
Abstract - We present an approach for scheduling of fault-
tolerant embedded applications composed of soft and hard real-
time processes running on distributed embedded systems. The
hard processes are critical and must always complete on time. A
soft process can complete after its deadline and its completion
time is associated with a value function that characterizes its
contribution to the quality-of-service of the application. We
propose a quasi-static scheduling algorithm to generate a tree of
fault-tolerant distributed schedules that maximize the
application’s quality value and guarantee hard deadlines.

Keywords - mixed soft and hard real-time, fault tolerance,
distributed embedded systems, quasi-static scheduling, utility
maximization, quality-of-service

I. INTRODUCTION

Modern embedded applications, used, for example, in
multimedia devices and automotive infotainment, are often
executed on distributed systems. They should deliver highest-
possible quality-of-service and meet timing constraints even in
the presence of faults. We model quality-of-service and safety
constraints, by separation of concerns, as soft and hard real-
time processes [3]. A soft process can complete after its
deadline and its completion time is associated with a value
function that characterizes its contribution to the quality-of-
service of the application. A soft process can be dropped to let
hard processes or more important soft processes execute
instead. Hard processes represent time-constrained parts of the
application, which must be always executed and meet
deadlines.

Static off-line scheduling is an attractive option for
embedded applications since it can ensure both the
predictability of worst-case behavior and high resource
utilization [15]. However, off-line scheduling lacks flexibility
and, unless extended with adaptive functionality, cannot handle
overloads or provide efficient fault recovery [14, 6]. Traditional
off-line worst-case-driven designs are also overly pessimistic
because the worst case often corresponds to rare execution
scenarios, which is especially critical for multimedia
applications [3]. In this paper, we overcome the limitations of
traditional off-line scheduling by employing a quasi-static
scheduling technique. 

As a part of our design, we deal with transient and
intermittent faults1 (also known as “soft errors”), which belong

to the most common types of system faults today. Such faults
appear for a short time without causing permanent damage, and
can be caused by electromagnetic interference, radiation,
temperature variations, software “bugs”, etc. [10]. Online
scheduling with fault tolerance constraints for hard real-time
systems has been considered in [8, 16, 23]. Researchers have
also proposed a number of approaches for integrating fault
tolerance into the framework of static scheduling for hard real-
time systems [18, 22, 14, 9, 20]. Xie et al. [22] have proposed
a technique to decide how replicas can be selectively inserted
into the application, based on process criticality. Pinello et al.
[18] have proposed a simple heuristic for combining several
static schedules in order to mask fault patterns against primarily
permanent faults. Kandasamy et al. [14] have proposed
constructive mapping and scheduling algorithms for
transparent re-execution on multiprocessor systems but only
considered one fault per computation node. In [9, 20] we have
proposed scheduling and fault tolerance policy assignment
techniques for distributed real-time systems, such that the
required level of fault tolerance is achieved and real-time
constraints are satisfied with a limited amount of resources.

Regarding soft real-time systems, the available approaches
in [1, 17, 21] address fault tolerance only in the context of
online scheduling. In [17] researchers have shown how faults
can be tolerated with active replication while maximizing the
quality level of the system. An online greedy resource
allocation algorithm has been proposed, which incrementally
chooses waiting process replicas and allocate them to the least
loaded processors. In [1] faults are tolerated while maximizing
the reward in the context of online scheduling and an imprecise
computation model, where processes are composed of
mandatory and optional parts. The approach only considers
monoprocessor architectures. In [21] the trade-off between
performance and fault-tolerance, based on active replication, is
considered in the context of online scheduling. This, however,
incurs a large overhead during runtime which seriously affects
the quality of the results. None of the above approaches
considers value-based scheduling optimization in the context of
static cyclic scheduling. In general, the considered value-based
optimization is either very limited and based on costly active

1. We will refer to both transient and intermittent faults as “transient” faults.
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replication [17, 21] or restricted to monoprocessor systems
with online scheduling [1].

None of the above approaches considers systems composed
of both soft and hard real-time processes. Hard and soft real-
time systems have been traditionally scheduled using very
different techniques [15]. However, many embedded
applications have both components with hard and soft timing
constraints [3]. Therefore, several techniques for scheduling of
mixed hard/soft real-time systems have been proposed [3, 5, 4].
However, none of this work addresses fault tolerance aspects.
Thus, in [11], we have used process re-execution together with
a quasi-static scheduling strategy to provide fault tolerance in
the context of mixed soft and hard real-time systems. We have
proposed a quasi-static scheduling strategy, which could handle
dropping of soft processes. In [12], we have enhanced our
monoprocessor strategy with preemption. However, our
approaches in [11, 12] are restricted to monoprocessor systems
and cannot be utilized for distributed embedded systems.

In this work, we propose an approach for scheduling of
fault-tolerant applications composed of soft and hard real-time
processes running on distributed systems. We use process re-
execution to tolerate transient faults. We propose a quasi-static
scheduling algorithm that generates off-line a tree of fault-
tolerant schedules that maximize the quality-of-service of the
application and, at the same time, guarantee deadlines for hard
processes. At run time, the online scheduler, with very low
online overhead, would select the appropriate schedule based on
the occurrence of faults and the actual execution times of
processes.

