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Linköpings Universitet, Sweden

e-mail: {unmesh.bordoloi, bogdan.tanasa, petru.eles, zebo.peng}@liu.se

Abstract— FlexRay, developed by a consortium of over hun-
dred automotive companies, is a real-time communication proto-
col for automotive networks. A communication cycle in FlexRay
consists of an event-triggered component known as the dynamic
(DYN) segment, apart from a time-triggered segment. Predicting
the worst-case response time of messages transmitted on the DYN
segment is a difficult problem. This is because a set of complex
rules, apart from the priorities of the messages, govern the DYN
segment protocol. In this paper, we survey techniques for the
timing analysis of the DYN segment. We discuss the challenges
associated with the timing analysis of the FlexRay protocol, the
proposed techniques and their limitations.

I. INTRODUCTION

The FlexRay bus protocol has garnered widespread support
as a vehicular communication network. Its popularity has
been driven by the fact that it was developed by a wide
consortium [6] of automotive companies. In fact, cars equipped
with FlexRay are already in the streets or in production [7].
As the cost associated with FlexRay deployment is expected
to go down over the next few years, more and more x-by-wire
applications are expected to communicate over FlexRay.

It should be noted here that the argument for Ethernet
as an automotive communication protocol is also gaining
traction [1]. However, it is not expected to replace FlexRay.
Rather, Ethernet and domain specific protocols like FlexRay
are expected to co-exist in automotive electronic systems
and inter-connected via gateways. Hence, timing analysis
and scheduling for FlexRay continues to generate significant
research interest.

FlexRay is a hybrid communication protocol, i.e., it allows
the sharing of the bus between both time-triggered and event-
triggered messages. The time-triggered component is the static
(ST) segment and the event-triggered component is known as
the dynamic (DYN) segment. The ST segment is divided into
several slots that appear in pre-defined temporal points. Each
message to be transmitted over the ST segment is assigned
a unique slot. A message may be transmitted only during its
slot and this assures predictability of the response times of
the messages. In contrast, the DYN segment resolves conflicts
between messages based on priorities. Unlike the ST segment,
the delay suffered by a message depends on the interferences
by its higher priority messages. Computing the interferences
for the higher priority messages is a challenging problem for
the DYN segment of FlexRay.

In fact, Pop et al. have shown that it is like the bin covering
problem, which is an NP-hard problem in the strong sense,
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Fig. 1. Recent work on the timing analysis of the DYN segment.

in one of the first known work on formal timing analysis of
the DYN segment of FlexRay [12], [11]. They also proposed
heuristics to compute upper bounds on the worst-case response
times of the messages which have been improved later on by
Zeng et al [18]. These techniques have been built on top of
worst-case response time analysis that iteratively computes the
interference from the higher priority messages until a fixed
point is reached. A separate thread of work (see Figure 1)
by Hagiescu et al. [8] and, by Chokshi and Bhaduri [5] have
attempted to compute the delays of messages on the DYN
segment based on the Real-Time Calculus framework [4].
Section IV of this paper provides a more detailed discussion
on both threads of work mentioned above.

The timing analysis of the DYN segment is even more
difficult if slot multiplexing is considered. Slot multiplexing
refers to the fact that two different messages can share the
same priority. This feature of FlexRay will be discussed in
detail in Section II. The initial papers [11], [12], [18], [8],
[5] on FlexRay ignored this feature. Very recently, however,
there have been attempts to address this issue. Schneider et
al. [14], [15] proposed an approach that accommodates slot
multiplexing by restricting the priorities that may be assigned
to messages and thereby enforcing that the interference from
the higher priority messages is limited to one cycle. This is
a very pessimistic approach and recently, we overcome this
limitation [16]. Our technique [16] is quite general and it can
estimate message delays that span over multiple cycles. For
the case of slot multiplexing, the timing analysis problem can
not be transformed in to the traditional bin covering problem.
Rather, the problem becomes what we call the bin covering
problem with conflicts [16]. Moreover, we showed that, even
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Fig. 2. Example 1: Messages m1 and m2 are multiplexed in FlexRay DYN
segment.

for the case where slot multiplexing is ignored, the results
obtained by our scheme [16] are significantly better than the
state-of-the-art [18].

