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Abstract— Multiprocessor System-on-Chips or MPSoCs in the
embedded systems domain are increasingly employing multiple
customizable processor cores. Such cores offer higher per-
formance through application-specific instruction-set extensions
without sacrificing the flexibility of software solutions. Existing
techniques for generating appropriate custom instructions for
an application domain are primarily restricted to specializing a
single processor with the objective of maximizing performance.
In a customizable MPSoC, in contrast, the different processor
cores have to be customized in a synergistic fashion to create
a heterogeneous MPSoC solution that best suits the application.
Moreover, such a platform presents conflicting design tradeoffs
between system throughput and on-chip memory/logic capacity.
In this paper, we propose a framework to systematically explore
the complex design space of customizable MPSoC platforms. In
particular, we focus on multimedia streaming applications, as
this class of applications constitutes a primary target of MPSoC
platforms. We capture the high variability in execution times and
the bursty nature of streaming applications through appropriate
mathematical models. Thus, our framework can efficiently and
accurately evaluate the different customization choices without
resorting to expensive system-level simulations. We perform a
detailed case study of an MPEG encoder application with our
framework. It reveals design points with interesting tradeoffs
between silicon area requirement for the custom instructions
and the on-chip storage for partially-processed video data, while
ensuring that all the design points strictly satisfy required QoS
guarantees.

I. INTRODUCTION

Nowadays, there is a tremendous interest in Multiprocessor
System-on-Chips (MPSoCs) specifically targeted towards im-
plementing multimedia applications. Designs based on MPSoC
platforms are today ubiquitous and range from mobile phones
to set-top boxes. Such products are associated with high
demands on flexibility, low design costs and stringent time-to-
market constraints. On the other hand, they must also satisfy
the high performance requirements of the target application
domain. In order to strike the right balance between flexibility
and performance, MPSoC platforms come with instruction-set
extensible processor cores that can extend the base instruction
set with special instructions. These instructions capture fre-
quently executed computation patterns of an application. Some
examples of commercial instruction-set extensible processors
include Lx, ARCTM core, Xtensa and Stretch.

Customizing processor cores in an MPSoC with extensible
instruction sets can lead to additional logic gates in the
processor’s core, but potentially significant savings in on-chip
buffer sizes and performance. A designer would be typically
interested in identifying how the performance and on-chip
buffer requirements change with different choices of custom
instructions on an MPSoC platform. However, as each task can
be enhanced with multiple extensible instructions, identifying
such tradeoffs necessitates effective traversal of a huge search
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Fig. 1. The task graph of an MPEG-2 encoder.
space. Secondly, MPSoCs are increasingly targeted towards
multimedia streaming applications that are characterized by
high variability in their execution times. As such, conventional
methods to select custom instructions fail to return accurate
results. In this paper, we will propose techniques to address
these issues for streaming applications.

A. Overview of our Scheme

A streaming application processes an infinite stream of data
items or events. The application may be modeled as a task
graph where the nodes are abstract representations of the
different functions or blocks of code. Figure 1 shows one
such task graph implementing an MPEG-2 encoder. The events
processed by such an application are typed and the processing
of the events invokes different paths in the task graphs. The
MPEG-2 encoder application for example processes three
types of frames to encode video information: type I, type
B and type P. Depending on the frame type, the encoder
executes different subtasks to compress the frame as illustrated
in Figure 1. The type P events triggers all the subtasks of
the encoder, while the type I triggers the tasks DCT, Q,
IQ, and IDCT; and type B triggers only the tasks FS, DCT,
and Q. As a result, each of these three event types demand
different amounts of resource for execution. As illustrated in
this example, in streaming applications the execution time
associated with any event might vary considerably, depending
on the type of the event. As a result, the choice of custom
instruction will have to consider this variability in execution
times with respect to the event types in order to achieve
maximum performance gain within given area constraints.
Conventional methods ([17], [11]) to select custom instructions
ignore this variability.

In this paper, we propose a technique to effectively
bound the worst-case resource requirements of the application
thereby capturing the variability associated with streaming
applications. Towards this, our proposed mechanism exploits
the application-specific task execution patterns which are given
in the form of a transition system. The transition system
describes the possible compositions of any event stream, and
our technique takes into account all possible sequences of
events that might arrive based on this specification. This allows
us to effectively bound the worst-case and best-case execution
times, and thereby accurately compute a number of relevant
performance metrics.