The approach presented in this paper is different from our
previous approaches [11, 12] because, first of all, we propose a
value-based scheduling for multiprocessor systems, which is
able to generate schedules to maximize the overall utility in the
distributed system context. We have also developed a signalling
mechanism to transmit knowledge of the global system state
from one computation node to the others and we explicitly
account for communications on the bus during generation of
schedule tables. Our approach can be useful on any distributed
system whose worst-case communication delays can be
obtained. Examples of such systems include, but are not limited
to, multimedia systems in mobile phones, media players, TV-
sets, and automotive infotainment. Our approach is also
applicable for safety-critical systems used, for example, in
factory automation or automobiles.

The next section presents our application model, fault
tolerance and our utility value model. In Section III, we outline
our problem formulation. Section IV presents a motivational
example to illustrate scheduling decisions. In Section V, we
present our quasi-static scheduling heuristics. Experimental
results are presented in Section VI.

II. APPLICATION MODEL

We model an application A as a set of directed, acyclic
graphs merged into a single hypergraph G(V, E). Each node Pi
∈ V represents one process. An edge eij ∈ E from Pi to Pj

indicates that the output of Pi is the input of Pj. A process Pk or
the communication captured by an edge eij can be either
mandatory (hard) or optional (soft). A process can be activated
after all its hard inputs, required for the execution, have arrived.
A process issues its outputs when it terminates. Process
executions are not pre-emptable.

We consider that the application is running on a set of
heterogeneous computation nodes N connected to a bus B.
Mapping of processes in the application to the computation
nodes is determined by a function M: V → N. For a process
Pi ∈ V , M(Pi) is the node to which Pi is assigned for execution.
We know for each process Pi a best-case execution time
(BCET), ti

b, and a worst-case execution time (WCET), ti
w, on

Pi’s computation node M(Pi). The execution time distribution
Ei(t) of Pi on node M(Pi) is given. An expected execution time
(AET) for Pi on node M(Pi), ti

e, is obtained from the execution
time distribution Ei(t).

Processes mapped on different computation nodes
communicate by messages sent over the bus. We consider that
the worst-case sizes of messages are given, which can be
implicitly translated into the worst-case transmission times on
the bus. If processes are mapped on the same node, the message
transmission time between them is accounted for in the worst-
case execution time of the sending process.

In Fig. 1 we have an application A1 consisting of the
process graph G1 with four processes, P1 to P4. Processes P1
and P2 are mapped on computation node N1, and P3 and P4 on
N2. The execution times for processes and transmission times
of messages are shown in the table. Processes P1 and P4 and
message m5 are hard, while processes P2 and P3 and messages
m1, m2, m3, m4 are soft. Hard processes are associated with
deadlines, while soft processes are associated with utility
functions as discussed in Section II.B.

All processes belonging to a process graph G have the same
period T = TG, which is the period of the process graph. Process
graphs with different periods are combined into a hyper-graph,
capturing all process activations for the hyper-period (LCM of
all periods). In Fig. 1 process graph G has a period T = 400 ms.

A. Fault Tolerance

In our model, we consider that at most k transient faults may
occur during a hyper-period T of the application. The number f
of faults in a particular execution scenario can be less or equal
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M(Pi)
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Figure 1. Application Example
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to the maximum number k. We consider that a fault scenario
with f − 1 (less) faults is more likely than a fault scenario with
f (more) faults and, thus, the no fault scenario is the most likely
to happen. We use re-execution for tolerating faults [14, 9, 20].
Process re-execution requires an additional time overhead μ.
For example, for application A1 in Fig. 1, k = 2 and μ = 5 ms.

The software architecture, including the real-time kernel,
error detection and fault-tolerance mechanisms are themselves
fault-tolerant, i.e., they employ extensive internal fault tolerance
mechanisms. We assume that transient faults on the bus are
addressed at the communication level, for example, with the
use of efficient error correction codes [19, 2] and/or
acknowledgements/retransmissions [13].

In this paper, we will denote with Pi/j the jth execution of
process Pi in the faulty scenario, where Pi is affected by faults.
Let us consider the example in Fig. 2, where we have k = 2. In the
worst case, as depicted in Fig. 2, the first fault happens during
P1’s first execution, denoted P1/1. The error detection overhead is
considered as part of the process execution time. After a worst-
case recovery overhead of μ = 5 ms, depicted with a light gray
rectangle, P1 is executed again. Its second execution P1/2 in the
worst-case can also experience a fault. Finally, the third
execution P1/3 of P1 succeeds.

B. Utility Model

Each hard process Pi ∈ V is associated with a hard deadline
di. In Fig. 1, process P1 has deadline d1 = 250 ms and process
P4 has deadline d4 = 380 ms. Although hard messages are not
associated with deadlines, they provide critical
communications and must be always transmitted. Each soft
process Pi ∈ V is assigned with a utility function Ui(t), which
can be any non-increasing monotonic function of the
completion time of a process. The overall utility of each
execution scenario of the application is the sum of individual
utilities produced by soft processes in this scenario.1

