
Customizing Instruction Set Extensible
Reconfigurable Processors using GPUs

Unmesh D. Bordoloi1, Bharath Suri1, Swaroop Nunna2, Samarjit Chakraborty2, Petru Eles1, Zebo Peng1
1Linköpings Universitet, Sweden 2TU Munich, Germany

1E-mail:{ bhasu733@student.liu.se}, {unmbo, petel, zebpe}@ida.liu.se
2E-mail: {swaroop.nunna, samarjit.chakraborty}@rcs.ei.tum.de

Abstract—Many reconfigurable processors allow their instruc-
tion sets to be tailored according to the performance requirements
of target applications. They have gained immense popularity
in recent years because of this flexibility of adding custom
instructions. However, most design automation algorithms for
instruction set customization (like enumerating and selecting
the optimal set of custom instructions) are computationally
intractable. As such, existing tools to customize instruction
sets of extensible processors rely on approximation methods or
heuristics. In contrast to such traditional approaches, we propose
to use GPUs (Graphics Processing Units) to efficiently solve
computationally expensive algorithms in the design automation
tools for extensible processors. To demonstrate our idea, we
choose a custom instructionselection problem and accelerate
it using CUDA (CUDA is a GPU computing engine). Our
CUDA implementation is devised to maximize the achievable
speedups by various optimizations like exploiting on-chip shared
memory and register usage. Experiments conducted on well
known benchmarks show significant speedups over sequential
CPU implementations as well as over multi-core implementations.

I. I NTRODUCTION

Instruction set extensible reconfigurable processors have
become increasingly popular over the last decade. Their
popularity is driven by the fact that they strike the right
balance between the flexibility of general purpose processors
and the performance of ASICs. The existing instruction
cores of extensible processors may be extended withcustom
instructions to meet the performance requirements of the
target application.

Our contributions: Design automation problems for cus-
tomizing instruction sets are computationally intractable (NP-
hard) [17]. In this paper, we propose the use of GPUs to
accelerate the running times of design automation tools for
customizable processors. To show the applicability of GPUsin
instruction set customization algorithms, we choose a custom
instruction selection problem and accelerate it using CUDA
(Compute Unified Device Architecture), NVIDIA’s parallel
computing architecture based on GPUs [12]. Our contribution
is interesting because we show how the custom instruction
selection problem can be engineered to exploit on-chip mem-
ory on GPUs and other CUDA features. We choose custom
instruction selection problem because (i) of its intractability
(see Section II) and (ii) it has received lot of attention in recent
years (see Section I-A). We would like to note that in contrast
to traditional approaches (like approximation schemes [2]), our
GPU-based technique providesoptimal solutions.

Our contribution is also practically relevant because in-
struction set customization techniques are incorporated into

compilers [18] and such compilers are invoked repeatedly by
designers. Typically, a designer would choose the values of
certain system parameters (e.g., processor frequency, dead-
lines) once an implementation version of the application has
been fixed and then invoke the compiler to determine whether
the constraints (like performance and area) are satisfied. If
the compiler returns a negative answer, then some of the
parameters are modified (e.g., an optimized version of the
implementation is chosen or processor frequency is scaled)
and the compiler is invoked once again. Thus, the designer
iteratively interacts with the tools to adjust the parameters and
functionalities till the performance constraints are satisfied.
If each invocation of the tool takes long time to run to
completion, the interactive design sessions become tedious
affecting the design productivity. Hence, by bringing downthe
running times of the tools by significant margins using GPUs,
the usability of such tools may be improved. Further, this
comes at no additional cost because most desktop/notebook
computers today are already equipped with a commodity GPU.

Finally, given that the combinatorial optimization problem
mapped to GPU in this paper is a variant of the knapsack
problem, our results might be meaningful to a wider range of
problems in the design automation domain.

