
Linköping Studies in Science and Technology

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Analysis and Optimisation of Distributed Embedded
Systems with Heterogeneous Scheduling Policies

by

Traian Pop

Linköping 2007

Dissertation No. 1089

Analysis and Optimisation
of Distributed Embedded

Systems with Heterogeneous
Scheduling Policies

© 2007 Traian Pop

LINKÖPINGS UNIVERSITET

ISBN 978-91-85715-27-5 ISSN 0345-7524
PRINTED IN LINKÖPING, SWEDEN

BY LIU-TRYCK
COPYRIGHT © 2007 TRAIAN POP

To
Ruxandra

Abstract

The growing amount and diversity of functions to be implemented by
the current and future embedded applications (like, for example, in auto-
motive electronics) have shown that, in many cases, time-triggered and
event-triggered functions have to coexist on the computing nodes and to
interact over the communication infrastructure. When time-triggered and
event-triggered activities have to share the same processing node, a natu-
ral way for the execution support can be provided through a hierarchical
scheduler. Similarly, when such heterogeneous applications are mapped
over a distributed architecture, the communication infrastructure should
allow for message exchange in both time-triggered and event-triggered
manner in order to ensure a straightforward interconnection of heteroge-
neous components.

This thesis studies aspects related to the analysis and design optimisa-
tion for safety-critical hard real-time applications running on hierarchi-
cally scheduled distributed embedded systems. It first provides the basis
for the timing analysis of the activities in such a system, by carefully tak-
ing into consideration all the interferences that appear at run-time between
the processes executed according to different scheduling policies. Moreo-
ver, due to the distributed nature of the architecture, message delays are
also taken into consideration during the timing analysis. Once the schedu-
lability analysis has been provided, the entire system can be optimised by
adjusting its configuration parameters. In our work, the entire optimisation

process is directed by the results from the timing analysis, with the goal
that in the end the timing constraints of the application are satisfied.

The analysis and design methodology proposed in the first part of the
thesis is applied next on the particular category of distributed systems that
use FlexRay as a communication protocol. We start by providing a sched-
ulability analysis for messages transmitted over a FlexRay bus, and then
by proposing a bus access optimisation algorithm that aims at improving
the timing properties of the entire system.

For all the problems that we investigated, we have carried out extensive
experiments in order to measure the efficiency of the proposed solutions.
The results have confirmed both the importance of the addressed aspects
during system-level design, and the applicability of our techniques for
analysing and optimising the studied systems.

Acknowledgements

THE PUBLICATION OF THIS THESIS would have not been possible
without the generous support and patient guidance of my advisors: Prof. Petru
Eles and Prof. Zebo Peng. I am convinced that nobody else except for them
would have done a better job in supervising my PhD studies. After all these
years, I am still amazed by Petru’s energy and dedication for his work, and I
constantly admire his thoroughness when approaching a problem. Also, I have
always appreciated Zebo’s managing skills, by fully enjoying the freedom he
has often allowed us in our work.

The working environment here at IDA1 is probably one of the best I’ll ever
experience in my life. To every staff member who contributed in one way or
another to the smooth publication process of this thesis, a sincere “thank you”.

My ESLAB colleagues, past and present, deserve a special mention for be-
ing some of my closest friends during the last years. I would have never
enjoyed my PhD studies so much if it weren’t for them.

I would also like to thank the members of the IDA2 group in Braunschweig,
Germany, for their hospitality during my visit to their laboratory in November
2004. The close contact with their work has given me a better understanding for
some of the topics presented in this thesis.

Naturally, a big influence on the person that I am today is coming from my
parents and my sister. I hope that my current achievements will lighten their
lives and bring them the feelings of satisfaction that they truly deserve.

In the end, I would like to dedicate this thesis to my wife, Ruxandra, as a
small token of appreciation for her patience and for the joy she brings into my
life.

Thank you all,
Traian Pop

1. Institutionen fÖr Datavetenskap
2. Institut für Datantechnik und Kommunicationsnetze

Contents

1. Introduction 1
1.1.Design Flow of Distributed Embedded Systems 2
1.2.Heterogeneous ET/TT Systems 5

1.2.1. Event/Time-Triggered Task Execution 5
1.2.1.1.Event-Triggered Tasks 5
1.2.1.2.Time-Triggered Tasks 7
1.2.1.3.Task Execution for Heterogeneous

Time/Event-Triggered Systems 8
1.2.2. Static/Dynamic Communication 9

1.2.2.1.Dynamic (DYN) Communication 10
1.2.2.2.Static (ST) Communication 11
1.2.2.3.Heterogeneous ST/DYN Protocols 14

1.2.3. Distributed Embedded Systems with
Heterogeneous Scheduling Policies 15

1.3.Related Work 17
1.3.1. System Level Design 17
1.3.2. Scheduling and Schedulability Analysis of

Real-Time Systems 18
1.3.3. Communication in Real-Time Systems 21

1.4.Thesis Contributions 24
1.5.Thesis Overview 25

2. System Model 27
2.1.Hardware Architecture 27

2.2.Bus Access 28
2.3.Software Architecture 29
2.4.Application Model 31

3. Scheduling and Schedulability Analysis 35
3.1.Problem Formulation 35
3.2.Holistic Scheduling 37
3.3.Schedulability Analysis of Event-Triggered Task

Sets 38
3.4.Schedulability Analysis of Event-Triggered

Activities under the Influence of a Static Cyclic Schedule 43
3.5.Static Cyclic Scheduling of Time-Triggered

Activities in a Heterogeneous TT/ET Environment 47
3.6.Experimental Results 57

4. Design Optimisation 61
4.1.Specific Design Optimisation Problems 62

4.1.1. Scheduling Policy Assignment 62
4.1.2. Mapping 64
4.1.3. Bus Access Optimisation 66

4.2.Exact Problem Formulation 67
4.3.Design Optimisation Strategy 68

4.3.1. Building An Initial Configuration 69
4.3.2. Mapping and Scheduling Policy Assignment

Heuristic 70
4.3.3. Bus Access Optimisation 73

4.4.Experimental Results 74

5. The FlexRay Communication Protocol 79
5.1.The Media Access Control for FlexRay 80

6. Timing Analysis of FlexRay Messages 85
6.1.Schedulability Analysis of DYN Messages 86

6.1.1. Optimal Solution for BusCyclesm 91
6.1.2. Optimal Solution for wm’ 95

6.1.3. Heuristic Solution for BusCyclesm 95
6.1.4. Heuristic Solution for wm’ 97

6.2.Holistic Schedulability Analysis of FPS Tasks and
DYN Messages 97

6.3.Analysis for Dual-channel FlexRay Bus 99
6.4.Evaluation of Analysis Algorithms 100
6.5.Conclusions 104

7. Optimisation of the FlexRay Bus Access
Scheme 105

7.1.Introduction 105
7.2.The Basic Bus Configuration (BBC) 108
7.3.Heuristic for Optimised Bus Configuration (OBC) 111

7.3.1. Curve-fitting Based Heuristic for DYN
Segment Length 113

7.4.Simulated Annealing Based Approach 118
7.5.Evaluation of FlexRay Bus Optimisation

Heuristics 118
7.6.Conclusions 121

8. Conclusions and Future Work 123
8.1.Conclusions 123
8.2.Future Work 124

Appendix A: List of Notations 127
Appendix B: Bin-Covering Heuristics 131
Appendix C: Real Life Example 135
Appendix D: List of Figures 139
References 143

1

Chapter 1
Introduction

THIS THESIS DEALS with specific issues related to the system-level
design of distributed real-time embedded systems implemented with
mixed, event-triggered (ET) and time-triggered (TT) task sets that com-
municate over bus protocols consisting of both static (ST) and dynamic
(DYN) phases. We have focused on the scheduling of heterogeneous TT/
ET systems and we have studied the factors which influence the efficiency
of the scheduling process. We have also identified several optimisation
problems specific for this type of heterogeneous systems, and we have
approached these problems in the context of design optimisation heuris-
tics.

This chapter starts by presenting the framework of our thesis, namely
the area of distributed embedded real-time systems. We make a short
introduction to event-triggered and time-triggered execution of tasks, as
well as a brief description of static and dynamic transmission of messages.
We introduce both homogeneous and heterogeneous TT/ET distributed
embedded systems and we focus on the later ones, as they constitute the
motivation behind this work.

Analysis and design of distributed embedded systems has been and will
be a prolific area of research, considerably boosted by the variety of com-
munication protocols which are involved. This thesis is not the first and

CHAPTER 1

2

definitely not the last contribution in this area. In Section 1.3, the reader is
acquainted with other work related to the one presented in our thesis,
while in Section 1.4 we outline our contributions to the field of analysis
and design of embedded real-time systems.

Finally, Section 1.5 is a feed forward to the following chapters.

1.1 Design Flow of Distributed Embedded
Systems

Today, embedded systems find their place in more and more applications
around us, starting with consumer electronics and appliances and ending
with safety critical systems in applications such as aerospace/avionics,
railway, automotive industry, medical equipment, etc. Quite often, such
systems are also real-time systems, as they are constrained to perform cer-
tain tasks in a limited amount of time; failure to comply with the timing
requirements leads to consequences whose gravity can vary from almost
imperceptible loss of quality in an MPEG decoder, up to catastrophic
events, like fatal car crashes when braking and air-bag systems fail to react
in time. Depending on the nature of the timing constraints, real-time sys-
tems can be classified into soft real-time systems, in which deadlines can
be occasionally missed without the system reaching an intolerable state,
and hard real-time systems, in which missing a deadline is intolerable
because of its possible consequences [Kop97]. This thesis focuses on hard
real-time systems.

Designing a hard real-time embedded system requires procedures for
guaranteeing that all deadlines will be met. If such guarantees cannot be
provided, then the system is considered unschedulable and most likely, its
implementation will not meet the requirements in terms of timeliness.

The continuous increase in range and number of applications entailing
the use of embedded systems [Tur99] is closely followed by an increase in
complexity of the applications themselves. Complex environments need
more and more complex control embedded systems. The growing com-
plexity of real-time embedded systems is also considerably increased by
their heterogeneous nature, which goes along several dimensions, like:

INTRODUCTION

3

 • applications can be data or control intensive;
 • the system functionality implies both hard and soft timing require-

ments;
 • the controlled environment can generate discrete or continuous stim-

uli;
 • components inside an embedded computer system can interact among

themselves using different synchronisation mechanisms;
 • hardware implementations are based on heterogeneous architectures

in which one can find application-specific instruction processors
(ASIPs), digital signal processors (DSPs), general purpose processors,
protocol processors, application-specific integrated circuits (ASICs),
field-programmable gate arrays (FPGAs), etc., all organised in various
topologies and interconnected by diverse shared buses, point-to-point
links or networks;

 • the system includes both analog and digital components.
In this thesis, we have studied another dimension of heterogeneity,

resulted from the two different approaches to the design of real-time
embedded systems:
 • the time-triggered approach, in which the processing and communica-

tion activities are initiated at predetermined points in time;
 • the event-triggered approach, in which activities happen when a sig-

nificant change of state in the system occurs.
As we will see in Chapter 2, the systems which we consider support

both time-triggered and event-triggered processing and communication
activities.

In Figure 1.1 we present a system-level design flow (adapted from
[Ele02]) that starts from a high-level system specification, which may be
expressed in several languages, including natural language. The system
specification is later refined into an abstract formal model (which can be
captured in one or several modelling languages). Starting from the system
model, the methodology follows a design exploration stage in which vari-
ous system architectures are selected, different ways to map the function-
ality on the available resources are evaluated, and several alternatives for
scheduling and synthesis of the communication parameters are examined,

CHAPTER 1

4

System
Specification

Modelling

System ModelArchitecture
Selection

System
Architecture

Mapping &

Scheduling

Estimation

Communication
Synthesis

Synthesised

Analysis

lower levels of design

Partitioning

Constraints not satisfied

Constraints
are satisfied

C
on

strain
ts n

ot satisfied

of WCETs

System Model

Figure 1.1: System Level Design Flow

INTRODUCTION

5

so that in the end, the resulted model of the system will meet the require-
ments imposed for the current design.

In Figure 1.1 we marked with dark rectangles the phases in the design
process which are covered in this thesis. First, we developed a method for
scheduling and schedulability analysis of the activities in a heterogeneous
TT/ET embedded system. This analysis method is then used for guiding
the design process, and in particular we concentrated on the problems of
mapping of functionality, communication synthesis and the specific aspect
of partitioning the functionality into TT and ET activities.

1.2 Heterogeneous ET/TT Systems
In this thesis, we consider heterogeneous embedded systems in the sense
that they consist of both time-triggered (TT) and event-triggered (ET)
activities. In this section, we present the characteristics of such activities,
the typical mechanisms used for implementation and the advantages and
disadvantages inherent to each approach.

1.2.1 EVENT/TIME-TRIGGERED TASK EXECUTION

We start by describing first the execution mechanism of tasks in an ET and
then in a TT system. In this thesis we consider that the functionality of the
system is decomposed into a set of interacting tasks (2.4). A task is defined
as “a computation that is executed by the CPU in a sequential fashion”
[But97].

1.2.1.1 EVENT-TRIGGERED TASKS

In the event-triggered approach, the execution of a task is initiated by the
occurrence of a certain event which is related to a change in the system
state. For example, in Figure 1.2, task τ1 is initiated by event E1 which
appears at times t1 and t2. If the resources needed by task τ1 are available
at moment t1 (for example, the CPU is idle), then task τ1 starts its execu-
tion. The mechanism behaves similarly at moment t2.

CHAPTER 1

6

Usually, the system functionality is composed of several tasks and their
execution might lead to resource conflicts, like in the case when two tasks
are simultaneously ready for execution and only one of them can make use
of the processing capabilities of the system. Typically, such conflicts are
solved by assigning priorities to tasks and executing the task with the
highest priority. We present below one of the simplest and most common
approaches, the fixed priority approach, in which the priorities are stati-
cally assigned off-line to tasks and do not change at run time.

In order to implement a fixed priority policy for task execution, a real-
time kernel has a component called scheduler which has two main respon-
sibilities:
 • to maintain/update the prioritised queue of ready tasks;
 • to select from the queue and execute the ready task with the highest

priority.
The timeline in Figure 1.3 presents how two conflicting ET tasks are

executed by such a real-time kernel. In the first case, the kernel imple-
ments a preemptive policy for task execution. When task τ2 is initiated by
the occurrence of event E2, task τ1 will be interrupted because it has a
lower priority than the priority of task τ2. Task τ1 is placed in the ready
queue and it will resume its execution only after task τ2 finishes. In the

t1 t2
time

E1 E1

τ1 τ1

Figure 1.2: ET Task Execution

t1 t2
time

E1 E2

τ1 τ’1

t1 t2
time

E1 E2

τ1 τ2

τ2a) preemptive

b) non-preemptive

B2

Figure 1.3: Concurrent ET Execution of Tasks

INTRODUCTION

7

second case, the execution is non-preemptive and task τ2 has to wait until
task τ1 finishes execution. In this case, even if task τ2 has a higher priority
than task τ1, it will be blocked for an amount of time B2 and it will have to
stay in the ready queue until a subsequent activation of the scheduler will
find the processor available.

The advantages of the event-triggered approach are its flexibility and an
efficient usage of the available resources. However, taking into considera-
tion the overheads related to task switching, scheduler activation, etc. con-
siderably increases the difficulty of the schedulability analysis for such
types of systems.

1.2.1.2 TIME-TRIGGERED TASKS

In a time-triggered system, the execution of tasks is initiated at pre-deter-
mined moments in time. The main component of the real-time kernel is the
time interrupt routine and the main control signal is the clock of the sys-
tem. The information needed for task execution is stored in a data structure
called schedule table, where each task has a pre-assigned start time. The
schedule table is obtained through a static scheduling algorithm, which is
executed off-line and which eliminates the possible conflicts between
tasks by imposing appropriate start times.

For example, in Figure 1.4, we consider three periodic tasks running on
a single processor, each task being executed with period T. The schedule
table on the right side of the figure shows that the executions of the three
tasks τ1, τ2 and τ3 are started at moments t1, t2 and t3. Each start time in the
table is computed off-line in such a way that the execution of a task is fin-
ished before the next start time stored in the schedule table. After a certain

t1 t3 time
τ1 τ3

t2

τ2

Task Time
τ1
τ2

τ3

t1

t3

t2
Tss+t1 Tss+t3

τ1 τ3

Tss+t2

τ2

TSS TSS

Figure 1.4: Time Triggered Execution of Tasks

CHAPTER 1

8

time TSS, called the period of the static cyclic schedule, the kernel per-
forms again the same sequence of decisions.

The period TSS is computed as the least common multiple of the periods
of the individual tasks in the system. The case presented above is a very
particular one, as all three tasks have the same period T, which gives a per-
fectly harmonised system, and therefore TSS = T. In the general case, one
may notice that the size of the schedule table increases substantially if the
task periods are not harmonised.

Also, a time-triggered system based on a static schedule table has a low
flexibility and is usually inappropriate for dynamic environments for
which it provides an inefficient processor utilisation.

However, the time-triggered approach has several important advan-
tages. Being highly predictable, deterministic, easier to be validated and
verified, it is particularly suitable for safety-critical applications [Kop97].

1.2.1.3 TASK EXECUTION FOR HETEROGENEOUS TIME/EVENT-
TRIGGERED SYSTEMS

When time-triggered and event-triggered activities have to share the same
processing node, the operating system for that node has to support concur-
rent execution of both categories of tasks. A natural way for such an exe-
cution support can be provided through a hierarchical scheduler.

The activities on a processing node that uses a hierarchical scheduler
are tasks in one of the following categories:

 • schedulers that implement a scheduling policy each;

 • application tasks that implement a part of the system functionality.
The execution of each application task is controlled by a scheduler. The

execution of each scheduler is controlled by another scheduler, or, in the
case of the top scheduler, by the operating system itself. Such an organisa-
tion leads to a hierarchy of schedulers, each with their own scheduling pol-

INTRODUCTION

9

icies and their own set of tasks to control (see Figure 1.5 for an example of
such a hierarchy).

1.2.2 STATIC/DYNAMIC COMMUNICATION

The previous section presented activation mechanisms of tasks in a real-
time system. We continue with a similar discussion but in the context of
communication activities in architectures based on broadcast buses.

There are two main features characteristic to broadcast buses:
 • all nodes connected to the communication channel (the bus) receive

the same messages; and
 • only one node can send messages at a time on the bus. This feature

enforces the usage of a bus arbitration method.
In the following sub-sections, we discuss two approaches to communi-

cation in distributed real-time systems:
 1. Dynamic communication (DYN), in which the communication activi-

ties are triggered dynamically, in response to an event.
 2. Static communication (ST), in which the communication activities are

Figure 1.5: Hierarchy of Schedulers

Operating System

Top Scheduler

Level 2
Scheduler

Task 1

Task 6

Task 2 Task 3

Level 2
Scheduler

Task 7

Task 4

Task 5Level 3
Scheduler

CHAPTER 1

10

triggered at pre-determined moments in time. For such a case, each
node in the system knows (from design time) exactly when and which
messages are sent on the bus, as well as how long their transmission
takes.

1.2.2.1 DYNAMIC COMMUNICATION

In the case of DYN communication, the trigger which initiates the process
of sending a message is the generation of the message itself (by the send-
ing task).

We will give an example of how messages are sent over the CAN bus,
which is one of the most used event-triggered communication approaches
([Bos91]). The CAN protocol is based on a CSMA/BA (Carrier Sense
Multiple Access with Bitwise Arbitration) arbitration policy, and for this
purpose each message in the system has a unique identifier associated to it.
Whenever the communication controller in a node receives a message to
be sent on the bus, it will have first to wait until the bus is available. When
no activity is identified on the bus any more, the message will be sent, pre-
ceded by its unique identifier. The identifier of a message acts like a prior-
ity, in the sense that if there are several nodes which transmit at the same
time on the bus, only the message with the highest priority will go through
and the other ones will have to wait the next moment when the bus
becomes available. The collisions between messages whose transmission
start at the same time are avoided by a non-destructive bitwise arbitration
based on the message identifier.

The collision avoidance mechanism implemented with bitwise arbitra-
tion is illustrated in Figure 1.6, where three messages m1, m2 and m3 are
simultaneously generated on three different nodes. All three messages
start being transmitted at the same time. Each message is preceded on the
bus by the sequence of several bits representing its priority. The bus is usu-
ally hardwired in such a way that it will always have the same value in the
case a collision appears. This means that if two nodes transmit two differ-
ent bits simultaneously, then only the dominant bit will be sensed on the
bus. The example in Figure 1.6 considers the case where the dominant bit
is 1, and as a result, after 3 bits have been sent on the bus, the first node

INTRODUCTION

11

gives up the transmission, as it sensed a higher priority on the bus than the
one sent by itself. The second node gives up after transmitting 5 bits. Hav-
ing the highest value for the identifier, the message transmitted by the
third node will go undeterred on the bus, while messages m1 and m2 will
be resent only after transmission of m3 will finish (of course, the bus
access mechanism will decide again which of the remaining messages
goes first).

1.2.2.2 STATIC COMMUNICATION

In Section 1.2.1.2 we presented the time-triggered execution of tasks.
Similarly, static (ST) communication activities are initiated at predeter-
mined moments of time. A consistent behaviour of such a distributed mul-
tiprocessor time-triggered system requires that the clocks in all the nodes
in the system are synchronised to provide a global notion of time [Kop97].
Such a synchronisation can be efficiently achieved through the communi-
cation protocol.