In Fig. 3 we depict utility function U2(t) for the soft process
P2 of application A1 in Fig. 1. According to the schedule in Fig.
3a, P2 completes at 110 ms and its utility would be 15. For a soft
process Pi we have the option to “drop” the process, and, thus,
its utility will be 0, i.e., Ui(− ) = 0. In Fig. 3a we drop process
P3. Thus, the overall utility of the application in this case will
be U = U2(110) + U3(− ) = 15. We may also drop soft messages
of the application alone or together with the producer process.
For example, in Fig. 3a, message m2 is dropped. Dropping
might be necessary in order to meet deadlines of hard
processes, or to increase the overall system utility (e.g. by
allowing other, potentially higher-value soft processes to
complete).2

If Pi, or its re-execution, is dropped but would produce an
input for another process Pj, we assume that Pj will use an input
value from a previous execution cycle, i.e., a “stale” value.
Thus, output values produced by processes in one execution cycle
can be reused by processes in the next cycles. Reusing stale
inputs, however, may lead to reduction in the utility value, i.e.,
utility of a process Pi would degrade to Ui

*(t) = αi × Ui(t), where
αi represents the stale value coefficient. αi captures the
degradation of utility that occurs due to dropping of processes
and messages. αi is obtained according to an application-
specific rule R, given by designers, which specifies service
degradation properties for a particular application. In this work,
we will consider that if a soft process Pi or its re-executions are
dropped, then αi = 0, i.e., its utility Ui

*(t) will be 0. If Pi
completes, but uses stale inputs from one or more of its direct
predecessors, the stale value coefficient is calculated as the sum
of the stale value coefficients over the number of Pi’s direct
predecessors:

where DP(Pi) is the set of Pi’s direct predecessors.3

If we apply the above rule to the execution scenario on the
schedule in Fig. 3b, the overall utility is U=U2(110) + U3

*(75)
= 15 + 1/2 × 15 = 22.5. The utility of process P3 is degraded
because it uses a “stale” value from process P1, i.e., P3 does not
wait for input m2 and its stale value coefficient α3 = (1 + α1) /
(1+|DP(P3)|) = (1 + 0) / (1 + 1) = 1/2.

4

Note that, although in this work we will use the service
degradation rule presented above, this rule is an example of a

1. Note that in this work we do not assign utility functions to hard real-time
processes in order to clearly separate hard and soft real-time properties of the
application, which, in turn, allows us to efficiently meet these properties in
the design optimization and implementation phases.

P1/1 P1/2 P1/3

Figure 2. Re-execution

2. For example, an image processing automotive system for pedestrian
detection will execute hard processes to perform the necessary functions to
follow pedestrians in the most “dangerous” areas, but does not have to
follow all the pedestrians at every cycle. The latter would increase the
quality of pedestrian detection but may not be affordable, for example, in the
presence of transient faults or system overload.

3. In this work we will consider that, if the soft process is dropped in one
execution cycle, it will not degrade utility values of its predecessors since the
outputs from the predecessors can be re-used in the next execution cycle
(when, for example, a predecessor is dropped or the soft process is forced to
be executed before its predecessor).

4. Note that soft process P3 is executed before its hard predecessor P4 because,
otherwise, P3 would deliver utility of 0 according to its utility function. This,
in fact, is an example of a “bad” design, which we have presented primarily
for illustrative purposes. Such designs, in general, should be avoided by
designers unless there exist particular reasons for not doing so, for example,
due to imposed system requirements, which cannot be overcome.
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possible service degradation rule, which can be imposed by
designers. Our approach can be used with any other service
degradation rule, different from the one considered above.

III. PROBLEM FORMULATION

As an input we get an application A, as introduced in
Section II. Application A runs with a period T on a bus-based
architecture composed of a set N of heterogeneous
computation nodes. The mapping of processes on the set N of
computation nodes is given. We know the best, worst and
expected execution times for each process on the computation
node on which this process is mapped, as presented in Section
II. The maximum number k of transient faults and the recovery
overhead μ are given.

As an output, we have to obtain a quasi-static tree of fault-
tolerant schedules on computation nodes and the bus that
• firstly, maximizes the total utility U of the application in the

no-fault scenarios,
• secondly, maximizes the total utility Uf in fault scenarios, and
• satisfies all hard deadlines in all scenarios.

Schedules must be generated under the assumption that the
no-fault scenario is the most likely to happen, and scenarios
with less faults are more likely than those with more faults. This
means that schedules for f + 1 faults should not compromise
schedules for f faults.

IV. MOTIVATIONAL EXAMPLE

Application A2 in Fig. 4 is composed of 6 processes, P1 to
P6, where processes P2 to P5 are soft with utility functions U2(t)