Overview of the problem: Given a library of custom instruc-
tion candidates the goal is to select a subset of instructions
such that the performance is enhanced while keeping the area
costs at minimum. In such a scenario, conflicting tradeoffs
are inherent because while the performance of a system
may be improved by the use of custom instructions, the
benefits come at the cost of silicon area. Hence, a designer
is not interested in identifying one solution which meets the
performance requirements, but would rather like to identify all
the conflicting tradeoffs between performance and area. The
designer can then inspect all solutions and pick one which
suits his/her design.

Note that in the above setup, part of the application is
implemented as software on a programmable processor and
the rest in hardware as custom instructions on a sea of
FPGA. In this setting, a good metric for performance is the
processor utilization because it is a measure of the load
on the processor. Moreover, in this paper, we assume that
the processor is running hard real-time tasks and processor
utilization is a well known metric that is used to capture
the feasibility of such systems (for details, see Section II).
Formally, let(c, u) denote the hardware costc, arising from the

use of custom instructions and the corresponding utilization
u, of the processor. We are then interested in generating the
Pareto-optimal curve [4]{(c1, u1), . . . , (cn, un)} in a multi-
objective design space. Each(ci, ui) in this set has the property
that there does not exist any implementation choice with a
performance vector(c, u) such thatc ≤ ci and u ≤ ui,
with at least one of the inequalities being strict. Further,let
S be the set of performance vectors corresponding to all
implementations choices. LetP be the set of performance vec-
tors {(c1, u1), . . . , (cn, un)} corresponding to all the Pareto-
optimal solutions. Then for any(c, u) ∈ S − P there exists a
(ci, ui) ∈ P such thatci ≤ c and ui ≤ u, with at least one
of these inequalities being strict (i.e., the setP containsall
performance tradeoffs). The vectors(c, u) ∈ S−P are referred
to asdominated solutions, since they are “dominated” by one
or more Pareto-optimal solutions.

A. Related Work

Note that in this work we focus on the custom instructionse-
lection phase. In recent years, lot of research has been devoted
to custom instruction selection techniques so as to optimize
either performance or hardware area [2], [9]. In this paper,
we have considered a more general problem formulation by
focusing on multi-objective optimization instead of optimizing
for a single objective.

Custom instruction selection techniques assume that a
library of custom instruction candidates is given. Such
a library of custom instructions may beenumerated by
extracting frequently occurring computation patterns from the
data flow graph of the application [14], [17]. We believe our
paper would motivate researchers to explore the possibility
of deploying GPUs in this phase as well.

Motivation for using GPU: It should be mentioned in this
section that our paper has been motivated by the recent trend
of applying GPUs to accelerate non-graphics applications.
Applications that have harnessed the computational power
of GPUs span across numerical algorithms, computational
geometry, database processing, image processing, astrophysics
and bioinformatics [13]. Of late, there has also been lot of
interest in accelerating computationally expensive algorithms
in the computer-aided design of electronic systems [7], [3], [5].
There are many compelling reasons behind exploiting GPUs
for such non-graphics related applications. First, modernGPUs
are extremely powerful. For example, high-end GPUs, such
as the NVIDIA GeForce GTX 480 and ATI Radeon 5870,
have 1.35 TFlops and 2.72 TFlops of peak single precision
performance, whereas a high-end general-purpose processor
such as the Intel Core i7-960, has a peak performance of 102
Gflops. Additionally, the memory bandwidth of these GPUs
is more than 5× greater than what is available to a CPU,
which allows them to excel even in low compute intensity
but high bandwidth usage scenarios. Finally, GPUs are now
commodity items as their costs have dramatically reduced
over the last few years. The attractive price-performance ratios
of GPUs gives us an enormous opportunity to change the
way design automation tools like compilers for instructionset
customization perform, with almost no additional cost.

However, implementing general purpose applications on a
GPU is not trivial. The GPU follows a highly parallel compu-
tational paradigm. Since many threads run in parallel, it must
be ensured that they do not have arbitrary data dependency on
each other. Hence, the challenge is to correctly identify the
data parallel segments so that dependency constraints of the
application mapped to the GPU are not violated. Secondly, in
order to exploit the high bandwidth on-chip shared memory, it
is important to identify the frequently accessed data structures
so that they can be pre-fetched in the shared memory.