In this section, we detail the time-triggered communication mechanism
as it appears in the case of a TDMA bus. As we already mentioned, in the
case of a TDMA bus the bandwidth is divided into timeslots and each such
slot is assigned off-line to a node in the system. During its timeslot, a node
has the exclusive right to send messages on the bus. At run-time, if a node

m1: 11010010
m2: 11100110
m3: 11101000

Figure 1.6: CSMA/BA Bus - Bitwise Arbitration

Identifiers
1 1 1 <- Node1 stops transmitting
1 1 1 0 1 <- Node2 stops transmitting
1 1 1 0 1 0 0 0 <- Node3 starts transmitting m3

Status of the Bus (as seen from each node)

time

CSMA/BA bus

Node 1 Node 2 Node 3

CHAPTER 1

12

has a message to send, it will have to wait until the system time has
advanced to the start of its pre-assigned slot. The periodic sequence in
which the timeslots are ordered represents a TDMA round.

For example, in Figure 1.7, one can see a distributed system with three
nodes connected to a TDMA bus. The bus cycle is composed of four time
slots, each slot being associated to a node. NodeA, for example, can send
messages only during slot1 and slot3 of each TDMA round, NodeB can
send only during slot4, while NodeC can send only during the second slot
of each round. In this way it is guaranteed that only one node transmits on
the bus at a time. The TDMA round in the example consists of the
sequence of slots 1, 2, 3 and 4.

A typical TDMA based communication protocol is the Time-Triggered
Protocol (TTP) [TTP01C]. In the case of TTP, every node stores locally
the information related to each of the messages in the system: sender/
receiver, starting time of transmission, message length, etc. A node will
send a message on the bus whenever the global current time reaches one of
the start time values which are stored locally. For example, in Figure 1.8,
NodeA starts sending a message mAB at time t1 relative to the start of each
bus round, during its pre-assigned slot in the first round of the schedule,
according to the information stored locally. At the same time, the commu-

Figure 1.7: TDMA Bus

TDMA bus

Node A Node B Node C

slot 1
A

slot 2
C

slot 3
A

slot 4
B

slot 1
A

slot 2
C

slot 3
A

slot 4
B time

Round 1 Round 2

13

nication controller in NodeB will know from its own local table that at time
t1 it will have to start reading message mAB. At time t2, another message is
scheduled to be transmitted on the bus from NodeB towards NodeA. The
static schedule illustrated in Figure 1.8 expands along two bus cycles,
called rounds, and the sequence of such two consecutive rounds forms a
hyper cycle. The static schedule stored locally in each node is repeated
periodically with a period equal to the length of such a hyper cycle.

It is largely accepted that the static properties inherent to the TDMA
communication considerably diminish the flexibility of the system. Unless
bandwidth is reserved from the design time, adding another sending node
in the system requires a reconfiguration of the bus round, which usually
triggers many other updates and validations of the system design.

However, the determinism associated with the TDMA communication
has several major advantages: timing properties of the system are easily

Figure 1.8: Statically Scheduled TT Communication

TDMA bus

Node A Node B

Node ANode BC2t2mBA

Node BNode AC1t1mAB

ReceiverSenderLengthStart TimeMessage ID

Node ANode BC2t2mBA

Node BNode AC1t1mAB

ReceiverSenderLengthStart TimeMessage ID

slot 1 slot 2 slot 1 slot 2 slot 1 slot 2 slot 1 slot 2

time

Hyper Cycle 1

Round 2Round 1 Round 2Round 1

Hyper Cycle 2

t1 t1t2 t2

mAB mBAmABmBA

CHAPTER 1

14

guaranteed, system composability is straightforward when extensions are
planned, etc.[Kop97].

1.2.2.3 HETEROGENEOUS STATIC/DYNAMIC PROTOCOLS

Nowadays, protocols which support both static and dynamic communica-
tion are being developed and placed on the market. Examples in this sense
are Flexray [Fuh00], WorldFIP [Wor03] and FTT-CAN [Ple92]. The main
motivation behind their appearance was to provide a bus support which
combines the advantages of both ST and DYN approaches into powerful
and versatile protocols.

In order to avoid the interferences between ST and DYN communica-
tion, interference that may have a negative impact on the properties of the
ST messages, such a mixed protocol has to enforce a temporal isolation
between the two types of traffic. The most common solution is based on
the so called communication cycle that is split into ST and DYN phases
that repeat periodically: TT messages are sent during a ST phase, while ET
messages are sent during a DYN phase ([Raj93], [Ple92]).

In Figure 1.9, we present a generalised model of such a protocol, called
Universal Communication Model (UCM [Dem01]), in which the commu-
nication cycle contains several static (ST) and dynamic (DYN) phases. A
system based on such a protocol will send the ST messages during ST
slots according to a pre-defined TDMA scheme and to an associated static
schedule, while the DYN messages are packed on-line into frames and
sent during the DYN phases according to an arbitration mechanism (like
CSMA/BA [Bos91] or mini-slotting [ARI629]).

Figure 1.9: Heterogeneous ST/DYN Communication Cycle

S
T

 slot

S
T

 slot

S
T

 slot

S
T

 slot

S
T

 slot

S
T

 slot

S
T

 slot

D
Y

N
 m

sg

D
Y

N
 m

sg

D
Y

N
 m

sg

D
Y

N
 m

sg

D
Y

N
 m

sg

Dynamic phaseStatic phase Dynamic phaseStatic phase

Communication Cycle

INTRODUCTION

15

The Universal Communication Model allows for the modelling and
exploration of a large range of mixed ST/DYN communication protocols
for bus based systems. This is why in the first part of this thesis, we model
the communication on the bus using UCM (Section 2.2).

1.2.3 DISTRIBUTED EMBEDDED SYSTEMS WITH HETEROGENEOUS
SCHEDULING POLICIES

There has been a lot of debate in the literature on the suitability of the
event-triggered paradigm as opposed to the time-triggered one, for imple-
mentation of real-time systems [Aud93], [Kop97], [Xu93]. Several argu-
ments have been brought concerning composability, flexibility, fault
tolerance, jitter control or efficiency in processor utilisation. The same dis-
cussion has also been extended to the communication infrastructure,
which can also be implemented according to the time-triggered or event-
triggered paradigm.

An interesting comparison of the TT and ET approaches, from a more
industrial, in particular automotive, perspective, can be found in [Loc92].
Their conclusion is that one has to choose the right approach depending on
the particularities of the scheduled tasks. This means not only that there is
no single “best” approach to be used, but also that, inside a certain appli-
cation the two approaches can be used together, some tasks being time-
triggered and others event-triggered.

The growing amount and diversity of functions to be implemented by
the current and future embedded applications (like for example, in auto-
motive electronics [Koo02]) has shown that, in many cases, time-triggered
and event-triggered functions have to coexist on the computing nodes and
to interact over the communication infrastructure (see for example in
Figure 1.10 the illustration of such a heterogeneous functionality mapped
over a distributed architecture). When time-triggered and event-triggered
activities have to share the same processing node, a natural way for the
execution support can be provided through a hierarchical scheduler. Simi-
larly, when such heterogeneous applications are mapped over a multipro-
cessor architecture, the communication infrastructure should allow for both

CHAPTER 1

16

static and dynamic message exchange in order to ensure a straightforward
interconnection of heterogeneous functional components.

Safety-critical hard real-time distributed applications running on such
hierarchically scheduled multiprocessor architectures are difficult to ana-
lyse. Due to the hierarchical nature of the schedulers, various execution
interferences have to be carefully accounted for during the timing analysis
that determines the worst-case response times of the system activities.
Moreover, due to the distributed nature of the architecture, message delays
have to be taken into consideration during the analysis. Such an analysis is

Figure 1.10: Heterogeneous TT/ET Distributed System

ST/DYN bus

Node 1 Node 2 Node 3 Node n

Mapping

…

ET
functionality

TT
functionality

Dynamic phaseStatic phase Dynamic phaseStatic phase

Bus Cycle (Tbus)

INTRODUCTION

17

further complicated by the particular characteristics of the communication
protocol that mixes both static and dynamic transmission of messages.

In order to cope with the complexity of designing such heterogeneous
embedded systems, only an adequate design environment can effectively
support decisions leading in an acceptable time to cost-efficient, reliable
and high performance solutions. Developing flexible and powerful tools
for the design and analysis of such kind of heterogeneous systems repre-
sents the motivation behind the work presented in this thesis.

1.3 Related Work
This section presents an overview of the previous research in the area of
analysis and system level design for distributed embedded systems. We
concentrate in particular on scheduling and communication synthesis,
with focus on the time-triggered and event-triggered aspects.

1.3.1 SYSTEM LEVEL DESIGN

System level design methodology is continuously evolving [Mar00], from
ad-hoc approaches based on human designer’s experience, to hardware/
software codesign, and currently to platform-based design [Keu00] and
function-architecture codesign [Bal97], [Dav99], [Lav99], [Tab00].

The design flow presented in Figure 1.1 illustrates only some of the
main problems that appear during the system level phases of design. For a
deeper insight into system level design aspects with focus on hardware/
software trade-offs, the reader is referred to the surveys in [Wol94],
[Mic97], [Ern98], [San03], [Wol03], [Mar03] and [Wol06].

System modelling has received a lot of attention, as powerful computa-
tional models and expressive specification languages are needed in order
to capture heterogeneous system requirements and properties at different
levels of abstraction [Edw97], [Edw00], [Lav99], [Mul04]. Typical hard-
ware architectures for embedded systems have evolved from simple ones
(involving only one processor and one ASIC), to distributed and heteroge-
neous ones (involving multiprocessor architectures distributed over a
large area or integrated on a single chip [Ben02]). Such an evolution has

CHAPTER 1

18

directly increased the complexity of the problems related to architecture
selection, mapping, partitioning and scheduling of functionality and has
led to the apparition of new approaches like those proposed in [Bec98],
[Bli98], [Dav99], [Lee99], [Wol97], [Yen97], [Hu03], [Jer04], [Nur04],
[Thi04] and [Ben05].

1.3.2 SCHEDULING AND SCHEDULABILITY ANALYSIS OF REAL-
TIME SYSTEMS

Task scheduling and schedulability analysis have been intensively studied
for the past decades. The complexity of the scheduling problems have
been analysed in [Ull75], [Sta94]. The reader is referred to [Aud95],
[Bal98] and [But05] for surveys on this topic.

A comparison of the two main approaches for scheduling hard real-time
systems (i.e., static cyclic scheduling and fixed priority scheduling) can be
found in [Loc92] and [Lön99].

The static cyclic (non-preemptive) scheduling approach has been long
considered as the only way to solve a certain class of problems [Xu93].
This was one of the main reasons why it received considerable attention.
Solutions for generating static schedules are often based on list scheduling
in which the order of selection for tasks plays the most important role
[Cof72], [Jor97] (see also 3.5). However, list scheduling is not the only
alternative, and branch-and-bound algorithms [Jon97], [Abd99], mixed
integer linear programming [Pra92], constraint logic programming
[Kuc97], [Eke00], or evolutionary [Sch94] approaches have also been
proposed.

For event-triggered tasks, in this thesis we are interested both in static
and dynamic priority based scheduling policies. In our work we will focus
our attention on fixed priority scheduling (FPS) and earliest-deadline-first
scheduling (EDF). For both policies, determining whether a set of tasks is
schedulable involves two aspects:
 1. The assignment of priorities to system activities, i.e. what priority

should be associated with each task and message in the system so that
the task set is schedulable.

 2. The schedulability test, which determines whether all activities in the

INTRODUCTION

19

system will meet their deadlines under the current policy.
In the case of EDF scheduling, the priorities are assigned dynamically,

at run-time, according to the criticality of each ready task, i.e. tasks that
are closer to their deadline will receive higher priorities.

In the case of fixed priority scheduling, the priorities are associated to
tasks off-line, before the system is deployed. In order to solve the problem
of assigning priorities to system activities so that the system is schedula-
ble, two main policies have been developed; they both work under
restricted assumptions, i.e. the task set to be scheduled is composed of
periodic and independent tasks mapped on a single processor:

a. rate-monotonic (RM) [Liu73] which assigns higher priorities to tasks
with shorter periods; it works under the constraint that task deadlines
are identical with task periods.

b. deadline-monotonic (DM) [Leu82] which assigns higher priorities to
tasks with shorter relative deadlines; this policy assumes that task
deadlines are shorter than task periods.

Under a particular set of restrictions regarding the system specification,
such policies are optimal. However, if, for example, tasks are not inde-
pendent, then the optimality does not hold any more for RM and DM pol-
icies. Therefore, in [Aud93], the authors proposed a priority assignment in
the case of tasks with arbitrary release times. Their algorithm is of polyno-
mial complexity in the number of tasks. However, for the case of multi-
processor/distributed hard real-time systems, obtaining an optimal
solution for priority assignment is often infeasible, due to complexity rea-
sons. A solution based on simulated annealing has been proposed in
[Tin92], where the authors present an algorithm that simultaneously maps
the tasks on processors and assigns priorities to system activities so that
the resulted system is schedulable. In order to avoid the large amount of
computation time required by such a general-purpose approach, an opti-
mised priority assignment heuristic called HOPA has been suggested in
[Gut95], where the authors iteratively compute deadlines for individual
tasks and messages in the system, while relying on the DM policy to
assign priorities to the tasks. Their algorithm has shown a better efficiency
than the one proposed in [Tin92], both in quality and especially in speed,
making it appropriate for being used inside a design optimisation loop that

CHAPTER 1

20

requires many iterations. As an example, HOPA has been adapted for the
design optimisation of multi-cluster distributed embedded systems
[PopP03b].

As mentioned above, another main issue in the context of fixed priority
scheduling is that of the schedulability tests. In this regard, there are two
main approaches used:

a. utilisation based tests, in which the schedulability criterion is repre-
sented by inequations involving processor utilisation and utilisation
bounds. However, such approaches are valid only under restricted as-
sumptions [Liu73], [Bin01], [Leu82], [And01].

b. response time analysis, in which determining whether the system is
schedulable or not requires first the computation of the worst-case re-
sponse time of the tasks and/or messages. The worst case response
time of an activity is represented by the longest possible time interval
between the instant when that activity is initiated in the system and the
moment when the same activity is finished. If the worst case response
time resulted for each task/message is lower or equal than the associat-
ed deadline for that activity, then the system is schedulable.

Response time analysis is usually more complex but also more power-
ful than the utilisation based tests. The main reason for this is because
response time analysis can take into consideration more factors that influ-
ence the timing properties of tasks and messages in a system.

The response time analysis in [Leh89] offers a necessary and sufficient
condition for scheduling tasks running on a mono-processor system, under
fixed priority scheduling and restricted assumptions (independent periodic
tasks with deadlines equal with periods). In order to increase the range of
target applications, relaxing such restrictive assumptions is necessary.
Moreover, considering the effects of more and more factors that influence
the timing properties of the tasks decreases the pessimism of the analysis
by determining tighter worst case response times and leading to a smaller
number of false negatives (which can appear when a system that is practi-
cally schedulable cannot be proven so by the analysis). Over the time,
extensions have been offered to response time analysis for fixed priority
scheduling by taking into account task synchronisation [Sha90], arbitrary
deadlines [Leh90], precedence constraints between tasks [Pal99] and tasks

INTRODUCTION

21

with varying execution priorities [Gon91], arbitrary release times
[Aud93], [Tin94c], tasks which suspend themselves [Pal98], tasks model-
ling code with conditional branches [Bar98], tasks running on multiproc-
essor systems [Tin94a], [Pal98], etc. The fixed priority analysis has been
also adapted for the situation when tasks are running under the EDF
scheduling policy [Pal03].

In spite of the fact that the duality between different implementations of
scheduling algorithms has been suggested in [Dob01a] and [Dob01b],
where fixed priority scheduling has been adapted in such a way that it
emulates static cyclic schedules which are generated off-line, the growing
amount and diversity of functionality that has to be implemented on cur-
rent embedded systems has led to the necessity for concurrently using sev-
eral scheduling policies in the implementation of the application running
on a given system. In [Gon03], the authors present the schedulability anal-
ysis for a hierarchical scheduling policy called EDF-within-fixed-priori-
ties, that combines fixed priority and EDF scheduling. The assignment of
server parameters for a two-level hierarchical scheduler based on a
resource reservation approach has been studied in [Lip04]. In [Ric02] and
[Ric03], the authors model the multiprocessor heterogeneous systems as
components that communicate through event streams and propose a tech-
nique for integrating different local scheduling policies based on such
event-model interfaces. Another compositional approach is presented in
[Wan05], where the authors propose real-time interfaces and a component
model that support incremental design of real-time systems.

1.3.3 COMMUNICATION IN REAL-TIME SYSTEMS

Many safety-critical applications, following physical, modularity or safety
constraints, are implemented using distributed architectures composed of
several different types of hardware units (called nodes), interconnected in
a network. For such systems, the communication between functions
implemented on different nodes has an important impact on the overall
system properties, such as performance, cost and maintainability.

There are several communication protocols for real-time networks.
Among the protocols that have been proposed for in-vehicle communica-

CHAPTER 1

22

tion, the Controller Area Network (CAN) [Bos91], the Local Interconnec-
tion Network (LIN) [LIN07], and SAE’s J1850 [SAE94] are currently in
use on a large scale [Nav05]. Moreover, only a few of the proposed proto-
cols are suitable for safety-critical applications where predictability is
mandatory [Rus01].

Communication activities can be triggered either dynamically, in
response to an event (event-driven), or statically, at predetermined
moments in time (time-driven). Therefore, on one hand, there are proto-
cols that schedule the messages statically based on the progression of
time, such as the SAFEbus [Hoy92], SPIDER [Min00], TTCAN [ISO02],
and Time-Triggered Protocol (TTP) [Kop03]. The main drawback of such
protocols is their lack of flexibility. On the other hand, there are commu-
nication protocols where message scheduling is performed dynamically,
such as Byteflight [Ber03] introduced by BMW for automotive applica-
tions, CAN [Bos91], LonWorks [Eche07] and Profibus [Pro01].

A lot of work has been concentrated on coping with some of the disad-
vantages of the ST/DYN approaches and on trying to combine their
advantages. For example, in [PopP01a], [PopP01b] and [PopP04b], the
authors present a method for dealing with flexibility in TTP based systems
by considering consecutive design stages in a so called incremental design
flow. Similarly, a large number of schemes have been targeted at improv-
ing the real-time properties of communication protocols that may be
cathegorised as extremely dynamic, like is the case of Ethernet [Fan05].

The aspects related to communication in real-time systems are receiv-
ing a continuously increasing attention in the literature. Building safety
critical real-time systems requires consideration for all the factors that
influence the timing properties of a system. For the case of distributed sys-
tems, in order to guarantee the timing requirements of the activities in the
system, one has to also consider the effects of communication aspects like
the communication protocol, bus arbitration, clock synchronisation, pack-
aging of messages, characteristics of the physical layer, etc. Due to the
variety of communication protocols, scheduling and schedulability analy-
sis involving particular communication protocols has become a prolific
area of research. Following the similar model as the one developed for
determining task response times under rate monotonic analysis, message

INTRODUCTION

23

transmission times have been analysed for protocols like TTP bus
[Kop92], Token Ring [Ple92], [Tab00], FDDI [Agr94], Profibus [Tov99],
ATM [Erm97], [Han97] and CAN bus [Tin94b], [Dav07].

In the case of bus-based distributed embedded systems, one of the main
directions of evolution for communication protocols is towards mixed
protocols, which support both ST and DYN traffic. The proponents of the
Time-Triggered Architecture showed that TTP can be enhanced in order to
transmit event-triggered messages, while still maintaining time composa-
bility and determinism of the system, properties which are normally lost in
event-triggered systems [Kop92]. A modified version of CAN, called
Flexible Time-Triggered CAN [Alm99], [Alm02], and a similar extension
for Ethernet called FTT-Ethernet [Ped05] have been provided under the
Flexible Time-Triggered paradigm [Ped03], in which the communication
cycles are divided into asynchronous and synchronous windows. Several
other mixed communication protocols can be found in [Fuh00], [Wor03].

Following this trend, a large consortium of automotive manufacturers
and suppliers has recently proposed such a hybrid type of protocol,
namely the FlexRay communication protocol [Fle07]. FlexRay allows the
sharing of the bus among static and dynamic messages, thus offering the
advantages of both worlds. Due to its flexible properties and growing sup-
port from its target industry, FlexRay will possibly become the de-facto
standard for in-vehicle communications. However, before it can be suc-
cessfully deployed in applications that require predictability, timing anal-
ysis techniques are necessary to provide bounds for the message
communication times [Nav05].

FlexRay is composed of static (ST) and dynamic (DYN) segments,
which are arranged to form a bus cycle that is repeated periodically. The
ST segment is similar to TTP, and employs a generalized time-division
multiple-access (GTDMA) scheme. The DYN segment of the FlexRay
protocol is similar to Byteflight and uses a flexible TDMA (FTDMA) bus
access scheme.

Although researchers have proposed analysis techniques for dynamic
protocols such as CAN [Tin95], TDMA [Tin94a], ATM [Erm97], Token
Ring protocol [Str89], FDDI protocol [Agr94] and TTP [PopP00a], none
of these analyses is applicable to the DYN segment in FlexRay. In

CHAPTER 1

24

[Din05], the authors consider the case of a hard real-time application
implemented on a FlexRay bus. However, in their discussion they restrict
themselves exclusively to the static segment, which means that, in fact,
only the classical problem of communication scheduling over a TDMA
bus [PopP04a], [Ham05] is considered. The performance analysis of the
Byteflight protocol, which is similar to the DYN segment of FlexRay, is
discussed in [Cen04]. The authors, however, assume a very restrictive
“quasi-TDMA” transmission scheme for time-critical messages, which
basically means that the DYN segment would behave as an ST segment
(similar to TDMA) in order to guarantee timeliness.

