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Abstract—CAN with flexible data rate (CAN-FD)
allows transmission of larger payloads compared to
standard CAN. However, efficient utilization of CAN-
FD bandwidth space calls for a systematic strategy.
The challenge arises from the nature of the frame sizes
stipulated by CAN-FD as well as the heterogeneity
of the periods of the messages and the signals. In
this paper, we formulate a frame packing problem for
CAN-FD with the optimization objective of bandwidth
utilization while meeting temporal constraints. As part
of the solution, first, we propose a formula to com-
pute the best-case and the worst-case transmission
times of the CAN-FD frames. Thereafter, we propose
a framework that solves the optimization problem in
pseudo-polynomial time. Experiments show the gains
achieved by our framework. The results also show that,
when applied to standard CAN, our heuristic provides
improved results over existing techniques.

I. Introduction

CAN with Flexible Data-rate (CAN-FD) [10], [7] is
currently being added to the CAN standard (ISO 11898)
and is the next-generation CAN technology to be used
for in-vehicle networks and industrial automation [4]. The
main benefit of CAN-FD compared to CAN 2.0 is the
significant increase in bus bandwidth. This improvement is
enabled essentially by two enhancements to data-link layer
standard of CAN: (1) The data-bit rate is increased (up
to 8 Mbps is envisioned although this depends on physical
properties such as wire lengths, distance between ECUs,
and electromagnetic interference) and (2) a new frame
format is introduced to allow frame payloads of up to 64
bytes—thus increasing bandwidth efficiency on a per-frame
basis. As a point of comparison, current CAN technology
supports a maximum payload size of 8 bytes and is usually
operated at 500 kbps.

Although the data-bit rate is increased, the inherent
arbitration phase in CAN remains at an unchanged bit rate
(i.e., 500 kbps for most systems). Arbitration is a part of
every frame transmission and comprises a fixed portion of
the total frame transmission time independent of the size of
the frame payload. This portion is very significant for short
frames (e.g., 8-byte frames) but is decreased for frames
with large payloads, such as the ones available in CAN-
FD. For this reason, frames with larger payload should be
used to achieve efficient bus usage. Messages and signals
produced by sensors and Electronic Control Units (ECUs)
are typically transmitted at different rates and are of sizes
that are significantly shorter than the large payloads in
CAN-FD. To use large payloads in CAN-FD efficiently, it
is therefore needed to pack multiple messages and signals
in one single frame. The frame packing problem is complex
due to the variation in the size, periodicity, and time
criticality of the individual signals. The stipulated frame
sizes in CAN-FD (Section III) introduce further complexity
in the frame packing problem.

Contribution: In this paper, we motivate and solve a
frame packing problem for CAN-FD systems, where the
goal is to optimize the bus usage while satisfying the timing
constraints imposed on individual signals. Frame packing is
an enabler to use CAN-FD buses efficiently in terms of bus
usage. The actual frame-packing strategy and algorithm to
map individual signals to frames not only has an impact on
the amount of data that can be transmitted on the bus, but
also the bandwidth margin for future feature growth during
the lifetime of the CAN-FD subsystem. Frame packing also
reduces or eliminates the need to add additional buses to
the architecture to enable feature expansion.1

Towards an efficient and effective frame-packing strat-
egy, we propose an optimization approach to select and
pack messages into frames to minimize bus utilization.
Further, we present an approach to assign frame iden-
tifiers (i.e., priorities) to the constructed frames, while
considering timing constraints and potential re-packing of
messages to satisfy individual deadlines. We also provide
new formula required to compute best-case and worst-
case transmission times of CAN-FD frames in light of the
new frame format, increased bit rate, and changes in the
bit stuffing rules. Experiments show that our approach
is essential to find system configurations with efficient
usage of the increased communication bandwidth offered
by CAN-FD. In addition, the results demonstrate that our
heuristic—when applied to standard CAN—improves over
known techniques.
Organization: The next section surveys related work

in the area of frame packing and bin packing heuris-
tics. Section III gives a technical overview of the CAN-
FD protocol, focusing in particular on the differences to
standard CAN, as well as calculation of best and worst
case transmission times of individual CAN-FD frames. In
Section IV, we present comprehensive examples to demon-
strate the challenges and advantages of CAN-FD frame
packing. Section V presents the formal problem statement
and system model. Our optimization approach, comprising
frame packing and priority assignment, is presented in Sec-
tion VI. Experimental results are presented in Section VII
and the paper is concluded in Section VIII.

II. Related Work

This is the first paper to address the problem of frame
packing for CAN-FD systems. Prior to our paper, there
have been a few papers in the literature that proposed
frame packing scheme for standard CAN [11], [13], [14].

1Adding an additional CAN bus to an existing architecture comes
with significant costs and problems in terms of additional transceivers
and CAN controllers, change requests involving increased interaction
with multiple suppliers, development and validation effort, wiring
complexity and weight, and deviations from system-level architec-
tural decisions and directions because ECUs originally not intended
to act as gateways between different subnets now must gate frames
between multiple CAN subnets.



Fig. 1. CAN-FD frame format [7]. A frame includes a frame identifier,
which can be used to incorporate transmission priorities as well as to
identify the content of the payload. The BRS bit is used to switch to
a higher bit rate for data transmission of up to 64 bytes data.

Sandstrom et al. [14] proposed a heuristic inspired by the
next fit decreasing heuristic for the classic bin packing
problem [16]. Their algorithm sorts the signals by deadlines
and then iteratively assign a signal to a frame until a
signal does not fit into the frame anymore, whereafter a
new frame is created for the next iteration. Saket and
Navet [13], on the other hand, sort the signals by their
bandwidth utilization. Thereafter, the sorted list is pro-
cessed alternatively from the beginning and from the end
to increase the chances that signals with similar periods are
packed in the same frame. Finally, Polzlbauer et al. [11]
presented a heuristic based on the next fit decreasing
algorithm, which improves on the previous approaches.
Compared to previous techniques, they proposed an ad-
ditional criteria that decides whether to add a signal to
an existing frame based on the impact on bandwidth
utilization.