II. PROBLEM DESCRIPTION

In this section, we discuss our system model and formally
present the multi-objective optimization problem.

System Model: We assume a multi-tasking hard real-time
system. Formally, we use the sporadic task model [1] in
a preemptive uniprocessor environment. Thus, we are inter-
ested in selecting custom instructions for a task setτ =
{T1, T2, . . . , Tm} consisting ofm hard real-time tasks with
the constraint that the task set is schedulable. Any taskTi can
get triggered independently of other tasks inτ . Each taskTi

generates a sequence of jobs; each job is characterized by the
following parameters:
• Release Time: the release time of two successive jobs of

the taskTi is separated by a minimum time interval of
Pi time units.

• Deadline: each job generated byTi must complete byDi

time units since its release time.
• Workload: the worst case execution requirement of any

job generated byTi is denoted byEi.
Throughout this paper, we assume the underlying

scheduling policy to be the earliest deadline first (EDF).
Assuming that for all tasksTi, Di ≥ Pi, the schedulability
of the task setτ can be given by the following condition
(U =

∑m
i=1

Ei

Pi
) ≤ 1, whereU is the processor utilization

due toτ [1].

Problem Statement:For a given processorP , let each of the
tasksTi haveni number of custom instruction choices which
can be implemented in hardware. For simplicity of exposition,
assume that the processorP ’s clock frequency is constant and
all the execution times of the tasks are specified with respect to
this clock frequency. The objective is to minimizeP ’s utiliza-
tion (by mapping certain custom instructions onto hardware)
and at the same time also minimize the total hardware cost.
In other words, our goal is to compute thecost-utilization
Pareto curve{(c1, u1), . . . , (cn, un)} for a prespecified clock
frequency ofP . Note that it is possible that the given task set
(without utilizing custom instructions) is already schedulable
on the processor, i.e.,U < 1. In these cases, the Pareto curve
reveals how the utilization can be further reduced at the cost
of hardware area. This is interesting because the designer can
then use the processor for soft real-time tasks or clock the
processor at a lower frequency to save power. On other hand, if
the original task set is not schedulable, the Pareto curve reveals
the hardware costs at which the task set becomes schedulable.
Note that the designer can also choose to clock the processor

Algorithm 1 Custom Instruction Selection
Require: The task setτ , and a setSi for each taskTi.

1: U0,0 ←
∑m

i=1
Ei/Pi

2: for j ← 1 to mC do
3: U0,j ←∞
4: end for
5: for i← 1 to m do
6: for j ← 0 to mC do
7: For each pair(δi,k, ci,k) that belongs to the setSi

8: Ui,j ← min{Ui−1,j , Ui−1,j−ci,k
− δi,k/Pi}

9: end for

10: end for

at a higher frequency to make the task set schedulable. By
revealing the utilization points forU > 1.0, our results will
expose the higher frequencies at which the processor may be
clocked for the system to be schedulable.

Each of theni choices of the taskTi is associated with
a certain hardware cost. Choosing thejth implementation
choice for the taskTi lowers its execution requirement
on P from Ei to ei,j . Equivalently, the amount by which
the execution requirement ofTi gets lowered onP is
δi,j = Ei − ei,j . Hence, for each taskTi we have a set of
choicesSi = {(δi,1, ci,1), . . . , (δi,ni

, ci,ni
)}, where ci,j is

the hardware cost associated with thejth implementation
choice. Let xi,j be a Boolean variable that is assigned 1
if the jth implementation choice for the taskTi is chosen
and is assigned 0, otherwise. In this setup, the objective
is to minimize the utilizationU(S) =

∑m
i=1

Ei−xi,jδi,j
Pi

and the costC(S) =
∑m

i=1 ci,jxi,j , whereS is the chosen
implementation among the various available options.

