Customizing Instruction Set Extensible
Reconfigurable Processors using GPUs

Unmesh D. Bordoldi, Bharath Sufi, Swaroop Nunri Samarjit Chakraborty Petru Eles, Zebo Peng
I'Linkdpings Universitet, Sweden 2TU Munich, Germany
'E-mail{ bhasu733@t udent . | i u. se}, {unnbo, petel , zebpel@da.liu.se
2E-mail: {SWar oop. nunna, samarjit.chakraborty}@cs. ei.tum de

Abstract—Many reconfigurable processors allow their instruc- compilers [18] and such compilers are invoked repeatedly by
tion sets to be tailored according to the performance requiremers designers. Typically, a designer would choose the values of
of target applications. They have gained immense popularity certain system parameters (e.g., processor frequency- dea
in recent years because of this flexibility of adding custom i imol . P f th licatio h
instructions. However, most design automation algorithms for ines) pnce an imp e.mentatlon VerSan of the app_lcatloe a
instruction set customization (like enumerating and selecting been fixed and then invoke the compiler to determine whether
the optimal set of custom instructions) are computationally the constraints (like performance and area) are satisffed. |
intractable. As such, existing tools to customize instruction the compiler returns a negative answer, then some of the
sets of extensible processors rely on approximation methods or parameters are modified (e.g., an optimized version of the

heuristics. In contrast to such traditional approaches, we propse . | tation is ch f - led
to use GPUs (Graphics Processing Units) to efficiently solve implementation is chosen or processor frequency is scaled)

computationally expensive algorithms in the design automation and the compiler is invoked once again. Thus, the designer
tools for extensible processors. To demonstrate our idea, we iteratively interacts with the tools to adjust the paramsetnd
choose a custom instructionselection problem and accelerate functionalities till the performance constraints are sfal.

it using CUDA (CUDA is a GPU computing engine). Our ¢ aach jnyocation of the tool takes long time to run to

CUDA implementation is devised to maximize the achievable leti the int tive desi . b tedi
speedups by various optimizations like exploiting on-chip shared completion, he Interactive design sessions become iediou

memory and register usage. Experiments conducted on well affecting the design productivity. Hence, by bringing dative
known benchmarks show significant speedups over sequential running times of the tools by significant margins using GPUSs,

CPU implementations as well as over multi-core implementations. the usability of such tools may be improved. Further, this
|. INTRODUCTION comes at no additional cost because most desktop/notebook

. .) computers today are already equipped with a commodity GPU.
Instruction set extensible reconfigurable processors have P y y €quipp y

become increasingly popular over the last decade. TheirF'na"y’ given that the combinatorial optimization prable

popularity is driven by the fact that they strike the righf?@PPed to GPU in this paper is a variant of the knapsack
balance between the flexibility of general purpose progsss®©PIem. our results might be meaningful to a wider range of
and the performance of ASICs. The existing instructioHrOblemS in the design automation domain.

cores of extensible processors may be extended euttom Qverview of the problem: Given a library of custom instruc-
instructions to meet the performance requirements of thgon candidates the goal is to select a subset of instrugtion
target application. such that the performance is enhanced while keeping the area

Our contributions: Design automation problems for cus-£Osts at minimum. In such a scenario, conflicting tradeoffs
tomizing instruction sets are computationally intractafllP- are inherent because while the performance of a system
hard) [17]. In this paper, we propose the use of GPUs fBay be improved by the use of custom instructions, the
accelerate the running times of design automation tools fegnefits come at the cost of silicon area. Hence, a designer
customizable processors. To show the applicability of GPUsis not interested in identifying one solution which meets th
instruction set customization algorithms, we choose aornst Performance requirements, but would rather like to idgralf
instruction selection problem and accelerate it using cupAthe conflicting tradeoffs between performance and area. The
(Compute Unified Device Architecture), NVIDIAs paralleldesigner can then inspect all solutions and pick one which
computing architecture based on GPUs [12]. Our contributi§uits his/her design.
is interesting because we show how the custom instructionNote that in the above setup, part of the application is
selection problem can be engineered to exploit on-chip meimplemented as software on a programmable processor and
ory on GPUs and other CUDA features. We choose custahe rest in hardware as custom instructions on a sea of
instruction selection problem because (i) of its intractability FPGA. In this setting, a good metric for performance is the
(see Section II) and (i) it has received lot of attentionésent processor utilization because it is a measure of the load
years (see Section I-A). We would like to note that in cortrasn the processor. Moreover, in this paper, we assume that
to traditional approaches (like approximation schemeys {2ir the processor is running hard real-time tasks and processor
GPU-based technique provideptimal solutions. utilization is a well known metric that is used to capture
Our contribution is also practically relevant because irthe feasibility of such systems (for details, see Sectign II
struction set customization techniques are incorporatéa i Formally, let(c,) denote the hardware castarising from the