In our scenario, where we consider multimedia applications
running on an MPSoC platform, there are two relevant per-
formance metrics. First, we estimate the on-chip buffer size,
which is an important metric for an MPSoC platform. Second,
we evaluate the jitter of the processed stream as a measure of
QoS because higher burstiness at the output implies a poor
quality of the application.

To estimate these performance metrics, we rely on a formal
mathematical framework, based on the theory of network
calculus [13]. As a part of the input specification, we are given
bounds on the arrival rate of the event stream. Given (i) these
timing properties of the streams in the form of bounds, and
(ii) the bounds on resource requirements of the events that
we computed from the transition system, our scheme utilizes
a series of algebraic equations based on [13] to compute the
relevant performance metrics. The details of this framework
will be described in Section III.

In the above discussion, we gave a brief overview of our
technique which evaluates performance metrics corresponding
to a particular set of custom instruction by capturing the
variability of the execution times of a streaming application.
In practice, each task of an application can be customized
using multiple choices, thereby leading to a combinatorially
large number of choices in the overall design space. Each of
these design points captures a tradeoff between the additional
logic for the custom instructions and the performance metrics.
In this paper, we also propose a scheme to efficiently search
the design space of customization choices to expose the
tradeoffs. Instead of resorting to heuristics like evolutionary
algorithms [9], which are not guaranteed to return optimal
results, we propose a Branch and Bound method with provably
optimal solutions.

B. Related Work

In recent years, lot of research has been devoted to custom
instruction selection techniques so as to optimize either perfor-
mance or hardware area. However, most of them are restricted
to analyzing single processor systems. Various approaches
proposed along this line of work include techniques based on
dynamic programming [1], 0-1 Knapsack [8], greedy heuristic
[7], and ILP [14].

On the other hand, selecting custom instructions for MP-
SoCs has still not received sufficient attention, despite MP-
SoCs being equipped with extensible cores. In [17], a tech-
nique is proposed to select appropriate custom instruction
configuration for each task in the task graph of the application
which is mapped into an MPSoC. Recently, [11] presented a
design flow to customize streaming application on heteroge-
neous pipelined multiprocessor systems. However, both these
approaches have certain limitations. First, they do not account
for buffers between any two processors, the size of which
is one of the main design parameters in MPSoC design,
and determines on-chip area. Second, none of the previous
research efforts exploited specific characteristics of streaming
applications (e.g., bursty arrival patterns and the variability in
execution demands) in order to achieve accurate results. In
this paper, we present a systematic approach to identify the
quality of different design points by capturing the variability
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Fig. 2. Specifications of a streaming application model: (a) Transition System
and (b) Arrival Curve.

in execution times inherent in streaming applications. Finally,
unlike [11] or [17], we do not resort to heuristics to accelerate
the running times of the proposed algorithms. Our solutions
are provably optimal as well as fast because we utilize effective
pruning techniques based on a Branch and Bound strategy.

Note that in this work we focus on the custom instruction
selection problem. This approach is along the lines of research
efforts discussed above. Hence, we assume that a library
of custom instruction candidates is given. Such a library
of custom instructions may be enumerated by extracting
frequently occurring computation patterns from the data flow
graph of the program [6], [16], [20]. Recently, [2], [15], [19]
also proposed a method to generate custom instructions by
relaxing the constraints on the number of input and output
operands. There have also been efforts [16], [4] to combine
the two steps of enumeration and selection in order to
generate custom instructions on-the-fly.

C. Organization of the Paper

In the next section, we introduce the system model and some
necessary notations. In Section III, we explain our framework
to evaluate the performance metrics for one design point of
a customized MPSoC running a streaming application. This
is followed by a discussion on how to efficiently search the
design space for good quality designs in Section IV. Some
of experimental results that we obtained by applying our
technique to an MPEG encoder application are presented in
Section V. Finally, we conclude in Section VI, where we
outline some directions for future work.

II. SYSTEM MODEL

We consider a multimedia streaming application mapped
to an MPSoC architecture. Broadly, the model of such a
system may be defined in terms of the application, the
MPSoC architecture and the mapping of the application to
the architecture.