NP-hardness:The NP-hardness of the problem can be shown
by transforming the knapsack problem [10] into a special
instance of this problem. Towards this, corresponding to each
item in the knapsack problem, we have a task with perfor-
mance gain equal to the profit and the hardware cost equal to
the weight of the item. A complete proof is omitted due to
space constraints.

Algorithm: An algorithm to compute optimally the Pareto
curve described above consists of two parts. First, a dynamic
programming algorithm (Algorithm 1) computes the minimum
utilization that might be achieved for each possible cost. The
second part finds all undominated solutions (cost-utilization
Pareto curve) from the entire solution set found by the dy-
namic programming algorithm. We denote this part as ‘Retain
Undominated’ — a straightforward sequential implementation
on CPU. Below, we discuss Algorithm 1.

Let Ui,j be the minimum utilization that might be achieved
by considering only a subset of tasks from{1, 2, . . . , i}
when the cost is exactlyj. If no such subset exists we set
Ui,j = ∞. Let the maximum cost be represented byC i.e.
C = max(i=1,2,...,n;j=1,2,...,ni)ci,j . Clearly,mC is an upper
bound on the total cost that might be incurred. Lines1 to 4 of
Algorithm 1 initializeU0,0 to

∑m
i=1 Ei/Pi, andU0,j to ∞ for

j = {1, 2, . . . ,mC}. The valuesUi,j for i = 1 to i = m are
computed using the iterative procedure in lines5 to 10. Thus,
any non-infinity valueUn,j for j = {1, 2, . . . ,mC} implies
that there exists a design choice of the task set with utilization

G
P

U
-D

R
A

M

Global Memory Constant Memory Texture Memory

Thread Blocks Thread Blocks Thread Blocks

G
r
id

s

Thread Block

Shared Memory

Threads

Fig. 1. CUDA programming model

Un,j and costj. It can be easily verified that the running time
of Algorithm 1 is O(nmC), where n =

∑m
i=1 ni, and its

space complexity isO(m2C). The algorithm runs in pseudo-
polynomial time, and hence, turns out to be a computationally
expensive kernel. In this paper, we accelerate the running times
of this algorithm by mapping it to the GPU and obtain optimal
and exact solutions as described in Section IV.

III. CUDA

In this section, we provide a brief description of CUDA. For
a complete description, we refer the reader to NVIDIA’s guide
[12]. CUDA abstracts the GPU as a powerful multi-threaded
coprocessor capable of accelerating data-parallel, computa-
tionally intense operations. The data parallel operations, which
are similar computations performed onstreams of data, are
referred to askernels. Essentially, with its programming model
and hardware model, CUDA makes the GPU an efficient
streaming platform.

In CUDA, threads execute data parallel computations of
the kernel and are clustered into blocks of threads referred
to as thread blocks. These thread blocks are further clustered
into grids. During implementation, the designer can configure
the number of threads that constitute a block. Each thread
inside a block has its own registers and local memory. The
threads in the same block can communicate with each other
through a memory space shared among all the threads in the
block and referred to asShared Memory. TheShared Memory
space of the thread block and is typically in the order of
KB. However, an explicit communication and synchronization
between threads belonging to different blocks is only possible
through GPU-DRAM. GPU-DRAM is the dedicated DRAM
for the GPU in addition to DRAM of the CPU. It is divided
into Global Memory, Constant Memory andTexture Memory.
We note that theConstant and Texture Memory spaces are
read-only regions whereasGlobal Memory is a read-write
region. Figure 1 illustrates the above described CUDA pro-
gramming model. In case a memory location being accessed,
by a CUDA memory instruction, resides in GPU-DRAM, i.e.,
either in Global, Texture or Constant Memory spaces, the
memory instruction consumes an additional 400 to 600 cycles.
On the other hand, if the memory location resides on-chip
in the registers orShared Memory, there will be almost no
additional latencies in the absence of memory access conflicts.
Note that in contrast to the GPU-DRAM, theShared Memory

i-1

i

Previous

Row

Current

Row

j j-ci,1 j-ci,2

U

U U U U U U U U

U U U U U U U

Parallel

Computations

Thread Block Thread Block

Fig. 2. Data dependency graph for Algorithm 1

region is a on-chip memory space. The additional latencies on
GPU-DRAM might obscure the speedups that can be achieved
due to parallelization and hence the on-chip shared memory
must be judiciously exploited.