to U5(t) and processes P1 and P6 are hard with deadlines 150
and 380 ms, respectively. Message m2 is hard and all other
messages are soft.1 In Fig. 4a-c, we depict three schedules for
three possible execution scenarios for application A2. In Fig.
4a, processes are executed with their expected execution times
and we take a number of scheduling decisions to increase
utility. Process P4 does not wait for input from P1, which gives
an increased utility U4 of 1/2 × 65 = 32.5, instead of only 20 (in
fact, process P4 will always get more utility, due to the shape of
its utility function if it uses a “stale” value from P1). P5 is
executed before its soft predecessor P2 with an increased utility
U5 of 1/2 × 70 = 35, instead of only 10 as if it would follow P2.
Finally, P2 and P3 get their inputs from P1 and complete with
utility of 35 each. Thus, the overall utility is 137.5. The
schedule is safe since processes P1 and P6 meet deadlines even
in the worst-case fault scenarios. We depict the lengths of the
worst-case scenarios above the Gantt charts of the schedules.
On N1, P1’s recovery meets deadline. The worst-case scenario
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1. An example of the system implementing process graph G2 could be an on-
board GPS (Global Positioning System), which (i) reads the driver’s inputs,
connects to the minimum number of satellites, loads a basic road map (all
with process P1) and (ii) returns the decision on the direction to the driver
(with process P6). These two processes are mandatory and have to be
executed before the imposed hard deadlines. The decision on the direction
based on only the output from process P1 is not optimal and can be improved.
GPS can connect to more satellites to increase the precision with process P4.
It can download an updated road map with process P2 and adjust the decision
based on this map with process P5. It can also read information about the
speed cameras and directly warn the driver with process P3, while also
influencing the final decision of process P6.



for P6 contains the worst-case execution of P3 and the re-
execution of P6, where re-execution of P3 is dropped.

In the scenario of Fig. 4b process P4 is executing for 100 ms.
To meet the deadline of P6, the execution of P3 is postponed and
P6 is moved forward. The overall utility is, hence, degraded to
117.5. Above the schedule for N2 we depict the worst-case
situation, which contains only re-execution of P6, while
execution of P3, in this case, is dropped. Under the schedule for
N2 we depict the worst-case scenario that would be produced if
keeping the same order as in Fig. 4a. It can be observed that P6
would miss its deadline. Thus, changing of the order, despite
utility degradation, is necessary.

In Fig. 4c, we show a fault scenario, where process P1 is re-
executed with re-execution completed at 130 ms. The order in the
schedule should be changed again. Process P5 is postponed and
executed after its predecessor P2. It will lead to the increased
utilities U2 and U5 of 30 + 7.5 = 37.5, instead of 27.5 + 1/2 × 10 =
32.5. Process P3 is executed before P6, which gives the utility U3
of 30, instead of 27.5 in the other case. Note that, after process P1
is re-executed, we consider that no more faults can happen (k = 1).
Thus, process P6 does not experience any faults in the worst-case
scenario depicted above the schedule for N2. The overall utility
produced in this case will be 92.5.

As can be seen, a variety of situations will occur during
execution, which must be captured by the scheduler. We
implement a quasi-static scheduling mechanism that generates
a number of possible schedules off-line. The online scheduler
will only perform the switching between alternative schedules,
based on the pre-computed switching conditions. The
alternative schedules will be selected depending on the
occurrence of faults and on the actual execution time of
processes. All schedules guarantee that hard deadlines are
satisfied even in the worst case.

V. SCHEDULING

In this section we present our value-based quasi-static
scheduling algorithm for fault-tolerant distributed systems.

A. Scheduling with Fault Tolerance

In this paper we will adapt the scheduling strategy which we
have applied in [11] to generate fault-tolerant schedules for
mixed soft and hard real-time monoprocessor systems. This
strategy uses “recovery slack” in the schedule to accommodate
the time needed for re-executions in case of faults. After each
process Pi we assign a slack equal to (ti + μ) × f, where f is the
number of faults to tolerate, ti

 is the worst-case execution time
of the process and μ is the re-execution overhead. The slack is
shared between processes in order to reduce the time allocated
for recovering from faults. The advantage of this scheduling
strategy is that it can quickly produce efficient fault-tolerant
schedules that do not require much memory to support fault
tolerance.

We extend the monoprocessor scheduling strategy [11] to
capture communications on the bus. Moreover, in this work, we
also improve the efficiency of our quasi-static strategy from [11],
as discussed in Section V.C. We propose a greedy quasi-static

scheduling heuristic that uses a fast and efficient simulator,
which we have developed, inside the optimization loop.

In our scheduling approach for distributed hard real-time
systems [9, 20] the sending and receiving times of messages on
the bus are fixed and cannot be changed within one fault-
tolerant schedule. Each message mi, which is an output of
process Pj is always scheduled at fixed time on the bus after the
worst-case completion time of Pj. In this paper, we will refer to
such a fault-tolerant multiprocessor schedule with recovery
slacks and fixed communications as an fN-schedule, where N is
the number of computation nodes in the system.

B. Signalling and Schedules

Our primary objective is to maximize the total utility value
of the application. However, pure fN schedules with fixed sending
times of messages can lower the total utility due to imposed
communication restrictions. In this work, thus, we propose a
signalling mechanism to overcome this restriction.

A signalling message is broadcasted by computation node
Nj to all other nodes to inform if a certain condition has been
satisfied on that node. In our case, this condition is the
completion of process Pi on node Nj at such time that makes
execution of another pre-calculated schedule fn

N more
beneficial than the presently running fp

N schedule. The
condition is known if it has been broadcasted to all computation
nodes with the signalling message. Switching to the new
schedule fn

N is performed by all computation nodes in the
system, after receiving the broadcasted signalling message with
the corresponding “true” condition value. In the proposed
signalling approach, we will send one signalling message for each
process, after the worst-case execution time for hard processes
or after the expected execution time for soft processes in the
schedule. The number of signalling messages has been limited
to one per process, taking into account problem complexity and
in order to provide a simple yet efficient solution.