In this paper, our thrust will be on the thread of work
that proposes heuristics for the bin covering problem, as
highlighted by a box in Figure 1. We will also mention other
techniques and discuss their limitations. It should be noted
here that Schmidt and Schmidt [13] have also proposed an
Integer Linear Programming (ILP) based formulation of the
timing analysis problem in order to compute the response
time of messages on the DYN segment. However, we will not
discuss this here because they did not propose any heuristic
for the bin covering problem. ILP-based solutions help in
obtaining the optimal solution, but they suffer from scalability
problems because the bin covering problem is NP-hard.

II. THE FLEXRAY DYNAMIC SEGMENT

The FlexRay communication protocol [6] is organized as a
periodic sequence of communication cycles with fixed length,
lFC .

In FlexRay a set of CCmax communication cycles constitute
a pattern which is repeated. Each cycle is indexed by a
cycle counter. The cycle counter is incremented from 0 to
CCmax − 1 after which the cycle counter is reset to 0.
Figure 2(a) illustrates a FlexRay communication pattern with
CCmax = 4. In the figure, the cycle counter starts from 0,
goes till CCmax − 1 = 3, and then, it is reset to 0.

Each message is assigned two attributes that define the set
of cycles between 0 and CCmax − 1 where the message
is allowed to be transmitted. These attributes for a message
mi are (i) the base cycle or the starting cycle Bi within
CCmax communication cycles, and (ii) the cycle repetition
rate Ri which indicates the minimum length (in terms of
the number of FlexRay cycles) between two consecutive
allowable transmissions. For the FlexRay cycle illustrated in
Figure 2(a), let us consider three messages m1, m2 and m3

to be transmitted over the DYN segment. Let the base cycles
be B1 = B2 = 0 and B3 = 1 and let the repetition rates
be set to R1 = R2 = R3 = 2. These parameters are
listed in Figure 2(b). Figure 2(c) shows the cycles where
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Fig. 3. Illustrating the incrementing slot counter for the DYN segment.
A minislot expands into one larger slot if the message with corresponding
priority is transmitted.

m1, m2 and m3 can be transmitted with these properties. In
this example, m2 and m3 can be transmitted in cycle 0 and
cycle 1 respectively. Thereafter, they may be transmitted every
alternate cycle. m1 may be transmitted in the same cycles as
m2 because they have the same repetition rate and base cycle.

Each communication cycle is further subdivided into a ST
and a DYN segment. The ST segment follows a time-triggered
communication paradigm. In the following we discuss the
DYN segment in more detail. Conflicts between messages
mapped to the same DYN segment are resolved using priorities
as each message is assigned a fixed priority. In the above
example, m1 has the highest priority while m2 and m3 have
lower priority. Messages that may be sent in different cycles
may be assigned the same priority and this is called slot-
multiplexing. In the above example, m2 and m3 are said to
be slot multiplexed.

According to the FlexRay standard, the base cycle Bi ∈
[0...CCmax − 1], and Bi < Ri. The relation Bi ∈
[0...CCmax−1] holds true by definition. The relation Bi < Ri

is also enforced by the specification to ensure the definition
of Ri when it straddles two adjacent FlexRay cycles.

Conflicts between messages to be sent in the same cycle
are resolved using priorities as each message is assigned a
fixed priority. Each DYN segment in FlexRay is partitioned
into equal-length slots which are referred to as “minislots”. A
slot counter counts the number of slots in the DYN segment.
At the beginning of each DYN segment, the message with
priority 1 gets access to the bus. It occupies the required
number of minislots on the bus according to its size and the
slot counter increments only by one. However, if the message
is not ready for transmission or the size of the message does
not fit into the remaining portion of the DYN segment, then
only one minislot goes empty. In this case as well, the slot
counter is incremented by one. The bus is then given to the
next highest-priority message (with priority 2) if it is ready
and the same process is repeated until the end of the DYN
segment. Further, at most one instance of each message is
allowed to be transmitted in each FlexRay cycle. Consider
our running example that is now shown in Figure 3. The
DYN segment in each FlexRay cycle consists of 8 minislots.
m1 is the highest priority message (priority 1) in cycle 2
and hence, occupies 5 minislots corresponding to its size.