1.4 Thesis Contributions
The studies covered in this thesis consider distributed embedded systems
implemented with heterogeneous, event-triggered and time-triggered task
sets, which communicate over bus protocols consisting of both static and
dynamic phases.

We have considered that the time-triggered activities are executed
according to a static cyclic schedule, while the event-triggered activities
follow a fixed priority scheduling or an EDF scheduling policy, which is
preemptive for the execution of tasks and non-preemptive for the trans-
mission of messages. For message exchange over the bus we have consid-
ered two heterogeneous communication protocols: UCM in the first part
and FlexRay in the second part.

The main contributions of this thesis are threefold. First, we propose a
holistic schedulability analysis for heterogeneous TT/ET task sets which
communicate through mixed ST/DYN communication protocols
[PopT02], [PopT03a]. Such an analysis presents two aspects:

a. It computes the response times of the ET activities while considering
the influence of a static schedule;

b. It builds a static cyclic schedule for the TT activities while trying to

INTRODUCTION

25

minimise the response times of the ET activities.
Second, we show how the scheduling and schedulability analysis can be

used inside a design optimisation loop in order to improve the timing
properties of the system [PopT03b], [PopT05], [PopT07b].

Third, we apply the analysis and optimisation methodology developed
in the first two steps on a particular case of systems that use FlexRay as a
communication protocol [PopT06], [PopT07a], [PopT07c].

1.5 Thesis Overview
The remaining part of the thesis can be divided into two parts:

The first part (Chapters 2-4) deals with distributed embedded real-time
systems that use heterogeneous scheduling policies. Chapter 2 presents
the system model we used. In Chapter 3, we present our analysis method
for deriving response times for all tasks and messages in such an embed-
ded system. In Chapter 4, we first discuss some optimisation aspects
which are particular to the studied systems, and then we define and solve
the design optimisation problem that aims at improving the overall system
schedulability.

The second part of the thesis (Chapters 5-7) concentrates on the same
category of distributed embedded systems, but for the particular case
when the communication protocol is FlexRay. First we introduce the spe-
cifics of FlexRay in Chapter 5. Then, in Chapter 6 we present the timing
analysis that determines the worst-case response times of messages trans-
mitted over a FlexRay bus. Following a similar line of thought like in the
first part of the thesis, Chapter 7 aims again at improving the overall tim-
ing characteristics of the system by optimising the structure of the bus
cycle.

Finally, in Chapter 8 we draw some conclusions and discuss possible
research directions for the future.

CHAPTER 1

26

SYSTEM MODEL

27

Chapter 2
System Model

IN THIS CHAPTER we present the system model that we use during
scheduling and design optimisation. First, we briefly describe the hard-
ware architecture and the structure of the bus access cycle. Then, we
present our hierarchy of schedulers that implements the software architec-
ture for a system which is able to run both event-triggered and time-trig-
gered activities. The last part of this chapter presents the abstract
representation which we use for modelling the applications that are
assumed to implement the functionality of the system.

2.1 Hardware Architecture
We consider architectures consisting of nodes connected by a unique

broadcast communication channel. Each node consists of:
 • a communication controller which controls the transmission and

reception of both ST and DYN messages;
 • a CPU for running the processes mapped on that particular node;
 • local memories for storing the code of the kernel (ROM), the code of

the processes and the local data (RAM); and

CHAPTER 2

28

 • I/O interfaces to sensors and actuators.
Such hardware architectures are common in applications such as auto-

motive electronics and robotics. In Figure 2.1.a, we illustrate a heteroge-
neous distributed architecture composed of three nodes interconnected by
a bus based infrastructure. The model considered for the processing nodes
in the architecture is depicted in Figure 2.1.b.

2.2 Bus Access
Every node in the architecture has a communication controller that imple-
ments the static and dynamic protocol services. The controller runs inde-
pendently of the node’s CPU. In this first part of the thesis we model the
heterogeneous bus access scheme using the Universal Communication
Model [Dem01]

The bus access is organized as consecutive cycles, each with the dura-
tion Tbus. We consider that the communication cycle is partitioned into
static (ST) and dynamic (DYN) phases (Figure 2.1.b).

 • ST phases consist of time slots, and during a slot only the node associ-
ated to that particular slot is allowed to transmit ST messages. The
transmission times of ST messages are stored in a schedule table.

 • During a DYN phase, all nodes are allowed to send messages and the
conflicts between nodes trying to send simultaneously are solved by

Figure 2.1: System Architecture

N1 N2 N3N1 N2 N3

ST/DYN bus

a)

c)
S1 S2 ET S3

Bus cycle

ET

Slot

S1 S2 ET S3

Bus cycle

ET

Slot

Communication Controller

CPU

ROM

RAM

I/O

b)

SYSTEM MODEL

29

an arbitration mechanism which allows the transmission of the mes-
sage with the highest priority. Hence, the DYN messages are organ-
ized in a prioritised ready queue.

2.3 Software Architecture
For the systems we are studying, we have designed a software architecture
that runs on the CPU of each node. The main component of the software
architecture is a real-time kernel. The real-time kernel contains three
scheduler types organized hierarchically (Figure 2.2):
 1. The top-level scheduler is a static cyclic scheduler (SCS), that is re-

sponsible for the activation of TT tasks and transmission of ST
messages based on a schedule table, and for the activation of the FPS
scheduler. As a consequence, TT tasks and ST messages are activated at
predetermined points in time, and their execution/transmission is non-

Figure 2.2: Software Architecture

Operating System

Static Cyclic Scheduler

TT Task

ET Task

TT Task

TT Task

Fixed Priority
Scheduler

ET Task

ET Task

ET Task

EDF
Scheduler

ET Task ET Task

EDF
Scheduler

Priority 1

Priority 2

Priority 3Priority k

…

CHAPTER 2

30

preemptable.
 2. The second level in the hierarchy consists of a fixed-priority scheduler

(FPS) that activates the execution of ET tasks and transmits DYN mes-
sages based on their priorities. It also activates the EDF schedulers that
are described below. Tasks and messages scheduled under FPS are initi-
ated whenever a particular event is noted. We consider that the execution
of ET tasks under the fixed priority scheduling is preemptable.

 3. The third level in the hierarchy consists of a set of schedulers that fol-
low the earliest-deadline-first (EDF) scheduling policy. In the case that
on a node there are several activities that share the same priority inside
the FPS scheduler on the second level, then their execution is con-
trolled by such an EDF scheduler that activates ET tasks and sends
DYN messages based on their deadlines. We consider that the execu-
tion of ET tasks under the EDF policy is preemptable.

From this point and throughout the rest of the thesis, we will use the
terms “SCS tasks”, “EDF tasks” or “FP tasks” whenever we want to
emphasise the scheduling policy under which certain tasks are executed.

When several tasks are ready on a node, the task with the highest prior-
ity is activated, and preempts the other tasks. Let us consider the example
in Figure 2.3, where we have six tasks sharing the same node. Tasks τ1 and
τ6 are scheduled using SCS, τ2 and τ5 are scheduled using FPS, while
tasks τ3 and τ4 are scheduled with EDF. The priorities of the FPS and EDF
tasks are indicated in the figure. The arrival time of these tasks is depicted
with an upwards pointing arrow. Under these assumptions, Figure 2.3

P4

P4 P4

P4

τ2

τ1

τ3

τ5

τ4

τ6

τ2

τ4

P4

P4 P4

P4

τ2

τ1

τ3

τ5

τ4

τ6

τ2

τ4

0 (highest)

1

2

3 (lowest)

Figure 2.3: Execution of Tasks in a Hierarchical Scheduler

SYSTEM MODEL

31

presents the worst-case response times of each task. The SCS tasks, τ1 and
τ6, will never compete for a resource because their synchronization is per-
formed based on the schedule table. Moreover, since SCS tasks are non
preemptable and their start time is off-line fixed in the schedule table, they
also have the highest priority (denoted with priority level “0” in the fig-
ure). FPS and EDF tasks can only be executed in the slack of the SCS
schedule table.

FPS and EDF tasks are scheduled based on their priorities. Thus, a
higher priority task such as τ2 will interrupt a lower priority task such as
τ3. In order to integrate EDF tasks with FPS, we use the approach in
[Gon03], by assuming that FPS priorities are not unique, and that a group
of tasks having the same FPS priority on a processor are to be scheduled
with EDF. Thus, whenever the FPS scheduler notices ready tasks that
share the same priority level, it will invoke the EDF scheduler which will
schedule those tasks based on their deadlines. Such a situation is present in
Figure 2.3 for tasks τ3 and τ4. There can be several such EDF priority lev-
els within a task set on a processor. Higher priority EDF tasks can interrupt
lower priority FPS tasks (as is the case with τ3 and τ4 which preempt τ5)
and EDF tasks. Lower priority EDF tasks will be interrupted by both
higher priority FPS and EDF tasks, and SCS tasks.

TT activities are triggered based on a local clock available in each
processing node. The synchronization of local clocks throughout the sys-
tem is provided by the communication protocol.

2.4 Application Model
We model an application as a set of task graphs. Nodes in the graphs rep-
resent tasks, and arcs represent communication (and implicitly depend-
ency) between the connected tasks. An edge from a task τij to τik indicates
that the output of τij is the input of τik. The set of all tasks is denoted with
P. A task becomes ready after all its inputs have arrived and it issues its
outputs when it terminates. A message will become ready after its sender
task has finished, and becomes available for the receiver task after its
transmission has ended.

CHAPTER 2

32

 • A task can belong either to the TT or to the ET domain. We consider
that the scheduling policy for each task is known: TT tasks are sched-
uled using SCS, while ET tasks are scheduled under FPS and EDF.

 • Communication between tasks mapped to different nodes is per-
formed by message passing over the bus. Such a message passing is
modelled as a communication task inserted on the arc connecting the
sender and the receiver tasks. The communication time between tasks
mapped on the same node is considered to be part of the task execu-
tion time. Thus, such a communication activity is not modelled explic-
itly. For the rest of the thesis, when referring to messages we consider
only the communication activity over the bus.

 • A message can belong either to the static (ST) or to the dynamic (DYN)
domain. We consider that static messages are those sent during the ST
phases of the bus cycle, while dynamic messages are those transmitted
during the DYN phases.

 • All tasks in a certain task graph belong to the same domain, either ET,
or TT, which is called the domain of the task graph. The messages
belonging to a certain task graph can belong to any domain (ST or
DYN). Thus, in the most general case, tasks belonging to a TT graph,
for example, can communicate through both ST and DYN messages.
However, in this thesis we restrict our discussion to the situation when
TT tasks communicate through ST messages and ET tasks communi-
cate through DYN messages.

 • Each task τij (belonging to the task graph Γi) has a period Tij, and a
deadline Dij and, when mapped on node Nodek, it has a worst case
execution time Cij(Nodek). The node on which τij is mapped is
denoted as M(τij). Each ET task also has a given priority Prioij. Indi-
vidual release times or deadlines of tasks can be modelled by introduc-
ing dummy tasks in the task graphs; such dummy tasks have an
appropriate execution time and are not mapped on any of the nodes
[Ele00a].

 • All tasks τij belonging to a task graph Γi have the same period Ti

SYSTEM MODEL

33

which is the period of the task graph. The period of a message is iden-
tical with that of the sender task. If communicating tasks are of differ-
ent periods, they are combined into a larger graph capturing all task
activations for the hyper-period (LCM of periods).

 • We also consider that the size of each message m is given, which can
be directly converted into communication time Cm on the particular
bus, knowing the speed of the bus and the size of the frame that stores
the message:

Cm = Frame_size(m) / bus_speed. (2.1)

Figure 2.4 shows an application modelled as two task-graphs Γ1 and Γ2
mapped on two nodes, Node1 and Node2. Task-graph Γ1 is time-triggered
and task-graph Γ2 is event-triggered. Data-dependent tasks mapped on dif-
ferent nodes communicate through messages transmitted over the bus,
which can be either statically scheduled, like m1 and m2, or dynamic, like
the messages m3 and m4.

In order to keep the separation between the TT and ET domains, which
are based on fundamentally different triggering policies, communication
between tasks in the two domains is not included in the model. Techni-
cally, such a communication is implemented by the kernel, based on asyn-

Figure 2.4: Application Model Example

Γ2:ET

τ2,3

Γ1:TTτ1,1

m1
τ1,3

m2

τ1,4

τ1,2

τ2,1

m4m3

τ2,2

Node1: τ1,1, τ1,3, τ2,1
Node2: τ1,2, τ1,4, τ2,2, τ2,3

Messages:
ST: m1, m2
DYN: m3, m4

Tasks:

CHAPTER 2

34

chronous non-blocking send and receive primitives (using proxy tasks if
the sender and receiver are on different nodes). Such messages are typi-
cally non-critical and are not affected by hard real-time constraints.

SCHEDULING AND SCHEDULABILITY ANALYSIS

35

Chapter 3
Scheduling and

Schedulability Analysis

In this chapter we present an analytic approach for computing worst-case
task response times and worst-case message transmission delays for heter-
ogeneous TT/ET systems.

3.1 Problem Formulation
Given an application and a system architecture as presented in Chapter 2,
the following problem has to be solved: construct a correct static cyclic
schedule for the TT tasks and ST messages (a schedule which meets all
time constraints related to these activities), and conduct a schedulability
analysis in order to check that all ET tasks and DYN messages meet their
deadlines. Two important aspects should be noticed:
 1. When performing the schedulability analysis for the ET tasks and DYN

messages, one has to take into consideration the interference from the
statically scheduled TT tasks and ST messages.

 2. Among the possible correct schedules for TT tasks and ST messages,
it is important to construct one which favours, as much as possible, the
schedulability of ET tasks and DYN messages.

CHAPTER 3

36

In the next sections, we will present the schedulability analysis algo-
rithm proposed in [Pal98] for distributed real-time systems and we will
show how we extended this analysis in order to consider the interferences
induced by an existing static schedule. Section 3.2 presents a general view
over our approach for the global scheduling and schedulability analysis of
heterogeneous TT/ET distributed embedded systems. Section 3.3
describes the regular schedulability analysis for FPS and EDF tasks shar-
ing the same resources, as developed in [Gon03]. Section 3.4 extends the
schedulability analysis so that SCS tasks are taken into consideration
when computing the response times of FPS and EDF activities. In Section
3.5 we present our complete scheduling algorithm, which statically sched-
ules the TT activities while trying to minimise the influence of the TT
activities onto the ET ones. The performance of our approach is evaluated
in Section 3.6, where we present the experimental results.

Figure 3.1: Scheduling and Schedulability Analysis for
Mixed TT/ET Distributed Embedded Systems

Inputs

ET tasks
DYN messages

TT tasks
ST messages

Valid Static

Outputs

Schedule?

Static Cyclic
Scheduling

Schedulability
Analysis

Rij Dij≤

Rij

Activity

Response
times

Start Time

SCHEDULING AND SCHEDULABILITY ANALYSIS

37

It has to be mentioned that our analysis is restricted, for the moment, to
the model in which TT tasks communicate only through ST messages,
while communication between ET tasks is performed by DYN messages.
However, this is not an inherent limitation of our approach. For example,
schedulability analysis of ET tasks communicating through ST messages
has been presented in [PopP00b] and [PopP03a].

3.2 Holistic Scheduling
Figure 3.1 illustrates our strategy for scheduling and schedulability analy-
sis of heterogeneous TT/ET distributed embedded systems: the activities
to be scheduled are the TT and ET task graphs, consisting of TT tasks/ST
messages and ET tasks/DYN messages respectively. The TT activities are
statically scheduled and, as an output, a static cyclic schedule will be pro-
duced. Similarly, the worst case response times of the ET activities are
determined using the schedulability analysis that will be described in
detail in the following sections. As a result, the system is considered
schedulable if the static schedule is valid and if the ET activities are guar-
anteed to meet their deadlines. For the case of a mixed TT/ET system,
building a static cyclic schedule for the TT activities has to take into con-
sideration both the characteristics of the mixed ST/DYN communication
protocol and our assumption that execution of TT tasks is non-preempti-
ble, while the execution of an ET task can be interrupted either by a TT
task or by another ET task which has a higher priority. This means that the
static schedule will have not only to guarantee that TT activities meet their
deadlines, but also that the interference introduced from such a schedule
will not increase in an unacceptable way the response times of ET activi-
ties. In conclusion, an efficient scheduling algorithm requires a close inter-
action between the static scheduling of TT activities and the schedulability
analysis of the ET activities.

CHAPTER 3

38

3.3 Schedulability Analysis of Event-Triggered
Task Sets

In order to determine if a hierarchically scheduled system is schedulable,
we used as a starting point the schedulability analysis algorithm for EDF-
within-FPS systems, developed in [Gon03]. In this section, we present our
extension to this algorithm, which allows us to compute the worst case
response times for the FPS and EDF activities when they are interfered by
the SCS activities.

An ET task graph Γi is activated by an associated event which occurs
with a period Ti. ET tasks (FPS or EDF) and DYN messages are modelled
similarly, by considering the bus as a processing node and accounting for
the non-preemptability of the messages during the analysis. Each activity
τij (task or message) in an ET task graph has an offset φij which specifies
the earliest activation time of τij relative to the occurrence of the triggering
event. The delay between the earliest possible activation time of τij and its
actual activation time is modelled as a jitter Jij (Figure 3.2). The response
time Rp

ij of the p-th job of a task τij is the time measured from the occur-
rence of the associated event until the completion of the p-th job of τij. For
example, Figure 3.2 depicts the execution of two jobs for each of the tasks
τij and τij+1. The worst-case response time Rij of a task τij is the longest
possible response time for that task, considering all its possible jobs:

(3.1)

Similarly, each task τij has a best case response time Rb,ij:

(3.2)

Offsets are the means by which dependencies among tasks can be mod-
elled for the schedulability analysis. For example, if in Figure 3.2, task
τij+1 is data dependant on task τij, then such a relation can be enforced by
associating to τij+1 an offset φij+1 which is equal or greater than the worst

Rij max R
p

ij() p∀,=

Rb ij, min R
p

ij() p∀,=

SCHEDULING AND SCHEDULABILITY ANALYSIS

39

case response time Rij of its predecessor, τij. In this way, it is guaranteed
that task τij+1 starts only after its predecessor has finished execution.

In [Gon03], the authors have developed a schedulability analysis algo-
rithm for ET tasks running under a hierarchical FPS/EDF scheduling pol-
icy. The worst-case response time Rab of a task τab, regardless if it is
scheduled under FP or EDF, is computed by considering:
 • all possible critical instants initiated by the higher priority tasks τac

from Γa. A critical instant is the moment when task τab is released. At
the same time, higher priority tasks may be released, delaying the exe-
cution of task τab.

 • all the jobs p of τab that appear during an interval of time called a busy
period. For FPS tasks, the busy period is an interval of time that starts
at the critical instant t and ends when all higher priority tasks (released
at or after t) and task τab finish execution. For EDF tasks, the busy
period is defined in a similar way, but the release of task τab may take
place at a later instant in the busy period. This is caused by the fact
that tasks with shorter deadlines may be released earlier than the criti-
cal instant, meaning that for EDF tasks the start of the busy period
does not necessarily coincide with the critical instant.

For all considered situations, a response time Rabc(p) is computed,
which leads to the value of the worst-case response time Rab for τab to be
determined as:

(3.3)

Response times for the FPS and EDF tasks respectively are obtained
using workload equations. Given a task τab and an interval of time t, a
workload equation computes the amount of interference that τab can suffer
during t from higher priority tasks and from tasks with earlier deadlines.

Figure 3.2: Tasks with Offsets

Ti

τij τij+1 τij+1
τij

φij+1φij+1

φijφij

Jij+1

Jij

ev
e n

t

Rab max
c

max
p

Rabc p()()() τac hp τab()∈ p∀,∀,=

CHAPTER 3

40

For FPS tasks, the worst case response times are influenced only by
higher priority tasks, so the completion time of an activation p of task τab,
when the critical instant is initiated by a higher priority task τac is given
by:

(3.4)

where φab is the offset of τab, Ta is the period of task-graph Γa, ϕabc is
the phase between event arrivals and the critical instant, and wabc(p) is the
busy period. The phase ϕabc is computed as:

(3.5)

where φac and Jac are the offset and the jitter of the task τac that initiates
the critical instant. The busy period is determined using the following
equation:

(3.6)

where Bab is the blocking time of τab; the second term captures the jobs
of τab that appear during the considered time interval; Wac is the worst case
interference produced by higher priority tasks in Γa when the critical instant
is initiated by τac:

(3.7)

and W’i is the worst-case interference produced by higher priority tasks
in a task-graph Γi different than Γa. This interference is computed using the
following equation:

(3.8)

For EDF tasks, the worst-case response times are influenced by higher
priority tasks and by EDF tasks running at the same priority level as the
task under analysis. Consequently, the worst-case interference produced
by a task-graph Γi on the execution of the analysed task τab will contain
two parts that are added together: the EDF interference Wik

EDF, and the
FPS interference Wik

FP. The worst-case interference Wik
FPof strictly

Rabc p() wabc p() φab p 1–() Ta ϕabc–⋅–+=

ϕabc Ta φac Jac φab–+()mod Ta–=

wabc p() Bab p p0 abc,– 1+() Cab Wac τab wabc p(),()

Wi′ τab wabc p(),()
i a≠∀
∑

+ +⋅+=

Wik τab t,() Jij ϕijk+
Ti

t ϕi jk–

Ti
-----------------+

j hpa τab()∈
∑ Cij⋅=

Wi′ τab t,() max Wik τab t,()() k hpi τab()∈∀,=

SCHEDULING AND SCHEDULABILITY ANALYSIS

41

higher priority tasks in a task-graph is computed based on Equation (3.7).
For the tasks running at the same priority level, the scheduling policy is
EDF, which leads to the following modification of the interference equa-
tion:

(3.9)

where D is the deadline of the analysed task τab, epi(τab) is the set of
tasks of equal priority in Γi, and the two members of the min function have
the following equations:

 (3.10)

and

. (3.11)

The interference equation from Equation (3.8) becomes:

(3.12)

Besides the situations discussed for FPS analysis in Equation (3.3),
when computing the worst-case response time for an EDF task τab, we
have to consider in addition all the possible scenarios in which τab has a
deadline larger or equal than the deadline of the other EDF tasks in the
system running at the same priority Prioab:

(3.13)

where A is a time instant when the job p under analysis is released and
has the deadline equal with that of another EDF task running on the same
priority level.