Application: We are concerned with typed event streams
that may be formally specified in two parts. The first part
of the stream specification is a transition system T =
(S, S0,Σ, D,Ψ) which captures all possible sequences of event
types that might occur in the stream. Here, Σ is the finite set of
event types. S is a finite set of states, S0 ⊆ S is a set of initial
states, and Ψ ⊆ S×Σ×S is a set of transitions. Henceforth, we
denote any transition 〈s, σ, s′〉 in Ψ by s

σ→ s′. Any sequence
of events in the stream can only be generated as follows. The



system starts in an initial state, and if s
σ→ s′ then the system

can change its state from s to s′ and generate an event of
type σ. Finally, any transition Ψ, s

σ→ s′ is annotated with the
worst-case (WCET ) and best-case execution times (BCET )
for the event type σ. We denote this as a tuple, D(Ψ) =
{WCET,BCET}. The WCET and BCET for the event
type σ will be based on the selection of custom instructions.
Each custom configuration of the subtasks triggered by σ will
imply a unique set of WCET and BCET . We also assume
that all subtasks triggered by σ are running on one processor.
Thus, here, we have defined T with respect to a particular
instance, i.e., one custom configuration and one processor.
Later in Section III, we shall discuss how to instantiate T
for different configurations and different processors.

Such a transition system T can be used to model constraints
on allowable sequences of events. T can either be deter-
mined by analyzing the device or the system that generates
the stream, or by analyzing a sufficiently large number of
representative input streams. Figure 2(a) shows a toy transition
system with Σ = {a, b}. It captures the constraints that (i) the
event stream starts with the type a, (ii) the event type a may
arrive in bursts and (iii) between two bursts of events of type
a, at least two events of type b must arrive.

The second part of the stream specification is concerned
with its timing properties. Towards this, we are given the
functions ᾱu(Δ) and ᾱl(Δ), which we will refer to as
the arrival curves. ᾱu(Δ) and ᾱl(Δ) bound the maximum
and minimum number of events that can arrive within any
time interval of length Δ. Thus, given any concrete arrival
process R(t), which denotes the total number of events
that arrive during the time interval [0, t], the inequalities
ᾱl(Δ) ≤ R(t + Δ) − R(t) ≤ ᾱu(Δ) hold true for all Δ ≥ 0
and t ≥ 0. It may also be noted here that this specification
is more general than the event models traditionally studied
in the real-time systems literature, such as periodic, periodic
with jitter or the sporadic event model [3], [5]. Figure 2(b)
shows the arrival curve for an event stream where upto 2
events arrive within any time interval of length less than
17 time units. In other words, if we consider any concrete
(timed) trace of an arrival process, and slide a “window” of
length less than 17 time units along this trace, then for any
position of this window at most 2 events will be recorded
inside the window. Similarly, if the window is of length 17,
then for any position of this window at most 3 events will be
recorded inside the window.

Architecture: The streaming application described above
runs on an MPSoC platform with P processing elements
(PE). The processors are arranged in a pipelined fashion.
An input multimedia stream enters PEi, gets processed by
the tasks implemented on this PE, and the processed stream
enters PEi+1 for further processing. Figure 3 shows such
an MPSoC with two PEs onto which the various parts of an
abstract application with 5 tasks are mapped. Each PE has
an internal buffer, which is a FIFO channel of fixed capacity,
and is used to store the incoming stream to be processed.
The frequencies of the processors are known to us. Each PE
consists of an extensible instruction-set architecture.
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Mapping: We assume that the mapping is given, i.e., we
know which subtasks of the given application are running on
a particular PE. Clearly, a different mapping would directly
influence the choice of custom instructions on the MPSoC.
Thus, to find the optimal set of custom instructions, the
problem of mapping the application task graph to the different
PEs has to be intertwined with the custom instruction selection
problem. However, we do not attempt to address this combined
problem because the problem of selecting the optimal custom
instructions for an MPSoC even for one instance of a map-
ping is already computationally intensive, as explained below.
Our goal here is to address the custom instruction selection
problem, given a particular mapping and an enumeration of all
possible custom instructions for this mapping. An important
future work would be to jointly optimize task mapping and
custom instruction selection, which will benefit from the
techniques proposed here.