The slot counter, as shown in the figure, is incremented by
one after m1 is transmitted. In cycle 3, however, there is no
message with priority 1 that is ready and hence, one minislot
is wasted. Then, the slot counter is incremented to 2. m3

with priority 2 is ready and hence, it may be now transmitted
and it occupies 3 minislots.

Challenges: Compared to other fixed priority based protocols,
like the CAN [3] bus, timing analysis of the DYN segment is
inherently difficult. This is because, in the DYN segment, there
is the possibility that, even if a message is ready and the bus
is idle, the message is not given access to the bus. This is not
the case in protocols like CAN, and is possible in FlexRay
because of the following features.

First, at most one instance of a message can be sent in
each DYN segment. Second, if a DYN segment message is
generated by its sender task after the slot has started, it has
to wait until the next bus cycle starts to get access to the bus.
Finally, a message can be sent only if it fits into the remaining
portion of the current DYN segment, i.e., a message can not
straddle two communication cycles.

III. SYSTEM MODEL

In this paper, we assume that system model consists of the
specification of the FlexRay bus and the set of messages to
be transmitted on the DYN segment.

We assume that the FlexRay cycle length is lFC . The
length of one minislot is denoted lMS , and the total number
of minislots NMS is considered to be given. The length of
the DYN segment is thus lDYN = lMS × NMS . Assuming
that the length of the ST is lST , FlexRay cycle length is
lFC = lST + lDYN .

We assume that the set of messages Γ that will be trans-
mitted on the FlexRay DYN segment is known. Any message
mi ∈ Γ, is associated with the following properties.

1) The period Ti that denotes the rate at which mi is being
produced.

2) The deadline Di, of a message mi is the relative time
since the production of Mi until the time by which the
transmission of mi must end.

3) The repetition rate Ri, and the base cycle Bi for each
message mi, as defined in Section II, is given.

4) The size of the message Wi in terms of the number
of minislots that the message mi would occupy when
transmitted on the DYN segment.

5) The priority IDi of each message mi that is used to
resolve bus access contentions as discussed in Section
II, is known. A higher value implies a lower priority.

IV. TIMING ANALYSIS METHODS

In this section, we will discuss the timing analysis of the
DYN segment when the feature of slot multiplexing is not
used, i.e., the parameters Bi = 0 and Ri = 1 for all messages
mi. This essentially means that a message can be transmitted
in any cycle, provided it is ready and it may fit into the

DYN segment bandwidth remaining after its higher priority
messages have been transmitted in that cycle.

First, we will have a short discussion on the approaches
based on Real-Time Calculus. This is will be followed by a
more detailed discussion on the approaches based on worst-
case response time analysis.

A. Real-Time Calculus

Real-Time Calculus [4] uses abstract models to capture the
timing properties of event streams, like periodically triggered
messages and the capabilities of processing resources, like
bus/processors. Timing properties of message arrivals are
modeled by arrival curves, whereas the capabilities of the
bus are represented by service curves. An arrival curve α(Δ)
of an event stream is defined as an upper bound on the
number of events seen in the stream within any time interval
Δ. The processing capabilities of a communication bus (or a
processor) are usually expressed in number of bus (processor)
cycles per time unit. Thus, a service curve β(Δ) is defined as
a lower bound on the number of cycles available to an event
stream within any time interval Δ. Using analytical equations
from Real-Time Calculus, that are based on min-max algebra
[2], an upper bound on the delay may be computed. This
delay is essentially the worst-case response time which may
be experienced by a message on the communication resource.

For a typical fixed priority based communication system,
computing the service curves for messages follows directly
from Real-Time Calculus fundamentals. The service curves
for any message mi is computed by an analytical expression
as follows.

βi(Δ) = sup
0≤λ≤Δ

{βi−1(λ)− αi−1(λ)} (1)

For details, we refer the interested reader to [4]. Here, we
only note that it is a closed form equation that takes as input
the service βi−1(λ) available to the higher priority message
mi−1 and the arrival rate αi−1 of the higher priority message
mi−1. Based on this, the service available to all messages
from the highest priority to the lowest priority messages may
be computed iteratively.

For modeling the DYN segment with Real-Time Calculus,
however, this equation is no longer directly applicable and
computing the available service βi to a message mi becomes a
challenging problem. This is because of the following reason.
In Real-Time Calculus abstraction it is assumed that active
events, i.e., messages in the case of FlexRay, are processed
in a greedy fashion in FIFO order by the resource, where
the processing is restricted by the availability of resources.
This means that if an instance of a message is ready to be
transmitted on the bus, and resource is available, the instance
of the message will be transmitted.