In Fig. 5, we consider application A3 composed of 5
processes, P1 to P5, where processes P1 and P5 are hard with
deadlines of 170 and 400 ms, respectively, and processes P2, P3
and P4 and all messages are soft. In Fig. 5a, a single f 2 schedule
S0 is generated, as depicted above the Gantt chart that outlines a
possible execution scenario that would follow S0. Message
sending times on the bus are fixed and message m2 is, thus,
always sent at 150 ms (denoted as m2[150] in the schedule). m2
has to wait for the worst-case completion time of P2.

1 The order
of processes is preserved on computation nodes. However, the
start times of processes are varied, under the constraint that
processes do not start earlier than their earliest allowed start time
in the schedule. For example, process P3 will wait until
completion of process P4 but will not start earlier than 160 ms,
waiting for message m2 (with the constraint denoted as P3(160)
in the schedule). In schedule S0 we also depict the number r of
allowed re-executions for processes with the “+r” notation. For
example, process P2 is allowed to re-execute r = 1 time to tolerate

1. Note that if P2 is re-executed, message m2 will be, anyway, sent at 150 ms
but will transport a “stale” value.



k = 1 fault, i.e., P2(0) + 1, while processes P3 and P4 are not
allowed to re-execute (r = 0).

In the execution scenario in Fig. 5a, which follows S0,
process P2 completes at 70ms with utility of 45. Process P4 is
executed directly after process P1 with resulting utility of 1/2 ×
60 = 30. Process P3 is waiting for message m2 and completes
with utility of 70. The overall utility is, thus, 145.

In the schedule shown in Fig. 5b, we employ the signalling
mechanism. The signalling message Sg2 is sent after the
expected execution time of the soft process P2, which can
trigger the switch from the initial root schedule S1 to the new
schedule S2. Schedule tree Φ, composed of schedules S1 and S2,
is depicted above the Gantt chart in Fig. 5b. Switching between
the schedules is performed upon known “true” condition C2,
which is broadcasted with the signalling message Sg2. C2
informs that P2 has completed at such time that switching to S2
has become profitable. In the opposite case, when switching to
S2 is not profitable, due to, for example, that P2 has not

completed at that time, Sg2 transports a “false” condition CF2.
Thus, two execution scenarios are possible in the tree Φ: under
“true” condition C2 and under “false” condition CF2. In
schedule S1, in the CF2 case, processes P3, P4 and P5 and
message m2 are grouped under this condition CF2 as CF2{P4,
P3, P5} on node N2 and as CF2{m2} on the bus. They will be
activated in the schedule only when “false” condition CF2 is
known. Respectively, in schedule S2, onto which the scheduler
switches in the case of “true” condition C2, processes P3, P4 and
P5 and message m2 are grouped under C2 that will activate
them.

With the signalling mechanism, overall utility of the
execution of application A3 can be improved. In the Gantt chart
in Fig. 5b, process P2 completes at 70 ms with utility of 45. In
this case switching to the schedule S2 is profitable and, hence,
signalling message Sg2 with the “true” condition C2 is
broadcasted. The scheduler switches from S1 to S2 after arrival
of Sg2, as shown in the figure. According to the new order in
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schedule S2, process P4 is executed after its predecessor P3,
with the utilities of 55 and 70, respectively. The resulting utility
of this execution scenario, thus, will be 170, instead of only 145
in Fig. 5a.

In Fig. 6a we depict an execution scenario for application
A1 from Fig. 4 on a single f 2 schedule. The schedule will
produce an overall utility of 117.5 for this execution scenario.
If, however, we send a signal Sg1 after the worst-case execution
time of the hard process P1 and generate the corresponding
schedule Sb, we can produce a much better overall utility of
135, by switching to the schedule Sb, as depicted in Fig. 6b.

C. Value-based Scheduling

We construct a tree of fault-tolerant schedules with the
FTQuasiStatic heuristic outlined in Fig. 7. At first, we generate
a Root fN schedule with recovery slacks (line 1) using the
GenerateFTSchedule heuristic, outlined in Fig. 8, which takes
into account a service degradation rule R. This schedule alone
does not allow changing the order of processes and it fixes the
sending times of messages on the bus. From Root we generate
other schedules, to which the scheduler will switch to improve
the overall utility, as discussed in Section IV. Signalling
messages sent on the bus will trigger switches between these
schedules, as discussed in Section V.B.

The quasi-static scheduling algorithm is iterating while
improving the total utility value with new schedules (lines 3-20),
at the same time, preserving deadlines of hard processes. At each
iteration, we consider a selected schedule φmax, which is initially
the Root schedule (line 2) or has been obtained on the previous
iteration (lines 14-18). We evaluate each process Pi in φmax as
completed with expected execution time, and generate a
corresponding schedule φnew (lines 8-13). After φnew is generated,
we determine when it is profitable to change to it from φmax, and
at what completion times of process Pi (line 10), such that
deadlines of hard processes are satisfied, in the interval

partitioning step. We heuristically compute switching points to
φnew by exploring possible completion times of process Pi in φmax
with a given interval ΔI. Then, we evaluate φnew with its
switching points by performing simulation of the tree with φnew
attached (line 11). Simulation is performed until simulation
results converge with a given error probability dε and the total
utility Unew is obtained, which also captures utility degradation
due to “stale” values of soft processes in a variety of simulated
execution scenarios. If φnew improves the total utility, it is
temporarily attached to the tree (added to set Φ’ of temporarily
selected schedules, line 12). During simulation, we run the actual
online scheduler that executes a variety of execution scenarios.
We are able to run 10.000s execution scenarios in a matter of
seconds. All new schedules, which are generated, are evaluated
and the schedule φmax, which gives the best improvement in
terms of total utility is selected (lines 14-18).1 It is permanently
added to the tree Φ and removed from the temporal set Φ’ in the
next iteration (line 7).