IV. PROPOSEDFRAMEWORK ON CUDA

As described in Section II, the computation of the
cost-utilization Pareto curve to expose the design
tradeoffs at custom instruction selection phase involves
a pseudopolynomial algorithm (Algorithm 1). In this section,
we present our CUDA based framework to implement
Algorithm 1 to accelerate its running times. This involves the
following major challenges. First, we need to identify and
isolate the data parallel computation of the algorithm so that
they may be compiled as thekernels. Recall that kernels are
executed by data parallel threads on CUDA. Secondly, we
must devise the algorithm such that it can exploit the on-chip
Shared Memory and registers to enhance the achievable
speedups. Finally, thread block size must be appropriately
configured. In light of these challenges, we now provide a
systematic implementation of Algorithm 1 in the following.

Identifying data parallelism: As mentioned above, our
first goal is to identify the data-parallel portions (kernels)
in Algorithm 1 which can be computed by CUDA threads
in a SIMD fashion. The kernels must not have any data
dependencies (on each other) because they will be executed
by threads running in parallel. Towards this we first identify
the data dependencies in Algorithm 1. Algorithm 1 (lines
5 - 10) builds a dynamic programming (DP) matrix. The
i-th row of the matrix corresponds to thei-th task Ti in
the task set described in Section II. Each cell in thei-th
row represents the valueUi,j where j = {0, 1, 2, . . . ,mC}.
According to Algorithm 1 (line 8), the computation of these
values depends only on the values present in the previously
computed rows. Figure 2 illustrates this for the cellUi,j .
This implies that the values of the cells of the same row in
the DP-based matrix can be computed independently of each
other by using different CUDA threads in SIMD fashion.
Therefore, we isolate (line 8 of Algorithm 1) as thekernel of
our CUDA implementation. In the following, we explain the
effective usage of the on-chip share memory.

Memory usage: We store the DP-matrix in theGlobal
Memory space (GPU-DRAM). Note that we useGlobal Mem-
ory space instead ofConstant or Texture Memory because
Constant and Texture Memory are read-only regions. During
the computation of our DP-matrix we need to perform both
read (to fetch values from the previous rows computed earlier)

Global

Memory Ω1,1 Ω1,2 Ω1,n1

Ω2,1 Ω2,2 Ω2,n2

Ωm,1 Ωm,2 Ωm,nm

Ωi,1 Ωi,2 Ωi,ni

0 31 1

Shared

Memory
Ωi,1 Ωi,2 Ωi,ni

Data fetched at i-th iteration

Thread block

D
a

ta
 s

tr
u

c
tu

re
s

fo
r

T
a

sk
 C

h
o

ic
e

s

T1

T2

Ti

Tm

Fig. 3. Data fetched into shared memory at i-th iteration of thealgorithm

and write (to update the DP-matrix with the values of the
row computed in the current iteration) operations which can
only be done explicitly withGlobal Memory. Also, note that
we have so far not used the on-chipShared Memory because
the size of theShared Memory is typically quite small (see
Section III) and the DP-matrix cannot fit into it.

However, the on-chipShared Memory can be exploited to
store other frequently accessed data structures. To identify
such data structures, we once again focus on the kernel
operations of our algorithm (line 8 of Algorithm 1). We note
that the computation of each of theUi,j values corresponding
to the taskTi (i.e., thei-th row of our DP-based matrix) needs
the values of all theni hardware implementation choices of
Ti. Now let us denote the choice tuple (δi,k, ci,k) by Ωi,k for
k = {1, 2, . . . , ni}. Thus, from line 8 of Algorithm 1, the
computation of thei-th row in the DP-matrix requires the
valuesΩi,1,Ωi,2, . . . ,Ωi,ni