use of custom instructions and the corresponding utibrati However, implementing general purpose applications on a
u, of the processor. We are then interested in generating ®U is not trivial. The GPU follows a highly parallel compu-
Pareto-optimal curve [4](cy,uq),..., (cn,un)} in @ multi- tational paradigm. Since many threads run in parallel, istmu
objective design space. Ea@h, u;) in this set has the property be ensured that they do not have arbitrary data dependency on
that there does not exist any implementation choice withemch other. Hence, the challenge is to correctly identiy th
performance vectofc,u) such thate < ¢; and v < w;, data parallel segments so that dependency constraintsof th
with at least one of the inequalities being strict. Furthetr, application mapped to the GPU are not violated. Secondly, in
S be the set of performance vectors corresponding to allder to exploit the high bandwidth on-chip shared memadary, i
implementations choices. L&t be the set of performance vec-is important to identify the frequently accessed data stres

tors {(c1,u1),..., (cn,un)} corresponding to all the Pareto-so that they can be pre-fetched in the shared memory.
optimal solutions. Then for anfe, u) € S — P there exists a Il. PROBLEM DESCRIPTION

(¢i,u;) € P such thate; < ¢ andu; < u, with at least one In thi . di del and f I
of these inequalities being strict (i.e., the getcontainsall n this sect|on: we discuss our sy_stem model and formatly
performance tradeoffs). The vectdrsu) € S—P are referred present the multi-objective optimization problem.

to asdominated solutions, since they are “dominated” by oneSystem Model: We assume a multi-tasking hard real-time

or more Pareto-optimal solutions. system. Formally, we use the sporadic task model [1] in
A. Related Work a preemptive uniprocessor environment. Thus, we are inter-
ested in selecting custom instructions for a task set

Note that in this work we focus on the custom instructsen Ta,Tz,...,Tm} consisting ofm hard real-time tasks with

lection ph . In recen rs, | fr rch h n V{h . .
ection p ase ece tyea S oto esearch has bee dg (.)tee constraint that the task set is schedulable. Any Tastan
to custom instruction selection techniques so as to opéimiz

either performance or hardware area [2], [9]. In this papeqzt triggered mdependerfwtllybof othehr ltas KSTL?]EaCh ta.sI(Z(;gb h
we have considered a more general problem formulation J%ﬁ&ﬁgspgrai?r?(;irr?‘e of jobs; each job Is characterize@by t
focusing on multi-objective optimization instead of opizing ') o

for a single objective. o Release Tlmfe: the release time of t_wo successive jobs of
the taskT; is separated by a minimum time interval of
P; time units.

Deadline: each job generated K, must complete byD,

time units since its release time.