As we discussed in Section II, this property is not true for
the DYN segment. Prior work [8], [5] on FlexRay attempted
to circumvent this issue by proposing a set of algorithmic
transformations to the service curve βi−1 to obtain the service
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βi, available for the message mi.

Limitations: However, the proposed transformations are not
based on the max-min algebra which is at the root of the
Real-Time Calculus. Rather, the transformations work on the
curve βi−1, taken as a geometric representation in Cartesian
co-ordinates. [8], [5] claimed that the resulting service curve
may be used as any other service curve within the Real-
Time Calculus framework for the purposes of computing
delay. However, they did not provide a formal proof that the
transformed curve safely bounds the resource available from
the DYN segment and hence, the correctness of their model
cannot be formally guaranteed.

B. Response Time Analysis

Advances on timing analysis of DYN segment have also
been made based on the worst-case response time analysis
approach [17], as discussed in Section I. In the following, we
will focus on this line of work.

Computing the worst-case response time of a message
transmitted on the FlexRay bus consists of several components
[12], [18]. For simplicity of exposition, in this paper, we
assume that Di ≤ Ti. However, this is not a restriction on
the proposed methods and the details may be found in [12],
[18].

The worst-case response time WCRT i of a message mi

consists of the following components. This is illustrated in
Figure 4.

WCRT i = σi + wi + Ci (2)

The first component σi is the worst-case delay that a message
can suffer during the first FlexRay cycle where the message
mi is generated. To compute WCRT i, we are interested in
the scenario where σi is maximum. Let the set of high priority
messages be denoted as hp(mi) = {m1,m2, · · · ,mN}. Now
the worst-case scenario occurs if mi arrives just after its
corresponding minislot starts and no higher priority message
hp(mi), was transmitted in this FlexRay cycle. The value of
σi can be computed as follows:

σi = lFC − (lST + (IDi − 1)lMS) (3)

Thus, σi can be easily computed with the straightforward
algebraic equation above that is based on parameters specified
in the system model.

The second component, wi is essentially the delay caused
to mi by the higher priority messages. wi is the summation

of two terms:

wi = busCyclesi + lastCyclei (4)

In the above equation, busCyclesi is the total number of
cycles message mi has to wait due to interference by higher
priority messages and lastCyclei is the time interval from
the start of the last cycle to the beginning of the transmission
in that cycle. The value of lastCyclei can be bounded by
considering the last possible moment when mi can be sent in
the FlexRay cycle which is defined by the value of pLatestTx.
pLatestTx is specified as a part of the FlexRay configuration
in the system model. The computation of busCyclesi will be
detailed in the following section.

The last component Ci of WCRT i, as shown in
Equation 2, is the time needed by the message to be
transmitted completed when, finally, it gains access to the
bus and this can be computed as Ci = lMS ×Wi.

A Bin Covering Problem: In the above discussion,
busCyclesi is the only component for which we have not
presented the computation technique. This will be detailed in
the following. For clarity of exposition, we will first assume
that slot multiplexing is not allowed by FlexRay. However,
subsequently, we describe how busCyclesi can be computed
by our proposed approach assuming slot multiplexing is
allowed on the DYN segment. Note that the calculation of
the rest of the components of WCRT i remain exactly same
as described in Equations 2 to 4 in both cases — with and
without slot multiplexing.

At any iteration, the problem of filling l cycles is essentially
a bin covering problem. This was shown by Pop et al [11] in
the first paper to have addressed the timing analysis of the
DYN segment. The bin covering problem is to maximize the
number of bins that can be filled to a fixed minimum capacity
using a given set of items, where each item is associated with
a weight. Each message must be considered as a separate item
and the number of instances that are ready as the number of
copies of the same item. Each message is considered as a
separate item. The minimum capacity of the bin that must
be filled is φmi . It is defined as the minimum amount of
communication φmi (in minislots) that needs to exists in a
cycle l such that the message mi is delayed into the next cycle
l+1. φmi can be computed based on the value of pLatestTx.
For instance, if pLatestTx is equal to NMS , then φmi can
be computed as follows.