Standard CAN allows payloads with 0, 1, 2, ..., 8 bytes.
As such, the bandwidth loss within a frame is relatively less
and when the sizes of signals to be packed into a frame are
specified in bytes, there is no bandwidth loss at all. This is
different in CAN-FD because the relative bandwidth loss
may become significant due the discontinuity in the allowed
frame sizes (in addition to the standard CAN sizes, CAN-
FD allows payloads of 12, 16, 20, 24, 32, 48, or 64 bytes).
Under such conditions, the problem discussed in this paper
does not arise in the context of standard CAN and has
not been discussed in related papers such as the ones
discussed in this section. It is, however, possible to apply
our approach to standard CAN and it performs better than
existing solutions in literature (Section VII-D).

Other notable work on frame packing include pa-
pers that have targeted communication protocols like
FlexRay [15] and mixed event/time-triggered networks [12]
and, as such, the nature of those frame packing problems
are very different.

The problem addressed in this paper has some similar-
ities with the variable sized bin packing problem. There
are important differences, however, that are discussed in
Section V-D. While the classic bin packing problem has
been widely studied and excellent resources are abundant
in the literature, the variable sized bin packing has received
relatively limited attention. The variable sized bin packing
problem was studied for the first time by Friesen and
Langston [5] who proposed three heuristics. Murgolo [9]
provided theoretical results on polynomial-time approxi-
mation schemes. Another variant of the problem studied
in the literature is known as the variable sized bin packing
problem with fixed costs, where a fixed cost is associated
with each bin and the objective is to minimize the total
costs [8], [1]. Note that our frame packing problem has
variable costs that depend on the periods of the selected
frames.

III. CAN-FD Overview

We shall in this section give an overview of the CAN-
FD protocol and in particular highlight the differences to
the standard CAN protocol. We shall also show how to
calculate worst-case and best-case transmission times of
CAN-FD frames.

A. Frame Format and Operation

Figure 1 depicts the frame format in CAN-FD networks.
When the bus is idle, the nodes that have a frame to send
first transmit a dominant (logical 0) bit, denoted SOF
(Start-Of-Frame), followed by an 11-bit identifier in the
arbitration phase. This transmission is done in the arbitra-
tion bit rate, where each bit has a duration denoted tarb
(for a setup where the arbitration bit rate is 500 kbps, the
bit time tarb is 2 µs). Whenever, during the transmission
of the 11 identifier bits, a node transmits a recessive bit
(logical 1) and notices a dominant value (logical 0) on the
bus, it stops transmitting (because at least one other node
is going to transmit a higher-priority frame) and instead
prepares to receive a frame being transmitted by another
node. After the transmission of the 11 identifier bits is
completed, one node is the transmitter and the other nodes
will act as receivers. The transmitting node then continues
by transmitting the bits in the control field (the RRS bit
at the end of the arbitration field is 0 and is reserved for
future protocol extensions). The IDE bit indicates whether
the frame uses additional identifier bits (extended frame
format). In essence, the above discussed the responsible
bits (and thereby, the time taken) for the arbitration in
CAN-FD and the arbitration policy itself, which is based
on priorities.

The FDF bit (FD Format) is 1 if the frame is encoded
with the CAN-FD frame format and 0 if the frame is
encoded according to the standard CAN 2.0 format. We
consider FDF to be 1 for all frames (the old format is avail-
able for backwards-compatibility reasons). The following
bit (res) is reserved for future protocol variants.

The BRS bit (Bit-Rate Switch) is 1 if the bus controllers
should switch to the increased data rate, where the du-
ration tdata of each bit is configured2 to be significantly
shorter than the arbitration bit time tarb. We consider
in this paper that BRS is 1 for all frames, thus taking
advantage of the increased bit rate offered by the CAN-
FD protocol. We believe that there are interesting open
problems related to selection of the BRS bit but they are
not the subject of this paper. 3

ESI (Error Status Indicator) indicates whether the
transmitting node is in error passive or error active state.
This ESI bit is—with the introduction of CAN-FD—a
dependability-related enhancement to the CAN standard
and is not relevant for the topic of this paper. Following
the ESI bit is a 4-bit data-length code (DLC). The DLC
indicates the number of bytes in the following payload
section. The available payload sizes are 0 to 8 bytes, as well
as 12, 16, 20, 24, 32, 48, and 64 bytes (CAN 2.0 allows a

2The configuration of the bit times tarb and tdata is static for
a CAN-FD network and depends on factors such as the number
of nodes, length of wires, physical distance between nodes, and
availability of transceivers qualified for the intended bit rate.

3Reasons to restrict operation to the arbitration bit rate for the
whole transmission (i.e., BRS = 0) may be due to legacy applications
or to reduce the error probability in the physical layer.



maximum size of 8 bytes). Following the payload is a CRC
(Cyclic Redundancy Check) field, which consists of 17 bits
for payloads up to 16 bytes, and 21 bits for payloads larger
than 16 bytes. The next bit is the CRC delimiter, which is
transmitted as a recessive bit (1). The bit time is changed
during the bit time for the CRC delimiter, which means
that the remaining sections ACK (Acknowledgment), EOF
(End Of Frame), and Int (inter-frame gap) are transmitted
with the arbitration bit rate.

To summarize, the main differences to CAN 2.0 are as
follows:

• The three bits FDF (FD Format), BRS (Bit Rate
Switch), and ESI (Error Status Indicator) are intro-
duced.

• A longer payload size is supported. The allowed pay-
load size in a CAN 2.0 frame range from 0 to 8 bytes,
whereas, for a CAN-FD frame, it is possible to addi-
tionally transmit frames with 12, 16, 20, 24, 32, 48,
and 64 bytes payload. The larger available payloads
introduce opportunities for bandwidth optimizations
by considering multiple messages or signals in one
single frame (the topic of this paper).

• After arbitration has been completed, it is possible to
switch to an alternate faster bit rate. By setting FDF
to 1, the bit time is switched from the arbitration bit
time tarb to the shorter data bit time tdata.