.
This set,{Ωi,1,Ωi,2, . . . ,Ωi,ni

}, is essentially a subset of
the overall specification of the task set. Also, in iteration
i of computing the DP-matrix this set of required data
structure remains constant, i.e., information about the other
parts of the task set is not required. This set changes only
at the next iteration (iterationi + 1) because this iteration
corresponds to a different task in the task set which might
have a different set of hardware implementation choices. This
observation provides an opportunity to significantly reduce
the GPU based execution times by loading these values
{Ωi,1,Ωi,2, . . . ,Ωi,k} to the on-chipShared Memory at the
beginning of each iteration. Compared to the DP-matrix,
this set of values is much smaller and can fit into the
on-chip Shared Memory. Figure 3 illustrates our scheme of
prefetching the required data structure fromGlobal Memory
to Shared Memory at the start of each iteration. The figure
shows a thread block (which consists of 32 threads) fetching
the required data from theGlobal Memory at thei-th iteration.

Register usage: The threads of CUDA access registers
(used to store the local variables) which have very low
access latencies like theShared Memory. If the total
number of required registers is greater than that available
in the processor for the current set of thread blocks, then
CUDA will schedule less thread blocks simultaneously to
cope with the situation. This will decrease the degree of
parallelism offered by CUDA. In Algorithm 1 there is a
division operation (line 8) that is known to contribute to high

register usage. Hence, in our implementation, we convert
it into a multiplication operation to optimize the registerusage.

Thread block: We recall from Section III that the on-chip
memory is shared only between the threads within a single
block. Hence, configuring the thread blocks to an appropriate
size is also important to effectively exploit the GPU on-
chip memory. For example, if we choose a very small thread
block size, then the computation of each row in our DP-
based matrix will involve lot of thread blocks. However,
only the threads within a thread block share the same chunk
of on-chip memory. This implies that data from theGlobal
Memory to Shared Memory will have to be transfered for a
large number of thread blocks, inspite of the fact that all the
threads in a single iteration need the same data structures -
{Ωi,2, . . . ,Ωi,k}, as described above.

We note, however, that thread block size cannot be increased
arbitrarily to increase performance. As an example, consider
the Tesla GPU from NVIDIA that allows a maximum of 1024
threads in a thread block. Interestingly, the total number of
threads that can be active simultaneously is 1536, as limited
by the hardware. If we set thread block size to 1024, only one
thread block (i.e., 1024 threads) will run in parallel. Thisis
because it is not possible for the GPU to run only some threads
of a thread block. On the other hand, if we set thread block
size as 768, two thread blocks (i.e., 1536 threads in total)
can run in parallel because all the threads can be activated
simultaneously. Hence, for Tesla, we choose 768 as the thread
block size. Under certain conditions (like register spillage,
Shared Memory capacity overrun), it is possible that a thread
block size of 1024 delivers a better performance than with
768. Our optimizations onShared-Memory and register usage,
as described above, ensure that such scenarios do not occur
for the problem addressed in this paper.

V. EXPERIMENTAL RESULTS

In this section, we report the experimental results that were
obtained by running our CUDA-based implementation on 5
different task sets that were constructed using well known
benchmarks. We compared these results with those obtained
by running sequential CPU-based implementation as well as
multi-core implementations.
Experimental Setup: We created 5 task sets with number of
tasks between 8 and 12. These task sets comprise of 5 bench-
marks (compress, jfdctint, ndes,edn, adpcm) from WCET [15],
3 benchmarks (aes, sha, rijndael) from MiBench [8], 3 bench-
marks (g721encoder, djpeg, cjpeg) from MediaBench [11] and
one benchmark (ispell) from Trimaran [16]. Table I shows the
combination of benchmarks incorporated in each of the task
sets and the sizes of the task sets.