Let there be M subtasks in the task graph of the application
which are mapped to various PEs on the MPSoC. Let us
consider that Λ(PEi) is the set of tasks which are mapped
to the PEi. Figure 3 shows a possible mapping for a task
graph with 5 subtasks. Tasks T1, T2 and T3 are mapped to
PE1 while the rest of the tasks are mapped on to PE2.
As each task is running on a customizable processor, we
consider that there are nk custom instruction configurations
for the kth task and refer to each of these configurations as
Ck,1, Ck,2, . . . , Ck,nk

. However, more than one task is mapped
to the same PE giving rise to multiple configurations of the
PE. Thus, PEi can run in any of |configi| =

∏
j∈Λ(PEi)

nj

configurations. For example, in Figure 3, T1, T2 and T3 are
mapped to PE1. Assume that T1 and T2 has one configuration
each, thus n1 = n2 = 1. Also, assume that T3 has two custom
instruction configurations and thus, n3 = 2. This leads to
n1 × n2 × n3 = 2 configurations.

We would like to note here that workload on PEi for
any event would depend on its configuration. Let us con-
sider the jth configuration of PEi. We then define worst-
case WCETi,j(a), (and the best-case BCETi,j(a)) execution
requirements of a event type a on PEi for its configuration j
as the summation of worst-case (best-case) running times of
the tasks in set S that are triggered by event a. In Figure 3, let
us consider tasks T1, T2 and T3 to have worst case execution
requirements of 20, 30 and 40 — for their first configuration
choices. If a triggers only T1 and T2 in PE1, then WCET1,1

(i.e., WCET of a on PE1 for PE1’s first configuration) is
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Fig. 4. Overview of our proposed scheme.

20 + 30 = 50.
A global configuration for the MPSoC is defined by each of

its processors being in one its |configi| configurations. Hence,
the total number of possible global configurations will be
|config1|×|config2| . . .×|configP |, with P processors in the
pipeline. Given such a large and complex design space it is not
trivial for the designer to identify a configuration that would
yield the optimal performance while satisfying hardware area
constraints. In what follows, we shall introduce a framework
to identify good customization choices in a prohibitively large
design space. Towards this, first we shall discuss how to
evaluate a single design point in Section III. In Section IV, we
shall discuss an effective pruning strategy which can quickly
evaluate trade-offs in the entire design space.

III. PERFORMANCE ANALYSIS

In this section, we first describe how to evaluate the perfor-
mance metrics for a single processor. This will be followed
by a discussion on how this evaluation technique may be
utilized for global performance evaluation of the entire MPSoC
platform. Towards this, our techniques build upon a general
mathematical framework for analyzing real-time systems [5].
We extend this framework to analyze the performance metrics
associated with customization choices of MPSoCs.

Before presenting the details of our performance evaluation
framework, we outline the main steps of our technique in
Figure 4. Our proposed method starts with computing the
custom instruction configurations for each task and the cor-
responding WCET and BCET values as defined in Section II.
This is Step 1 in the Figure 4. This phase is related to
the enumeration of custom instructions and as discussed in
Section I-B we consider this as given. In Step 2, we compute
the maximum and minimum processing requirements arising
from the incoming events on each PE. Towards this, we define
a function γ, the computation of which leverages on WCET
and BCET of various event types. Next, in Step 3, we utilize
this function γ to compute the performance metrics like the
maximum delay, backlog (which is a measure of the maximum
buffer requirement) or jitter experienced by any input event
stream. Steps 2 and 3 will be the focus of this section and are
discussed in detail in the following. Step 4 is the design space
exploration strategy, and will be discussed in Section IV.

Formally, let us define the functions γu
i,j(k) and γl

i,j(k)
whose argument is an integer k and return the maximum and

minimum processing times that may be demanded by any se-
quence of k consecutive events belonging to the input stream.
The subscripts i, j refer to the fact that the function γi,j(k)
is computed for the jth custom instruction configuration for
PEi on the MPSoC. Thus, j ranges from 1 to |configi|
and encapsulates all possible configurations of tasks that are
mapped onto PEi (see Section II).