B. Bit Stuffing

The CAN protocol has a bit stuffing rule, which means
that if five bits are transmitted consecutively as either
dominant or recessive, then the communication controller
transmits one stuff bit that has the opposite value than the
consecutive bits. This mechanism is used for the receivers
to detect errors on the bus. The bit stuffing mechanism is
included in CAN-FD as well, with minor changes: The bit-
stuffing rule is only applied from the start of a CAN-FD
frame to the end of the payload section. For the CRC field,
stuff bits are static and independent of the actual CRC
value. For a 17-bit CRC, 4 stuff bits are added (making
the CRC to be 21 bits in total), whereas for a 21-bit CRC,
5 stuff bits are added (making a total size of 26 bits).4

Given these differences, previously proposed formula [2] to
compute the transmission times are not directly applicable
to CAN-FD.

C. Transmission-Time Calculation

The best-case transmission time occurs when no stuff
bits are inserted during frame transmission. In such a sce-
nario, the number of bits transmitted with the arbitration
bit rate is 29 (including the BRS bit and excluding the
CRC delimiter bit5). The number of bits transmitted in
the data bit rate depends on the size of the CRC field
(which depends on whether or not the payload is larger
than 16 bytes). For payloads up to 16 bytes, the CRC field
is 21 bits (17 bits CRC and 4 mandatory stuff bits). For
payloads larger than 16 bytes, the CRC field is 26 bits
(21 bits CRC and 5 mandatory stuff bits). Considering

4For CAN 2.0, the CRC field follows the same bit stuffing rule as
the preceding fields.

5The two bit rate switches in a CAN-FD frame transmission are
actually performed during the transmission of the BRS bit and CRC
delimiter bit, respectively.
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Fig. 2. Worst-case transmission time (µs) as a function of CAN-FD
payload size (bytes). The graph shows, for each available payload
size, the total worst-case transmission time consisting of four time
components with the following order from below: (1) Bits transmitted
with arbitration bit rate, (2) ESI, DLC, and CRC bits including stuff
bits, (3) payload stuff bits, and (4) payload bits.

this property and counting the bits that are transmitted
in the data bit rate (excluding BRS and including the CRC
delimiter), we conclude that the best-case transmission
time of a CAN-FD frame with p bytes payload is

BCTT(p) = 29tarb +

(
27 + 5

⌈
p− 16

64

⌉
+ 8p

)
tdata. (1)

For the worst-case transmission time, we consider a
worst-case bit stuffing scenario. The bit stuffing rule ap-
plies until the end of the data field. Let us consider the bits
transmitted with the arbitration bit rate before the first
bit rate switch: Since the FDF, res, and BRS bits are 1,
0, and 1, respectively, there are 13 bits that are subject to
the bit stuffing rule. Considering a worst-case bit pattern of
11111000011110000 . . . [2], we note that there are at most
3 stuff bits transmitted with the arbitration bit rate. Let
us further consider the bits transmitted with the data bit
rate: The bits that are subject to bit stuffing are the DLC
and payload (data field), which is a total of 4 + 4p bits for
a p bytes payload. Considering that BRS is 1 and that ESI
may also be transmitted as 1, we need to consider these
two additional bits in the worst-case bit sequence. Thus,
the maximum number of stuff bits transmitted in the data
bit rate is b(6 + 8p)/4c = 1 + 2p. Adding the contribution
of the worst-case bit stuffing patterns to Equation 1, we
conclude that the worst-case transmission time of a CAN-
FD frame with p bytes payload is

WCTT(p) = 32tarb +

(
28 + 5

⌈
p− 16

64

⌉
+ 10p

)
tdata, (2)

where p = 0, 1, . . . , 8 or p = 12, 16, 20, 24, 32, 48, 64 (cor-
responding to the available payload sizes in a CAN-FD
frame). Equations 1 and 2 are valid for the case that the
BRS bit is transmitted as a logical 1 (recessive bit). In case
a frame is transmitted without taking advantage of the
increased bit rate (i.e., BRS is 0), the transmission time
is calculated by substituting tdata with tarb in Equations 2
and 1. We shall in this paper consider that BRS is 1 for
all frames.

To illustrate the different components of the worst-
case transmission time, let us consider Figure 2. The
chart shows, for each available CAN-FD payload size, four



time components that together constitute the worst-case
transmission time of a CAN-FD frame, considering 500
kbps arbitration bit rate (i.e., tarb = 2µs) and 2 Mbps data
bit rate (i.e., tdata = 0.5µs). The dark-gray field (first from
below) is the time to transmit all bits in the arbitration bit
rate (i.e., 32tarb). The black field (second from below) is
the time to transmit the ESI bit, the DLC section, and the
CRC field including the mandatory stuff bits. The white
field (third from below) shows the time to transmit only
the stuff bits that in the worst-case are inserted into the
DLC and payload sections (i.e., (1 + 2p)tdata, where p is
the payload size in bytes). Finally, the light-gray field (the
fourth and last from below) is the time spent to transmit
the actual payload (i.e., 8ptdata). Note that the first three
time components together show the time-overhead of the
CAN-FD protocol in transmitting data of a certain size.
We can observe that the overhead is dominating for small
CAN-FD frames and that the communication medium is
best utilized when transmitting large CAN-FD frames.

IV. Motivational Examples

Despite the above observation that favors larger frame
sizes, packing frames for CAN-FD bus with optimal bus
usage is a nontrivial problem. In this section, we illustrate
this through a series of examples. We shall show different
alternatives to pack signals into frames, and also situations
for which frame packing is not optimal. We shall also
consider to pack signals with different periods into the
same frame to further optimize bus usage. Unless otherwise
stated, we shall consider a CAN-FD network with the
following configuration: tarb = 2µs and tdata = 0.5µs.

a) Frame packing to optimize bus utilization: Let us
consider three signals s1, s2, and s3 produced by a single
ECU with the sizes l1 = 4, l2 = 2, and l3 = 8 bytes,
respectively. All three signals are produced with a period
of 10 ms. First, consider that each signal is transmitted in
a separate frame. The total worst-case transmission time
is WCTT(4) + WCTT(2) +WCTT(8) = 304µs, which gives
a bus utilization of 304/10000 = 3.04%.

To continue the example, consider that we pack the sig-
nals into frames such that each frame is fully utilized. One
such example is to pack s1 and s2 into a 6-byte frame, and
keep s3 in a single 8-byte frame. This leads to a total worst-
case transmission time of WCTT(6) + WCTT(8) = 226µs
and a bus utilization of 2.26%.