We chose the Xtensa [6] processor platform from Tensilica
for our experiments. Xtensa is a configurable processor core
allowing application-specific instruction-set extensions. The
custom instruction configurations from the benchmarks were
obtained by using the XPRES compiler from Tensilica. First,
the workloadEi is computed for each taskTi which refers
to the workload without any custom instruction enhancement.
Assuming Tensilica identifiesni custom instructions for each

Task Set Benchmarks Size

1 aes, djpeg, g721decode, rijndael, adpcm 12
jfdctint, cjpeg, edn, ispell, sha, ndes, compress

2 djpeg, g721decode, rijndael, adpcm 11
jfdctint, cjpeg, edn, ispell, sha, ndes, compress

3 aes, djpeg, g721decode, rijndael 10
jfdctint, cjpeg, edn, ispell, sha, ndes

4 adpcm, rijndael, cjpeg, ispell 9
sha, ndes, djpeg, compress, edn

5 cjpeg, ispell, edn, sha 8
g721decode, djpeg, compress, ndes

TABLE I
TASK SETS

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

8 9 10 11 12

R
u

n
n

in
g

 t
im

e
s
 (

in
 m

s
)

Number of tasks

CPU
CUDA

OpenCL - 8 cores
OpenCL - 2 cores

Fig. 4. Comparison of all implementations.

taskTi, we compute — (i) the performance improvementδi,j
and (ii) the area costci,j — for each of thejth custom in-
struction configurations. The workload is in terms of Multiply-
Accumulate (MAC) operation’s cycles and the hardware area
is in terms of number of adders.

We set Pi for the tasks, such that theU =
∑N

i=1
Ei

Pi

is 0.80, 1.00, 1.05, 1.08 and 1.10 for the 5 different tasks
set. The GPU used for evaluating our experiments was a
NVIDIA Tesla M2050 GPU. This GPU was connected via
on-board PCI express slot to the host machine with 2 Xeon
E5520 CPUs, each with 4 cores, i.e., 8 cores overall and each
core ran at 2.27GHz. We compared the performance of our
CUDA implementation against an OpenCL implementation
on the multi-core host. We also compared the results with
an OpenCL implementation on a dual core laptop, each core
running at 2.1 GHz. We also implemented (in C) a sequential
version of the algorithm that was run on a single core of
the Xeon host machine. Thus, we have four implementations
overall — CUDA, OpenCL 8-core, OpenCL 2-core and a
sequential CPU.
Results: To illustrate the benefits of our CUDA implementa-
tion, we compared the running times for computing the Pareto

 0

 5000

 10000

 15000

 20000

 25000

8 9 10 11 12

R
u

n
n

in
g

 t
im

e
s
 (

in
 m

s
)

Number of tasks

CUDA
OpenCL - 8 cores
OpenCL - 2 cores

Fig. 5. Comparison of OpenCL multi-core and CUDA implementations.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

8 9 10 11 12

R
u

n
n

in
g

 t
im

e
s
 (

in
 m

s
)

Number of tasks

 CUDA-GLOBAL
 CUDA-SHARED

Fig. 6. Running times of CUDA-Shared and CUDA-Global implementations.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

8 9 10 11 12

R
u

n
n

in
g

 t
im

e
s
 (

in
 m

s
)

Number of tasks

Division based solution
Multiplication based solution

Fig. 7. The speedup obtained after minimizing register spillage using
multiplication operation instead of division.

curve for the different task sets for all four implementations
discussed above. Figure 4 plots the running times for these
implementations. Our CUDA implementation is 220× faster
than the CPU implementation (on single processor). Due to
such tremendous speedups, the bar graph showing the CUDA
implementation almost co-incides with the x-axis. To better
illustrate the speedups when compared to the multi-cores,
Figure 5 shows only the CUDA implementation along with
the multi-core implementations. As seen in this figure, even
compared to a dual-core (on a laptop) and 8-core implementa-
tions (on Intel Xeon), our GPU-based implementation is 24×
and 8× faster, respectively.