Custom instruction selection techniques assume that a
library of custom instruction candidates is given. Such
a library of custom instructions may benumerated by *
extracting frequently occurring computation patternsifrihe . .
data flow graph of the application [14], [17]. We believe our * }/\brkload: the WOI’ST[case execution requirement of any
paper would motivate researchers to explore the posgibilit ~JOP 9enerated by; is denoted by~;.
of deploying GPUs in this phase as well. Throughout this paper, we assume the underlying

scheduling policy to be the earliest deadline first (EDF).
Motivation for using GPU: It should be mentioned in this Assuming that for all taskg;, D; > P, the schedulability
section that our paper has been motivated by the recent trefitthe task setr can be given by the following condition
of applying GPUs to accelerate non-graphics applicationg; — s~ E:) < 1, whereU is the processor utilization
Applications that have harnessed the computational powgie tor [1].
of GPUs span across numerical algorithms, computational
geometry, database processing, image processing, agtioph Problem Statement:For a given processar, let each of the
and bioinformatics [13]. Of late, there has also been lot ¢dsksT; haven; number of custom instruction choices which
interest in accelerating computationally expensive dllgors can be implemented in hardware. For simplicity of expositio
in the computer-aided design of electronic systems [7],[8] assume that the processBis clock frequency is constant and
There are many compelling reasons behind exploiting GPEh the execution times of the tasks are specified with regpec
for such non-graphics related applications. First, mo@#PtJs this clock frequency. The objective is to minimiZ&s utiliza-
are extremely powerful. For example, high-end GPUs, sutibn (by mapping certain custom instructions onto hardyvare
as the NVIDIA GeForce GTX 480 and ATl Radeon 5870and at the same time also minimize the total hardware cost.
have 1.35 TFlops and 2.72 TFlops of peak single precisibm other words, our goal is to compute tlwest-utilization
performance, whereas a high-end general-purpose proce$¥reto curve{(cy,uq), ..., (cn,un)} for a prespecified clock
such as the Intel Core i7-960, has a peak performance of fé&quency ofP. Note that it is possible that the given task set
Gflops. Additionally, the memory bandwidth of these GPU@vithout utilizing custom instructions) is already schizdile
is more than & greater than what is available to a CPUopn the processor, i.el] < 1. In these cases, the Pareto curve
which allows them to excel even in low compute intensityeveals how the utilization can be further reduced at thé cos
but high bandwidth usage scenarios. Finally, GPUs are nafvhardware area. This is interesting because the desigmer c
commodity items as their costs have dramatically reduc#iten use the processor for soft real-time tasks or clock the
over the last few years. The attractive price-performaaties processor at a lower frequency to save power. On other hiand, i
of GPUs gives us an enormous opportunity to change tttee original task set is not schedulable, the Pareto cumeate
way design automation tools like compilers for instructs@t the hardware costs at which the task set becomes schedulable
customization perform, with almost no additional cost. Note that the designer can also choose to clock the processor

Thread Block
Threads

Algorithm 1 Custom Instruction Selection

Require: The task set-, and a setS; for each taskT;. E] E] —
1 Uoo 300, B/ Py
2: for j < 1 to mC do !
3: U()'j +— oo - E— l\
4: end for éhéead Blocké éhread Blocké Thread Blocké
5: for i < 1tom do B e e e e |.......
6: for j < 0to mC do 5}
7: For each paif(d; ., ci,;) that belongs to the sef; S=E=|[EEE EEEEEE
8: Uij < min{Ui—1,;,Ui1,j—c; ,, — 0i,x/Pi} =) T —
9: end for lJ ll | '_, I ! | ’J
. end for ! —— |

=
o

Global Memory | Constant Memory| Texture Memory

GPU-DRAM

at a higher frequency to make the task set schedulable. By
revealing the utilization points fot/ > 1.0, our results will Fig. 1. CUDA programming model
expose the higher frequencies at which the processor may
clocked for the system to be schedulable.

Each of then; choices of the task; is associated with
a certain hardware cost. Choosing thlh implementation
choice for the taskT; lowers its execution requirement
on P from E; to e; ;. Equivalently, the amount by which
the execution requirement of; gets lowered onP is
0;; = I — e; ;. Hence, for each task; we have a set of
choices S; = {(0i1,¢i1),- - (GimiyCing)}, Wheree; ; is l1. CUDA
the hardware cost associated with thin implementation In this section, we provide a brief description of CUDA. For
choice. Letz;; be a Boolean variable that is assigned & complete description, we refer the reader to NVIDIAs guid
if the jth implementation choice for the task; is chosen [12]. CUDA abstracts the GPU as a powerful multi-threaded
and is assigned 0, otherwise. In this setup, the objectigeprocessor capable of accelerating data-parallel, ctanpu
is to minimize the utilizationU(S) = Zﬁl% tionally intense operations. The data parallel operatiagch
and the costC'(S) = Y, ¢; jz;;, Where S is the chosen are similar computations performed atreams of data, are
implementation among the various available options. referred to akernels. Essentially, with its programming model
and hardware model, CUDA makes the GPU an efficient