To further optimize the bus usage, we can consider an-
other alternative packing to combine all three signals into a
single CAN-FD frame. The total length of the three signals
is 14 bytes, which means that a 16-byte frame is needed
(the available CAN-FD payload length is not continuous
after 8 bytes). This means that 2 unnecessary bytes will
be transmitted, but this slight wastage of bus utilization
is smaller than the bus utilization that is reduced when
combining all signals into one single frame. Considering
WCTT(16) = 158µs, the bus utilization for this example is
1.58%.

The examples show that alternative ways of packing
influence the bus bandwidth consumption. Further, we
demonstrated that it is not straightforward to identify
which packing alternative is the best in terms of bus utiliza-
tion. For large systems, the design space is very complex
due to the many combinations that are possible. Note that
there is a bus usage overhead associated with each frame,

apart from its actual payload, due to for example the frame
identifier, DLC, and CRC fields (refer back to Figure 2). If
each signal is sent in a separate frame, then this overhead
is associated with each signal. If, on the other hand, signals
are packed together into one frame, then the overhead is
relatively smaller because the overhead is associated to the
frame and not the individual signals. This is captured in
the transmission-time computation in Equation 2 and is
accounted for by our optimization approach in Section VI.

b) Frame packing of signals with different periods:
To further demonstrate the benefits of frame packing, let
us consider an example with three signals s1, s2, and s3,
each with 4 bytes of data. The periods of the three signals
are h1 = 10 ms and h2 = h3 = 20 ms. If each signal is
transmitted in a separate frame (i.e., no frame packing is
considered), the bus utilization is

3∑
i=1

WCTT(4)

hi
=

98 µs

10 ms
+

98 µs

20 ms
+

98 µs

20 ms
= 1.96%.

Let us now consider that we perform frame packing but
with the restriction that signals with different periods are
not mixed within a frame: Signal s1 is transmitted in a
separate frame with the period 10 ms, whereas signals
s2 and s3 are packed together in an 8-byte frame that is
transmitted with the period 20 ms. This results in a bus
utilization of

WCTT(4)

10 ms
+

WCTT(8)

20 ms
= 1.57%.

Finally, let us pack all three signals into a single 12-
byte CAN-FD frame. This frame is transmitted with a
period of 10 ms, because of the period of s1. Because
the period of s2 and s3 is 20 ms, for any two continuous
transmissions of the 12-byte frame, one transmission will
only include s1 and leave the remaining 8 bytes of payload
with no useful data. For every other transmission, we
will thus waste the amount of bandwidth it requires to
transmit 8 bytes of data with the data bit rate. However,
we reduce the bus utilization compared to the previous
packing alternative because we reduce the solution by one
CAN-FD frame (a CAN-FD frame comes with a certain
overhead due to the transmission of the frame header
regardless of the payload size). The bus utilization is
reduced to WCTT(12)/10 ms = 1.38%. This shows that it
can be beneficial to combine multiple signals with different
periods into a single frame in order to further optimize
bus utilization, even if some frames will be larger than
necessary (i.e., bandwidth is wasted for certain frame
transmissions). This can be compared to the case where
the bus utilization is 1.57%. In that case, all frames are
packed to their limit but signals with different periods are
packed in separate frames. Thus, considering signals with
different periods makes the frame packing more complex
but also presents opportunities for further optimizations.

c) Frame packing may increase bus utilization: Let
us in this example consider a configuration where tarb =
tdata = 0.5µs. Consider two signals s1 and s2 of the same
size l1 = l2 = 20 bytes and same period. Further, consider
that each of the two signals is transmitted in separate 20-
byte CAN-FD frames. The total worst-case transmission
time of these two frames is 2 × WCTT(20) = 1060µs.
Consider now the case where s1 and s2 are packed together



in a single frame. The smallest available CAN-FD frame
size is 48 bytes, which means that we have to transmit 8
additional bytes in order to send the two signals in the
same frame. This leads to a worst-case transmission time
of WCTT(48) = 1090µs. This shows that there are cases
where it is beneficial to keep signals in separate frames.
However, in practice, the data bit rate will be higher than
the arbitration bit rate, which means that the 8 additional
bytes that have to be transmitted will consume less time
than the time it takes to transmit the frame header of an
additional frame in the arbitration data rate. In any case,
our approach considers the trade-off between packing and
not packing signals into frames.

d) Schedulability: The examples in this section fo-
cused on optimizing bus utilization. For a given frame
packing, the next step is to assign unique frame identifiers,
which serve as transmission priorities at runtime. For a
given assignment of frame identifiers, it is needed to run a
timing analysis to check whether or not all signal deadlines
are met. It may be the case that the frame packing that
leads to the best bandwidth utilization is not schedulable
in the sense that it is not possible to assign frame identifiers
such that all deadlines are met. In such cases, other frame
packing solutions need to be explored in order to find an
optimized and schedulable frame packing—for example,
by not combining signals with different time criticalities
into the same frame. In addition to a frame packing
optimization approach, this paper addresses the issue of
schedulability in the context of frame packing.

V. Problem Formulation

As an input, we are given sets of signals from all ECUs
(Electronic Control Units) as described in Section V-A.
The output that must be provided is a set of frames, where
each frame contains a subset of signals from one ECU. The
output should also provide the period, deadline, size as
well as the priority identifier for each frame as defined in
Section V-B. The optimization objective is to minimize the
bandwidth utilization while satisfying the constraint that
all the frames meet their deadlines (Section V-C).

A. Input: Signals

As an input, we are given a set E of ECUs in a
distributed automotive system connected to a single CAN-
FD bus. The eth ECU produces a set of signals denoted
by Se = {se1, se2, · · · , se|S|}. Each signal sei is characterized
by the following parameters.
• Period, hei : denotes the rate at which signal sei is

produced.
• Deadline, dei : is the latest time instant, relative to

the instant when the signal sei is produced, by which
the transmission of sei must be completed.