φmi = NMS + 2− (Wmi + Fmi) (5)

Finally, the objective of this bin covering problem is to
maximize the total number of bins that can be covered.

Following this observation, [12] used known heuristics for
computing upper bounds of bin covering problems. These
heuristics were originally presented for the bin covering
problem and were presented in Labbe et al [10]. However,
directly applying heuristics for the bin covering problem
may lead to very pessimistic and potentially wrong results.



Consider, for example, the fact that, from the FlexRay
protocol specification (see Section II), not more than one
instance of the same message may be transmitted in the
same DYN segment. The classic bin covering problem does
not consider such constraints. Pop et al. [12] ignored this
constraint in their method. This problem was identified and
addressed by [18]. They consider each message as a separate
item and the number of instances that are ready as the number
of copies of the same item. Further, to accurately model the
FlexRay DYN segment problem, the equivalent bin covering
problem must have the condition that not more than one copy
of the same item may be packed into the same bin.

An iterative procedure: For the classic bin covering problem,
the number of items is fixed and the problem is to maximize
the number of bins. For the problem of timing analysis of the
DYN segment, however, the number of items, i.e., the number
of instances of the higher priority messages depends on the
number of bins, i.e., the number of cycles. This is because a
given number of cycles corresponds to a particular time inter-
val and hence, the time interval increases for each additional
cycle/bin that is considered. The number of instances of each
message depends on the time interval under consideration.
Hence, the number of items must be recomputed for each
additional cycle/bin. To accommodate this, the timing analysis
for FlexRay DYN segment follows an iterative procedure as
described in Algorithm 1.

Recall that busCyclesi denotes the maximum number of
cycles that a message mi may be delayed by the higher priority
messages. An outline of an algorithm to compute busCyclesi
for each message mi is listed in Algorithm 1. Starting with the
first cycle, i.e., l = 1, the algorithm iteratively tries to fill cycle
l with instances of higher priority messages and if it succeeds
the algorithm will try to fill cycle l+ 1 and so on (lines 4 to
8). If the algorithm cannot fit all the instances within dCyclei
cycles for any message mi, then it terminates and declares that
the given message set Γ is not schedulable (lines 14 to 15).
dCyclei is computed directly from the deadline as an upper
bound the relative number of cycles based on the length of the
deadline (line 3). Otherwise, if l ≤ dCyclei and the algorithm
can fill completely l−1 cycles but not the lth cycle, Algorithm
1 will report that the value of busCyclesi is l − 1.

The largest number of cycles that can be filled to the
minimum level φmi by higher priority messages from the set
hp(mi) is essentially the value of busCyclei. Let klh be the
number of instances of message mh (mh ∈ hp(mi)) that
are generated during l consecutive cycles. If the algorithm
manages to fill l cycles, then the number of higher priority
messages that need to be packed first needs to be recomputed
as kl+1

h (line 6) for the next iteration.
The details of how the bin covering heuristic is solved

may be found in [11], [18] and [16], where each has reported
improvements over the previous one. The details of the
algorithms are not the focus of this paper and we refer the
interested readers to the papers for them.

Limitations: First, we note that [12] directly used the bin
covering heuristics. As discussed above, this might lead to
in-accurate results. Secondly, both [12] and [18] ignored
slot multiplexing and this will be discussed in the following
section.

Algorithm 1 Computing the busCyclesi for message mi for
the case of no Slot Multiplexing

Input: The message mi (mi ∈ Γ), the set hp(mi) (hp(mi) ⊆
Γ), and system parameters of messages in the set Γ

1: for all mi ∈ Γ do
2: schedulable = false

3: dCyclei =

⌈
D

lFC

⌉

4: for l = 1 → dCyclei do
5: for all mh ∈ hp(mi) do

6: klh =

⌈
l
lFC

Th

⌉

7: end for
8: Solve the bin covering problem
9: Let P be the solution of the bin covering problem

10: if P < l then
11: schedulable = true; busCyclesi = l − 1
12: end if
13: end for
14: if schedulable == false then
15: The set Γis not schedulable
16: end if
17: end for

V. GENERALIZATION TO SLOT MULTIPLEXING

In this section, we will discuss two recently proposed
techniques that assume slot multiplexing is utilized.