A. Computing γ:

We now show how to compute the functions γu
i,j and

γl
i,j . Towards this, let us first recall the definition of the

transition system T , where each transition Ψ from (s1) to
(s2) represents the processing of an event of the type σ and
is annotated with D(Ψ) = {WCET,BCET}. As an event
σ passes through MPSoC its arrival sequence (as defined by
the states and transitions of T ) at each PE remains same,
but it will generate different workload (as defined by the
annotation D(Ψ) on the transitions of T ) on each PE based
on the customization choice and the set of the tasks mapped
to that PE. We say that, T will have to be instantiated with
the worst-case and best-case execution times associated with
each customization choice for each processor. Let Ti,j refer to
the instance of T where we consider the ith processor’s jth
configuration. Thus, the annotation on each such transition,
i.e., the tuple Di,j(Ψ) = {WCETi,j(σ), BCETi,j(σ)},
denotes the maximum and minimum processing time of
the event σ. We shall illustrate this idea of instantiation
of T with the example in Figure 3. Here, we will have
4 instances of T : T1,1 and T1,2 corresponding to the two
configurations on PE1, and T2,1 and T2,2 corresponding
to the two configurations on PE2. Figure 5 shows these 4
instances graphically. As the event stream passes from PE1

to PE2, the sequence of arrival of the event types remains
the same. Hence, all the 4 instances of T have the same
states and transitions, while differing only on the annotation
Di,j(Ψ). For simplicity of exposition, it is assumed that the
BCET is always 5 units less than WCET in this example.
In the Figure 5, γi,j denotes the γ function for the ith
processor and the jth configuration. The Ti,j instance of the
transition system is utilized to compute the γi,j function.
The computation of any such γi,j function is discussed
below. By definition, γu

i,j(k) (γl
i,j(k)) is the weight of the

maximum-weight (minimum-weight) path of length k in the
transition system Ti,j . For any k, γu

i,j(k) (or γl
i,j(k)) can thus

be computed from the single source longest (or shortest) paths
of length k for all vertices in Ti,j . The single-source longest
or shortest path for a given vertex is computed using standard
dynamic programming methods. Algorithm 1 shows how to
compute γu

i,j(k) and γl
i,j(k) for all integers 1 ≤ k ≤ n, where

n is an input to this algorithm. In the rest of this section,
where we are concerned with the performance metrics for one
configuration on one processor we shall drop the subscripts
for clarity of exposition. Henceforth, γu(k) (γl(k)) will be
used to represent γu

i,j(k) (γl
i,j(k)) without any ambiguity.

B. Computing Performance Metrics:

To compute the maximum backlog in a buffer, we first
need to define a function βl, which can be considered as
the pseudoinverse of the function γu that we already defined
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Algorithm 1 Computing γ(k). (Note that subscripts i and j
are dropped for ease of exposition.)

Input: Transition system T = (S, S0,Σ, D,Ψ), function
pred(s) which returns all predecessors of the state s ∈ S,
and an integer n;

Output: γu(k) and γl(k) for all 1 ≤ k ≤ n;
1: wu

s (k) ← −∞, wl
s(k) ← −∞ for all s ∈ S, 1 ≤ k ≤ n;

2: wu
s (0) ← 0, wl

s(0) ← 0 for all s ∈ S;
3: for k = 1 to n do
4: for ∀ s ∈ S do
5: if |pred(s)| > 0 then
6: wu

s (k) ← maxp∈pred(s){wu
p (k−1)+WCET (p →

s)}
7: wl

s(k) ← minp∈pred(s){wl
p(k − 1) + BCET (p →

s)}
8: end if
9: end for

10: γu(k) ← maxs∈S{wu
s (k)}

11: γl(k) ← mins∈S{wl
s(k)}

12: end for

above. We define, βl(Δ) = infk≥0{k : γu(k) ≥ Δ}. Hence,
βl(Δ) returns the minimum number of events that can
generate a processing requirement of Δ. In other words, at
least βl(Δ) events from the stream are guaranteed to be
processed within a time interval of length Δ. Within this
time interval, at most ᾱu(Δ) events might arrive. Hence, the
backlog generated within this interval is ᾱu(Δ) − βl(Δ).
Therefore, the maximum or worst-case backlog is given by:
backlog = supΔ≥0{ᾱu(Δ) − βl(Δ)} Intuitively, backlog
can be interpreted as the maximum vertical distance between
the curves ᾱ(Δ) and βl(Δ) (see Figure 6). Due to space
restrictions, we will omit a discussion on computing delay,
which involves similar analysis.