• Length, lei : denotes the size (payload) of the signal sei
in bits. If the signal is transmitted as a frame in itself,
then it must be packed into the smallest legal CAN-
FD frame size that accommodates it. Given the size
of the signal lei , let LT (lei ) be a function (or a look-up
table) that gives us the CAN-FD frame size for this
signal. 6 The time taken to transmit the entire signal
is WCTT(LT (lei )).

6For example, given 14 bytes (112 bits) as the input, the function
LT will return 16 bytes which is the smallest legal CAN-FD frame
size that accommodates 14 bytes.

B. Output: Frames

As output, the problem packs all the signals into a set
of frames. A frame γej consists of a set of signals Se

j , where
Se
j ⊆ Se. Note that signals from two different ECUs are

not allowed to be packed into the same frame. Parameters
of a frame are defined as follows.

While packing a group of signals into one frame γej , the
period He

j (and the deadline De
j ) of the resulting frame

will be the minimum period (minimum deadline) among
the periods (deadlines) of signals. To find the length Le

j , of
a frame γej , we compute the summation of the payload

of the constituent signals
∑|Se

j |
i=1 l

e
i . Once the length is

known, it is trivial to find the worst-case transmission time
WCTT(LT (Le

j)), using Equation 2. As before, the function
LT (Le

j) gives us the smallest legal frame size in CAN-
FD that may accommodate the payload size Le

j . It should
be noted that a frame is also associated with a priority
identifier IDe

j that uniquely identifies the priority of the
frame for purposes of arbitration.

C. Optimization Objective and Constraints

In the following, we discuss the optimization objective
of the problem and the constraints that it must satisfy.

Minimize

|E|∑
e=1

|S|∑
j=1

m∑
k=1

yejk

(
WCTT(Wk)

He
jk

)
(3)

Subject to

|Se|∑
i=1

xeijkl
e
i ≤ yejkWk , for all j, k for each e (4)

|Se|∑
j=1

m∑
k=1

xeijk = 1 , for all i, for each e (5)

Above, m denotes the number of types of frames allowed.
For CAN-FD m = 16 because the available payload sizes
are 0 to 8 bytes, as well as 12, 16, 20, 24, 32, 48, and
64 bytes. The size of the frame of type k is given as
Wk and its worst-case transmission time is then given as
WCTT(Wk). It is trivial to observe that no solution may
ever contain more frames for a given ECU than the given
number of signals produced by that ECU. This means
that the number of each type of frame in the solution
is upper bounded by |Se|. Given this bound, yejk is a
boolean variable that refers to the selection of the jth
frame out of |Se| frames of eth ECU for frame of type
k. Given these terms, it may be seen that Equation 3 is
the objective function that minimizes overall bandwidth
utilization considering the selected frames for each of the
signals.

Let xeijk be a boolean variable that denotes whether
signal sei from ECU e is selected for the jth frame of
type k of ECU e. Equation 4, then, enforces the constraint
that the sum of the payload of constituent signals of a
single frame should not exceed the size of payload. Finally,
Equation 5 enforces that each signal may be packed into
one frame. Only the frames from same ECU may be packed
together, and as such, the above two constraints must hold
true for each ECU.

Let Se
j be the subset of signals that are packed into

the jth frame in ECU e (dropping the subscript k, i.e,
regardless of the type of the frame). The period He

j for a



frame is determined by the constituent signals as shown in
Equation 6. {

He
j = min

|Se
j |

i=1{hei}
De

j = min
|Se

j |
i=1{dei}

(6)

Finally, note also that the priorities (ID) must be
assigned such that the response time of each frame must be
less than its deadline. It should be noted that the priority
assignment must consider signals from all ECUs that share
the same CAN-FD bus.

Re
j ≤ De

j (7)

The response time for frames may be computed using
state-of-the-art techniques [2] used for standard CAN that
remain valid for CAN-FD. However, the new formula to
compute the worst-case transmission times should be used
(Equation 2).

D. Hardness

The frame packing problem for CAN-FD formulated
above is NP-hard and may be seen as a more complex
variant of the bin packing problem with variable sizes. The
bin packing problem with variable sizes considers that m
types of bins are given and that a set of n items that must
be packed into these bins. The optimization objective is to
minimize the number of bins used. The similarities with the
CAN-FD frame packing problem appear when one relates
the bins with the CAN-FD frames sizes and the items with
the signals.

Although there are similarities between the CAN-FD
frame packing problem and the bin packing problem with
variable sizes, there are important differences that increase
the difficulty of the problem studied in this paper. The bin
packing problem has the objective of minimizing either (i)
the number of bins (frames in our setting) or, equivalently,
(ii) the total bin size that is being wasted. For the frame
packing problem, however, the goal is to minimize the
bandwidth utilization because we have to account for the
bandwidth wastage due to the varying periods of the
signals in a frame as well (example in Section IV). As
such, we have a different objective function (Equation 3)
when compared to the classic bin packing problem. The
variable frame period Hjk, which depends on the periods
of the signals packed in that frame, leads to nonlinearities
in Equations 3 and 6. Moreover, in the frame packing
problem, we are not only interested in optimizing the band-
width but also in the schedulability of the resulting frames
(the classic bin packing problem has no such temporal
constraints).

VI. Proposed Approach

An overview of our proposed optimization approach, for
the problem outlined in Section V-C, is shown in Figure 3.
Our framework consists of two major stages. The first stage
produces a packing that is optimized from the point of
view of bandwidth utilization. This optimization approach
is inspired by algorithmic techniques that solve the bin-
packing problem by invoking the subset sum problem in
an iterative fashion [6].

The second stage begins by verifying the schedulability
of the frames and is based on a well known algorithm [2], [3]
and Equation 2. If the set of frames is not schedulable, the

heuristic proceeds to find out the signal(s) that led to the
deadline violation and proposes a new packing. Thereafter,
the algorithm iterates until a feasible packing is produced
or until it declares infeasibility.

It should be clarified that the above approach does not
necessarily mandate the de-coupling of the overall problem
into two separate problems — a packing problem followed
by a scheduling problem. A feedback loop is integrated into
stage two that allows us to search the design space for less
optimized, but feasible solutions in case the first solution
turns out to be unschedulable. More details about both
stages follow.

