1
2

FP 1
2FP 1
2

FP 1
1FP 1
1 P2

1

1P1

m2

FP 1
1FP 1
1

FP1
1FP1
1

Alternative paths investigated by FTCPGScheduling
for the synchronization node m2

1
1P

F2
1

1
1 PP

FF ∧ 2
1

1
1 PP

FF ∧

FTScheduleSynthesis(A, T, k,N, B, M)
1 S = ∅; G = BuildFTCPG(A, k)
2 LS = GetSynchronizationNodes(G)
3 PCPPriorityFunction(G, LS)
4 for each Si ∈ LS do
5 tmax = 0;KSi = ∅
6 FTCPGScheduling(0, G, Si, source, k)
7 for each Kj ∈ KSi do
8 Insert(S, Si, tmax, Kj)
9 end for
10 end for
11 return S
end FTScheduleSynthesis

FP1
1 FP1

1 FP1
2∧ FP1

1 FP1
2∧

Figure 6. FT-CPG Scheduling Algorithm

FTCPGScheduling(t, G, S, L, f)
1for each R ∈ N ∪ {B} do
2 LR = LocalReadyList(L, R)
3 while LR ≠ ∅ do
4 Pi := Head(LR)
5 t = ResourceAvailable(R, t) -- the earliest time when R is free
6 K = KnownConditions(R, t) -- the conditions known to R at time t
7 if Pi = S then -- synchronization node currently under investigation
8 if t > tmax then
9 tmax = t -- the latest start time is recorded
10 KSi = KSi ∪ {K} -- the guard of the synchronization node is recorded
11 end if
12 return -- exploration stops at the synchronization node S
13 else if Pi ∈ VT and Pi unscheduled then -- other synchronization nodes
14 return -- are not scheduled at the moment
15 end if Pi ∈ EC and BroadcastCondition(Pi) = false then
16 return -- the condition does not have to be broadcast to other processors
17 end if
18 Insert(S, Pi, t, K) -- the node is placed in the schedule
19 if Pi ∈ VC and f > 0 then -- conditional process and faults can still occur
20 -- schedule the faulty branch
21 FTCPGScheduling(t, G, L ∪ GetReadyNodes(Pi, true), f - 1)
22 -- schedule the non-faulty branch
23 FTCPGScheduling(t, G, L ∪ GetReadyNodes(Pi, false), f)
24 else
25 L = L ∪ GetReadyNodes(Pi)
26 end if
27end for
end FTCPGScheduling

We were first interested to evaluate how well the proposed scheduling
algorithm handles the transparency/performance trade-offs imposed by
the designer. Hence, we have scheduled each application, on its corre-
sponding architecture, using the FTScheduleSyntheis (FTSS) strategy
from Fig. 5. In order to evaluate FTSS, we have derived a reference non-
fault tolerant implementation, NFT. The NFT approach uses a list-
scheduling strategy to build a non-fault tolerant schedule. To the NFT
implementation obtained, we would like to add fault-tolerance with as
little as possible overhead, without adding any extra hardware resourc-
es. Let δFTSS and δNFT be the end-to-end delays of the application ob-
tained using FTSS and NFT, respectively. The overhead is defined as
100 × (δFTSS – δNFT) / δNFT.

For the experiments, we considered that the designer is interested to
maximize the amount of transparency for the inter-processor messages,
which are critical to a distributed fault-tolerant system. Thus, we have con-
sidered five transparency scenarios, depending on how many of the inter-
processor messages have been set as transparent: 0, 25, 50, 75 or 100%.
Table 1 presents the average fault-tolerance overheads for each of the five
transparency requirements. We can see that as the transparency require-
ments are relaxed, our scheduling approach is able to improve the perfor-
mance of the application, producing good quality results in terms of fault-
tolerance overheads. For example, for application graphs of 60 processes
with three faults, we have obtained an 86% overhead for 100% transpar-
ency, which was reduced to 58% for 50% transparency.