C. Extending the Analysis to other PEs:

Above, we presented a framework to analyze one PE, which
lies at the beginning of the path of an input stream. However,
the analysis may be extended in a compositional fashion to
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other PEs. The event stream generated by a PEi will trigger
PEi+1 in the pipeline. Towards this, let us denote using
ᾱu′

(Δ) and ᾱl′(Δ), the maximum and minimum number of
processed events respectively, that can possibly be seen at the
output of PEi within any time interval of length Δ. ᾱ′(Δ) is
therefore exactly of the same form as ᾱ(Δ) which bounds an
input stream. It may be shown that
ᾱl′(Δ) = min{ inf

0≤μ≤Δ
{sup

λ>0
{ᾱl(μ + λ) − βu(λ)}

+ βl(Δ − μ)}, βl(Δ)}
ᾱu′

(Δ) = min{sup
λ>0

{ inf
0≤μ<λ+Δ

{ᾱu(μ) + βu(λ + Δ − μ)}

− βl(λ)}, βu(Δ)}
In the above equation, βu(Δ) = supk≥0{k : γl(k) ≥ Δ}.

Hence, βu(Δ) returns the maximum number of events that can
generate a processing requirement of Δ. In other words, at
most βu(Δ) events from the stream may be processed within
a time interval of length Δ. Further details and proof maybe
found in [5].

The ᾱ′ functions defined above, along with the γi+1,j

functions for the next PE (PEi+1), can be now utilized in
the framework described in this section to evaluate various
performance metrics. In this way, the entire MPSoC platform
may be analyzed. From the outgoing ᾱ′ curves at the final PE
in the MPSoC we can analyze timing properties like burstiness
and jitter. Towards this, let ωu and ωl be the upper and
lower curves corresponding to an event stream with period
Θ, where Θ is the period of the input arrival curves. We
then compute Ju = min{J0 : ωu(Δ + J0) ≥ ᾱu′} and
J l = min{J0 : ωl(Δ− J0) ≤ ᾱl′}. The jitter of the outgoing
stream is J = max{Ju, J l}. Intuitively, jitter is the deviation



of the stream from its periodicity. For example, in Figure 6(b),
J = J l = Ju = 20. For algorithms to compute the jitter of
more complex arrival curves and when the periodicity is not
known, please refer to [12].

To summarize, in this section we discussed the performance
evaluation of an MPSoC for a one custom instruction config-
uration. In particular, techniques were discussed to estimate
the worst-case backlog for an event stream being processed
on a PE. The summation of the backlogs at all the PEs gives
us an estimate of the total on-chip buffer requirement on the
MPSoC. Second, we discussed how to measure the jitter of the
processed stream. The jitter or burstiness is a relevant quality-
of-service metric for multimedia applications.

IV. DESIGN SPACE EXPLORATION

In the previous sections, we explained how to analyze
various performance metrics for an MPSoC platform for
one custom instruction configuration. In this section, we
will be concerned with exploring the performance metrics
associated with all possible configurations to identify the
solutions that satisfy given QoS guarantees. Recall that the
computation of the function γ (which computes the worst
and best-case execution requirement of k events) lies at
the heart of our analysis engine. It should be clear that the
function γ will have to be recomputed for each configuration
because each unique custom instruction configuration for a
task implies different execution requirements of the task.
Computation of γ is based on a traversal of the transition
system T . Thus, in any iteration of a design space exploration
process, the first step is to annotate the transition system
with Di,j(Ψ) = {WCETi,j(σ), BCETi,j(σ)} for this
configuration. Note that the above procedure is an exhaustive
search process iterating over all design points. In order
to improve the high running times associated with such a
framework, we next propose a fast search strategy.

A. Branch and Bound

Since an exhaustive exploration of all possible design points
can turn out to be prohibitively huge, we propose a Branch
and Bound (B&B) algorithm to select appropriate custom
instruction configuration for each task. We choose a B&B
strategy because of two reasons. The first reason being that
it returns the optimal solution. Other optimization strategies
like evolutionary algorithms [9] or tabu search [10], being
heuristics, cannot give optimality guarantees on their results.
Second, we designed effective pruning techniques that lead
to short running times of our B&B search strategy. These
pruning techniques are described in the following, along with
the description of our B&B algorithm.