A. Stage One: Optimized Packing

The first step of our heuristic is to find an optimized
packing of the signals. As discussed in Section V-D, al-
though this problem has similarities with the bin-packing
problem, there are important differences. As such, classical
approaches to solve the bin-packing problem may not be
directly applied here. In light of this, while we propose a
solution that is inspired by approaches that solve the clas-
sic variable sized bin-packing problem, the core algorithm
that we design is completely different.

An approach to solve the variable sized bin-packing
involves iteratively solving several subset sum problems
[6]. At each iteration, the heuristic solves a subset-sum
problem for each type of bin considering all the unpacked
items. For each type of bin, this yields the set of items that
lead to minimum waste. Among all the bins, the heuristic
then chooses the bin with the best packing and removes
the set of items that were packed into this bin. Thereafter,
the heuristic proceeds to the next iteration and continues
until all the items are packed.

Our heuristic works in a similar fashion, i.e., in each
iteration, it chooses a new CAN-FD frame size and packs
a subset of the signals into it. The iterations continue
until all the signals have been packed. At each iteration,
the best CAN-FD frame is selected. Towards this, unlike
bin-packing, we cannot simply solve a subset-sum problem
for each CAN-FD frame size. As discussed before (Section
V-D), the complexity arises due to the nature of the objec-
tive function that must account for bandwidth utilization
considering the periods. We define the problem to be solved
in our case and refer to it as the CAN-FD Frame Selection
(CaFeS) problem.

Formally describing stage I, let us define Su
i as the set

of unpacked signals at iteration i for a given ECU. This
problem will be solved for each ECU and hence, the ECU
superscript is dropped for clarity. At first iteration, i = 0
we have Su

0 = S. At any iteration i, the procedure is as
follows. For each type of CAN-FD frame 1 ≤ k ≤ m, we
compute the minimum bandwidth wastage that is possible
with a subset of the unpacked signals Su

i , by solving the
CaFeS problem (note that the m CAN-FD frame types are
due to the number of available frame sizes in CAN-FD).
After solving the CaFeS problem for each type of CAN-
FD frame 1 ≤ k ≤ m, we select the CAN-FD frame that
has the minimum bandwidth waste and remove the packed
signals from Su

i to obtain Su
i+1. This process is iterated

until all signals have been packed. When the iterations
terminate, it gives us a set of bandwidth optimized and
packed CAN-FD frames.
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The objective function for bandwidth waste of the
CaFeS problem should explicitly account for the portion
of the CAN-FD payload size that has not been packed
by any signal because we wish to minimize this portion
in order to maximize the amount of bandwidth we spend
on signal communication. It should also account for any
bandwidth waste because of heterogeneous periods of the
constituent signals.

The CaFeS problem: CAN-FD Frame Selection
(CaFeS) is the core problem solved at each iteration for
each CAN-FD frame type and is defined below. The sub-
script i for the current iteration is dropped here.

Minimize

(
Wk −

∑|Su|
j=1 xj lj

)
+OH(Wk)

H
(8)

H = min

|Su|⋃
j=1

{xjhj} \ {0} (9)

Subject to

|Su|∑
j=1

xj lj ≤Wk (10)

Above, Wk, lj and hj , respectively, are the CAN-FD
frame size of the kth frame, the length of the payload size
of the jth signal and the period of the jth signal. The
boolean variable xj is set to one if the jth signal is selected
for packing and is set to zero otherwise. Given this, it
may be now seen that the optimization function (Equation
8) essentially captures the minimum bandwidth loss that
one may achieve while packing a subset of the signals into
a CAN-FD of type k. Wk −

∑|S|
j=1 ljxj is the bandwidth

loss that occurs due to the fact that the selected signals
might not completely fill the CAN-FD frame. The overhead
OH(Wk) is the overhead in bits that must be paid for every
frame that is packed. OH is a function similar to Equation

2 and is used to compute the extra bits, apart from
the payload, that are required to transmit the CAN-FD
frame of size Wk. Including OH in the objective function
is important because it formally captures the motivation
from Figure 2 that overheads have a significant impact on
the bandwidth utilization. The optimization objective also
captures the bandwidth loss that might occur on account
of varying periods of the constituent signals. Equation 9
highlights the fact that the period for the resulting frame
will be minimum of all the periods of the selected signals.
Equation 10 is the constraint that all the selected signals
must fit into the CAN-FD frame under consideration.
Solving the CaFeS problem: We propose a dynamic
programming algorithm that solves this optimization prob-
lem optimally and is listed in Algorithm 1. Line 2 calls a
function called maxSize() that returns an upper bound UB
on the total size if all signals are packed together, regard-
less of the CAN-FD frame. The next few lines initialize
the variables to be computed by the recursive equations of
the dynamic programming algorithm. wx,y is the minimum
bandwidth waste, computed in same way as in Equation
8, but with the constraint that one considers the signals
1 to x out of the n signals and that the total sum of the
sizes of the signals may be at most y. We also have two
additional variables px,y and sx,y that, respectively, denote
the period of the frame and the summation of the sizes
of the signals in the frame. px,y and sx,y are considered
valid if and only if wx,y has a finite value. It may be easily
verified that Algorithm 1 runs in pseudo-polynomial time
in O(UB × n2).

Lines 6 to 28 of the algorithm are the two main loops
of the algorithm. The outer loop corresponds to each
new signal sx that is being considered. The inner loop
corresponds to a maximum possible frame size y from 0 to
UB. Note that this frame size does not correspond to the
CAN-FD frame size but rather only to the sum of the sizes
of the constituent signals. At each iteration x, y, the values



Algorithm 1 CAN-FD Frame Selection

Input: The signal set Su to be packed in the ith iteration
and the capacity Wk of the CAN-FD frame currently under
consideration.