NP-hardness:The NP-hardness of the problem can be show .
sfreaming platform.

by transforming the knapsack problem [10] into a specia In CUDA, threads execute data parallel computations of

instance of this problem. Towards this, corresponding tmeathe kernel and are clustered into blocks of threads referred

item in the knapsack problem, we have a task with perfor-
mance gain equal to the profit and the hardware cost equaf??as t_hread b.IOCk.S' These thr.ead blocks are further cln;ter
nto grids. During implementation, the designer can comégu

the weight of _the item. A complete proof is omitted due t{Jhe number of threads that constitute a block. Each thread
space constraints. S ; .

inside a block has its own registers and local memory. The
Algorithm: An algorithm to compute optimally the Paretathreads in the same block can communicate with each other
curve described above consists of two parts. First, a dymanttirough a memory space shared among all the threads in the
programming algorithm (Algorithm 1) computes the minimunblock and referred to aShared Memory. The Shared Memory
utilization that might be achieved for each possible coke T space of the thread block and is typically in the order of
second part finds all undominated solutiomss{-utilization ~KB. However, an explicit communication and synchronizatio
Pareto curve) from the entire solution set found by the dyetween threads belonging to different blocks is only guesi
namic programming algorithm. We denote this part as ‘Retaihrough GPU-DRAM. GPU-DRAM is the dedicated DRAM
Undominated’ — a straightforward sequential implementati for the GPU in addition to DRAM of the CPU. It is divided

(Pfj and costj. It can be easily verified that the running time
of Algorithm 1 is O(nmC), wheren = " n;, and its
space complexity i©)(m?C). The algorithm runs in pseudo-
polynomial time, and hence, turns out to be a computatignall
expensive kernel. In this paper, we accelerate the runimmest
of this algorithm by mapping it to the GPU and obtain optimal
and exact solutions as described in Section IV.

on CPU. Below, we discuss Algorithm 1. into Global Memory, Constant Memory and Texture Memory.
Let U; ; be the minimum utilization that might be achievedVe note that theConstant and Texture Memory spaces are
by considering only a subset of tasks frofl,2,...,i} read-only regions whereaSlobal Memory is a read-write

when the cost is exactly. If no such subset exists we setegion. Figure 1 illustrates the above described CUDA pro-
Ui,; = oo. Let the maximum cost be represented @yi.e. gramming model. In case a memory location being accessed,
C = mar—i2, . nj=12,..n,Ci - Clearly, mC is an upper by a CUDA memory instruction, resides in GPU-DRAM, i.e.,
bound on the total cost that might be incurred. Lings 4 of either in Global, Texture or Constant Memory spaces, the
Algorithm 1 initialize Uy o to Y. | E;/P;, andUy ; to oo for memory instruction consumes an additional 400 to 600 cycles
j=11,2,...,mC}. The valuesU; ; for i =1 to i = m are On the other hand, if the memory location resides on-chip
computed using the iterative procedure in lise® 10. Thus, in the registers oShared Memory, there will be almost no
any non-infinity valueU,, ; for j = {1,2,...,mC} implies additional latencies in the absence of memory access asnflic

that there exists a design choice of the task set with utiima Note that in contrast to the GPU-DRAM, ti8aared Memory

Thread Block Thread Block Thread block
T

o 7 —______ 31
[slslsl=fls]s]=s1]5%] = T=_1 7" [=1
| e— ————————— T
Parallel - ‘_L____
Computations o Q - | Shared
2 = —— m Memory
Cl;::vnt i U U U V] U Data fetched at i-th iteration
Previous . - T Ay m
o 1| U u e M T