The Root schedule and new schedules φnew in the
FTQuasiStatic algorithm (lines 1 and 9, Fig. 7) are generated
with the GenerateFTSchedule heuristic in Fig. 8. This heuristic
is based on the monoprocessor FTSS heuristic, which we have
proposed in [11], with a number of differences such as handling
communication over the bus with signalling messages and
assigning guards, which is not straightforward in the context of
static cyclic scheduling. Processes and messages in
GenerateFTSchedule are scheduled under known conditions or
guards [7]. The scheduler will switch from a parent schedule
Sparent to the new schedule FS based on a “true” condition upon
completion time of process Pi, transported by Sgi, as discussed
in Section V.B. Current guard is initially true in case of no
parent schedule (and FS = Root schedule is generated, for
example, S1 in Fig. 5b). Otherwise, the initial value of current
guard is that the given process Pi has completed at a certain
time, which triggers “true” switching condition (line 1).
Schedule FS begins after arrival of Sgi with “true” condition (for
example, S2 begins after arrival of Sg2 in Fig. 5b). In FS, the
current guard will be updated after arrival of each signalling
message Sgj (for example, in S1 in Fig. 5b the guard is updated
to CF2 after arrival of Sg2 with “false” condition at 75 ms).

During construction of FS, we consider that Pi executes with
its expected execution time for all execution scenarios in FS.
Because of the reduced execution time of Pi, from the worst case
to the expected case, more soft processes can be potentially
scheduled in FS than in Sparent, which will give an increased
overall utility to the schedule FS compared to Sparent.

The algorithm iterates while there exist processes in the
ready list LR, which are selected to be scheduled (lines 2-3). List
LR includes all unscheduled soft and “ready” hard processes. A
“ready” hard process is an unscheduled hard process whose all
hard predecessors have been scheduled. At each iteration, the
heuristic determines which processes and messages, if chosen
to be executed, lead to a schedulable solution. The “best”

 FTQuasiStatic(G, k, M, R): const ΔI, dε
 1 Root:= GenerateFTSchedule(∅, G, k, M, R)
 2 Φ’:= Root; Φ:= ∅; φmax:= Root
 3 do
 4 improvement:= false
 5 if φmax ≠ ∅ then
 6 improvement:= true
 7 Φ:= Φ ∪ φmax; Remove(φmax, Φ’)
 8 for all Pi ∈ φmax do
 9 φnew:= GenerateFTSchedule(Pi, φmax, G, k, M, R)
 10 IntervalPartitioning(Pi, φmax, φnew, ΔI)
 11 Unew:= Evaluate(Φ ∪ φnew, dε, R)
 12 if Unew > Umax then Φ’:= Φ’ ∪ φnew
 13 end for
 14 Umax:= 0; φmax:= ∅
 15 for all φj ∈ Φ’ do
 16 Uj:= Evaluate(Φ ∪ φj, dε, R)
 17 if Umax < Uj then Umax:= Uj; φmax:= φj
 18 end for
 19 end if
 20 while improvement
 21 return Φ
 end FTQuasiStatic

Figure 7. Quasi-Static Scheduling

1. Thus, we ensure by construction of the schedule tables that the hard
deadlines are met, while we improve the utility of the tree by simulation.



processes on computation nodes and the “best” message on the
bus are selected (line 4) that would potentially contribute to the
greatest overall utility according to the MU priority function
proposed in [4] and modified by us to capture possible process
dropping [11]. During priority computation we consider the
degraded utility U*(t), obtained with a service degradation rule
R, instead of the original U(t). Out of the “best” processes and
messages on different resources, we select the one which can be
scheduled the earliest (line 5).

We schedule the selected process or message Bst under the
current set of known conditions K (lines 6-7). For each process
we add recovery slack, as discussed in Section V.A (AddSlack,
line 8). Recovery slacks of hard processes will accommodate
all k faults. Recovery slacks of soft processes, however, must
not reduce the utility value of the no fault scenarios and will,
thus, accommodate as much faults as possible but, in general,
not all k faults. For each process Pj we also add its signalling
message Sgj to the ready list LR (AddSgMsg, line 8). When
scheduling a signalling message (line 9), we change current
guards of computation nodes at arrival time of the message.

Finally, the list LR of ready nodes is updated with the ready
successors of the scheduled process or message (line 10). Those
soft processes whose executions will not lead to any utility
increase or would exceed application period T, are removed
from the ready list LR, i.e., dropped (line 11).

The GenerateFTSchedule heuristic will return either FS =
Root or a fault-tolerant subschedule FS that will be integrated
into the quasi-static tree Φ by the FTQuasiStatic heuristic.