To illustrate the benefits ofShared-Memory usage and
register size optimization, we conducted further experiments.
Figure 6 shows the running times of CUDA-Global (where
we do not utilizeShared-Memory) and CUDA-Shared (where
we exploit the on-chipShared-Memory as discussed in Sec-
tion IV). Using the on-chip shared memory leads to an
improvement of 6% on an average. Similarly, our optimization
to manage the register spillage (based on the conversion of the
division operation as a multiplication) also yields significant
speedups (on average around 85%) as shown in Figure 7.
Finally, in Figure 8 we illustrate the Pareto curve that was
obtained for task set 1. Note that that the solution space
is significantly huge, but for clarity of illustration, we have
plotted only a part of the graph and the x-axis is truncated
when cost is 4000.

We would like to mention that all the running times reported
here include the time taken for transfer of data from the host
machine to the GPU and vice-versa. Also, recall that com-
puting the Pareto curve involves a straightforward algorithm

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 500 1000 1500 2000 2500 3000 3500 4000

U
ti

liz
at

io
n

Cost

Dominated solutions
Pareto solutions

Fig. 8. The Pareto curve for task set 1. The points on the Pareto curve are
highlighted with an asterisk.

to retain the undominated solutions after Algorithm 1 (see
Section II). This part is implemented in the CPU because
it is not amenable to parallelization and its running time
is significantly less that Algorithm 1 (always less than 10
milliseconds). However, for accuracy its running times has
also been included in the running times reported here.

VI. CONCLUDING REMARKS
We presented a technique to implement a custom instruction

selection algorithm on GPUs. To the best of our knowledge,
this is the first paper on instruction set customization using
GPUs. Our technique exploits not just the parallelism but also
the shared memory features offered by GPU architectures in
order to achieve significant speed ups.

REFERENCES

[1] S. Baruah, A.K. Mok, and L.E. Rosier. Preemptively scheduling hard-
real-time sporadic tasks on one processor. InIEEE RTSS, 1990.

[2] U. D. Bordoloi, H. P. Huynh, S. Chakraborty, and T. Mitra.Evaluating
design trade-offs in customizable processors. InDAC, 2009.

[3] D. Chatterjee, A. De Orio, and V. Bertacco. GCS: High-performance
gate-level simulation with GP-GPUs. InDATE, 2009.

[4] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms.
John Wiley & Sons, 2001.

[5] J. Feng, S. Chakraborty, B. Schmidt, W. Liu, and U. D. Bordoloi. Fast
schedulability analysis using commodity graphics hardware.In RTCSA,
2007.

[6] R. E. Gonzalez. Xtensa: A configurable and extensible processor.IEEE
Micro, 20(2):60–70, 2000.

[7] Kanupriya Gulati and Sunil P. Khatri. Towards acceleration of fault
simulation using graphics processing units. InDAC, 2008.

[8] M. R. Guthaus et al. Mibench: A free, commercially representative
embedded benchmark suite. InIEEE Annual Workshop on Workload
Characterization, 2001.

[9] H. P. Huynh and T. Mitra. Instruction-set customization for real-time
embedded systems. InDATE, 2007.

[10] H. Kellerer, U. Pferschy, and D. Pisinger.Knapsack problems. Springer,
2004.

[11] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: a tool
for evaluating and synthesizing multimedia and communicatons systems.
In MICRO, 1997.

[12] NVIDIA. CUDA Programming Guide version 1.0, 2007.
[13] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.

Lefohn, and T. J. Purcell. A survey of general-purpose computation on
graphics hardware.Computer Graphics Forum, 26(1):80–113, 2007.

[14] N. Pothineni, A. Kumar, and K. Paul. Application specificdatapath
extension with distributed i/o functional units. InVLSI Design, 2007.

[15] F. Stappert. WCET benchmarks. http://www.c-
lab.de/home/en/download.html.

[16] Trimaran:. An infrastructure for research in backend compilation and
architecture exploration. http://www.trimaran.org.

[17] A. K. Verma, P. Brisk, and P. Ienne. Rethinking custom ISEidentifica-
tion: a new processor-agnostic method. InCASES, 2007.

[18] P. Yu. Design methodologies for instruction-set extensible processors.
PhD Thesis, C.Sc. Dept., National University of Singapore, Jan. 2009.