1: n← |Su|
2: UB ← maxSize(Su, n)
3: for y ← 0 to UB do
4: w0,y ←∞, p0,y ←∞, s0,y ← 0
5: end for
6: for x← 1 to n do
7: for y ← 0 to UB do
8: if y − li < 0||y > Wk then
9: w ←∞, p←∞, s← 0

10: else
11: s = sx−1,y−lx−1 + lx
12: p = min{px−1,y−lx−1 , Hx}
13: w = (Wk−s)+OH

Hx
14: end if
15: if w < 0 then
16: wx,y ←∞
17: else
18: wx,y ← min(wx−1,y, w)
19: end if
20: if w < wx−1,y then
21: px,y = p
22: sx,y = s
23: else
24: px,y = px−1,y

25: sx,y = sx−1,y

26: end if
27: end for
28: end for

29: Return min{wn,y | y ← 1, 2, . . . , UB}

px,y, sx,y and wx,y are updated. If the cell is infeasible, then
line 9 marks them accordingly. Lines 11 to 13 compute the
temporary values p, w and s assuming that the signal sx
is now packed. However, if this packing does not lead to
better bandwidth when compared to bandwidth utilization
wx−1,y, obtained by the previously known packing with
size y, we retain the previously computed value wx−1,y
(lines 20 to 25). We conclude the algorithm description
with the note that, essentially, the CaFeS dynamic pro-
gramming (DP) algorithm builds a two dimensional table
of size (n + 1) × (UB + 1). Each cell of the DP table
contains three values corresponding to the signals packed.
The contents for the (x, y)th cell are the bandwidth waste
(wx,y), the period (px,y) and size (sx,y), henceforth referred
to as the DP tuple.
CaFeS problem — An Example: We explain the in-
tuition behind the working of the above DP algorithm
with an example. The example is deliberately kept simple
for ease of understanding and for illustrating a DP table
that may fit into the spatial constraints in this paper.
We consider two signals s1 and s2 that are to be packed
with sizes l1 = 3, l2 = 2 and with periods h1 = 10 and
h2 = 10. Here n = 2 and UB = 2 × max(l1, l2) = 6. Let
us assume that the overhead OH is 1 for all frame sizes
in this example. The DP table size in this case will be
(n+ 1)× (UB + 1) = 3× 7.

Let us consider that the bin capacity of the CAN-FD
frame currently considered is 5. Table I shows the DP
table built for this example. For any 1 ≤ x ≤ 2 and
1 ≤ y ≤ 6, the (x, y)th cell of this table shows the values of
wx,y on top followed by sx,y and px,y (in this order) in the

bottom. Recall that smaller the value of wx,y, the better
is the bandwidth usage of the CAN-FD frame. The row
corresponding to x = 0 and the first column corresponding
to y = 0 are maintained for initialization purposes that
allows the recursive equations in the DP algorithm to work
seamlessly. In all the cells in the first row and first column,
the DP tuple is assigned the following values wx,y = ∞,
sx,y = 0 and px,y =∞ or, in short, (∞,∞, 0) which means
an infeasible solution (lines 8 to 9 in Algorithm 1). The
value corresponding to all the cells in the column y = 6
are also assigned (∞,∞, 0) because (y = 6) > (Wk = 5),
i.e., no frame size greater than the bin capacity is feasible.

In the second row (x = 1), we consider the first signal
only. Here, the cells (1,1) and (1,2) are assigned infeasible
values. This is because the first signal has size 3 and thus,
there can be no frame that considers this signal and has
size less than 3, thereby, ruling out the cells with y = 1 and
y = 2. When y = 3 at cell (1, 3), it is feasible to consider a
frame that consists of just the signal itself. Thus, the cell
(1, 3) in the DP table has a valid tuple. The value 0.30 in
the tuple comes from the fact that (Wk − l1 + OH)/p1 =
3/10 = 0.3. The other values in the tuple are equal to the
period and the size of the signal. Similarly, the cells (1, 4)
and (1, 5) allow a frame with only the first signal because
y = {4, 5} > 3. This is reflected in the value of the tuples.

In row 2 (x=2), we now consider both the signals. Again,
the cell with y = 1 is infeasible because none of the
signals can be part of a frame that has a size 1. However,
j = 2 now becomes feasible because the second signal
with size l2 = 2 can be a frame of size 2 by itself. The
tuple here reflects the values of such a frame. For example,
the optimization objective has a value (Wk − l2 +OH)/p2
= 4/10 = 0.2. The cell (2, 3) is interesting because here
we have two possibilities — a frame consisting only of s1
(tuple corresponding to cell (1, 3)) or a frame consisting
only of s2. The frame consisting of only s1 leads to less
waste and hence, the cell (2, 3) is updated to reflect this.
The same is true for the cell (2, 4). At cell (2, 5), however,
it now becomes feasible to consider both signals and the
tuple in this cell must be updated to reflect this. Thus,
this cell must contain the best packing considering that
both signals may be packed. A frame consisting of both
signals will have a bandwidth utilization of (Wk−(l1+l2)+
OH)/min(p1, p2) = 1/10 = 0.1. Compared to the value in
1, 3 (considering only s1), this is more optimized and hence,
the cell (2, 5) is updated to reflect this. Note that the DP
algorithm returns the minimum from the last line of the DP
algorithm (line 29). This ensures that we have considered
all possibilities - s1 as a frame, s2 as a frame and both
of them as a frame. In our example, the minimum value
will be the tuple from cell (2, 5) that represents bandwidth
waste of 0.1. This shows that in this example, with bin
capacity of 5, it is best to pack these two signals together
into one frame.

B. Stage Two: Schedulability

After completion of stage I, we have a set of packed
frames. However, the frames have not been assigned pri-
orities. In stage II of our heuristic, immediately following
stage I (see Figure 3), the frames are assigned priorities
such that the set of packed frames are schedulable. Towards
this, we follow existing state-of-art technique [2], where
the interested reader may find the details of the priority
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Fig. 4. Comparing the improvements delivered by our framework.

assignment technique as well as the schedulability analysis.
However, the priority assignment may declare infeasibility
meaning that no feasible assignment exists such that the
given set of frames may be scheduled feasibly.

As shown in Figure 3, the next step is to identify the
critical frame(s). For instance, a frame might be infeasible
because of a signal that has a small deadline. Removing
this signal from the frame will result in two frames. It
relaxes the deadline of the original frame and leads to new
signal with only one frame. This may not be optimized
with regards to bandwidth utilization but might now lead
to a feasible schedule. Our heuristic follows such a strategy
in an iterative loop (Figure 3) until a feasible schedule is
found or until all signals are unpacked, in which case it
declares infeasibility.