The response time for a job p of task τab running under EDF is deter-
mined using an equation similar to Equation (3.4):

(3.14)

Let us see how these equations can be integrated in an algorithm that
determines the worst-case response times of all the ET activities in the

Wik
EDF τab t D, ,() min0 wTijk t() wDijk t D,(),() Cij⋅

τi j epi τab()∈
∑=

wTijk t() Jij ϕijk+
Ti

t ϕi jk–

Ti
-----------------+=

wDijk t D,() Jij ϕi jk+
Ti

D Dij ϕijk––

Ti
-------------------------------+=

Wi′ τab t,() max Wik
FP τab t,() Wik

EDF τab t D, ,()+(=

Rab max
c

max
p

Rabc
A

p()()() τac hp τab()∈ p A∀,∀,∀,=

Rabc
A

p() wabc
A

p() ϕabc– p 1–() Ta A–⋅–=

CHAPTER 3

42

system. Figure 3.3 shows the pseudocode for the schedulability analysis
proposed in [Gon03]. According to this algorithm, the worst case response
time Rab of each task τab is computed by considering all critical instants
initiated by each task τac mapped on the same node M(τab) and with a
higher or equal priority than Prioab (lines 3-6). For each such instant, the
associated response time is computed using Equations (3.4) and (3.14)
(line 9). According to the same schedulability analysis, jitters are taken
into consideration when the algorithm computes the length of the busy
windows and, implicitly, the response times of the tasks [Pal98]. This
means that the length of the busy window depends on the values of task jit-

Figure 3.3: Schedulability Analysis Algorithm

1 do
2 Done = true
3 for each transaction Γa do
4 for each activity τab in Γa do
5 for each activity τac in Γa do
6 if Prioac ≥ Prioab andM(τac) = M(τab) then
7 for each job p of τab do
8 Consider that τac initiates critical instant
9 Compute Rabc(p)
10 if Rabc(p) > Rab

max then
11 Rij

max = Rabc(p)
12 endif
13 endfor
14 endif
15 endfor
16 if Rab

max > Rab then -- larger response time found
17 Rab = Rab

max

18 Done = false
19 for each successor τac of τab do
20 Jac

 = Rab - Rab
b -- update jitters

21 endfor
22 endif
23 endfor
24 endfor
25 while (Done!= true)

SCHEDULING AND SCHEDULABILITY ANALYSIS

43

ters, which, in turn, are computed as the difference between the worst-case
and best-case response times of the preceding tasks (for example, if τab
precedes τac in Γa, then Jac = Rab - Rb

ab, like in lines 20-21 in Figure 3.3).
Because of this cyclic dependency (response times depend on jitters and
jitters depend on response times), the process of computing Rab is an iter-
ative one: it starts by assigning Rb

ab to Rab and then computes the values
for jitters Jab, busy windows wabc(p) and then again the worst-case
response times Rab, until the response times converge to their final value.
Such a fixed-point iteration is captured in the algorithm by the do-while
loop in lines 1-25. The convergence of the analysis is captured by the
boolean variable Done, that is set to false each time a larger response time
is found for the analysed tasks (line 18). If the variable Done is still true
after an iteration inside the do-while loop, then the algorithm ends, since it
has determined the worst-case response times for all the ET activities in
the system.

In order to be able to analyse systems that use the hierarchical combina-
tion of SCS, FPS and EDF scheduling policies described in Section 2.3,
the technique presented in this section has to be enhanced so that it consid-
ers the interference from an existing static schedule. We will describe such
an extension in the next section.

3.4 Schedulability Analysis of Event-Triggered
Activities under the Influence of a Static
Cyclic Schedule

Considering the algorithm presented in the previous section as a starting
point, we have to solve the following problem: compute the worst case
response time of a set of ET tasks and DYN messages by taking into con-
sideration:

CHAPTER 3

44

 • The interference from the set of statically scheduled tasks.
 • The characteristics of the communication protocol, which influence

the worst case delays induced by the messages communicated on the
bus.

First, we extend the notions of ET availability and demand introduced
in [Ped00] for analysing heterogeneous ST/DYN communication proto-
cols. Our extension applies the same concepts to task execution. We start
by defining the ET demand for an FPS or EDF activity τij over a time
interval t as the maximum amount of CPU time or bus time which can be
demanded by higher or equal priority ET activities and by τij during the
time interval t. In Figure 3.4, the ET demand of the task τij during the busy
window t is denoted with Hij(t), and it is the sum of worst case execution
times for task τij and two other higher priority tasks τab and τcd. During the
same interval t, we define the ET availability as the processing time which
is not used by statically scheduled activities. In Figure 3.4, the CPU avail-
ability for the analysed interval is obtained by substracting from t the
amount of processing time needed for the statically scheduled activities.
Figure 3.4 presents how the availability Aq

ij(t) and the demand Hij(t) are
computed for a task τij: the busy window of τij starts at the critical instant
q Ti + tc initiated by task τab and ends at moment qTi + tc + t, when both
higher priority tasks (τab, τcd), all TT tasks scheduled for execution in the
analysed interval, and τij have finished execution.

Figure 3.4: Availability and Demand

φij
ϕij ttc

Cij

Rij w φij ϕij– p 1–()Ti–+=

S
C

S

Ccd
Cab

ET availability: Aq
ij (t) = t – Ttt

ET demand: Hij(t) = Cij + Cab + Ccd

ta
sk

s

interval [tc, tc + t]{

qTi
Ttt

SCHEDULING AND SCHEDULABILITY ANALYSIS

45

During a time interval t, the ET demand Hij associated with the task
under analysis τij is equal with the length of the busy window which would
result when considering only ET activity on the system:

. (3.15)

During the same time interval t, the availability Aij associated with task
τij is:

, |M(τab)= M(τij), (3.16)

where is the total available CPU-time on processor M(τij) in the
interval [φab, φab + t], and φab is the start time of task τab as recorded in the
static schedule table.

The discussion above is, in principle, valid for both types of ET tasks
(i.e., FPS and EDF tasks) and messages. However, there exist two impor-
tant differences. First, messages do not preempt each other, therefore, in
the demand equation the blocking term will be non-zero, but equal with
the largest transmission time of any ET message. Second, the availability
for a message is computed by substracting from t the length of the ST slots
which appear during the considered interval; moreover, because an ET
message will not be sent unless there is enough time before the current
dynamic phase ends, the availability is further decreased with CA for each
dynamic phase in the busy window (where CA is the transmission time of
the longest ET message).

Our schedulability analysis algorithm determines the length of a busy
window wij for FPS and EDF tasks and messages by identifying the appro-

Hij t() wij t()=

Aij t() min Aij
ab

t()= τab TT∈∀

Aij
ab t()

Figure 3.5: Determining the Length of the Busy Window

1 wij = p • Cij + Bij
2 do
3 Compute demand Hij(wij)
4 Compute availability Aij(wij)
5 if Hij(wij) > Aij(wij) then
6 wij += Hij(wij) - Aij(wij)
7 endif
8 while Hij(wij) ≥ Aij(wij)
9 return wij

CHAPTER 3

46

priate size of wij for which the ET demand is satisfied by the availability:
Hij(wij) ≤ Aij(wij). The algorithm for computing the busy window wij for
an activity τij is shown in Figure 3.5. The algorithm consists of a loop that
computes at each step the demand and availability for a given busy win-
dow (lines 3-4). If, for the analysed interval wij, the available time does not
satisfy the ET demand, then the algorithm increases the length of the busy
window with the needed amount of time (lines 5-7), and starts another iter-
ation. The entire loop is ended only when the busy window wij is long
enough to provide enough available time for the execution of all ET tasks
that can appear during an interval of time of length wij. This procedure for
the calculation of the busy window is included in the iterative process for
calculation of response times presented in Section 3.3. It is important to
notice that this process includes both tasks and messages and, thus, the
resulted response times of the FPS and EDF tasks are computed by taking
into consideration the delay induced by the bus communication.

After performing the schedulability analysis, we can check if Rij ≤ Dij
for all the ET tasks. If this is the case, the set of ET activities is schedula-
ble. In order to drive the global scheduling process, as it will be explained
in the next section, it is not sufficient to test if the task set is schedulable or
not, but we need a metric that captures the “degree of schedulability” of
the task set. For this purpose we use the function DSch, similar with the
one described in [PopP00b]

(3.17)

where N is the number of ET task graphs and Ni is the number of activities
in the ET task graph Γi.

If the task set is not schedulable, there exists at least one task for which
Rij > Dij. In this case, f1 > 0 and the function is a metric of how far we are
from achieving schedulability. If the set of ET tasks is schedulable, f2 ≤ 0
is used as a metric. A value f2 = 0 means that the task set is “just” schedu-

f1 m

j 1=

Ni
∑ ax 0 Rij Dij–,()

i 1=

N

∑=

f2 Rij Dij–()
j 1=

Ni
∑

i 1=

N

∑=

DSch =

, if f1 = 0

, if f1 > 0

SCHEDULING AND SCHEDULABILITY ANALYSIS

47

lable. A smaller value for f2 means that the ET tasks are schedulable and a
certain amount of processing capacity is still available.

Now, that we are able to perform the schedulability analysis for the ET
tasks considering the influence from a given static schedule of TT tasks,
we can go on to perform the global scheduling and analysis of the whole
application.

3.5 Static Cyclic Scheduling of Time-Triggered
Activities in a Heterogeneous TT/ET
Environment

As mentioned in the beginning of 3.1, building the static cyclic schedule
for the TT activities in the system has to be performed in such a way that
the interference imposed on the ET activities is minimum. The holistic
scheduling algorithm is presented in Figure 3.6. For the construction of
the schedule table with start times for SCS tasks and ST messages, we
adopted a list scheduling-based algorithm [Dav99] which iteratively
selects tasks and schedules them appropriately.

A ready list contains all SCS tasks and messages which are ready to be
scheduled (they have no predecessors or all their predecessors have been
scheduled). From the ready list, tasks and messages are extracted one by
one (Figure 3.6, line 2) to be scheduled on the processor they are mapped
to, or into a static bus-slot associated to that processor on which the sender
of the message is executed, respectively. The priority function which is
used to select among ready tasks and messages is a critical path metric,
modified for the particular goal of scheduling tasks mapped on distributed
systems [Ele00a]. If the selected activity is a task, then the algorithm calls
the schedule_TT_task procedure (line 4), that will be described later.
When scheduling a ST message extracted from the ready list, we place it
into the first bus-slot associated with the sender node in which there is suf-
ficient space available (line 6). If all SCS tasks and messages have been
scheduled and the schedulability analysis for the ET tasks and DYN mes-
sages indicates that all ET activities meet their deadlines, then the global
system scheduling has succeeded. For the case that no correct schedule

CHAPTER 3

48

has been produced, we have implemented a backtracking mechanism in
the list scheduling algorithm, which allows to turn back to previous sched-
uling steps and to try alternative solutions. In order to avoid excessive
scheduling times, the maximum number of backtracking steps can be lim-
ited.

Let us consider a particular task τij selected from the ready list to be
scheduled. We consider that ASAPij is the earliest time moment which sat-
isfies the condition that all preceding activities (tasks or messages) of τij
are finished and processor M(τij) is free. The moment ALAPij is the latest
time when τij can be scheduled. With only the SCS tasks in the system, the
straightforward solution would be to schedule τij at ASAPij. We will call
this approach Simple List Scheduling (SLS) and we will use it as a refer-
ence baseline during our experiments. However, if the system functional-
ity contains both TT and ET activities, then such a simple solution could
have negative effects on the schedulability of FPS and EDF tasks. What
we have to do is to place the TT task τij in such a position inside the inter-
val [ASAPij, ALAPij] so that the chance to finally get a globally schedula-
ble system is maximized.

In order to consider only a limited number of possible positions for the
start time of a SCS task τij inside the interval [ASAPij, ALAPij], we take

Figure 3.6: Holistic Scheduling Algorithm based
on Simple List Scheduling

SimpleListScheduling(A, M, B, S)
1 while TT_ready_list is not empty
2 select τij from TT_ready_list
3 if τij is a task then
4 schedule_TT_task(τij, M(τij))
5 else -- τij is a message
6 ASAP schedule τij in slot(M(τij))
7 end if
8 end while
9 procedure schedule_TT_task(τij, M(τij))
10 schedule τij as soon as possible, at ASAPij
11 end schedule_TT_task

end SimpleListScheduling

SCHEDULING AND SCHEDULABILITY ANALYSIS

49

into account the information obtained from the schedulability analysis
described in Section 3.4, which allows us to compute the response times
of ET (i.e., FPS and EDF) tasks. We started from the observation that stat-
ically scheduling a SCS task τij so that the length of busy-period of an ET
activity is not modified will consequently lead to unchanged worst-case
response time for that ET task. This can be achieved by providing for
enough available processing time between statically scheduled tasks so
that the busy period of the ET task does not increase. For example, in
Figure 3.7 we can see how statically scheduling two SCS tasks τ1 and τ2
influences the busy period w3 of a FPS (or EDF) task τ3. Figure 3.7.a,
presents the system with only τ1 scheduled. In the worst case, the ET task
τ3 will become ready for execution at the same time φ1when τ1 starts exe-
cution, thus being affected by the maximum possible interference from the
task τ1. Such a situation is unavoidable, and leads to the busy-period w3 as
depicted in Figure 3.7.a. Figures 3.7.b-c show how scheduling another
SCS task τ2 further affects the response time of the ET task. Scheduling
task τ2 too early (like in Figure 3.7.b) decreases the availability during the
interval [φ1, φ1 + w3], and consequently leads to an increase of w3 (to w’3)

Figure 3.7: Static Scheduling, its influence over the
execution of ET tasks (a-b) and minimisation of such

an interference (c)

τ1τ1 τ 3τ 3a)

b)

c)

τ1τ1 τ 3τ 3

τ2τ2

τ 3

wmax = w3

τ2τ2 τ3τ3

τ1τ1 τ 3τ 3 τ2τ2

wmax = w’3 > w3

wmax = w”3 = w3

τ2 introduces new interference
Increases busy beriod w3 to w’3

τ3 preempted

τ2 does not add extra interference
Busy beriod w3 remains unchanged

τ1 introduces interference
Results in busy beriod w3

CHAPTER 3

50

which in turn will increase the response time R3. Such a situation is
avoided if the two SCS tasks are scheduled like in Figure 3.7.c, where no
extra interference is introduced in the busy period w3. However, we notice
that in such a situation, task τ2 is scheduled later, which means that during
the static scheduling we have to consider two aspects:
 1. The interference with the FPS and EDF activities should be minimized;
 2. The deadlines of TT activities should be satisfied.

The technique illustrated in Figure 3.7 takes care only of the first
aspect, while ignoring the second one. It should be noticed that scheduling
a SCS task later decreases the probability of finding feasible start times for
that particular task. For example, in Figure 3.8.a, task τ2 is scheduled like
in Figure 3.7.c, so that no extra interference is added to the execution of
ET activities. However, the busy period wmax pushes the start of τ2 to such
a late time in the static schedule, that the task misses its deadline and the
resulted static schedule is not valid. This effect can further propagate to
other SCS tasks that are scheduled later (for example, the successors of
τ2). In order to take care of both issues, we modified the list scheduling

Figure 3.8: Optimised Static Scheduling: trade-off
between minimising the TT interference over ET tasks (a)

and allowing TT interference (b) while also maximising
the chances of building a feasible static schedule (c)

a)

b)

c)

τ 3

τ 1τ 1 τ 3τ 3 τ2τ2

wmax = w3

τ2 does not add extra interference
Busy beriod w3 remains unchanged
Task τ2 misses its deadline

τ1τ1 τ 3τ 3 τ2τ2

wmax = w’3

τ3τ3

τ3 preempted τ2 adds extra interference
w3 increases but τ3 meets its deadline
Task τ2 meets its deadline

D2

τ1τ1 τ2τ2

wmax = w’3

τ 3τ 3

τ2 maintains extra interference level
w’3 remains unchanged from b)
τ 2 starts earlier than in b)

φ2
c φ2

aφ2
b

SCHEDULING AND SCHEDULABILITY ANALYSIS

51

algorithm so that at each step, whenever a TT task τk has to be scheduled,
the following alternatives are evaluated:
 1. scheduling the TT task late, so that no extra interference is added to the

ET activities (consequently, though we decrease the risk of obtaining a
feasible static schedule for the TT activities, there is a higher probabil-
ity for ET activities to meet their deadlines);

 2. scheduling the TT task earlier, at a time that will introduce a small TT
amount of interference over ET activities (but we increase the proba-
bility that the resulted static schedule for TT tasks meets the deadlines).

The start time for the first case is determined by allowing enough slack
time1 between the SCS tasks so that the longest ET busy period in the sys-
tem remains unchanged (like it has been illustrated in Figure 3.7.c). If the
task being scheduled is τk, then we denote the determined value for the
start time with φk

a (for example, the moment φ2
a in Figure 3.8 has been

determined using this kind of approach).
In order to discuss the second case, we use the example in Figure 3.8.

Scheduling the TT task τ2 at the time shown in Figure 3.8.a leads to a
deadline miss, which means that we have to consider an earlier start time.
In the example, we chose the latest possible time when τ2 will meet its
deadline: φ2

b = D2 - C2, where C2 is the worst-case execution time of the
task τ2. As illustrated in Figure 3.8.b, we can notice that, while allowing
task τ2 to meet its deadline, such a schedule will introduce an additional
interference over the execution of task τ3, leading to a longer busy period
w3 and a longer response time R3. However, considering that such an
increase is acceptable (in the sense that all ET tasks will not miss their
deadlines as a result of such a scheduling), we can now improve the prob-
ability of finding a valid static schedule. We achieve this by scheduling the
task τ2 even earlier in time, at a time φ2

c = max(ASAP2, φ1 + C1), where
the value φ1 + C1 represents the end time of the TT task τ1 that has already
been scheduled on the same processor during the previous steps. Our
intention is to perform a transformation of the static schedule in such a
way that the maximum ET busy period wmax does not increase. This tech-
nique is illustrated in Figure 3.7.c, where one can see that the same level of

1. We consider slack time any amount of processing time that is not
reserved for the SCS tasks.

CHAPTER 3

52

TT interference as in Figure 3.7.b is influencing the worst case response
time of τ3, but task τ2 is scheduled much earlier, thus giving a chance for
its successors to be statically scheduled at earlier moments, and conse-
quently improving the probability of finding a valid static schedule.

However, in the more general case of distributed systems, the complex
dependencies between tasks mapped on different processors do not allow
us to easily transform the static schedule without affecting the interference
over the execution of the ET activities. Actually, determining the values
φk

b and φk
c for a given TT task τk is not a straightforward operation like in

the example presented in Figure 3.8. In reality, for any given task τk there
may be several pairs {φk

b, φk
c} that have to be investigated. Our initial

assumption was that inside the interval Sk = [ASAPk, ALAPk] of possible
start times for a TT task τk there are p distinct sub-intervals Sk

i = [φk
b,i,

φk
b,i+1), with the following properties:

 • and .

 • the global timing properties of at least one of the ET activities mapped
on M(τk) remain unchanged when task τk is scheduled to start at any

 for a given sub-interval .
Determining the sub-intervals with the properties described above is not

an easy task. In [PopT03a], we have managed to determine such sub inter-
vals for the restricted model when all task graphs in the system are syn-
chronised, i.e. they all are initiated at the same time 0. In such a case, all
the response times of the (in particular ET) activities being executed in the
system can be referenced to the initial time 0. As a consequence, we
noticed that there is no interference between a TT task and an ET task
whenever the TT task is scheduled after an ET task has finished its execu-
tion. This means that, whenever we need to schedule a TT task τij, the
number p of sub intervals mentioned above is given by the number of ET
tasks that finish inside the [ASAPij, ALAPij] interval. For example, in
Figure 3.9, we depict the alternative start times that need to be considered
for a TT task τij when there are three ET tasks (τkl, τkl+1, τkl+2) that end
their execution inside the [ASAPij, ALAPij] interval. The possible start
times that we consider in our approach are ASAPij and the response times

S
i 1=

p

∪
i

k
Sk= S

i 1=

p

∩
i

k
∅=

φk Sk
i∈ Sk

i

SCHEDULING AND SCHEDULABILITY ANALYSIS

53

of the three ET tasks: Rkl, Rkl+1, Rkl+2. One can notice that, for example, if
the task τij is scheduled at time Rkl, then there will be no interference
added to the execution of task τkl. As shown in [PopT03a], using such an
approach allowed us to explore efficiently the range of start times for any
TT task and to rapidly find a valid static schedule with a reduced interfer-
ence over the ET tasks.