€ J-€iz J

Fig. 2. Data dependency graph for Algorithm 1
g p y grap g T, 0,, | a,,] a,, |
Sty Global
| Memory

Data structures for Task Choices
L
[
[
[
[
[
[
[
[
[
[
[
[

T Qy, | Qy,

region is a on-chip memory space. The additional latenafes o
GPU-DRAM might obscure the speedups that can be achieved _ S ,
. . Fig. 3. Data fetched into shared memory at i-th iteration ofaklyorithm

due to parallelization and hence the on-chip shared memorfz1
must be judiciously exploited. and write (to update the DP-matrix with the values of the
row computed in the current iteration) operations which can
only be done explicitly withGlobal Memory. Also, note that

As described in Section IlI, the computation of theve have so far not used the on-ctSpared Memory because
cost-utilization Pareto curve to expose the desigfhe size of theShared Memory is typically quite small (see
tradeoffs at custom instruction selection phase involv&ection Ill) and the DP-matrix cannot fit into it.
a pseudopolynomial algorithm (Algorithm 1). In this seatio However, the on-chifghared Memory can be exploited to
we present our CUDA based framework to implemerfiore other frequently accessed data structures. To fdenti
Algorithm 1 to accelerate its running times. This involvee t sych data structures, we once again focus on the kernel
following major challenges. First, we need to identify an@perations of our algorithm (line 8 of Algorithm 1). We note
isolate the data parallel computation of the algorithm st thihat the computation of each of tig ; values corresponding
they may be compiled as thernels. Recall that kernels are to the taskI; (i.e., thei-th row of our DP-based matrix) needs
executed by data parallel threads on CUDA. Secondly, We values of all the:; hardware implementation choices of
must devise the algorithm such that it can exploit the om-chi;. Now let us denote the choice tuplé , ¢;) by Q; ; for
Shared Memory and registers to enhance the achievable — {1 2 ... n,}. Thus, from line 8 of Algorithmyl, the
speedups. Finally, thread block size must be appropriatelymputation of thei-th row in the DP-matrix requires the
configured. In light of these challenges, we now provide @&jues); 1,5, ..., Q..

systematic implementation of Algorithm 1 in the following. This set, {Q;1,Qi5,...,.,,}, is essentially a subset of
Identifying data parallelism: As mentioned above, ourthe overall specification of the task set. Also, in iteration
first goal is to identify the data-parallel portionke(nels) ¢ of computing the DP-matrix this set of required data
in Algorithm 1 which can be computed by CUDA threadstructure remains constant, i.e., information about theerot

in a SIMD fashion. The kernels must not have any dafsarts of the task set is not required. This set changes only
dependencies (on each other) because they will be execuagdhe next iteration (iteratiori + 1) because this iteration
by threads running in parallel. Towards this we first idgntifcorresponds to a different task in the task set which might
the data dependencies in Algorithm 1. Algorithm 1 (linebave a different set of hardware implementation choices Th
5 - 10) builds a dynamic programming (DP) matrix. The@bservation provides an opportunity to significantly reluc
i-th row of the matrix corresponds to theth task7; in the GPU based execution times by loading these values
the task set described in Section Il. Each cell in thth {;1,Qi2,...,Q;,} to the on-chipShared Memory at the

row represents the valug; ; wherej = {0,1,2,...,mC}. beginning of each iteration. Compared to the DP-matrix,
According to Algorithm 1 (line 8), the computation of thes¢his set of values is much smaller and can fit into the
values depends only on the values present in the previously-chip Shared Memory. Figure 3 illustrates our scheme of
computed rows. Figure 2 illustrates this for the c&ll,. prefetching the required data structure fr&@tobal Memory
This implies that the values of the cells of the same row i9 Shared Memory at the start of each iteration. The figure
the DP-based matrix can be computed independently of eaftows a thread block (which consists of 32 threads) fetching
other by using different CUDA threads in SIMD fashionthe required data from th@lobal Memory at thei-th iteration.