D. Switching between Schedules

Switching between schedules in the quasi-static tree in run-
time is performed very fast. At each possible switching point,
e.g. after completion of a process Pi, the scheduler can have at
most two possible alternatives, i.e., to signal or not to signal the
switching to the “new” schedule. We store a pointer to this
“new” schedule in its parent schedule, when attaching the
“new” schedule to the quasi-static tree (line 7, Fig. 7). The
pointer is associated to a signalling message of the process Pi,
whose finishing time triggers the potential switching to the

“new” schedule. We also store the pre-computed switching
intervals as attached to this process. Thus, the online scheduler
will only check if the completion time of the process Pi matches
the switching interval (i.e., an “if” statement has to be executed
in the scheduler code) and, if so, will encapsulate the
corresponding switching condition into the signalling message,
which is broadcasted through the bus.

Upon arrival of the signalling message, the online scheduler
on each computation node will de-reference the pointer,
associated to this message, and switch to the “new” schedule,
which has been pre-generated and optimized exactly for this
situation by the algorithms in Figs. 7-8. Thus, no searching of
the right schedules is performed online and the online time
overhead is practically negligible. We have implemented and
evaluated our schedule switching mechanism as a part of our
simulator, which has demonstrated its efficiency.

VI. EXPERIMENTAL RESULTS

For our experiments we have generated 1008 applications
of 20, 30, 40, 50, 60, 70 and 80 processes (24 applications for
each dimension) for 2, 3, 4, 5, 6 and 7 computation nodes.
Execution times of processes in each application have been
varied from 10 to 100 ms, and message transmission times
between 1 and 4 ms. Deadlines and utility functions have been
assigned individually for each process in the application. For
the main set of experiments we have considered that 50% of all
processes in each application are soft and the other 50% are
hard. We have set the maximum number k of transient faults to
3 and recovery overhead to 10% of process execution time. As
worst-case execution time of a process can be much longer than
its expected execution time, we have assigned a tail factor Tf =
WCET / (AET × 2) to each process. Experiments have been run
on a 2.83 GHz Intel Pentium Core2 Quad processor with 8 Gb
memory.

At first, we were interested to evaluate our heuristics with
the increased number of computation nodes and the number of
processes. For this set of experiments we have set the tail factor
to 5 for all soft processes in the applications. The table in Fig.
9a shows an improvement of our quasi-static scheduling on top
of a single fN schedule in terms of total utility, considering an fN

schedule in the case of no faults as a 100% baseline. The
average improvement is ranging from 3% to 22% in case of 20
processes on 6 computation nodes and 40 processes on 2
computation nodes, respectively. Note that in this table we
depict the normalized utility values for quasi-static scheduling
that have been obtained in the case of no faults. During our
experiments, we have observed that the utility values for faulty
cases closely follow the no fault scenarios with about 1%
decrease (on average) in the utility value for each fault, as
illustrated, for example, in Fig. 9c.

As the number of computation nodes increases, in general,
our quasi-static scheduling improves less on top of a single fN

schedule, which could seem counterintuitive. However, this is
because, with an increased number of computation nodes, less
soft processes are allocated per node on average and the number

 GenerateFTSchedule(Pi, Sparent, G, k, M, R)
 1 SetCurrentGuard(Pi, FS)
 2 LR:= GetReadyNodes(G)
 3 while LR ≠ ∅ do
 4 for each resource rj ∈ {N, B} do

Bstj:= MMUSelect(rj, LR, R)
 5 Bst:= SelectBestCRT(all Bstj)
 6 K:= ObtainGuards(Bst, FS)
 7 Schedule(Bst, K, FS)
 8 if Bst is a process then

AddSlack(Bst, FS); AddSgMsg(Bst, LR)
 9 if Bst is a signal then

UpdateCurrentGuards(Bst, FS)
 10 UpdateReadyNodes(Bst, LR)
 11 Dropping(rj, LR)
 12 end while
 13 return FS
 end GenerateFTSchedule

Figure 8. Schedule Generation



of possible value-based intra-processor scheduling decisions by
the quasi-static scheduling is reduced. At the same time, the
number of inter-processor scheduling decisions is supposed to
increase. However, these decisions are less crucial from the
point of view of obtaining utility due to the greater availability
of computational resources, and a single fN schedule with a fixed
order of processes is sufficient to utilize them. Moreover, a lim-
ited number of signalling messages, e.g. one per process, re-
stricts the number of possible inter-processor decisions by the
quasi-static scheduling. Hence, the total number of exploitable
scheduling alternatives is reduced with more computation
nodes. In case of 20 processes and 2 nodes, the average number
of soft processes is 5 per node (considering 50% soft processes
in the application, 20 × 0.5 / 2 = 5) and the utility improvement
is 17%. In the case of 7 nodes, only an average of 1.4 soft pro-
cesses are allocated per node and, hence, the utility improve-
ment is only 3%. However, as the number of processes in the
application is growing, the trend is softened. For 40 processes
and 2 nodes the improvement is 22% with the average of 10 soft
processes per node. For 7 nodes the improvement is 9% with 2.9
soft processes per node on average. For 80 processes, the im-
provement in case of 2 and 7 nodes is already the same, 12% for
20 and 5.7 soft processes per node, respectively.