Table 2 presents the average memory1 per processor (in kilobytes) re-
quired by the schedule tables. Often, the an entity has the same start
time under different conditions. Such entries into the table can be
merged into a single table entry, headed by the union of the logical ex-
pressions.Thus, Table 2 reports the memory required after such a
straightforward compression. We can observe that as the transparency
increases, the memory requirements decrease. For example, for 60 pro-
cesses and three faults, increasing the transparency from 50% to 100%
reduces the memory needed from 18K to 4K.

The FTSS algorithm runs in less than three seconds for large applica-
tions (80 processes) when only one fault has to be tolerated. Due to the
nature of the problem, the execution time increases exponentially with
the number of faults that have to be handled. However, even for graphs
of 60 processes, for example, and three faults, the schedule synthesis al-
gorithm finishes in under 10 minutes.

The approach presented by us in [9] can only handle a setup with 100%
transparency for inter-processor messages. As a second set of experi-
ments, we have compared the FTSS approach with the list scheduling
based approach, namely LS, proposed in [9], considering this 100%
scenario. Besides the fact that FTSS supports complete flexibility re-
garding the degree of transparency, there is a second important differ-
ence between FTSS and LS. Due to the FT-CPG scheduling approach,
FTSS will generate the best possible schedule for each fault scenario,
where both execution order and start time of processes are adapted to
the actual situation. LS, however, only adapts the start time, but does
not change the execution order across fault scenarios. In order to com-
pare the two algorithms, we have produced the end-to-end delay δLS of

the application when using LS. When comparing the delay δFTSS ob-
tained by our approach with δLS for the experiments in the case of k =
2, for example, our approach outperforms LS on average with 13, 11,
17, and 12% for application dimensions of 20, 40, 60 and 80 processes,
respectively.

Finally, we considered a real-life example implementing a vehicle
cruise controller (CC). The process graph that models the CC has 32 pro-
cesses, and is described in [16]. The CC was mapped on an architecture
consisting of three nodes: Electronic Throttle Module (ETM), Anti-lock
Breaking System (ABS) and Transmission Control Module (TCM). We
have considered a deadline of 300 ms, k = 2 and µ = 2 ms.

Considering 100% transparency for the messages on the bus, LS pro-
duced an end-to-end delay of 384, larger than the deadline. Our FTSS ap-
proach reduced this delay to 346 given the 100% transparency, which is
still unschedulable. If we relax this transparency requirement and select
only half of the messages as transparent, we are able to further reduce the
delay to 274 which meets the deadline. The designer can use our sched-
uling synthesis approach to explore several design alternatives to find
that one which provides the most useful transparency properties. For ex-
ample, the CC is still schedulable even with 70% transparency.

8. Conclusions
In this paper we have proposed a novel scheduling approach for fault-
tolerant embedded systems in the presence of multiple transient faults.
Both processes and messages are statically scheduled, and we have
considered process re-execution for tolerating faults. The main contri-
bution of our schedule synthesis approach is the ability to handle the
performance versus transparency and memory trade-offs imposed by
the designer. The algorithm uses fault-occurrence information to im-
prove the schedule generation. Thus, we are able provide fault-toler-
ance under limited resources.

References
[1] A. Bertossi, L. Mancini, “Scheduling Algorithms for Fault-Tolerance in

Hard-Real Time Systems”, Real Time Systems, 7(3), 229–256, 1994.
[2] A. Burns et al., “Feasibility Analysis for Fault-Tolerant Real-Time Task

Sets”, Euromicro Workshop on Real-Time Systems, 29–33, 1996.
[3] V. Claeson, S. Poldena, J. Söderberg, “The XBW Model for Dependable

Real-Time Systems”, Parallel and Distributed Systems Conf., 1998.
[4] C. Dima et al, “Off-line Real-Time Fault-Tolerant Scheduling”, Euromicro

Parallel and Distributed Processing Workshop , 410–417, 2001.
[5] G. Fohler, “Joint Scheduling of Distributed Complex Periodic and Hard

Aperiodic Tasks in Statically Scheduled Systems”, IEEE Real-Time
Systems Symposium, 152–161, 1995.