If a feasible solution is reached after unpacking signals,
our heuristic makes a final pass to pack together the newly
unpacked signals. This packing is now based on a Next-Fit
heuristic that greedily attempts to put signals with similar
bandwidth utilization together into one frame. If such a
packing fails, our heuristic reverts back to the previously
known feasible solution.

VII. Experiments

A. Experimental Setup

All the experiments were conducted on a OS X (version
10.8.5) machine running on a 2.7GHz Intel Core i7 proces-
sor with 4GB main memory. The input benchmarks were
generated by varying the signal parameters like periods
and payload size with a uniform distribution in order to
cover a wide range of possible scenarios. With uniform dis-
tribution, the periods and the signals were varied between
100ms and 5000ms and, respectively, between 1 byte and
14 bytes.

80

90

100
After packing (Optimization objective)

Before packing (Input utilization)

on

50

60

70

nd
w
id
th
 u
til
iza

ti

10

20

30

40

Th
e 
ba
n

0
20 40 60 80 100 120 140 160 180 200

Number of messages

Fig. 5. The improvements obtained by our framework considering
that all signals have same periods, i.e., bandwidth is saved only due
to intelligent selection of CAN-FD frame sizes.

B. Benefits of Packing

In the first set of experiments, we proceed to show
the benefits of packing the signals together in CAN-
FD. We compare the bandwidth utilization delivered by
our framework compared to the bandwidth utilization by
unpacked signals. Note that when signals are not packed
together, each signal is a frame in itself and the size of the
resulting frame is the nearest CAN-FD frame size that may
accommodate it. We varied the number of signals provided
as an input between 20 and 200. For each input size, we
generated 100 benchmarks with the parameters described
above. We show the results in Figure 4.

To illustrate the results, we have categorized the input
according their input bandwidth utilization. The input
bandwidth utilization is the summation of ratios of the
transmission times to the periods of the input signals. The
y-axis highlights the 5 categories with the input bandwidth
utilization varying between 0 - 20%, 20 - 40%, 40 - 60%, 60
- 80% and 80 - 100%. For each category, we plot two bars -
one showing the average bandwidth utilization obtained
by our framework while the other showing the average
bandwidth utilization obtained without any packing, i.e.,
each signal is a frame. The benchmarks that were found
to be unschedulable (less than 5% of the total benchmarks
were unschedulable) by our framework were discarded and
not included in the results shown. The results reinforces
the fact that packing may lead to significant improvements
over strategies that consider each signal as an independent
frame - no matter what is the input bandwidth utilization.

It is noteworthy that the cases when the input uti-
lization exceeds 60% to 70% have a resulting bandwidth
of around 40% after packing. Reducing such high input
utilizations without frame packing may require system
redesign, possibly adding new CAN-FD subsystems. Such
design practices may lead to unnecessary complexity, which
can be avoided if intelligent frame packing—such as the one
proposed in this paper—is used to optimize bus utilization.

C. Exploiting the CAN-FD Frame Size

One of the key insights of this paper is that the disparate
CAN-FD frame sizes must be carefully chosen when signals
are packed into frames. In order to evaluate the strength of
our proposed heuristic to tackle this problem effectively, we
conducted experiments where all signals in the generated
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Fig. 6. The improvements obtained by our framework over the state-
of-the-art [11] frame packing algorithm.

signals were set to the same period (which was randomly
generated for each signal set). The only source of band-
width waste will be partial packing of the available CAN-
FD frame sizes. Thus, the results will test our heuristic
with respect to its effectiveness in managing the variable
CAN-FD frame sizes for bandwidth efficient packing.

Figure 5 shows the increase in input utilization as the
number of signals increase (white columns). The black
columns show the bandwidth utilization that is obtained
after packing signals into frames by our heuristic. We
can observe that our heuristic delivers highly significant
bandwidth optimization even in this experiment; in fact,
the relative improvement increases as the number of signals
increase, which shows the importance of applying frame
packing for communication-intensive systems.

D. Comparing with the State-of-the-art

Since there is no previous work addressing CAN-FD
frame packing, we compare our approach to the best known
results for standard CAN. Several techniques for frame
packing have been proposed for standard CAN and the
best known results were published in [11]. All heuristics
for standard CAN assume 8 bytes as the largest frame size
available (protocol restriction in standard CAN).

For all possible CAN-FD frame sizes from 8 till 64, we
apply their algorithm and the results are shown in Figure 6.
In these experiments, to be fair, we provide the frame sizes
of (i.e, 8, 12, 16, 20, 24, 32, 48, and 64 bytes) as a bound
to the previous heuristics [11] and restrict our heuristic to
the same upper bound. The results compare the bandwidth
utilization obtained when (i) there is no packing (each
signal is a frame), (ii) the packing is obtained by the state-
of-the-art [11] and (iii) the packing is obtained by our
heuristic. It may be noted that the first point on the x-axis
(8 bytes) refers exactly to the frame packing problem for
standard CAN. As the graph shows, our heuristic delivers
51% improvement in bandwidth utilization over the best
known heuristic for standard CAN. The rest of the results
show that while the state-of-the-art can provide significant
savings over unpacked signals if applied to CAN-FD, it is
outperformed by our heuristic significantly (our heuristic
delivers an average of around 45% improvement). The last
point on the x-axis represents our unmodified heuristic

for CAN-FD (without restrictions on payload size), with
improvements reaching 59% with our proposed heuristic.

E. Scalability

The runtime complexity of our heuristic is dominated
by the CaFeS problem, which is pseudo-polynomial. In
practice, our tool completed the entire flow in less than
couple of seconds (1857 milliseconds) for each benchmark.
Considering the fact that these experiments were con-
ducted on a laptop and without any specific optimization
to utilize heterogeneous multi-core CPUs or GPUs, we
conclude that scalability is not an issue for our framework.

VIII. Conclusion

This paper motivated the need for frame packing in
CAN-FD protocol arising from the variable sized frame ca-
pacities, formulated the problem, and proposed an efficient
solution that exploits the particular new features of CAN-
FD. The results show that our frame packing strategy not
only can be used to optimize CAN-FD bus utilization and
increase future growth margin significantly, but also that
frame packing is essential in cases where the system to be
deployed is very communication intensive.
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