A. Restricted Approach

Schneider et al. [14] proposed a method to synthesize
message schedules for the DYN segment of FlexRay. In
essence, this implies that they were interested in synthesizing
the parameters Bi, Ri, IDi for each message mi with the goal
of optimizing certain cost functions. Bi, Ri are the base cycle
and repetition rate of the message mi as discussed in Section
II. IDi refers to the priority of the message. Thus, they focused
on a design space exploration problem. However, at the core
of their design space exploration problem, they performed
timing analysis of the DYN segment in order to guarantee
schedulability. This model of timing analysis of the DYN
segment incorporated slot multiplexing but it was simplistic
in the following sense.

The technique synthesizes message schedules that allocate
only those priorities IDi where message transmissions are
guaranteed without the risk of displacement. Towards this,
they compute a slot called Smax, which is the last slot in
the DYN segment that may be assigned as a priority to any
message. By assigning priorities IDi ≤ Smax, the schedule
guarantees that the delay is safely bounded. Smax is a loose



upper bound that is computed as the sum of the message
sizes that can be potentially mapped to that cycle of the DYN
segment. While it is safe upper bound, this approach has two
significant drawbacks.

Limitations: First, based on this timing model, any message
with priority greater than the stipulated threshold Smax, will
be assigned to have infinite delay. This is a very pessimistic
approach because it is possible for several such messages to
have finite delay and possibly, even schedulable. Secondly,
the design space exploration scheme based on such models
will lead to bandwidth wastage because the bandwidth beyond
Smax will always remain unutilized.

Recently, we overcame this limitation for timing analysis
of the DYN segment by accounting for slot multiplexing. We
showed how the problem can be transformed into a general
version of the bin covering problem and proposed a heuristic
to solve the problem [16].

B. New Approach

In Section IV-B, we discussed that the problem of com-
puting busCyclesi can be converted into a bin covering
problem [10]. However, for the case of slot multiplexing,
the computation of busCyclesi can not be transformed into
the traditional bin covering problem. Rather, the computation
of busCyclesi becomes a problem that we call as the bin
covering problem with conflicts. This is a direct consequence
of the fact that the repetition rates of messages (see Section III)
allow each message to be transmitted only in certain FlexRay
cycles within the repeating pattern of CCmax cycles where
the messages (items) have no conflicts with the cycles (bins).

The transformation of messages and cycles into items and
bins remains similar as discussed in Section IV-B. In the
context of slot multiplexing, however, there is an additional
constraint that becomes a conflict between an item (message)
and a bin (cycle). In this sense, all bins are not of the same
type — unlike the bins in the traditional case. Thus, there
are conflicts between items and bin types, and it is under this
condition that the number of bins that can be filled must be
maximized.

Let us consider an example with 5 messages. The values of
the relevant parameters for these 5 messages are presented in
Table I. Following these parameters, Figure 5 shows the cycles
where the 5 messages may be submitted. We are interested in
computing the value of busCycles5, i.e., we want to compute
the number of cycles that message m5 can be delayed in the
worst-case by higher priority messages. Let us consider that
the length of the FlexRay cycle is lFC = 4 ms, and that in the
present iteration of our algorithm, we want to check whether
m5 will be delayed for 9 cycles, i.e., l = 9.

We start by observing that an instance of m5 can be sent
on the bus only in cycles 0, 2, 4, and 6. This follows from
the specifications in Table I. Secondly, we observe that the
cycles with same counter that appear in two different DYN
segments are similar. For instance, cycle 0 in both DYN cycles
in the figure are similar from the point of view that only

Period Repetition Rate Base Cycle
m1 10 ms 2 cycles 1
m2 18 ms 4 cycles 1
m3 8 ms 1 cycle 1
m4 48 ms 8 cycle 1
m5 12 ms 2 cycle 1

TABLE I

MESSAGE PARAMETERS

instances of messages m1,m2,m3 and m4 are allowed to be
sent. Similarly, we see that cycles 2 and 6 are similar from
the perspective that only instances of messages m1 and m3

are allowed to be sent. Finally, in cycle 4 only instances of
messages m1,m2 and m3 will be sent.