Therefore, we isolate (line 8 of Algorithm 1) as thernel of Register usage: The threads of CUDA access registers
our C_UDA implementation. I_n the following, we explain the(used to store the local variables) which have very low
effective usage of the on-chip share memory. access latencies like thé&hared Memory. If the total
Memory usage: We store the DP-matrix in th&lobal number of required registers is greater than that available
Memory space (GPU-DRAM). Note that we u§&tobal Mem in the processor for the current set of thread blocks, then
ory space instead o€onstant or Texture Memory because CUDA will schedule less thread blocks simultaneously to
Constant and Texture Memory are read-only regions. During cope with the situation. This will decrease the degree of
the computation of our DP-matrix we need to perform botparallelism offered by CUDA. In Algorithm 1 there is a
read (to fetch values from the previous rows computed egrliglivision operation (line 8) that is known to contribute tahi

IV. PROPOSEDFRAMEWORK ON CUDA

[Task Set][Benchmarks [Size |

register usage. Hence, in our implementation, we convert

L - X . . . 1 aes, djpeg, g721decode, rijndael, adpcm 12
it into a multiplication operation to optimize the registezage. jfdctint, cjpeg, edn, ispell, sha, ndes, comprelss
. . 2 djpeg, g721decode, rijndael, adpcm 11
Thread block: We recall from Section Ill that the on-chip jfdctint, cjpeg, edn, ispell, sha, ndes, compress
memory is shared only between the threads within a single 3 aes, djpeg, g721decode, rijndael 10
. : . jfdctint, cjpeg, edn, ispell, sha, ndes

block. Hence, configuring the thread blocks to an appropriat 7 adpcm, Tindael, cjpeg, ispell)
size is also important to effectively exploit the GPU on- sha, ndes, djpeg, compress, edn

. . 5 cjpeg, ispell, edn, sha 8
chip memory. For example, if we choose a very small thread g721decode, djpeg, compress, ndes
block size, then the computation of each row in our DP- TABLE |
based matrix will involve lot of thread blocks. However, TASK SETS
only the threads within a thread block share the same chunk 200000 ‘ ‘ ‘
of on-chip memory. This implies that data from tkBtobal 180000 - CODA
Memory to Shared Memory will have to be transfered for a 160000 | OnenGL -5 cores M
large number of thread blocks, inspite of the fact that &l th € 140000 |
threads in a single iteration need the same data structures - < 120000 |
{Qi2,...,9Q1}, as described above. E 100000

We note, however, that thread block size cannot be increased 2 soo0o -

. . . . c
arbitrarily to increase performance. As an example, camsid 5 60000
the Tesla GPU from NVIDIA that allows a maximum of 1024 40000 -
threads in a thread block. Interestingly, the total numbkfer o 20000 - ‘
threads that can be active simultaneously is 1536, as limite 0 . s 10 1 12
by the hardware. If we set thread block size to 1024, only one _ _Number of tasks _
thread block (i.e., 1024 threads) will run in parallel. Thss Fig. 4. Comparison of all implementations.

because it is not possible for the GPU to run only some thred@sk7;, we compute — (i) the performance improvemens
of a thread block. On the other hand, if we set thread blogd (i) the area cost; ; — for each of thejth custom in-
size as 768, two thread blocks (i.e., 1536 threads in tot&fyuction configurations. The workload is in terms of Multip
can run in parallel because all the threads can be activatecumulate (MAC) operation’s cycles and the hardware area
simultaneously. Hence, for Tesla, we choose 768 as thecthré&in terms of number of adders.
block size. Under certain conditions (like register sgila ~ We set P; for the tasks, such that th& = PR %
Shared Memory capacity overrun), it is possible that a threaés 0.80, 1.00, 1.05, 1.08 and 1.10 for the 5 different tasks
block size of 1024 delivers a better performance than wifi¢t. The GPU used for evaluating our experiments was a
768. Our optimizations oShared-Memory and register usage, NVIDIA Tesla M2050 GPU. This GPU was connected via
as described above, ensure that such scenarios do not o€guboard PCI express slot to the host machine with 2 Xeon
for the problem addressed in this paper. E5520 CPUs, each with 4 cores, i.e., 8 cores overall and each
V. EXPERIMENTAL RESULTS core ran at 2.27GHz. We compared the performance of our
' CUDA implementation against an OpenCL implementation