However, for the more general application model that we consider in
this thesis, each task graph has an arbitrary release time, which makes it
impossible to use a common origin in time for the response times of all the
activities in the system. In such a situation, when selecting the possible
start times for a TT task, we decided to rely only on the length wmax of the
longest ET busy period in the system. The first possible start time that we
consider for a TT task is selected in such a way that the value of wmax does
not change. Such a decision is depicted in Figure 3.10.a, where the longest
ET busy period has the same value before (wmax) and after (w’max) a TT
task τ2 is added to the static schedule at time φ2. The static schedule con-
tains only two tasks τ1 and τ2, of equal worst case execution time. An ET
task will suffer a maximum of TT interference if it becomes ready at a
moment in time when a TT task is scheduled for execution. If we consider
that the longest ET busy period wmax is associated with the response time
of an ET task τmax, then we notice in the figure that the task τmax has the
same response time regardless if it becomes ready when τ1 starts (like at

Figure 3.9: Alternative Start Times for a TT task τij
in the Model with Synchronised Task Graphs

ASAP
ij

R
kl Rkl+1

Rkl+2

ASAP
ij

ALAP
ij

τijτij τijτij τijτij τijτij

τkl+2τkl+2τkl+1τkl+1τklτkl

time on
node M ()τijτij

CHAPTER 3

54

time 0, with a busy window of w’(τ1)) or when τ2 starts (like in the second
round of the static schedule, at time Tss+φ2, when w’(τ2) = w’(τ1)).

In some cases, the value of wmax is large enough so that adding another
TT task in the static schedule cannot be performed without increasing the
TT interference. Such a situation is illustrated in Figure 3.10.b, where
wmax has a larger value than in Figure 3.10.a. Consequently, task τ2 is
scheduled much later in the schedule than in the previous case. We notice
that if τmax becomes ready at the same time task τ2 starts, then the longest
ET busy period will be extended due to additional interference from the
TT tasks in the next round of the static schedule. In such situations, when
the extra TT interference over ET activities cannot be avoided, the only
thing that we can improve is the probability of finding a valid static sched-
ule, and we do this by scheduling task τ2 as early as possible (as shown in
Figure 3.10.c).

When scheduling a TT task earlier, additional care has to be taken if the
value wmax is larger than the period Tss of the static schedule. In such a sit-
uation, we cannot schedule the TT task too early without risking an
increase in the interference over ET tasks. Let us see how the same exam-
ple illustrated in Figure 3.10 modifies if the longest busy period is so large
that the increase in interference discussed in Figure 3.10.b cannot be

Figure 3.10: Alternative Start Times for a TT Task τ2 in
the Model with Arbitrary Offsets

wmax ‘ = w’(τ2) = wmax

τ1τ1b)

c) τ1τ1

τ2τ2

τ2τ2

wmax ‘ = w’(τ1)

τ1τ1 τ2τ2

τ1τ1 τ2τ2

τ1τ1a) τ2τ2

wmax = w(τ1)

τ1τ1 τ2τ2

0 Tss 2⋅Tss

w’(τ2)

wmax ‘ = w’(τ2) > wmaxw’(τ1)

φ2

w’(τ1)

wmax = w(τ1)

wmax = w(τ1)

SCHEDULING AND SCHEDULABILITY ANALYSIS

55

avoided. We start by scheduling τ2 somewhere in the middle of the slack
available at the end of the static schedule, as shown in Figure 3.11.a. Such
a scheduling is intended to help us determine the new value of the longest
ET busy window wmax, and we discuss now the case when wmax is larger
than the period Tss of the static schedule. If we try now to schedule task τ2
as early as possible (at time as in Figure 3.11.b, where C1 is the
worst-case execution time of τ1), then we notice that the value wmax will
increase due to the fact that the ET busy period will contain an additional
job of τ2. However, if we push τ2 only to the time moment

, (3.18)

as in Figure 3.11.c, then we avoid introducing new TT interference and the
response times of ET tasks remain the same as in Figure 3.11.a.

We have modified the holistic scheduling algorithm SLS presented in
Figure 3.6 by including all the above observations in the procedure that
schedules a TT task (schedule_TT_task). The optimised procedure for

Figure 3.11: Avoiding Unnecessary TT Interference over
the Execution of ET Tasks

a)

b)

τ1τ1 τ2τ2

τ1τ1 τ2τ2

wmax

wmax ‘ > wmax

τ1τ1 τ2τ2

τ1τ1 τ2τ2

Equal amount of slack

0 Tss 2⋅Tss

Busy period increases due to additional interference from the second job of τ2

c) τ1τ1 τ2τ2

wmax

τ1τ1 τ2τ2

wmax does not increase from a), but τ2 starts earlier than in a)

φ2 C1=

φ2 φ1 w+
max

wmax

Tss
------------– Tss⋅=

CHAPTER 3

56

scheduling a TT task τij on a node M(τij) can be seen in Figure 3.12.
Before we actually schedule τij, we compute the largest ET busy period
(line 2), and we use it in order to explore the following alternative start
times for τij:

First, we investigate the case when the busy period is initiated by the
latest TT task scheduled on node M(τij) (line 3). We schedule the task τij at
the determined time φa and then verify the timing properties of the system
by computing its schedulability degree (line 4).

Next, we explore the cases when we accept new TT interference. First,
we analyse the case when τij is scheduled at the end of the static schedule,
immediately after the last TT task on node M(τij) (lines 5-6). In line 7, we
then schedule the TT task τij in the middle of the slack time available at the
end of the static schedule on node M(τij) (in a manner similar to the case
illustrated in Figure 3.11.a). Such a schedule will result in a new value
w’max for the longest ET busy period (line 8), and we use this value as an
input to Equation (3.18), in order to determine an earlier possible start
time φc for τij (line 9). We schedule τij at φc and we compute again the
schedulability degree of the resulted system. In the end (lines 11-12), the
algorithm compares the schedulability degree of the four explored sched-
ules and keeps the one that produces a better cost function.

Figure 3.12: Optimised TT Task Scheduling

1 procedure schedule_TT_task(τij, M(τij))
2 compute largest ET busy period wmax on node M(τij)
3 LS = determine_largest_TT_start(M(τij))
4 schedule τij at φa = LS + wmax and compute cost DScha
5 LE = determine_largest_TT_end(M(τij))
6 schedule τij at φ’a = LE and compute cost DSch’a
7 schedule τij at φb inthe middle of the last slack on M(τij)
8 compute the new value w’max and the cost DSchb
9
10 schedule τij at φc and compute cost DSchc
11 select with the smallest associated DSch
12 schedule τij at φij
13 end schedule_task

φc LS w′+ max w′max T⁄
ss

– Tss⋅=

φij φa φ′a φ,
b

φc,{ , }∈

SCHEDULING AND SCHEDULABILITY ANALYSIS

57

3.6 Experimental Results
For the evaluation of our scheduling and analysis algorithm we generated
a set of 2970 tests representing systems of 2 to 10 nodes. The number of
tasks mapped on each node varied between 10 and 30, leading to applica-
tions with a number of 20 up to 300 tasks. The tasks were grouped in
task-graphs of 5, 10 or 15 tasks. Between 20% and 80% of the total
number of tasks were considered as event-triggered and the rest were set
as time-triggered. The execution times of the tasks were generated in such
a way that the utilisation on each processor was between 20% and 80%. In
a similar manner we assured that 20% and up to 60% of the total utilisation
on a processor is required by the ET activities. All experiments were run
on an AMD Athlon 850MHz PC.

The first set of experiments compares two versions of the holistic
scheduling algorithm presented in Figure 3.6:
 • the simple list scheduling (SLS), in which TT tasks are scheduled in

an ASAP manner;
 • the improved list scheduling (ILS), in which TT tasks are scheduled

according to the optimised procedure presented in Figure 3.12.
In Figure 3.13.a we illustrate the capacity of the ILS based algorithm to

produce schedulable systems, compared to that of SLS. The figure shows
that ILS was able to generate between 31-55% more schedulable solutions
compared to the case when a simple list scheduling was used.

In addition, we computed the quality of the identified solutions, as the
percentage deviation of the schedulability degree (DSchxLS) of the ET
activities in the resulted system, relative to the schedulability degree of an
ideal solution (DSchref) in which the static schedule does not interfere at
all with the execution of the ET activities:

(3.19)

In other words, we used the function DSch as a measure of the interfer-
ence introduced by the TT activities on the execution of ET activities. In

Interference
DSchref DSchxLS

–

DSchref
-- 100⋅=

CHAPTER 3

58

0

0, 2

0, 4

0, 6

0, 8

1

1, 2

1, 4

2 4 6 8 10

P ro c e s s o rs

T
im

e
(s

)

S L S

IL S

Figure 3.13: Performance of the Scheduling
and Schedulability Analysis Algorithm

0

10

2 0

3 0

4 0

5 0

6 0

2 4 6 8 10

P ro c e s s o rs
P

er
ce

nt
ag

e
de

vi
at

io
n

of

IL
S

 r
el

at
iv

e
to

 S
LS

0

2

4

6

8

10

12

2 4 6 8 10

P ro ce s s o rs

P
er

ce
nt

ag
e

de
vi

at
io

n
re

la
tiv

e
to

th
e

id
ea

l c
as

e

SLS

ILS

a) Schedulable

b) Degree of

c) Computation

solutions

interference
(smaller is better)

Times

SCHEDULING AND SCHEDULABILITY ANALYSIS

59

fig Figure 3.13.b, we present the average quality of the solutions found by
the two algorithms. For this diagram, we used only those results where
both algorithms managed to find a schedulable solution. It is easy to
observe that the solutions obtained with ILS are constantly at a minimal
level of interference, while the SLS heuristic produces solutions in which
the TT interference is considerably higher, resulting in significantly larger
response times of the ET activities.

In Figure 3.13.c we present the average execution times of our schedul-
ing heuristic and compare them with the execution times of the simple list
scheduling algorithm. According to expectations, the execution time for
our ILS scheduling and schedulability analysis algorithm increases with
the size of the application. However, even for large applications, the algo-
rithm is still fast enough so that it could be efficiently used inside a design
space exploration loop with an extremely large number of iterations (see
Chapter 4).

CHAPTER 3

60

DESIGN OPTIMISATION

61

Chapter 4
Design Optimisation

NOW THAT WE ARE ABLE to derive the schedulability degree of a
heterogeneous TT/ET system that uses mixed scheduling policies, we
consider in this chapter a larger design context, which involves mapping,
scheduling and a couple of specific optimisation aspects which are charac-
teristic for this type of systems. In particular, we are interested in the fol-
lowing issues:
 • assignment of scheduling policies to tasks;
 • mapping of tasks to the nodes of the architecture;
 • optimisation of the access to the communication infrastructure;
 • scheduling of tasks and messages (that has been already discussed in

the previous chapter).
The goal is to produce an implementation that, using a given amount of

resources, meets all the timing constraints of the application.
In this chapter, by scheduling policy assignment (SPA) we denote the

decision whether a certain task should be scheduled with SCS, FPS or
EDF. Mapping a task means assigning it to a particular hardware node.
During the optimisation of the bus access we concentrate on finding that
set of configuration parameters for the communication protocol that glo-
bally improves the system responsiveness.

CHAPTER 4

62

4.1 Specific Design Optimisation Problems

4.1.1 SCHEDULING POLICY ASSIGNMENT

Very often, the SPA and mapping decisions are taken based on the experi-
ence and preferences of the designer, considering aspects like the func-
tionality implemented by the task, the hardness of the constraints,
sensitivity to jitter, etc. Moreover, due to legacy constraints, the mapping
and scheduling policy of certain processes might be fixed.

Thus, we denote with PSCS ⊆ P the subset of tasks for which the
designer has assigned SCS, PFPS ⊆ P contains tasks to which FPS is
assigned, while PEDF ⊆ P contains those tasks for which the designer has
decided to use the EDF scheduling policy. There are tasks, however,
which do not exhibit certain particular features or requirements which
obviously lead to their scheduling as SCS, FPS or EDF activities. The sub-
set P+ = P \ (PSCS ∪ PFPS ∪ PEDF) of tasks could be assigned any sched-
uling policy. Decisions concerning the SPA to this set of activities can lead
to various trade-offs concerning, for example, the schedulability proper-
ties of the system, the size of the schedule tables, the utilization of
resources, etc.

Let us illustrate some of the issues related to SPA in such a context. In
the example presented in Figure 4.1 we have an application1 with six
tasks, τ1 to τ6, and three nodes, N1, N2 and N3. The worst-case execution
times on each node are given in the table labelled “Mapping”. Note that an
“x” in the table means that the task is not allowed to be mapped on that
node (the mapping of tasks is thus fixed for this example). The scheduling
policy assignment is captured by the table labelled “SPA”. Thus, tasks τ1
and τ2 are scheduled using SCS, while tasks τ5 and τ6 are scheduled with
FPS. Similarly, an “x” in the table means that the task cannot be scheduled
with the corresponding scheduling policy. We have to decide which sched-
uling policy to use for tasks τ3 and τ4, which can be scheduled with either
of the SCS or FPS scheduling policies.

1.Communications are ignored for the examples in this subsection.

DESIGN OPTIMISATION

63

We can observe that the scheduling of τ3 and τ4 have a strong impact on
their successors, τ5 and τ6, respectively. Thus, we would like to schedule
τ4 such that not only τ3 can start on time, but τ4 also starts soon enough to
allow τ6 to meet its deadline. As we can see from Figure 4.1.a, this is
impossible to achieve by scheduling τ3 and τ4 with SCS. Although τ3
meets its deadline, it finishes too late for τ5 to finish on deadline. How-
ever, if we schedule τ4 with FPS, for example, as in Figure 4.1.b, both
deadlines are met. In this case, τ3 finishes on time to allow τ5 to meet its
deadline. Moreover, although τ4 is preempted by τ3, it still finishes on
time, meets its deadline, and allows τ6 to meet its deadline, as well. Note
that using EDF for τ4 (if it would share the same priority level with τ6, for
example) will also meet the deadline. The idea in this example is to allow
preemption for τ4.

For a given set of preemptable tasks, the example in Figure 4.2 illus-
trates the optimisation of the assignment of FPS and EDF policies. In
Figure 4.2 we have an application composed of four tasks running on two
nodes. Tasks τ1, τ2 and τ3 are mapped on node N1, while task τ4 runs on
N2. Tasks τ2 and τ3 have the same priority, while task τ4 is data dependent
of task τ1. All tasks in the system have the same worst case-execution
times (20 ms), deadlines (60 ms) and periods (80 ms). Tasks τ2 and τ3 are

Figure 4.1: Scheduling Policy Assignment Example #1

τ6

Deadline

for τ6

Deadline

for τ3, τ4, τ5

τ3

τ6τ5

τ4

τ2τ1

τ3

τ6τ5

τ4

τ2τ1

Met

N2 N3
N1 N2 N3
N1

τ1τ2τ3τ4

SCS FPS
X X
X

OK
OK

X

X
X

τ5 OK X

EDF

τ6

OK
OK

OK
OK

X
X OK X

τ1τ2τ3τ4

SCS FPS
X X
X

OK
OK

X

X
X

τ5 OK X

EDF

τ6

OK
OK

OK
OK

X
X OK X

τ4

τ5

τ3 τ6a)

τ2

τ1

Missed

b)

N2

N3

N1

τ4

τ5

τ3

τ2

τ1

Met

N2

N3

N1

τ4 Met

τ1τ2τ3τ4

N1 N2

X X
X
50
70

40

X
X

τ5 X 40

N3

τ6

60
X

X
X

X
X 40 X

τ1τ2τ3τ4

N1 N2

X X
X
50
70

40

X
X

τ5 X 40

N3

τ6

60
X

X
X

X
X 40 X

CHAPTER 4

64

scheduled with EDF, τ4 with FPS, and we have to decide the scheduling
policy for τ1, between EDF and FPS.

If τ1 is scheduled according to EDF, thus sharing the same priority level
“1” with the tasks on node N1, then task τ4, in the worst case, misses its
deadline (Figure 4.2.a). Note that in the time line for node N1 in Figure 4.2
we depict several worst-case scenarios: each EDF task on node N1 is
depicted considering the worst-case interference from the other EDF tasks
on N1. However, the situation changes if on node N1 we use FPS for τ1
(i.e., changing the priority levels of τ2 and τ3 from “1” to “2”).
Figure 4.2.b shows the response times when task τ1 has the highest prior-
ity on N1 (τ1 retains priority “1”) and the other tasks are running under
EDF at a lower priority level (τ2 and τ3 share lower priority “2”). Because
in this situation there is no interference from tasks τ2 and τ3, the worst-
case response time for task τ1 decreases considerably, allowing task τ4 to
finish before its deadline, so that the system becomes schedulable.

4.1.2 MAPPING

The designer might have already decided the mapping for a part of the
tasks. For example, certain tasks, due to constraints such as having to be
close to sensors/actuators, have to be physically located in a particular

Figure 4.2: Scheduling Policy Assignment Example #2

Deadline
for τ1, τ2, τ3, τ4

τ4 τ3

τ2τ1

τ4 τ3

τ2τ1

N2N1 N2N1

τ1

a)

MissedN2

N1

τ4

τ1
τ2
τ3
τ4

N1 N2

×
×
×
20

20
20

×
20

M
ap

pi
ng τ1

τ2
τ3
τ4

N1 N2

×
×
×
20

20
20

×
20

M
ap

pi
ng

τ1
τ2
τ3
τ4

SCS FPS
OK
×
×

OK

×
×

×
×SP

A

EDF
OK
OK
OK
×

τ1
τ2
τ3
τ4

SCS FPS
OK
×
×

OK

×
×

×
×SP

A

EDF
OK
OK
OK
×

τ2

τ3

P4

τ1

b)

MetN2

N1

τ4

τ2

τ3

P4

P4

P4 Met

Met

Met

Met

Met

Met

Priority

1

1

1

1

1

2

2

1

DESIGN OPTIMISATION

65

hardware unit. They represent the set PM ⊆ P of already mapped tasks.
Consequently, we denote with P* = P \ PM the tasks for which the mapping
has not yet been decided.

For a distributed heterogeneous system, the communication infrastruc-
ture has an important impact on the design and, in particular, on the map-
ping decisions. Let us consider the example in Figure 4.3 where we have
an application consisting of four tasks, τ1 to τ4, and an architecture with
three nodes, N1 to N3. Thus, the bus will have three static slots, S1 to S3 for
each node, respectively. The sequence of slots on the bus is S2 followed by
S1 and then S3. We have decided to place a single dynamic phase within a
bus cycle, labelled “DYN” and depicted in gray, preceding the three static
slots (see Section 2.2 for the details about the bus protocol). We assume
that τ1, τ3 and τ4 are mapped on node N1, and we are interested to map task
τ2. Task τ2 is allowed to be mapped on node N2 or on node N3, and its exe-
cution times are depicted in the table labelled “mapping”. Moreover, the
scheduling policy is fixed for each task, such that all tasks are scheduled
with SCS.

In order to meet the deadline, one would map τ2 on the node it executes
fastest, i.e., node N2 see Figure 4.3.a. However, in spite of the shorter exe-
cution time of the task τ2, the response time for τ3 is extended beyond the
task deadline due to the long communication delay. One can observe in the

Figure 4.3: Mapping Example

DYN

DYN

τ3

τ3

S2

τ1

N2

τ4

Bus S2

N1

τ2

Missed

N3

τ2

S3

τ1

N2

τ4

Bus

N1 Met

m
1

N3

a)

b)

S1 S3 S1 S3

S2S2 S3 S1 S1S2 S3

m
2

m
1

m
2

N2 N3
N1 N2 N3
N1

τ1
τ2
τ3

SCS FPS
×
×
×

OK
OK
OK

SPA
EDF

×
×
×

τ4 ×OK ×

τ1
τ2
τ3

SCS FPS
×
×
×

OK
OK
OK

SPA
EDF

×
×
×

τ4 ×OK ×

τ1
τ2
τ3

N1 N2

×
50
×

30
×
60

N3

×
70
×

Mapping

τ4 ×30 ×

τ1
τ2
τ3

N1 N2

×
50
×

30
×
60

N3

×
70
×

Mapping

τ4 ×30 ×

τ1

τ4

τ2 τ3

m1 m2

m3 m4

τ1

τ4

τ2 τ3

m1 m2

m3 m4

DYN DYN

DYN DYN

CHAPTER 4

66

Figure 4.3.a that the first slot where node N2 is able to send message m2
appears only in the third bus cycle. The application will meet the deadline
only if τ2 is, counter-intuitively, mapped on the slower node, i.e., node N3,
as depicted in Figure 4.3.b: in this situation, message m2 will be sent in
slot S3 during the second bus cycle, leading to a shorter communication
delay and to a response time for τ3 that is small enough in order to meet the
deadline imposed on that task.

4.1.3 BUS ACCESS OPTIMISATION

The configuration of the bus access cycle has a strong impact on the global
performance of the system. The parameters of this cycle have to be opti-
mised such that they fit the particular application and the timing require-
ments. Parameters to be optimised are the number of static and dynamic
phases during a communication cycle, as well as the length and order of
these phases. Considering the static phases, parameters to be fixed are the
order, number, and length of slots assigned to the different nodes. Let us
denote such a bus configuration with B.