When connecting this observations to the bin covering
problem with conflicts we have the following: cycles 0 will be
identified as bin type 1, cycles 2 and 6 will represent the bin
type 2 while cycle 4 will be of bin type 3. In the case without
slot multiplexing, the decision problem of whether the message
will be displaced by 9 cycles was same as whether 9 bins can
be filled.

In case of slot multiplexing, the question whether the mes-
sage will be displaced by 9 cycles can be filled is equivalent
to the question of whether different types of bins can be filled
up to a minimum number or not. Once again, let us refer to
Figure 5. Starting from cycle 0 (where m5 is allowed) till
cycle 0 in the next DYN segment, the message m5 can be
displaced for 9 cycles. Within this time interval, there are 2
bins of type 1, 2 bins of type 2 and one bin of type 3. However,
m5 displacement might also start from cycle 2. In this case,
we need to verify if 3 bins of type 2 and one bin of type
1 and type 3 can be filled in order for the displacement to
span 9 cycles. Hence, the decision problem must be solved for
m5 considering that the worst-case might occur while starting
from any of the types of bin where m5 is allowed. For each of
these three cases the number of each type of bins that occur
is not same. If in any of these three cases, the bins can be
covered, we say that m5 can be delayed for 9 cycles by higher
priority messages.

We emphasize that the number of types of bin is limited
by a constant number because the FlexRay standard limits
the number of cycles allowed within a repeating pattern i.e.,
CCmax. This constant can never be more than 64 [6]. More-
over, extracting the minimum number of bins to be covered
for each type is straightforward given the system model.

To formally denote the distinct types of bins based
on the repetition rates of the higher priority messages
let us denote the set of the types of different bins with
G. Thus, G = {g1, g2, · · · , gP } assuming there are
P types of bins. Each element gi ∈ G is associated
with a value hl,i denoting for how many times this bin
needs to be covered in order to have a total delay of
l cycles. As discussed, this is easily computed from
the system model. For the previous example we have G =
{g1 = {m1,m2,m3,m4} , g2 = {m1,m3} , g3 = {m1,m2,m3}}
with the associated variables hl,1 = 2, hl,2 = 2 and hl,3 = 1.



Priority Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 0 Cycle 1 Cycle 2 Cycle 3
1 m1 m1 m1 m1 m1 m1
2 m2 m2 m2
3 m3 m3 m3 m3 m3 m3 m3 m3 m3 m3 m3 m3
4 m4 m4
5 m5 m5 m5 m5 m5 m5

Bin type 1 Bin type 2 Bin type 2

Start at cycle 0 Start at cycle 2

Fig. 5. The cycles where messages are allowed to be transmitted.

The previous values correspond to the case when the worst
case delay of message m5 is assumed to start with cycle 0.
Consider starting point as cycle 2. For this case, to check
if 9 cycles can be filled, the number bins of each type that
must be filled, now changes. Thus, in this case, we will have
hl,1 = 1, hl,2 = 3 and hl,3 = 1.

We proposed an algorithm to solve the problem of bin
covering with conflicts. We refer the interested reader to [16]
for the details. Our algorithm, is directly inspired by recent
theoretical advances in approximating the upper bounds on
the optimal solution for the bin covering problem that were
reported by Jansen and Solis-Oba [9].

VI. QUANTITATIVE COMPARISONS

A. Quality of results

We provide a brief description of the quality of results
for the three approaches that were discussed in the previous
section.

First, we note that the results reported by Zeng et al. [18]
that compared their heuristic with the one proposed by Pop
et al [11], [12]. The response time computed by Pop et al.
[11], [12] were reported to be about 8 times larger than the
optimal value. The optimal value was computed by an ILP
implementation. As a comparison, the heuristic by Zeng et
al.[18] had an average of 0.67% error with a maximum of
15% error on the same case study.

We now discuss results comparing the quality of our heuris-
tic [16] with Zeng et al [18]. For comparing the quality of the
results we chose ε = 1/16 for our algorithm. The rationale
behind this is that for this value of ε, our algorithm can run
within a matter of few minutes and is scalable. We provide
details on the running times in the next section.