The goal of our design space exploration, i.e., the B&B
algorithm, is to find the configuration where (i) the jitter at
the output is minimized and where (ii) the area constraints on
custom instructions are satisfied. We have chosen jitter as an
optimization criterion because for multimedia applications,
higher burstiness at the output results in poor quality. The
B&B algorithm was designed to effectively exploit specific
characteristics of the design space for quickly identifying
optimal solutions. This is validated by our experiments

Algorithm 2 Branch and Bound Strategy for Custom
Instructions Selection
Input: TasksT1 . . . TM with configurations; Area constraint:

AREA; Mapping: Λ
Output: Minimum jitter;

1: J ← 0; optimalSoln ← ∅; A ← AREA;
2: MinJitter ← compute original jitter();
3: /∗ T1 is the first task ∗/
4: search(T1, J, A, ∅, Λ)
5: return J;
6: end;
7: Function search(Tk, J, A, Soln, Λ)
8: for each Ck,l of Tkin increasing order of execution time

do
9: if (area(Ck,l) ≤ A) then

10: partialSoln ← Soln∪Ck,l ; A ← A − area(Ck,l);
11: if (is the last task on processor(Tk, Λ)) then
12: J ← J + compute jitter(i);
13: end if
14: if (is the last task on the last processor(Tk, Λ))

then
15: if (J<MinJitter) then
16: MinJitter ← J; optimalSoln ← partialSoln
17: continue;
18: end if
19: end if
20: if (bound(partialSoln)<MinJitter) then
21: search(next task(Tk), J, A, partialSoln,Λ)
22: end if
23: end if
24: end for

as only 2295 out of a total 55926 of design points were
enumerated. The pseudocode of our proposed strategy is
shown in Algorithm 2 and is explained below.

Algorithm Description: The B&B algorithm defines a tree
structure to represent the search space. Each level k in the
B&B search tree corresponds to the choice of a configuration
for the task Tk. Thus, each node at level k corresponds to a
partial solution with the configurations about the tasks T1 up
to Tk. If Tk is the last task to be considered by the B&B
on processor i (lines 11-12), the jitter of the partial solution is
increased by the jitter of processor i using compute jitter(i).
Whenever we reach a leaf node of the search tree, that is
the last task on the last processor (lines 14-19), we have a
complete solution with selected configurations for each task.
During the traversal of the search tree, the minimum jitter
achieved so far at any leaf node is kept as MinJitter. If the
jitter J of the current complete solution is less MinJitter, we
update MinJitter as well as the optimal solution computed
so far (see line 16).

The power of our B&B algorithm comes from the following
two effective pruning strategies for the design space. At any
non-leaf node m in the search tree, we compute a lower bound,
bound(m), on the minimum possible jitter at any leaf node
in the subtree rooted at m. This lower bound is computed
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Fig. 7. The transition system T specifying the arrival sequence of
the frame types I, B and P for an MPEG-2 encoder.

by summing up the jitter due to the tasks that have been
enhanced with custom instructions with respect to the mapping
Λ (see Algorithm 2) and the minimum jitter possible from
the remaining tasks (which is the jitter when enhanced with
the custom instruction configuration such that wcet − bcet is
minimum among all event types). If bound(m) > MinJitter
(line 20), then the search space corresponding to the subtree
rooted at m can be pruned. Second, we have the constraint
on hardware area used for custom instructions in MPSoC.
Due to the fact that one processing element may require
more custom instructions than the others, it will have larger
area for custom instructions. Therefore, the hardware area for
custom instructions is allocated among processing elements in
the MPSoC while performing design space exploration. If the
remaining unallocated hardware area for custom instructions is
less than the required hardware area for the custom instructions
of a particular configuration of a task at any node, then the
subtree rooted at the corresponding node is pruned (line 9).

V. CASE STUDY

In the following, we discuss the results obtained by
applying our technique on an MPEG-2 encoder; the subtasks
of the encoder are shown in Figure 1. The arrival sequence
of these frame types were specified by the transition system
shown in Figure 7. The decoder is run on an MPSoC
architecture with two pipelined PEs, with PE1 running at
100MHz frequency and PE2 running at 50MHz. We assume
that the FS task is running on the first PE and the rest of
the tasks are running on the second PE. The task FS has
signifacntly higher execution requirement compared to the
rest of the tasks, and hence, it is reasonable to assume that
PE1 will run at a higher frequency than PE2. In our setup,
the encoder has to encode 30 frames per second and its
output is a 64×64 pixel encoded clip.