Figure 4.4: Optimization of Bus Access Cycle

Slot1 Slot2 Slot1 Slot2

Slot1Slot2 Slot1 Slot2

DYN DYN DYN DYN

DYNDYNDYNDYN

τ1

N2

τ2

τ2

m

N1
N2

m

D2

Bus

Bus

a)

b)

Slot1Slot2 Slot1 Slot2 DYN
Bus CycleBus Cycle

N2 τ2

mBus

c)

Bus CycleBus Cycle

DYN

τ1N1 D2

τ1N1 D2

DESIGN OPTIMISATION

67

For example, consider the situation in Figure 4.4, where task τ1 is
mapped on node N1 and sends a message m to task τ2 which is mapped on
node N2. In case a), task τ1 misses the start of the ST Slot1 and, therefore,
message m will be sent during the next bus cycle, causing the receiver task
τ2 to miss its deadline D2. In case b), the order of ST slots inside the bus
cycle is changed, the message m will be transmitted earlier and τ2 will
meet its deadline. The resulted situation can be further improved, as it can
be seen in Figure 4.4.c), where task τ2 finishes even earlier, if the first
DYN phase in the bus cycle can be eliminated without producing intoler-
able delays of the DYN messages (which have been ignored in this exam-
ple).

4.2 Exact Problem Formulation
As an input we have an application A given as a set of task graphs
(Section 2.4) and a system architecture consisting of a set N of nodes
(Section 2.1). As introduced previously, PSCS, PFPS and PEDF are the sets
of tasks for which the designer has already assigned SCS, FPS or EDF
scheduling policy, respectively. Also, PM is the set of already mapped
tasks.

As part of our problem, we are interested to:

 • find a scheduling policy assignment S for tasks in P+ =
P \ (PSCS ∪ PFPS ∪ PEDF);

 • decide a mapping for tasks in P* = P \ PM;

 • determine a bus configuration B;

 • determine the schedule table for the SCS tasks and priorities of FPS
and EDF tasks;

such that imposed deadlines are guaranteed to be satisfied.

CHAPTER 4

68

4.3 Design Optimisation Strategy
The design problem formulated in the previous section is NP-complete
(the scheduling sub-problem, in a simpler context, is already NP-complete
[Ull75]). Therefore, our strategy, outlined in Figure 4.5, is to divide the
problem into several, more manageable, sub-problems. Our Optimisation-

Strategy has three steps:
 1. In the first step (lines 1–3) we decide on an initial bus access configu-

ration B 0 (function InitialBusAccess), and an initial policy assignment S 0

and mapping M 0 (function InitialMSPA). The initial bus access configu-
ration, scheduling policy assignment and mapping algorithm (lines 1-2
in Figure 4.5) are presented in Section 4.3.1. Once an initial mapping,
scheduling policy assignment and bus configuration are obtained, the
application is scheduled using the HolisticScheduling algorithm (line 3)
described in Section 3.5, Figure 3.6.

 2. If the application is schedulable, the optimisation strategy stops. Oth-
erwise, it continues with the second step by using an iterative
improvement mapping and policy assignment heuristic, MSPAHeuristic

(line 4), presented in Section 4.3.2, to improve the partitioning and
mapping obtained in the first step.

 3. If the application is still not schedulable, we use, in the third step, the
algorithm BusAccessOptimisation, which optimises the access to the
communication infrastructure (line 6). If the application is still un-
schedulable, we conclude that no satisfactory implementation could be

Figure 4.5: The General Strategy

OptimisationStrategy(A)
1 Step 1:B0 = InitialBusAccess(A)
2 (M0, S0) = InitialMSPA(A, B0)
3 if HolisticScheduling(A, M0, B0, S0) returns schedulable then stop end if
4 Step 2:(M, S, B) = MSPAHeuristic(A, M0, B0)
5 if HolisticScheduling(A, M, S, B) returns schedulable then stop end if
6 Step 3:B = BusAccessOptimisation(A, M, S, B)
7 HolisticScheduling(A, M, B, S)
end OptimisationStrategy

DESIGN OPTIMISATION

69

found with the available amount of resources.

4.3.1 BUILDING AN INITIAL CONFIGURATION

The first step starts with generating a mapping and partitioning of the
tasks, as well as a bus cycle (lines 1-2 in Figure 4.5). Such an initial sys-
tem configuration is based on a very simple and fast heuristic that relies on
the following strategies:

 • The scheduling policy assignment is performed with the only con-
straint to evenly distribute the load between the SCS and the FPS/EDF
domains.

 • The mapping is based on a very fast heuristic aimed at minimising
inter-processor communication while keeping a balanced processor
load.

 • The initial bus cycle is constructed in the following two steps:
 1. We consider that each node can transmit messages during only one ST

slot inside a bus cycle. The ST slots are assigned in order to the nodes
such that Nodei transmits during Sloti (Figure 2.1). The length of Sloti
is set to a value which is equal to the length of the largest ST message
generated by a task mapped on Nodei. Considering an architecture of 4
nodes, a structure like the one in Figure 4.6.(a) is produced after this
step.

 2. Dynamic phases are introduced in order to generate a mixed ST/DYN
bus cycle. We start from the rough assumption that the total length of
the dynamic phases over a period TSS (TSS is the length of the static

Figure 4.6: Initial Bus Configuration

bus cycle 1 bus cycle 2 bus cycle k

...

a)

b)

LSTslot1

slot2

slot3

slot4

slot1

slot2

slot3

slot4

slot1

slot2

slot3

slot4

slot1

slot2

slot3

slot4

TSS

L
max
DYN }}(n = 2)

LST + n L max
DYN L

max
DYN

CHAPTER 4

70

schedule, see 3.5) is equal to the total length of the DYN messages
transmitted over the same period, which is:

(4.1)

where Ti and Li are the period and the length (expressed in time units)

of the DYN message mi. We set the length of each DYN phase to the

length . of the largest DYN message. The number n of

dynamic phases in each cycle can be determined from the following
equation:

(4.2)

where LST is the total length of the static slots in a bus cycle and

 is the length of the bus cycle. Finally, the dynamic

phases are evenly distributed inside the bus cycle. Figure 4.6.b illus-
trates such an initial bus configuration.

4.3.2 MAPPING AND SCHEDULING POLICY ASSIGNMENT
HEURISTIC

In Step 2 of our optimisation strategy (Figure 4.5), the following design
transformations are performed with the goal to produce a schedulable sys-
tem implementation:
 • change the scheduling policy of a task;
 • change the mapping of a task;
 • change the priority level of a FPS of EDF task.

Our optimisation algorithm is presented in Figure 4.7 and it implements
a greedy approach in which every task in the system is iteratively mapped
on each node (line 4) and assigned to each scheduling policy (line 8),
under the constraints imposed by the designer. The next step involves

TSS
Ti

--------- Li⋅
mi DYNdomain∈

∑

LDYN
max

TSS

LST n LDYN
max⋅+

-- n LDYN
max⋅ ⋅

TSS
Ti

--------- Li⋅
mi DYNdomain∈

∑=

LST n LDYN
max⋅+

DESIGN OPTIMISATION

71

adjustments to the bus access cycle (line 10), which are needed for the
case when the bus cycle configuration cannot handle the minimum
requirements of the current inter-node communication. Such adjustments
are mainly based on enlargement of the static slots or dynamic phases in
the bus cycle, and are required in the case the bus has to support larger
messages than before. New messages may appear on the bus due to, for
example, re-mapping of tasks; consequently, there may be new ST mes-
sages that are larger than the current static slot for the sender node (or sim-
ilarly the bus will face the situation where new DYN messages are larger
than the largest DYN phase in the bus cycle).

Figure 4.7: Policy Assignment and Mapping

MSPAHeuristic(A, M, B, S)
1 for each activity τij in the system do
2 for each processor Ni ∈ N in the system do
3 if τij in P* then -- can be remapped
4 M(τij) = Ni
5 end if
6 for policy = SCS, FPS do
7 if τij in P+ then -- the scheduling policy can be changed
8 S (τij) = policy
9 end if
10 adjust bus cycle(A, M, B, S)
11 recompute FPS priority levels
12 for all FPS tasks τab sharing identical priority levels do
13 S(τab) = EDF
14 end for
15 HolisticScheduling(A, M, B, S)
16 if δA < best_δA then
17 best_policyij = S(τij); best_processorij = M(τij)
18 best_δA = δA
19 end if
20 if δA < 0 then
21 return best (M, B, S)
22 end if
23 end for
24 end for
25 end for

end MSPAHeuristic

CHAPTER 4

72

Such an adjustment of the bus access cycle is illustrated in Figure 4.8,
where 4 TT tasks are mapped on 3 nodes (N1, N2 and N3). The number at
the side of each message represents its length. Tasks mapped on different
nodes communicate through ST messages and an ST slot should be able to
accommodate the longest message transmitted by the associated node.
The figure shows how the lengths of the slots associated with N1 and N2
are modified after a task has been re-mapped. In one case, task τ2 is moved
from N2 to N1and therefore, the message m1,2 will disappear (τ1 and τ2 are
both mapped on N1), while message m2,4 will be transmitted in Slot1
instead of Slot2. In the second case, τ3 is moved from N2 to N1, which
means that m1,3 disappears, while m3,4 is transmitted in Slot1.

Before the system is analysed for its timing properties, our heuristic
also tries to optimise the priority assignment of tasks running under FPS
(line 11). The state of the art approach for such a task is the HOPA algo-
rithm for assigning priority levels to tasks in multiprocessor systems
[Gut95]. However, due to the fact that HOPA was computationally expen-
sive to be run inside our design optimisation loop, we use a scaled down
greedy algorithm, in which we drastically reduce the number of iterations
needed for determining an optimised priority assignment.

Finally, the resulted system configuration is analysed (line 15) using the
scheduling and schedulability analysis algorithm presented in Section 3.5,

Figure 4.8: Adjustment of the Bus Access Cycle

ST/DYN bus

N1 N2 N3

τ3

τ4

τ2

τ1

2 1

34

τ1 τ2,τ3 τ4

Initial slot lengths:

Slot1 = max(2, 1) = 2
Slot2 = max(4, 3) = 4

Remap τ2 from N2 to N1

Slot1 = max(1, 4) = 4
Slot2 = max(3) = 3

Remap τ3 from N2 to N1

Slot1 = max(2, 3) = 3
Slot2 = max(4) = 4

DESIGN OPTIMISATION

73

Figure 3.6. The resulted cost function will decide whether the current con-
figuration is better than the current best one (lines 16–19). Moreover, if all
activities meet their deadlines (DSch < 0), the optimisation heuristic stops
the exploration process and returns the current best-so-far configuration
(lines 20-22).

4.3.3 BUS ACCESS OPTIMISATION

It may be the case that even after the mapping and partitioning step, some
ET activities are still not schedulable. In the third step (line 6, Figure 4.5),
our algorithm tries to remedy this problem by changing the parameters of
the bus cycle, like ST slot lengths and order, as well as the number, length
and order of the ST and DYN phases. The goal is to generate a bus access
scheme which is better adapted to the particular task configuration. The
heuristic is illustrated in Figure 4.9. The algorithm iteratively looks for the
right place and size of Sloti used for transmission of ST messages from
Nodei (outermost loops). The position of Sloti is swapped with all the posi-
tions of slots of higher order (line 03). Also, all alternative lengths (lines
04-05) of Sloti larger than its minimal allowed length (which is equal to

Figure 4.9: Bus Access Optimisation

1 for i = 1 to NrNodes
2 for j = i to NrNodes
3 swap Sloti with Slotj
4 for all slot lengths λ > min_len(Sloti)
5 len(Sloti) = λ
6 for all DYN phase lengths π
7 len(Phi) = π
8 if DSch ≤ 0 then stop endif
9 keep solution with lowest DSch
10 end for
11 end for
12 swap back Sloti and Slotj
13 end for
14 bind best position and length of Sloti
15 bind length of Phi
16 end for

CHAPTER 4

74

the length of the largest ST message generated by a task mapped on Nodei)
are considered. For any particular length and position of Sloti, alternative
lengths of the adjacent ET phase Phi are considered (innermost loop). For
each alternative, the schedulability analysis evaluates cost DSch, and the
solution with the lowest cost is selected. If DSch ≤ 0, the system is sched-
ulable and the heuristic is stopped.

It is important to notice that the possible length π of an ET phase (line
06) includes also the value 0. Therefore, in the final bus cycle, it is not
needed that each static slot is followed by a dynamic phase (see also
Figure 2.1). Dynamic phases introduced as result of the previous steps can
be eliminated by setting the length to π = 0 (such a transformation is illus-
trated in Figure 4.4.c). It should be also mentioned that enlarging a slot/
phase can increase the schedulability by allowing several ST/DYN mes-
sages to be transmitted quickly immediately one after another. At the same
time, the following slots are delayed, which means that ST messages
transmitted by nodes assigned to upcoming slots will arrive later. There-
fore, the optimal schedulability will be obtained for slot and phase lengths
which are not tending towards the maximum. The number of alternative
slot and phase lengths to be considered by the heuristic in Figure 4.9 is
limited by the following two factors:
 1. The maximum length of a static slot or dynamic phase is fixed by the

technology (e.g. 32 or 64 bits).
 2. Only frames consisting of entire messages can be transmitted, which

excludes several alternatives.

4.4 Experimental Results
For the evaluation of our design optimisation heuristic we have used syn-
thetic applications as well as a real-life example consisting of a vehicle
cruise controller.

We have randomly generated applications of 40, 60, 80 and 100 tasks on
systems with 4 processors. 56 applications were generated for each dimen-
sion, thus a total of 224 applications were used for experimental evalua-
tion. An equal number of applications with processor utilisation of 20%,
40%, 60% and 80% were generated for each application dimension. All

DESIGN OPTIMISATION

75

experiments were run on an AMD AthlonXP 2400+ processor, with 512
MB RAM.

We were first interested to determine the quality of our design optimisa-
tion approach for hierarchically scheduled systems, the MSPAHeuristic

(MSPA, see Figure 4.7). We have compared the percentage of schedulable
implementations found by MSPA with the number of schedulable solu-
tions obtained by the InitialMSPA algorithm described in Section 4.3 (see
Figure 4.5, line 2), which derives a straight-forward system implementa-
tion, denoted with SF. The results are depicted in Figure 4.10.a. We can
see that our MSPA heuristic (the black bars) performs very well, and finds
a number of schedulable systems that is considerably and consistently
higher than the number of schedulable systems obtained with the SF
approach (the white bars). On average, MSPA finds 44.5% more schedu-
lable solutions than SF.

Second, we were interested to determine the impact of the scheduling
policy assignment (SPA) decisions on the number of schedulable applica-
tions obtained. Thus, for the same applications, we considered that the
task mapping is fixed by the SF approach, and only the SPA is optimised.
Figure 4.10.a presents this approach, labelled “MSPA/No mapping”, cor-
responding to the gray bars. We can see that most of the improvement over
the SF approach is obtained by carefully optimising the SPA in our MSPA
heuristic.

We were also interested to find out what is the impact of the processor
utilization of an application on the quality of the implementations pro-
duced by our optimisation heuristic. Figure 4.10.b presents the percentage
of schedulable solutions found by MSPA and SF as we ranged the utiliza-
tion from 20% to 80%. We can see that SF degrades very quickly with the
increased utilization, with under 10% schedulable solutions for applica-
tions with 40% utilization and without finding any schedulable solution
for applications with 80% utilization, while MSPA is able to find a signif-
icant number of schedulable solutions even for high processor utilisation.

In Figure 4.10.c we show the average run times obtained by applying
our MSPA heuristic on the examples presented in Figure 4.10.a. The upper
curve illustrates the average execution times for those applications which
were not found schedulable by our heuristic. This curve can be considered

CHAPTER 4

76

Sc
he

du
la

bl
e

Sy
st

em
s

(%
)

Sc
he

du
la

bl
e

Sy
st

em
s

(%
)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

40 60 80 100

MSPA
MSPA/No mapping
SF

0

10%

20%

30%

40%

50%

60%

70%

80%

20% 40% 60% 80%

MSPA
SF

0

500

1000

1500

2000

2500

3000

3500

40 60 80 100

MSPA fails
MSPA succeeds

T
im

e
(s

)

a) Application Size (No. of Tasks)

c) Application Size (No. of Tasks)

b) Processor utilization (%)

Figure 4.10: Performance of the Design Optimisation
Heuristic

DESIGN OPTIMISATION

77

as an upper bound for the computation time of our algorithm. For the
examples that were found schedulable, our heuristic stops the exploration
process earlier, thus leading to smaller computation times, as shown in the
lower curve in Figure 4.10.c. We can see that, considering the complex
optimisation steps performed, our design optimisation heuristic produces
good quality results in a reasonable amount of time (for example, the heu-
ristic will finish on average in less than 500 seconds for applications with
80 tasks that were found schedulable).

In the case when Step 2 of the general design optimisation strategy (line
4 in Figure 4.5) does not yield a system that meets its deadlines, an addi-
tional bus access optimisation is performed at the end of the MSPA. In our
experiments we have found that after such a bus access optimisation (Step
3 in Figure 4.5) the number of schedulable applications found will
increase with 4-6%. While such an increase may seem insignificant, we
have to take into consideration that the second step of the general strategy
is already aggressive enough in finding schedulable systems. The full
power of the bus access optimisation will be more visible in Chapter 7,
where we exclusively investigate the influence of the bus access structure
on the schedulability degree of the system.

Finally, we have considered the real-life example implementing a vehi-
cle cruise controller described in Appendix C. For this example, SF failed
to produce a schedulable implementation. We applied our design optimi-
sation heuristic MSPA first in a context in which the mapping is fixed by
SF, and we only allowed the reassignment of scheduling policies. After
29.5 seconds, the best scheduling policy allocation that was found still
resulted in an unschedulable system, but with a “degree of schedulability”
three times higher than the one obtained by SF. When optimisation of task
mapping was also allowed, MSPA succeeded in finding a schedulable sys-
tem configuration after 28.49 seconds.

CHAPTER 4

78

THE FLEXRAY COMMUNICATION PROTOCOL

79

Chapter 5
The FlexRay

Communication Protocol

FlexRay is a communication protocol heavily promoted by a large group
of car manufacturers and automotive electronics suppliers. However,
before it can be successfully used for safety-critical applications that
require predictability, timing analysis techniques are necessary for provid-
ing bounds for the message communication times.

In this part of the thesis we present an approach to timing analysis of
applications communicating over a FlexRay bus, taking into consideration
the specific aspects of this protocol, including the DYN segment. More
exactly, we propose techniques for determining the timing properties of
messages transmitted in the static and the dynamic segments of a FlexRay
communication cycle. We first develop a worst-case response time analy-
sis for ET messages sent using the DYN segment, thus providing predict-
ability for messages transmitted in this segment. The analysis techniques
for messages are integrated in the context of a holistic schedulability anal-
ysis algorithm that computes the worst-case response times of all the tasks
and messages in the system.

Such an analysis, while being able to bound the message transmission
times on both the ST and DYN segments, represents the first step towards

CHAPTER 5

80

enabling the use of this protocol in a systematic way for time critical appli-
cations. The second step towards an efficient use of FlexRay is taken in
the following chapter, where we propose several optimisation techniques
that consider the particular features of an application during the process of
finding a FlexRay bus configuration that can guarantee that all time con-
straints are satisfied.

The second part of the thesis is organised as follows. The remaining part
of the current chapter presents the FlexRay media access control. In Chap-
ter 6, we present our timing analysis for distributed real-time systems that
use the FlexRay protocol, together with the experimental results we have
run in order to determine the efficiency of our approaches. Chapter 7
shows how system schedulability is improved as a result of careful bus
access optimisation. We will present and evaluate three optimisation algo-
rithms that can be used to improve the schedulability of a system that uses
FlexRay. We will evaluate the proposed analysis and optimisation tech-
niques using extensive experiments.

5.1 The Media Access Control for FlexRay
In this section we will describe how messages generated by the CPU reach
the communication controller and how they are transmitted on the bus. Let
us consider the example in Figure 5.1 where we have an architecture con-
sisting of three nodes, N1 to N3 sending messages ma, mb,... mh using a
FlexRay bus.

Figure 5.1 depicts the main components of a node in a FlexRay-based
system:
 • the communication controller that connects the node to the FlexRay

bus
 • the host, that contains a CPU and local memories
 • the controller-host-interface (CHI) which is mainly represented in the

figure as a set of buffers used for sending data between the host and
the communication controller

In FlexRay, the communication takes place in periodic cycles
(Figure 5.1.b depicts two cycles of length Tbus). Each cycle contains two

THE FLEXRAY COMMUNICATION PROTOCOL

81

time intervals with different bus access policies: an ST segment and a
DYN segment1. The ST and DYN segment lengths can differ, but are
fixed over the cycles. We denote with STbus and DYNbus the length of these
segments. Both the ST and DYN segments are composed of several slots.
In the ST segment, the slots number is fixed, and the slots have constant
and equal length, regardless of whether ST messages are sent or not over
the bus in that cycle. The length of an ST slot is specified by the FlexRay
global configuration parameter gdStaticSlot [Fle07]. In Figure 5.1 there
are three static slots for the ST segment.

The length of the DYN segment is specified in number of “minislots”,
and is equal to gNumberOfMinislots. Thus, during the DYN segment, if no
message is to be sent during a certain slot, then that slot will have a very
small length (equal to the length gdMinislot of a so called minislot), other-
wise the DYN slot will have a length equal with the number of minislots
needed for transmitting the whole message [Fle07]. This can be seen in
Figure 5.1.b, where DYN slot 2 has 3 minislots (4, 5, and 6) in the first bus
cycle, when message me is transmitted, and one minislot (denoted with
“MS” and corresponding to the minislot counter 2) in the second bus cycle
when no message is sent.