Since the computation of the busCyclesi is the most im-
portant component in the timing analysis of the DYN segment
for our technique and the one by Zeng et al. [18], we compare
busCyclesi for both techniques. Note that for comparison
with previous work we assume no slot multiplexing for these
experiments. We report the worst-case delays reported by both
the frameworks for the lowest priority message in a message
set of size 30. The first observation from the table is that our
scheme always performs better than the previous algorithm.
Secondly, note that for each message set, as we increase
the bandwidth, i.e., the number of minislots that are in the

14

16

es

Our scheme

6

8

10

12

te
rm

s
of

Bu
sC
yl
e Zeng et al.

0

2

4

6

D
el
ay

in
t

90 100 110 120 130 140 150
Minislots in the DYN segment

Fig. 6. Comparing the quality of results between our approach [16] and [18].
For minislot 90, 100, 110, and 120 the delay reported by [18] was infinity
and is not plotted.

DYN segment, both methods report lesser worst case delay.
In particular, the existing method [18] reports infinite worst-
case delay for several instances of the problem. However, in
such cases, our algorithm returns a finite number. These results
show that as the problem becomes tight, our algorithm will
be able to find solutions while previous algorithms will be
pessimistic and return non-schedulable solutions.

The test cases have been randomly generated by varying the
message parameters like the periods and lengths, in order to
cover a wide range of possible scenarios. In all experiments
we have assumed that the deadlines are equal to the periods.
The length of the ST segment was set to be equal to 2 ms,
while the number of minislots inside the dynamic segment was
varied between 50 and 150 minislots. We have assumed that
the length of one minislot is equal to 12 μs.

B. Running times

Our algorithm [16] takes ε as an input from the system
designer. Different values of ε would lead to different running
times. We ran the experiments with the values of ε as 1/32,
1/16, 1/8, 1/4 and 1/2. The results show how that the running
times decrease progressively for higher values of ε. These
running times are plotted in Figure 7.

Note that, for the value of 1/32 for ε, our technique will
yield even better results than the ones we presented in the
previous section (with ε = 1/16), in terms of the quality of
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the results. However, as seen from Figure 7, our algorithm
does not scale well with ε = 1/32. On the other hand, from
our experiments we know that when ε is set to 1/2, or 1/4,
our results are, in general, pessimistic compared to the known
heuristic [18]. Hence, we believe 1/2, 1/4, and, 1/32 are not
good values for ε.

For a value of ε set to 1/8, our results are very comparable
to those reported by prior work [18]. In the previous section,
we already discussed that with ε set to 1/16, our algorithm
outperforms the existing approaches from perspective of the
quality of the results. Hence, from our experiments, we believe
that an ε value of 1/16 or 1/8 strikes the right balance between
efficiency and quality.

We conclude by stating that our scheme can yield results
with varying degree of pessimism based on the input ε. For
large values of ε, our algorithm returns more pessimistic values
although it can run faster. On the other hand, for smaller
values of ε, the results are more accurate but it incurs longer
running times. We consider this to be a significant advantage
over existing techniques for timing analysis for FlexRay DYN
segment. In short, our proposed scheme provides a knob in
the form of ε to the designer that allows him/her to tune the
running times and the quality of solutions.

VII. CONCLUSION AND FUTURE WORK

We conclude this paper with a short discussion on some
open issues. In this paper, we have focused on the timing
analysis for the DYN segment. We note that Schneider et
al. [14] have focused on synthesizing message schedules,
instead of the timing analysis problem. However, they used
a simplistic analysis model within the synthesis framework.
In future, it will be interesting to integrate our framework into
such a synthesis scheme.

The timing analysis problem discussed here dealt with the
worst-case response times. As such, our results are useful for
hard real-time systems. Note that FlexRay consists of a ST
segment as well. If the ST segment is used to accommodate
messages from hard real-time applications, the DYN segment
may be deployed for transmitting messages belonging to
soft real-time applications. For such messages, the worst-case
response time is not a critical performance metric. Instead,

it will be interesting to have a probabilistic analysis of the
response times for the messages on the DYN segment.

It will also be worthwhile to develop a fault-tolerant mes-
sage scheduling scheme on the DYN segment of the FlexRay.
Fault-tolerance issues for FlexRay are a significant concern
in the context of safety-critical applications that are being
deployed on the cars. Soft errors induced by electro-magnetic
interferences may corrupt the messages being transmitted
over the FlexRay bus. Such errors can be handled by re-
transmission of messages but this makes the problem of timing
analysis of the DYN segment even more difficult.
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