A. Experimental Set-up

The entire framework has been implemented in C. All
the experiments were conducted on a Linux machine run-
ning on a 8-core Xeon(R) 3.0 GHz processor. We generated
different custom instruction configurations for each task in
the MPEG-2 encoder using Tensilica tool [18]. The number
of configurations for the tasks varied from 5 to 13 thus
creating a large design space (55, 926 design points in total).
In order to obtain WCET and BCET estimates, we used
a simulation/measurement-based method by inserting timing
counters to the MPEG-2 encoder code at suitable points.
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Fig. 8. Tradeoffs between custom instruction area and output jitter.
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Fig. 9. Zoomed-in chart of Figure 8 showing the tradeoffs between custom
instruction area and jitter for upto 60K gates.

Let the maximum possible custom instruction area be
MaxArea. For our experiments, we iteratively called the
B&B algorithm with the area constraint varying from
0.1 × MaxArea to MaxArea with an interval/step size of
0.1 × MaxArea. This allowed us to evaluate the trade-offs
at various points in the design space. At each of these
intervals (i.e., design points) our tool found a system with the
minimum possible jitter and associated on-chip buffer size.
The results from these experiments are discussed below.

B. Discussion

Figure 8 shows the relation between output jitter and custom
instruction area. Note that as the hardware area increases,
the jitter starts to decrease. This is because with the use
of custom instructions the value WCET − BCET starts
to decrease. In fact, the jitter decreases up to 32% with an
area of 0.3 × MaxArea (i.e., 60,000 gates). However, after
0.4×MaxArea (i.e., 80,000 gates), the output jitter does not
decrease any further. This can be expected because jitter is
dependent on the difference between the WCET and BCET
and not on WCET or BCET independently. This result
is interesting because our tool reveals the sweetspot (0.3 ×
MaxArea) after which adding more custom instructions will
not minimize jitter. To confirm our findings, we ran another
set of experiments where the constraint on hardware area for
custom instructions was varied from 0 to 0.3 × MaxArea
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Fig. 10. Tradeoffs between the custom instruction area and the on-chip
buffer.

(i.e., 60, 000 gates) in the steps of 6, 000 gates. The zoomed-
in results shown in Figure 9 validate our observation.

While the jitter is minimized with the custom instruction
area being 0.3 × MaxArea, the buffer required to maintain
that value of jitter can be further reduced if more hardware
area is used for custom instructions. Figure 10 shows the area
utilized by custom instructions corresponding to various buffer
requirements. The reduction in on-chip buffer requirement is
expected because the performance of the processors increase
with increased use of custom instructions, which in turn
decreases the number of backlogged events at the processors.
However, note that the decrease is not monotonic. This is
because the total on-chip buffer depends on the computation
capability of both PE1 and PE2 in a complex fashion. For
example, custom instructions might enhance the performance
of PE1 thus decreasing the buffer requirement before PE1.
However, this enhanced performance of PE1 might now
increase the number of backlogged events in front of PE2

by a large amount leading to an overall increase of on-chip
buffer requirement.

C. Running Times

Finally, we illustrate the efficiency of our proposed B&B
strategy in Figure 11. This figure shows the relation between
custom instruction area and the number of design points that
were explored by the B&B algorithm. The total number of
points (which is the total number of nodes in B&B search
tree) were 55, 926. However, as shown in Figure 11, the
maximum number of points to be evaluated in any of our
invocations is only 2, 295 which clearly manifests the power
of our B&B algorithm. For each iteration of our B&B, the
running time varied from 1 to 6 minutes, clearly outperforming
the exhaustive design space exploration techniques which took
over 12 hours to complete.

VI. CONCLUDING REMARKS

In this paper we have proposed a technique to select optimal
custom instruction configurations for multiple PEs on an MP-
SoC platform. Our method accurately characterizes the high
variability associated with the execution times of multimedia
streaming applications. We demonstrated the utility of our
proposed framework by analyzing a real-life case study. In
future, we plan to design search strategies with optimization

2500

2000

m
er

at
ed

1500

ts
 E

nu
m

1000

gn
 P

oi
nt

500D
es

ig

0
0 50000 100000 150000 200000

Hardware Area for Custom Instructions (in Gates)
Fig. 11. Efficiency of Branch and Bound algorithm.

objectives other than jitter (e.g., delay, power etc.). In this
paper, we assumed that the designer has taken appropriate
decisions regarding the mapping of the tasks to PEs. It will
also be worthwhile to explore the influence of such decisions
on the customization choices.
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