The average size of the quasi-static tree is between 2.2
schedules for 20 processes on 6 nodes and 8.0 schedules for 60
processes on 5 nodes that correspond to 1.3Kb and 9.4Kb of
memory, respectively. As the size of the application grows, the
amount of memory per schedule will increase. Thus, a tree of 7
schedules for an 80-process application on 5 nodes would
require 11.4Kb of memory. During our experiments we could

also observe that for many applications already 2-3 schedules
give at least half of the utility improvement. For example, for
40 processes and 2 computation nodes, 3 schedules will give
21% improvement. To compare, in our previous approach [11]
for applications with 30 processes in the monoprocessor
context, we needed at least 8 schedules in the tree to achieve the
same level of improvement.

Off-line tree construction times with FTQuasiStatic are de-
picted in Fig. 9b. Our heuristic produces a tree of schedules in a
matter of minutes for 20, 30 and 40 processes, and below one
hour for 50 and 60 processes. Tree construction time is around 4
hours for 5 nodes and 80 processes. Although the off-line tree
construction time is high for large applications, the online over-
head is still very small and is constant for all applications, in
spite of the application size, as discussed in Section V.D.

For a given total number of processes, the tree construction
time of the quasi-static algorithm is reduced with the number of
computation nodes. This can be explained taking into account
that the average number of soft processes per computation node
is reduced, which leads to a smaller amount of scheduling
alternatives to be explored by the quasi-static scheduling. In
case of 2 nodes, a greater number of soft processes for each
computation node is allocated and, as the result, more valuable
scheduling alternatives in total have to be considered than in the
case of, for example, 7 nodes. Our scheduling algorithm, thus,
has to spend much more time evaluating scheduling
alternatives for less nodes than in the case of more nodes, as
confirmed by the experimental results given in Fig. 9b.

In our next set of experiments, we have varied the percent-
age of soft and hard processes in the applications. We have ad-

Figure 9. Experimental Results

N 20 proc. 30 proc. 40 proc. 50 proc. 60 proc. 70 proc. 80 proc. 
Un n Un n Un n Un n Un n Un n Un n 

2 117 4.3 119 5.3 122 5.6 117 5.8 116 5.4 114 6.5 112 4.9 
3 111 3.8 113 4.6 119 6.9 119 6.0 118 5.8 115 7.4 114 7.5 
4 109 2.7 112 4.5 113 5.4 118 7.0 115 7.0 115 7.3 113 6.8 
5 106 2.5 112 2.6 113 5.6 112 5.8 116 8.0 113 5.8 115 7.0 
6 103 2.2 109 4.2 110 4.5 112 6.1 115 7.3 113 6.7 113 6.3 
7 103 1.8 106 3.0 109 4.8 112 5.4 110 6.0 110 5.8 112 7.0 

 

(a) Normalized utility (Un = UFTQ.S./UfN×100%) and the number of schedules (n)
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ditionally generated 1080 applications of 20, 30, 40, 50 and 60
processes for 2, 3, 4, 5 and 6 computation nodes, respectively.
The percentage of soft processes has been initially set to 10%
and hard processes to 90%. We have gradually increased the
percentage of soft processes up to 90% of soft processes and
10% of hard processes, with a step of 10% (and have generated
120 applications of different dimensions for each setup). The
improvement produced by FTQuasiStatic over all dimensions is
between 14 and 16%. The average number of schedules has in-
creased from 2 for 10% of soft processes to 6 for 90% of soft
processes, with the increased execution time of the heuristic
from 10 to 30 minutes.

We were also interested to evaluate our heuristic with
different tail factors Tf, which we have varied from 1 to 10 for
applications with 40 processes on 2 nodes. As our results in Fig.
9c show, the improvement produced by FTQuasiStatic is larger
in the case of a greater tail factor. If for the tail factor 1, the
improvement is 7.5%, it is around 20% for the tail factors of 5-
6 and 24% for the tail factors above 7. Note that the total utilities
of fault scenarios, as depicted in Fig. 9c, closely follow the no
fault scenarios with only about 1% utility value decrease for
each fault. In our previous approach [11] in the monoprocessor
context, the impact of faults was more significant, between 3 to
16% utility decrease for each fault.

We have also run our experiments on a real-life example, a
vehicle cruise controller (CC) [20], composed of 32 processes
mapped on 3 computation units: Electronic Throttle Module
(ETM), Anti-lock Breaking System (ABS) and Transmission
Control Module (TCM). We have considered that 16 processes
implement critical functions and are hard. The rest of processes
have been assigned with utility functions. The tail factor is 5 with
k = 2 transient faults, recovery overhead of 10% of process
execution time and signalling message transmission time of 2
ms. In terms of total utility FTQuasiStatic could improve on top
of a single fN schedule with 22%, with 4 schedules that would
need 4.8Kb of memory.

VII. CONCLUSIONS

We have presented an approach to scheduling of mixed soft
and hard real-time distributed systems with fault-tolerance. A
quasi-static scheduling heuristic is used to generate a tree of
fault-tolerant schedules off-line that maximizes the total utility
value of the application and satisfies deadlines. Depending on
the current execution situation and fault occurrences, an online
scheduler, with low online overhead, chooses which schedule to
execute, based on the pre-computed switching conditions. The
obtained tree of schedules can deliver an increased level of
quality-of-service and guarantee timing constraints of
embedded applications under limited amount of resources.
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