obltr;itnhétsj S;Ct:?]:h‘i'xe rgs:)gglg Aei)t()paz:?Gi)rr;tallerrisetrj]t[;titgr?ivze%n the multi-core host. We also compared the results with
y 9 P n OpenCL implementation on a dual core laptop, each core

different task sets that were constructed using well knovm ning at 2.1 GHz. We also implemented (in C) a sequential
benchmarks. We compared these results with those obtair\1/ asion of the algorithm that was run on a single core of
by running sequential CPU-based implementation as well & Xeon host machine. Thus, we have four implementations
multi-core implementations. '

;) overall — CUDA, OpenCL 8-core, OpenCL 2-core and a
Experimental Setup: We created 5 task sets with number Ogequential CPU.

tasks between 8 and 12. These task sets comprise of 5 be
marks compress, jfdctint, ndes,edn, adpcm) from WCET [15],
3 benchmarksaes, sha, rijndael) from MiBench [8], 3 bench-
marks ¢721encoder, djpeg, cjpeg) from MediaBench [11] and 25000 : :
one benchmarkigpell) from Trimaran [16]. Table | shows the OpenCL - 8 cores
combination of benchmarks incorporated in each of the task _ ago00 | OPe"Ch2°0%s”
sets and the sizes of the task sets.

We chose the Xtensa [6] processor platform from Tensilica
for our experiments. Xtensa is a configurable processor core
allowing application-specific instruction-set extensiohe
custom instruction configurations from the benchmarks were
obtained by using the XPRES compiler from Tensilica. First, 5000 1
the workload E; is computed for each task; which refers
to the workload without any custom instruction enhancement

Assuming Tensilica identifies; custom instructions for each Number of tasks
Fig. 5. Comparison of OpenCL multi-core and CUDA implementation

r?Qgéults: To illustrate the benefits of our CUDA implementa-
tion, we compared the running times for computing the Pareto

15000 -

10000 -

Running times (in ms)

1 12

900

1.2

Dominated solutions |

CUDA-GLOBAL mmmm Pareto solutions =
800 || CUDA-SHARED [z 1 1r 1
— 700 | 1 3
2 08 [1
g 600 - 7 S (%
2 500 [1 SIS — :
£ =
5 400 - } 1 > » -
£ } 0.4 1
£ 300 | ; 1 * g
& 1
200 | | 4 02 f s g 1
100 | i il
} ‘ ‘ i 0 n !
0 : : : 0 500 1000 1500 2000 2500 3000 3500 4000
8 9 10 11 12 Cost
Number of tasks . .
) N . . Fig. 8. The Pareto curve for task set 1. The points on the @axetve are
Fig. 6. Running times of CUDA-Shared and CUDA-Global implenagpns. 9 P

1600

Division based solution ——— —

1400 - Multiplication based solution =z]
@ 1200 - f
2 7
£ 1000 | E
0
3
g so0r /||| | o g
o | 1
£ 600 i i]
c . 4 3 |
- . ‘! 3 |
& 400 | ; ; 1

|
200 | i f
[|
0 e i :] !
8 9 10 11 12
Number of tasks
Fig. 7. The speedup obtained after minimizing register sgellaising

multiplication operation instead of division.

curve for the different task sets for all four implementato
discussed above. Figure 4 plots the running times for thegg
implementations. Our CUDA implementation is 220aster
than the CPU implementation (on single processor). Due t@]

highlighted with an asterisk.

to retain the undominated solutions after Algorithm 1 (see
Section Il). This part is implemented in the CPU because
it is not amenable to parallelization and its running time
is significantly less that Algorithm 1 (always less than 10
milliseconds). However, for accuracy its running times has
also been included in the running times reported here.

V1. CONCLUDING REMARKS

We presented a technique to implement a custom instruction
selection algorithm on GPUs. To the best of our knowledge,
this is the first paper on instruction set customization gisin
GPUs. Our technique exploits not just the parallelism bso al
the shared memory features offered by GPU architectures in
order to achieve significant speed ups.