During any slot (ST or DYN), only one node is allowed to send a frame
on the bus, and that is the node which holds the message with the frame
identifier (FrameID) equal to the current value of the slot counter. There
are two slot counters, corresponding to the ST and DYN segments, respec-
tively. The assignment of frame identifiers to nodes is static and decided
off-line, during the design phase. Each node that sends messages has one
or more ST and/or DYN slots associated to it. The bus conflicts are solved
by allocating off-line one slot to at most one node, thus making it impos-
sible for two nodes to send during the same ST or DYN slot.

In Figure 5.1, node N1 has been allocated ST slot 2 and DYN slot 3, N2
transmits through ST slots 1 and 3 and DYN slots 2 and 4, while node N3
has DYN slots 1 and 5. For each of these slots, the CHI reserves a buffer
that can be written by the CPU and read by the communication controller

1. The FlexRay bus cycle contains also a symbol window and a network idle time,
but their size does not affect the equations in our analysis. For simplicity, they
will be ignored during the examples throughout the thesis.

CHAPTER 5

82

F
ig

u
re

 5
.1

:
F

le
xR

ay
 C

om
m

u
n

ic
at

io
n

 C
yc

le
 E

xa
m

pl
e

C
om

m
un

ic
at

io
n

co
nt

ro
lle

r

N
1

N
2

N
3

2
1

3
2

4
1

5

m
b

2/
2

m
c

1/
3

m
a

1/
1

m
d

m
f

m
g

m
h

m
e

m
a

3

m
c

m
b

m
d

m
e

m
f

m
g

m
h

T
bu

s

St
at

ic
 s

eg
m

en
t

D
yn

am
ic

 s
eg

m
en

t

T
bu

s

St
at

ic
 s

eg
m

en
t

D
yn

am
ic

 s
eg

m
en

t

1
2

3
1

2
3

S
ta

ti
c

sl
ot

 c
ou

nt
er

1
2

3

D
yn

am
ic

 s
lo

t c
ou

nt
er4

5

M
in

is
lo

t c
ou

nt
er

1
2

3
4

5

1
2

3
4

5
6

7
8

9
10

11
12

MS

MS

MS
MS
MS

MS

Sc
he

du
le

ta
bl

e

Pr
io

ri
ty

qu
eu

es

Controller-Host
Interface (CHI)

Host
(CPU)

a) b)

hi
gh

lo
w

1
2

3
4

5
6

7
8

9
10

11
12

C
om

m
un

ic
at

io
n

co
nt

ro
lle

r

N
1

N
2

N
3

2
1

3
2

4
1

5

m
b

2/
2

m
c

1/
3

m
a

1/
1

m
c

1/
3

m
a

1/
1

m
d

m
f

m
g

m
h

m
e

m
a

3

m
c

m
b

m
d

m
e

m
f

m
g

m
h

T
bu

s

St
at

ic
 s

eg
m

en
t

D
yn

am
ic

 s
eg

m
en

t

T
bu

s

St
at

ic
 s

eg
m

en
t

D
yn

am
ic

 s
eg

m
en

t

1
2

3
1

2
3

S
ta

ti
c

sl
ot

 c
ou

nt
er

1
2

3

D
yn

am
ic

 s
lo

t c
ou

nt
er4

5

M
in

is
lo

t c
ou

nt
er

1
2

3
4

5

1
2

3
4

5
6

7
8

9
10

11
12

1
2

3
4

5
6

7
8

9
10

11
12

MS

MS

MS
MS
MS

MS

Sc
he

du
le

ta
bl

e

Pr
io

ri
ty

qu
eu

es

Controller-Host
Interface (CHI)

Host
(CPU)

a) b)

hi
gh

lo
w

1
2

3
4

5
6

7
8

9
10

11
12

1
2

3
4

5
6

7
8

9
10

11
12

THE FLEXRAY COMMUNICATION PROTOCOL

83

(these buffers are read by the communication controller at the beginning
of each slot, in order to prepare the transmission of frames). The associ-
ated buffers in the CHI are depicted in Figure 5.1.a. We denote with

 the number of dynamic slots associated to a node Np (this
means that for N2 in Figure 5.1, has value 2).

We use different approaches for ST and DYN messages to decide which
messages are transmitted during the allocated slots. For ST messages, we
consider that the CPU in each node holds a schedule table with the trans-
mission times. Each transmission time is expressed in the table as a pair of
numbers representing the ST slot and the number of the bus cycle inside
the hyper-period that is covered by the static cyclic schedule. When the
time comes for an ST message to be transmitted, the CPU will place that
message in its associated ST buffer of the CHI. For example, ST message
mb sent from node N1 has an entry “2/2” in the schedule table specifying
that it should be sent in the second ST slot of the second bus cycle.

For the DYN messages, the designer specifies their FrameID. For
example, DYN message me has the frame identifier “2”. We assume that
there can be several messages sharing the same DYN FrameID1. For
example, messages mg and mf have both FrameID 4. If two messages with
the same frame identifier are ready to be sent in the same bus cycle, a pri-
ority scheme is used to decide which message will be sent first. Each DYN
message mi has associated a priority prioritymi

. Messages with the same
FrameID will be placed in an output queue ordered based on their priori-
ties. The message form the head of the priority queue is sent in the current
bus cycle. For example, message mf will be sent before mg because it has a
higher priority.

At the beginning of each communication cycle, the communication
controller of a node resets the slot and minislot counters. At the beginning
of each communication slot, the controller verifies if there are messages
ready for transmission (present in the CHI send buffers) and packs them

1. If messages are not sharing FrameIDs, this is handled implicitly as a particular
case of our analysis.

DYNSlotsNp

DYNSlotsN2

CHAPTER 5

84

into frames1. In the example in Figure 5.1 we assume that all messages are
ready for transmission before the first bus cycle.

Messages selected and packed into ST frames will be transmitted dur-
ing the bus cycle that is about to start according to the schedule table. For
example, in Figure 5.1, messages ma and mc are placed into the associated
ST buffers in the CHI in order to be transmitted in the first bus cycle.
However, messages selected and packed into DYN frames will be trans-
mitted during the DYN segment of the bus cycle only if there is enough
time until the end of the DYN segment. Such a situation is verified by
comparing if, in the moment the DYN slot counter reaches the value of the
FrameID for that message, the value of the minislot counter is smaller
than a given value pLatestTx. The value pLatestTx is fixed for each node
during the design phase, depending on the size of the largest DYN frame
that node will have to send during run-time. For example, in Figure 5.1,
message mh is ready for transmission before the first bus cycle starts, but,
after message mf is transmitted, there is not enough room left in the DYN
segment. This will delay the transmission of mh for the next bus cycle.

1. In this thesis we do not address frame-packing [PopP05], and thus assume that
one message is sent per frame.

TIMING ANALYSIS OF FLEXRAY MESSAGES

85

Chapter 6
Timing Analysis of FlexRay

Messages

Given a distributed system based on FlexRay, as described in the previous
two sections, the tasks and messages have to be scheduled. As presented in
Chapter 3, this means that for the SCS tasks and ST messages we need to
build the schedule tables, while for the FPS tasks and DYN messages we
have to determine their worst-case response times.

The global scheduling and analysis algorithm presented in Chapter 3 is,
in principle, valid for all distributed embedded systems that rely on heter-
ogeneous communication protocols, which makes it applicable for the
FlexRay based systems, too. More exactly, this means that for the ST mes-
sages transmitted over FlexRay we can build the static cyclic schedule
using the same algorithm presented in Figure 3.6. However, for the DYN
messages we will have to modify the schedulability analysis, since the
FlexRay DYN segment relies on FTDMA and not on CSMA/BA like in
Chapter 3.

The next subsection presents our solution for computing the worst case
response times of DYN messages, while in Section 6.2 we will integrate
this solution into a holistic schedulability analysis that determines the tim-

CHAPTER 6

86

ing properties of both FPS tasks and DYN messages (which is called in
line 11, of the schedule_TT_task presented in Figure 3.6).

6.1 Schedulability Analysis of DYN Messages
We have captured in the following equation the worst case response time
Rm of a FlexRay DYN message m:

, (6.1)

where Cm is the message communication time (see Section 2.4), σm is the
longest delay suffered during one bus cycle if the message is generated by
its sender task after its slot has passed, and wm is the worst case delay
caused by the transmission of ST frames and higher priority DYN mes-
sages during a given time interval t. For example, in Figure 6.1, we con-
sider that a message m is supposed to be transmitted in the 3rd DYN slot of
the bus cycle. The figure presents the case when message m appears dur-
ing the first bus cycle after the 3rd DYN slot has passed, therefore the
message has to wait until the next bus cycle starts. In the second bus
cycle, the message has to wait for the ST segment and for the first two
DYN slots to finish, delay denoted with wm (that also contains the trans-
mission of a message m’ that uses the second DYN slot).

The communication controller decides what message is to be sent on the
bus in a certain communication slot at the beginning of that slot. As a con-
sequence, in the worst case, a DYN message m is generated by its sender
task immediately after the slot with the FrameIDm has started, forcing
message m to wait until the next bus cycle starts in order to really start

Rm t() σm wm t() Cm+ +=

Figure 6.1: Response Time of a DYN Message

ST ST m

M
S

minislot counter: 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

0

... ...
DYN slot counter:

...

1 2

m’

31 2 3 4 5 6 7 8 9 ...

σm wm

Tbus

FrameID3 · gdMinislot

σm

TIMING ANALYSIS OF FLEXRAY MESSAGES

87

competing for the bus. In conclusion, in the worst case, the delay σm has
the value:

, (6.2)

where STbus is the length of the ST segment.
What is now left to be determined is the value wm corresponding to the

maximum amount of delay that can be produced by interference from ST
frames and DYN messages. We start from the observations that the trans-
mission of a ready DYN message m during the DYN slot FrameIDm can
be delayed because of the following causes:
 • local messages with higher priority, that are generated by the same

node and use the same frame identifier as m. We will denote this set of
higher priority local messages with hp(m). For example, in
Figure 5.1.a, messages mg and mf share FrameID 4, thus hp(mg) =
{mf}.

 • any messages in the system that can use DYN slots with lower frame
identifiers than the one used by m. We will denote this set of messages
having lower frame identifiers with lf(m). In Figure 5.1.a, lf(mg) =
{md, me}.

 • unused DYN slots with frame identifiers lower than the one used for
sending m (though such slots are unused, each of them still delays the
transmission of m for an interval of time equal with the length
gdMinislot of one minislot); we will denote the set of such minislots
with ms(m). Thus, in the example in Figure 5.1.a, ms(mg) = {1, 2, 3},
and ms(mf)={3}.

Determining the interference of DYN messages in FlexRay is compli-
cated by several factors. Let us consider the example in Figure 6.2, where
we have two nodes, N1 (with FrameIDs 1 and 3) and N2 (with FrameID 2),
and three messages m1 to m3. N1 sends m1 and m3, and N2 sends message
m2. Messages m1 and m2 have FrameIDs 1 and 2, respectively. We con-
sider two situations: Figure 6.2.a, where m3 has a separate FrameID 3, and
Figure 6.2.b, where m3 shares the same FrameID 1 with m1. The values of
pLatestTx for each node are depicted in the figure1.

1. We use pLatestTxm to denote pLatestTxN of the node N sending message m.

σm Tbus STbus FrameIDm gdMinislot⋅+()–=

CHAPTER 6

88

F
ig

u
re

 6
.2

:
T

ra
n

sm
is

si
on

 S
ce

n
ar

io
s

fo
r

D
Y

N
 M

es
sa

ge
s

gd
C

yc
le

=
20

ST
bu

s
=

8

C
(m

1)
 =

 7
C

(m
2)

 =
 6

C
(m

3)
 =

 3

gs
M

in
is

lo
t=

 1

M
(m

1)
 =

 1
M

(m
2)

 =
 2

M
(m

3)
 =

 1

S
T

ST
m

1
m

3
m

2

MS

MS

gd
C

yc
le

m
in

is
lo

t c
ou

nt
er

:
1

2
3

4
5

6
7

8
9

1
2

3
4

5
6

7
8

9

0

...
...

ST
S

T
m

1
m

3
m

2

MS

gd
C

yc
le

m
in

is
lo

t c
ou

nt
er

:
1

2
3

4
5

6
7

8
9

1
2

3
4

5
6

7
8

9

0

...
...

D
Y

N
 s

lo
t c

ou
nt

er
:

1
2

3

...
...

...
...

1
2

D
Y

N
 s

lo
t c

ou
nt

er
:

1
2

3
1

2

2
m

w
’

b)

N
1

N
2

1
2m

2

m
3

m
1

N
2

a)

1
3

2m
2

m
3

m
1

N
1

B
us

C
yc

le
s m

1
·g

dC
yc

le
(B

us
C

yc
le

s m
1

=1
)

Fr
am

eI
D

(m
1)

 =
1,

 F
ra

m
eI

D
(m

2)
 =

 2
, F

ra
m

eI
D

(m
3)

 =
 3

Fr
am

eI
D

(m
1)

 =
1,

 F
ra

m
eI

D
(m

2)
 =

 2
, F

ra
m

eI
D

(m
3)

 =
 1

, p
ri

or
ity

(m
3)

 >
 p

ri
or

ity
(m

3)

pL
at

es
tT

x(
m

3)
 =

 9

pL
at

es
tT

x(
m

2)
 =

 6

pL
at

es
tT

x(
m

1)
 =

 9

R
(m

3)
 =

 3
1

R
(m

3)
 =

 1
9

TIMING ANALYSIS OF FLEXRAY MESSAGES

89

In Figure 6.2.a, message m2, that has a lower FrameID than m3, cannot
be sent immediately after message m1, because the value of the minislot
counter has exceeded the value when the value of the DYN
slot counter becomes equal to 2 (hence, m2 does not fit in this DYN cycle).
As a consequence, the transmission of m2 will be delayed for the next bus
cycle. However, since in the moment when the DYN slot counter becomes
3 the minislot counter does not exceed the value , message m3
will fit in the first bus cycle. Thus, a message (m3 in our case) can be sent
before another message with a lower FrameID (m2). Such situations must
be accounted for when building the worst-case scenario.

In Figure 6.2.b, message m3 shares the same FrameID 1 with m1 but we
consider that it has a lower priority, thus hp(m3) = {m1}. In this case, m3 is
sent in the first DYN slot of the second bus cycle (the first slot of the first
cycle is occupied with m1) and thus will delay the transmission of m2. In
this scenario, we notice that assigning a lower frame identifier to a mes-
sage does not necessarily reduce the worst-case response time of that mes-
sage (compare to the situation in Figure 6.2.a, where m3 has FrameID =
3).

We next focus on determining the delay wm(t) in Equation (6.1). The
delay produced by all the elements in hp(m), lf(m) and ms(m) can extend to
one or more bus cycles. As a consequence, Equation (6.1) for finding the
worst case response time Rm can be rewritten as:

(6.3)

where BusCyclesm(t) is the number of bus periods for which the transmis-
sion of m is not possible because transmission of messages from hp(m)
and lf(m) and because of minislots in ms(m). The delay denotes now
the time, in the last bus cycle, until m is sent, and is measured from the
beginning of the bus cycle in which message m is sent until the actual
transmission of m starts. For example, in Figure 6.2.b, = 1
and = . Note that both these terms are functions of time,
computed over an analysed interval t. This means that when computing
them we have to take into consideration all the elements in hp(m), lp(m)
and ms(m) that can appear during such a given time interval t. Thus, we
will consider the multi-set hp(m, t) containing all the occurrences over t of

pLatestTxm2

pLatestTxm3

Rm t() σm BusCyclesm t() T×
bus

w'm t() Cm+ + +=

w'm t()

BusCyclesm2

w'm2
t() STbus Cm3

+

CHAPTER 6

90

elements in hp(m). The number of such occurrences for a message
 is equal to: , where Tl is the period of the message

l and Jl is its worst-case jitter (such a jitter is computed as the difference
between the worst-case and best-case response times of its sender task s:

 [Pal98]). Similarly, lf(m, t) and ms(m, t) consider all the
occurrences over t of elements in lf(m) and ms(m) respectively.

The next two sections (6.1.1 and 6.1.2) present the optimal (i.e., exact)
solutions for determining the values for BusCyclesm(t) and , respec-
tively. These, however, can be intractable for larger problem sizes. Hence,
in Sections 6.1.3 and 6.1.4 we propose heuristics that quickly compute
upper bounds (i.e., pessimistic) values for these terms.

Once for any given t we know how to obtain the values BusCycles(t)
and , we can use this knowledge to determine the worst case
response time for a message m using equation Equation (6.3). This equa-
tion is solved using an iterative process that is depicted in Figure 6.3. The
algorithm Compute_DYN_message_response_time starts by considering an
initial value t = Cm and an identical initial message response time Rm = t
(lines 1-2). However, the initial time interval t does not consider possible
delays or interferences produced by other messages in the system. There-
fore, the iteration that follows in lines 3-8 is adjusting the message
response time by computing in each step k the values for BusCyclesm(t),

 and R(t) respectively. At the end of each iteration, the analysed time
interval is adjusted, according to the new value of the response time for
message m (line 7). The entire process ends when the response times com-

l hp m()∈ Jl t+() Tl⁄

Jl Rs Rs
b–=

w'm t()

 Compute_DYN_message_response_time(m)
1 t = Cm
2 Rk-1 = t
3 do
4 compute BusCyclesm(t)
5 compute w’m(t)
6 compute Rk(t) using Equation (6.3)
7 set t = Rk(t)
8 until Rk(t) = Rk-1(t)
9 set Rm = t

Figure 6.3: Iterative process for solving Equation (6.3)

w'm t()

w'm t()

TIMING ANALYSIS OF FLEXRAY MESSAGES

91

puted over two successive iterations does not change (line 8), meaning
that the analysed time interval t is large enough to allow the transmission
of all the messages in hp(m) and lf(m), of all the minislots in ms(m), and of
the message m itself, while accounting at the same time for all the ST seg-
ments that can appear during t. This means that the value t produced after
the iteration is completed represents actually the computed worst-case
response time of message m, hence it has to be saved accordingly (line 9).

6.1.1 OPTIMAL SOLUTION FOR

We start with the observation that a message m with FrameIDm cannot be
sent by a node Np during a bus cycle b if at least one of the following con-
ditions is fulfilled:
 1. There is too much interference from elements in lf(m) and ms(m), so

that the minislot counter exceeds the value , making it im-
possible for Np to start the transmission of m during b. For example in
Figure 6.2.a, message m2 cannot be sent during the first bus cycle be-
cause the transmission of a higher priority message m1 pushes the
minislot counter over the value .

 2. The DYN slot FrameIDm in b is used by another local higher priority
message from hp(m). For example, in Figure 6.2.b, messages m1 and
m3 share the same frame identifier and hp(m3) = {m1}. Therefore, the
transmission of m3 in the first bus cycle is not possible.

Whenever a bus cycle satisfies at least one of these two conditions, it
will be called “filled”, since it is unusable for the transmission of the mes-
sage m under analysis. In the worst case, the value BusCyclesm(t) is then
the maximum number of bus cycles that can be filled using elements from
hp(m), lf(m) and ms(m).

BusCyclesm

mema mc mb mdmf mg

Tbus

Static segment Dynamic segment

Tbus

Static segment Dynamic segment

1 2 3

1

2 3

Static slot counter

1 2 3

Dynamic slot counter

4 5... 1 2 3 4

1 2 3 4 5 6 7 8 9 10 11 12

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

M
S

Figure 6.3: Worst Case Scenario for DYN message mg

pLatestTxNp

pLatestTxN2

CHAPTER 6

92

Since messages in hp(m, t) and lf(m, t) can become ready at any point
during the analysed interval t, one can notice that, in the worst case, each
bus cycle which is filled with an element from hp(m, t) will contain no
messages from lf(m, t). This means that in the worst case, each filled bus
cycle will contain either only messages from lf(m, t), or only one message
from hp(m, t). For example, considering the same setup presented in
Figure 5.1, the worst-case scenario for message mg is when message mf is
ready at the beginning of the first bus cycle and messages md and me
become ready just before the start of their slots in the second bus cycle
(see Figure 6.3 for the worst-case scenario of mg).

This means that, in the worst case, the delay produced by elements in
lf(m, t) and ms(m, t) adds up to that produced by messages in hp(m, t):

, (6.4)

where we denote with BusCyclesm(hp(m, t)) the number of bus cycles in
which the delay of the message m under analysis is produced by messages
in hp(m, t) (corresponding to the second condition presented above); sim-
ilarly, BusCyclesm(lf(m, t), ms(m, t)) is the number of “filled” bus cycles in
which the transmission of message m is delayed by elements in lf(m, t) and
ms(m, t) (corresponding to the first condition presented above).

Since each message in hp(m, t) delays the transmission of m with one
bus cycle, the occurrences over t of messages in hp(m) will produce a
delay equal to the total number of elements in hp(m, t):

 . (6.5)

The problem that remains to be solved is to determine how many bus
cycles can be “filled” according to the first condition presented above
using only elements in lf(m, t) and ms(m, t). As we will discuss later, a
simplified version of this problem is equivalent to bin covering, which
belongs to the family of NP-hard problems [Lab95]. To obtain the optimal
solution, we have modelled the problem of computing BusCyclesm(lf(m,
t), ms(m, t)) as an integer linear program (ILP). The model starts from the
observation that, considering we have n elements in lf(m, t), there are at
most n bus cycles that can be filled. For each such bus cycle we create a

BusCyclesm t() BusCyclesm hp m t,()()
BusCyclesm lf m t,() ms m t,(),()

+=

BusCyclesm hp m t,()() hp m t,()=

TIMING ANALYSIS OF FLEXRAY MESSAGES

93

binary variable yi=1..n that is set to 1 when the i-th bus cycle is filled with
elements from lf(m, t) and ms(m, t), and to 0 if it is not filled (i.e., it can
allow the transmission of message m under analysis).