[6] G. Fohler, “Adaptive Fault-Tolerance with Statically Scheduled Real-Time
Systems”, Euromicro Real-Time Systems Workshop, 161–167, 1997.

[7] P. Eles et al., “Scheduling with Bus Access Optimization for Distributed
Embedded Systems”, IEEE Trans. on VLSI Systems, 8(5), 472-491, 2000.

[8] C. C. Han, K. G. Shin, J. Wu, “A Fault-Tolerant Scheduling Algorithm for
Real-Time Periodic Tasks with Possible Software Faults”, IEEE Trans. on
Computers, 52(3), 362–372, 2003.

[9] V. Izosimov et al., “Design Optimization of Time- and Cost-Constrained
Fault-Tolerant Distributed Embedded Systems”, DATE Conf., 864-869, 2005.

[10]N. Kandasamy, J. P. Hayes, B. T. Murray, “Transparent Recovery from
Intermittent Faults in Time-Triggered Distributed Systems”, IEEE Trans.
on Computers, 52(2), 113–125, 2003.

[11] N. Kandasamy, J. P. Hayes B.T. Murray “Dependable Communication
Synthesis for Distributed Embedded Systems,” Computer Safety,
Reliability and Security Conf., 275–288, 2003.

[12]H. Kopetz, Real-Time Systems–Design Principles for Distributed
Embedded Applications, Kluwer Academic Publishers, 1997.

[13]H. Kopets et al., “Distributed Fault-Tolerant Real-Time Systems: The Mars
Approach”, IEEE Micro, 9(1), 25–40, 1989.

[14]H. Kopetz, Günter Bauer, “The Time-Triggered Architecture”, Proc. of the
IEEE, 91(1), 112–126, 2003.

[15]C. Pinello, L. P. Carloni, A. L. Sangiovanni-Vincentelli, “Fault-Tolerant
Deployment of Embedded Software for Cost-Sensitive Real-Time
Feedback-Control Applications”, DATE Conf., 1164–1169, 2004.

[16]P. Pop, “Analysis and Synthesis of Communication-Intensive
Heterogeneous Real-Time Systems”, Ph. D. Thesis No. 833, Dept. of
Computer and Information Science, Linköping University, 2003.

[17]D. Ullman, “NP-Complete Scheduling Problems,” in J. of Computer
Systems Science, vol. 10, 384–393, 1975.

[18]Y. Zhang, K. Chakrabarty, “Energy-Aware Adaptive Checkpointing in
Embedded Real-Time Systems”, DATE Conf., 918–923, 2003.

1. Considering an architecture where an int and a pointer are represented on two bytes.

Table 1. Fault-Tolerance Overheads
20 40 60 80 |V|

k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3
100% 48 86 139 39 66 97 32 58 86 27 43 73
75% 48 83 133 34 60 90 28 54 79 24 41 66
50% 39 74 115 28 49 72 19 39 58 14 27 39
25% 32 60 92 20 40 58 13 30 43 10 18 29
0% 24 44 63 17 29 43 12 24 34 8 16 22

|V |

Table 2. Memory Requirements
20 40 60 80 |V|

k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3
100% 0.13 0.28 0.54 0.36 0.89 1.73 0.71 2.09 4.35 1.18 4.21 8.75
75% 0.22 0.57 1.37 0.62 2.06 4.96 1.20 4.64 11.55 2.01 8.40 21.11
50% 0.28 0.82 1.94 0.82 3.11 8.09 1.53 7.09 18.28 2.59 12.21 34.46
25% 0.34 1.17 2.95 1.03 4.34 12.56 1.92 10.00 28.31 3.05 17.30 51.30
0% 0.39 1.42 3.74 1.17 5.61 16.72 2.16 11.72 34.62 3.41 19.28 61.85

|V |