REFERENCES

S. Baruah, A.K. Mok, and L.E. Rosier. Preemptively scHeduhard-
real-time sporadic tasks on one processorlHBRE RTSS, 1990.

U. D. Bordoloi, H. P. Huynh, S. Chakraborty, and T. Mitfavaluating
design trade-offs in customizable processorsDAC, 2009.

such tremendous speedups, the bar graph showing the CUA D. Chatterjee, A. De Orio, and V. Bertacco. GCS: Highfpemance

implementation almost co-incides with the x-axis. To hette
illustrate the speedups when compared to the multi-core@,]
Figure 5 shows only the CUDA implementation along with(s]
the multi-core implementations. As seen in this figure, even
compared to a dual-core (on a laptop) and 8-core implementﬁﬂ
tions (on Intel Xeon), our GPU-based implementation is 24
and 8x faster, respectively.

To illustrate the benefits ofshared-Memory usage and
register size optimization, we conducted further expenitsie
Figure 6 shows the running times of CUDA-Global (Where[g]
we do not utilizeShared-Memory) and CUDA-Shared (where
we exploit the on-chipShared-Memory as discussed in Sec-[10]
tion 1V). Using the on-chip shared memory leads to aﬂl]
improvement of 6% on an average. Similarly, our optimizatio
to manage the register spillage (based on the conversidreof t
division operation as a multiplication) also yields sigrafit [12]
speedups (on average around 85%) as shown in Figure[]‘?'].
Finally, in Figure 8 we illustrate the Pareto curve that was
obtained for task set 1. Note that that the solution spalé!
is significantly huge, but for clarity of illustration, we V& ;5
plotted only a part of the graph and the x-axis is truncated
when cost is 4000. (16]

We would like to mention that all the running times reportegﬂ
here include the time taken for transfer of data from the host
machine to the GPU and vice-versa. Also, recall that cori#®l
puting the Pareto curve involves a straightforward algaonit

(7]
(8]

gate-level simulation with GP-GPUs. DATE, 2009.

K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms.
John Wiley & Sons, 2001.

J. Feng, S. Chakraborty, B. Schmidt, W. Liu, and U. D. BdodloFast
schedulability analysis using commodity graphics hardwhrdrTCSA,
2007.

R. E. Gonzalez. Xtensa: A configurable and extensiblegssor.| EEE
Micro, 20(2):60-70, 2000.

Kanupriya Gulati and Sunil P. Khatri. Towards accelgnatof fault
simulation using graphics processing units.OAC, 2008.

M. R. Guthaus et al. Mibench: A free, commercially repraagve
embedded benchmark suite. IREE Annual Workshop on Workload
Characterization, 2001.

H. P. Huynh and T. Mitra. Instruction-set customizatiar feal-time
embedded systems. DATE, 2007.

H. Kellerer, U. Pferschy, and D. Pisingé¢napsack problems. Springer,
2004.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediattena tool
for evaluating and synthesizing multimedia and communicatgstess.
In MICRO, 1997.

NVIDIA. CUDA Programming Guide version 1.0, 2007.

J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, Jiuger, A. E.
Lefohn, and T. J. Purcell. A survey of general-purpose coatjmrt on
graphics hardwareComputer Graphics Forum, 26(1):80-113, 2007.
N. Pothineni, A. Kumar, and K. Paul. Application specifiatapath
extension with distributed i/o functional units. WLS Design, 2007.
F. Stappert. WCET benchmarks. http://www.c-
lab.de/home/en/download.html.

Trimaran:. An infrastructure for research in backendnpdation and
architecture exploration. http://www.trimaran.org.

A. K. Verma, P. Brisk, and P. lenne. Rethinking custom iSéntifica-
tion: a new processor-agnostic method.ASES, 2007.

P. Yu. Design methodologies for instruction-set exielesprocessors.
PhD Thesis, C.Sc. Dept., National University of Sngapore, Jan. 2009.