The goal of the ILP problem is to maximize the number of filled bus
cycles (i.e., to calculate the worst-case):

, (6.6)

subject to a set of conditions that set the variables yi to 1 or 0. Bellow we
describe these conditions, which capture how messages in lf(m, t) and the
minislots in ms(m, t) are sent by FlexRay in these bus cycles.

We allocate a binary variable xijk that is set to 1 if a message
 (k = 1..n) is sent during the i-th bus cycle, using the FrameID

j = 1..FrameIDm. The load transmitted in each bus cycle can be expressed
as:

, (6.7)

where Ck are the communication times (Equation (2.1)) of the messages
. Each term of the sum in Equation (6.7) captures the particu-

larities of FlexRay DYN frames: if a message k is transmitted in cycle i
with frame identifier j, then xijk = 1 and the length of the frame being trans-
mitted is equal with the length of the message k, (thus the term); if
xijk is 0 for all j and k, then there is no actual transmission on the bus in that
DYN slot, but there is still some delay due to the empty minislot of length
gdMinislot that has to pass in order to increase the value of the DYN slot
counter (thus the second term).

The condition that sets each variable yi to 1 whenever possible is:

, (6.8)

where is the last minislot which allows the start of transmis-
sion from node Np which generates the message m under analysis. Such a
condition enforces that a variable yi cannot be set to 1 unless the total

BusCyclesm lf m t,() ms m t,(),() yi

i 1..n=
∑=

mk lf m t,()∈

Loadi xijk Ck×
mk lf m t,()∈

j 1…FrameIDm=

∑=

1 xijk

mk lf m t,()∈
∑–

gdMinislot×
j 1…FrameIDm=

∑

+

mk lf m t,()∈

xijk C×
k

Loadi pLatestTxNp
g× dMinislot y×

i
>

pLatestTxNp

CHAPTER 6

94

amount of interference from lf(m, t) and ms(m, t) in cycle i exceeds
 minislots (only then message m is not allowed to be transmit-

ted and, thus, bus cycle i is “filled”).
In addition to this condition we have to make sure that

 • each message is sent in only one cycle i:

 ; (6.9)

 • each frame identifier is used only once in a bus cycle:

; (6.10)

 • each message is transmitted using its frame identifier:

, , (6.11)

where Framejk is a binary constant with value 1 if message
has a frame identifier = j (otherwise, Framejk is 0).

 Finally, we have to enforce that in every cycle i no message mk will
start transmission after its associated . If we have xijk = 1, then
we have to add the condition that the total amount of transmission that
takes place before DYN slot j has to finish no later than pLatestTxk:

(6.12)

The conditions (6.7)–(6.12) together with the maximisation goal
expressed in Equation (6.6) define the ILP program that will determine the
maximum worst-case number of bus cycles that can be filled with ele-
ments in lf(m, t) and ms(m, t). By adding this result to the value deter-
mined in Equation (6.5), we obtain the total number BusCyclesm(t)
(Equation (6.4)).

pLatestTxNp

mk lf m t,()∈

xijk

i 1…n=
j 1…FrameIDm=

∑ 1 mk lf m t,()∈∀,≤

xijk

k 1…n=
∑ 1 i j,∀,≤

mk lf m t,()∈

xijk Framejk≤ i j k, ,∀

mk lf m t,()∈
FrameIDmk

pLatestTxmk

xipq Cq×
mq lf m t,()∈
p 1..j 1–=

∑

1 xipq

mq lf m t,()∈
∑–

p 1..j 1–=
∑ gdMinislo× t

+

pLatestTxk gdMinislot×≤

TIMING ANALYSIS OF FLEXRAY MESSAGES

95

6.1.2 OPTIMAL SOLUTION FOR

Coming back to Equation (6.3), all we have left to determine is the value
of . In the worst case, the elements in lf(m,t) and ms(m,t) will delay the
message under analysis for BusCyclesm (lf(m,t), ms(m,t)) bus periods. In
addition, they will delay the actual transmission of m during the DYN seg-
ment of the bus period BusCyclesm + 1, by an amount .

The problem of determining the value for is defined as follows:
given the multi-sets lf(m,t) and ms(m,t) and the maximum number BusCy-
clesm(lf(m,t), ms(m,t)) that they can fill, what is the maximum possible
load (Equation (6.7)) in the first unfilled bus cycle (i.e. the bus cycle that
does not satisfy the condition in Equation (6.8)).

In order to determine the exact value of in the worst case, one can
use the same ILP formulation defined in the previous section for comput-
ing BusCyclesm(lf(m,t), ms(m,t)), with the following modifications:

 • since we know the value BusCyclesm (which is determined solving the
ILP formulation presented in the previous section), we add conditions
that force the values yi = 1 for all i=1..BusCyclesm, and yi = 0 for all i =
BusCyclesm + 1..n; in this way, the messages will be packed so that the
bus cycles from 1 to BusCyclesm will be filled (i.e they satisfy the con-
dition expressed in Equation (6.8)), while the remaining bus cycles
will be unfilled.

 • using the same set of conditions (6.7)–(6.12) for filling the first Bus-
Cyclesm cycles, the goal described in Equation (6.6) is replaced with
the following one, expressing that the load of the cycle number
BusCyclesm + 1 has to be maximized (LoadL is expressed as in
Equation (6.7)):

maximize , for (6.13)

6.1.3 HEURISTIC SOLUTION FOR BUSCYCLESM

We first make the observation that in a bus cycle where a message m is
sent by a node Np during DYN slot FrameIDm, in the worst case there will
be at most FrameIDm – 1 unused minislots before m is transmitted (in

wm′

wm′

wm′
wm′

wm′

LoadL L BusCyclesm 1+=

CHAPTER 6

96

Figure 6.2.a, the transmission of m2 can be preceded by at most one
unused minislot).

Instead of considering the multiset ms(m, t) to calculate the actual
number of unused minislots before message m, as we did for the exact
solution, we will consider the worst-case number of minislots. The delay
produced by the minislots will be considered as part of the message com-
munication time as follows (see also Equation (2.1)):

. (6.14)

Since the duration of one minislot (gdMinislot) is an order of magnitude
smaller compared to the length of a cycle, this approximation will not
introduce any significant pessimism.

The problem left to solve now is how many bus cycles can be filled with
the elements from a multiset lf ’(m, t), that consists of all the messages in
lf(m, t) for which we consider the communication times computed using
Equation (6.14).

If we ignore the conditions expressed in equations (6.10)-(6.12), then
determining BusCyclesm(lf’(m, t)) becomes a bin covering problem
[Ass84]. Bin covering tries to maximize the number of bins that can be
filled to a fixed minimum capacity using a given set of items with speci-
fied weights. In our scenario, the messages in lf’(m, t) are the items, the
dynamic segments of the bus cycles are bins, and

 is the minimum capacity required to fill a bin.
The bin-covering problem is NP-hard in the strong sense [Lab95], and our
heuristic solution is to determine an upper bound, using the approach pre-
sented in [Lab95], on the number of maximum bins that can be covered.
The upper bounds proposed in [Lab95] are of polynomial complexity and
lead to very good quality results (see Appendix B).

Note that, ignoring the conditions from equations (6.10)-(6.12) and
determining an upper bound for bin-covering can only lead to a possible
increase in the number of bus cycles compared to the exact solution.
Experiments will show the impact of the heuristic on the pessimism of the
analysis.

Cm′ FrameIDm 1–() gdMinislot× Cm+=

pLatestTxNp
gdMinislot×

TIMING ANALYSIS OF FLEXRAY MESSAGES

97

6.1.4 HEURISTIC SOLUTION FOR

A straightforward heuristic to the computation of stems from the
observation that, in a hypothetical worst-case scenario, message m could
be sent in the last possible moment of the current bus cycle, which means
that

 , (6.15)

where STbus is the length of the ST segment of a bus cycle.

6.2 Holistic Schedulability Analysis of FPS
Tasks and DYN Messages

The schedulability analysis algorithm that is depicted in Section 3.3,
Figure 3.3 considers that the messages are transmitted according to a
fixed-priority policy. For this reason, the algorithm uses the same proce-
dures for computing worst-case response times for both the DYN mes-
sages and for the FPS tasks (the only difference is that the messages must
consider a blocking time needed to model the non-preemptivity of the
transmission). If we replace the communication protocol with FlexRay,
then the analysis algorithm has to implement the technique presented in
the previous section in order to capture the worst-case response times of
DYN messages. The modified algorithm for the schedulability analysis is
presented in Figure 6.4, where the code added in lines 5-7 is responsible
for taking care of the situations when the analysed system activity is a
DYN message. In such a situation, the algorithm has to call the procedure
that computes the worst-case response time of that message (the procedure
has been presented in Figure 6.3).

What is important to mention is that in a distributed system, the worst-
case response time Rij depends on the jitters of the higher priority tasks
and predecessors of τij. This means that for all the activities in the system
we must be able to compute their jitter. According to the analysis of mul-
tiprocessor and distributed systems presented in [Pal98], the jitter for a
system activity a that is data dependant on another system activity b can be

wm′

wm′

w'm STbus pLatestTxNp
gdMinislot×+=

CHAPTER 6

98

computed as the difference between the worst-case response time Rb and
best-case response time Rb

b of the predecessor. In the algorithm in
Figure 6.4, this computation is performed on line 24, where each time the
worst-case response time of a system activity is updated, the jitters of all
its successors are also recomputed. For all the tasks in the system we
already know how to compute the worst-case and best-case response
times, which means that we are able to compute the jitter of any activity

Figure 6.4: Schedulability Analysis Algorithm
for FlexRay-based Systems

1 do
2 Done = true
3 for each transaction Γi do
4 for each activity τij in Γi do
5 if τij is a DYN message then
6 Rij

max = Compute_DYN_message_response_time(τij)
7 else
8 for each task τik in Γi do
9 if Prioik ≥ Prioij andM(τik) = M(τij)then
10 for each job p of τij do
11 Consider that τik initiates tc
12 Compute Rij

p

13 if Rij
p > Rij

max then
14 Rij

max = Rij
p

15 endif
16 endfor
17 endif
18 endfor
19 endif
20 if Rij

max > Rij then -- larger Rij found
21 Rij = Rij

max

22 Done = false
23 for each successor τik of τij do
24 Jik

 = Rij - Rij
b -- update jitters

25 endfor
26 endif
27 endfor
28 endfor
29 while (Done!= true)

TIMING ANALYSIS OF FLEXRAY MESSAGES

99

that is preceded by a task. What we have to investigate now is the case
when a task is preceded by a DYN message and see how the analysis of
the message timing properties influences the jitters of such a task.

Let us consider a task τr that starts execution only after it receives a
message m. Its jitter depends on the values of the best-case and worst-case
transmission times of that message:

. (6.16)

The calculation of the worst-case transmission time Rm of a DYN mes-
sage m was presented in Section 6.1. For computing Rb

m we have to iden-
tify the best-case scenario of transmitting message m. Such a situation
appears when the message becomes ready immediately before the DYN
slot with FrameIDm starts, and it is sent during that bus cycle without
experiencing any delay from higher priority messages. Thus, the equation
for the best-case transmission time of a message is:

, (6.17)

where Cm is the time needed to send the message m.
Let us make a final remark. According to [Ped00], the worst-case

response time calculation of FPS tasks is of exponential complexity. The
approximation approach proposed in [Ped00] and also used in the algo-
rithm presented in Figure 6.4 is a heuristic with a certain degree of pessi-
mism. The pessimism of the response times calculated by our holistic
analysis will, of course, also depend on the quality of the solution for the
delay induced by the DYN messages transmitted over FlexRay. The calcu-
lation of this delay is our main concern in this chapter. Therefore, when we
speak about optimal and heuristic solutions in this chapter we refer to the
approach used for calculating the BusCyclesm and (used in the worst-
case response times calculation for DYN messages) and not the holistic
response time analysis which is based on the heuristics in [Ped00].

6.3 Analysis for Dual-channel FlexRay Bus
The specification of the FlexRay protocol mentions that the bus has two
communication channels [Fle07]. The analysis presented above is appro-

Jτr
Rm Rm

b
–=

Rm
b

Cm=

wm′

CHAPTER 6

100

priate for systems where the two channels of the FlexRay bus are used in a
redundant manner, transporting the same information simultaneously in
order to support fault-tolerance.

In order to increase the bandwidth of the bus, one can use the two chan-
nels independently, so that different sets of messages are sent over each of
the channels during a bus cycle. In this section we outline the extension of
our previous analysis in order to compute the worst case response times
for messages transmitted in such systems.

First, we extend our system model presented in Chapter 2 and consider
that all nodes in the system have access to a dual-channel FlexRay bus. As
a consequence, in the application model each message m is associated a
pair <FrameIDm, Channelm>, with the meaning that message m is sent
during FrameIDm on Channelm (where Channelm = {A, B}).

Second, we notice that the transmission of a message can be delayed
only by messages that are transmitted on the same channel. As a conse-
quence, the only modification in the analysis presented in Section 6.1 is
the definition of the sets lf(m) and hp(m), which contain only those mes-
sages that are transmitted on Channelm:

 • hp(m) becomes now the set of local messages with higher priority, that
use the same frame identifier and the same channel as m.

 • lf(m) contains any messages in the system that can use Channelm and
DYN slots with lower frame identifiers than the one used by m.

6.4 Evaluation of Analysis Algorithms
We are interested to determine the quality of the proposed analysis
approaches, and how well they scale with the number of FlexRay mes-
sages that have to be analysed. All the experiments were run on P4
machines using 2GB RAM. The ILP-based solutions have been imple-
mented using the CPLEX 9.1.2 ILP solver1.

We have generated synthetic applications of 20, 30, 40 and 50 tasks
mapped on architectures consisting of 2, 3, 4, and 5 nodes, respectively.

1. http://www.ilog.com/products/cplex

TIMING ANALYSIS OF FLEXRAY MESSAGES

101

Fifteen applications were generated for each of these four cases. The
number of time-critical FlexRay messages were 30, 60, 90, and 120 for
each case, respectively. Out of these, 10, 20, 30, and 40 messages were
time-critical DYN messages that were analysed using the approaches pre-
sented in Section 5. Each application has been analysed using four holistic
analysis approaches, depending on the approach used for the calculation
of the components BusCyclesm and of the worst-case response time Rm
for a DYN message:

OO will always provide the tightest worst-case response times. How-
ever, it is only able to produce results for up to 20 DYN messages in a rea-
sonable time. We have noticed that the bottleneck for OO is the exact
calculation of (which is a value smaller than a bus cycle), and that run-
ning the ILP from Section 6.1.2 using a time-out of one minute we are able
to obtain near-optimal results for . We have denoted with OO– such an
analysis. Since the near-optimal result for , obtained after this time-out,
is a lower bound, OO– can lead to an incorrect (optimistic) result (i.e., the
system is reported as schedulable, but in reality it might not be). Although
OO– is, thus, of no practical use, it is very useful in determining, by com-
parison, the quality of our proposed FlexRay analysis heuristics, OH and
HH.

In order to evaluate the approaches for FlexRay analysis, we have deter-
mined for an analysis approach A the average ratio:

(6.18)

where A is one of the OO, OH or HH approaches and n is the number of
DYN messages in the analysed application.

Holistic
Analysis

BusCyclesm

OO Optimal solution (6.1.1) Optimal solution (6.1.2)

OO– Optimal solution (6.1.1) ILP from 6.1.2 with 1 min. time-out (O–)
OH Optimal solution (6.1.1) Heuristic solution (6.1.4)
HH Heuristic solution (6.1.3) Heuristic solution (6.1.4)

wm′

wm′

wm′

wm′
wm′

ratio=
1
n

Rm
A

Rm
OO-

m DYN∈
∑⋅

CHAPTER 6

102

This ratio captures the degree of pessimism for approach A compared to
OO–; the smaller the ratio, the less pessimistic the analysis. The results
obtained with OO, OH and HH are presented in Table 6.1. For each appli-
cation dimension, Table 6.1 presents the average ratio and the average
execution times of the complete analysis (including all tasks and mes-
sages) in seconds. It is important to notice that, while the execution time is
for the whole analysis, including all tasks and messages, the ratio is calcu-
lated only for the DYN messages, since their response time calculation is
directly affected by the degree of pessimism of the various approaches
proposed in this chapter. The ratio calculated over all tasks and messages
in the system is smaller than the ones shown in Table 6.1.

We can see that OO is very close to OO–, which means that OO– is a
good comparison baseline (it is only slightly optimistic). Due to the very
large execution times, we were not able to run OO for more than 20 DYN
messages.

Table 6.1 shows that OH produces very good quality results, in a rea-
sonable time. For example, for 40 DYN messages, the analysis has fin-
ished in 367.87 seconds on average, and the average ratio is only 1.005.

Another result from Table 6.1 concerns the HH heuristic. Although HH
is slightly more pessimistic than OH (for example, the DYN response
times determined with HH were 1.012 times larger, on average, than those
of OO– for applications with 30 messages, compared to 1.005 for OH), it
is also significantly faster. We have successfully analysed with HH large
applications, with over 100 DYN messages in 0.16 seconds on average.
Thus, HH is also suitable for design space exploration, where a potentially
huge number of design alternatives have to be analysed in a very short
time.

We have run a set of experiments with 15 applications of 40 tasks and
25 dynamic messages mapped on an architecture consisting of two nodes,
and varied the number of frame identifiers per processor. Figure 6.5
presents the ratio for HH calculated according to Equation (6.18) as we
vary the number of frame identifiers per processor from 2 to 6. We can see
that the quality of the heuristic improves as the number of frame IDs
increases (and, consequently, the number of messages sharing the same
FrameID decreases). The more messages are sharing a FrameID, the more

TIMING ANALYSIS OF FLEXRAY MESSAGES

103

important conditions (6.10)-(6.12) are to the quality of the result, because
they restrict the way bins can be covered (e.g., messages sharing the same
FrameID should not be packed in the same bin). However, even for a small
number of frame IDs HH produces good quality results (e.g., for two
frame IDs, HH’s ratio is 1.1226).

We also considered the real-life example implementing a vehicle cruise
controller that is described in Appendix C. We considered the entire func-
tionality is implemented using fixed priority scheduling and DYN com-
munication. However, we have allocated only 10 percent of the FlexRay
communication cycle to the DYN segment communication. Scheduling
the system using the OO approach took 0.19 seconds. Using the OH
approach took 0.08 s, while the HH alternative was the fastest, finishing
the analysis in 0.002 s. The average ratio of OH relative to OO is 1.003,
while the average ratio of HH relative to OO is 1.004, which means that

Figure 6.5: Quality of HH

30 (10 DYN) 60 (20 DYN) 90 (30 DYN) 120 (40 DYN) No of
msgs. Ratio Exec. (s) Ratio Exec. (s) Ratio Exec. (s) Ratio Exec. (s)
OO 1.009 3.1 s 1.009 42.3 s − − − −
OH 1.013 1.29 s 1.012 14.42 s 1.005 57.32 s 1.005 367.87 s
HH 1.016 0.012 s 1.018 0.019 s 1.012 0.036 s 1.012 0.04 s

A
ve

ra
ge

 r
at

io

1.1226

1.0667
1.0512

1.0209
1.0079

2 3 4 5 6

Table 6.1: Comparison of FlexRay Analysis Approaches

Number of frame IDs/ processor

CHAPTER 6

104

the heuristics obtained results almost identical to the optimal approach
OO.

6.5 Conclusions
In this chapter, we have presented a schedulability analysis for the
FlexRay communication protocol. Since we considered that for ST mes-
sages we can build a static cyclic schedule just like in the approach dis-
cussed in Chapter 3, we have concentrated only on determining the worst-
case response time analysis of the DYN messages. We have also shown
how the schedulability analysis of DYN messages can be integrated with
the holistic schedulability analysis that determines the timing properties
for all the ET tasks and DYN messages in the system.

We have proposed three approaches for the derivation of worst-case
response times of DYN messages. OO uses an ILP formulation to derive
the optimal solution for the communication delay. HH uses heuristic-
based upper-bounds for a bin-covering problem in order to quickly deter-
mine good quality response times. OH is able to further reduce the pessi-
mism of HH by using an ILP formulation for one part of the solution.

OPTIMISATION OF THE FLEXRAY BUS ACCESS SCHEME

105

Chapter 7
Optimisation of the FlexRay

Bus Access Scheme

IN THIS CHAPTER we consider the problem of optimising the bus ac-
cess parameters for an application implemented on a FlexRay-based
distributed system.

7.1 Introduction

The design of a FlexRay bus configuration for a given system consists of a
collection of solutions for the following subproblems:

 1.determine the length of an ST slot;
 2.the number of STslots
 3.the assignment of ST slots to nodes;
 4.determine the length of the DYN segment
 5.assign DYN slots to nodes
 6.assign FrameIDs to DYN messages.

The choice of a particular bus configuration is extremely important
when designing a specific system, since its characteristics heavily influ-
ence the global timing properties of the application.

CHAPTER 7

106

Let us see first an example similar to the one presented in Figure 4.4,
that presents such an influence in the particular context of FlexRay buses.
Notice in Figure 7.1 how the structure of the ST segment affects the
response time of message m3 (for this example we ignored the DYN seg-
ment and task execution on each node). The figure considers a system with
two nodes, N1 that sends message m1 and N2 that sends messages m2 and
m3. The message sizes are depicted in the figure. In the first scenario
(Figure 7.1.a), the ST segment consists of two slots, slot1 used by N1 and
slot2 used by N2. In this situation, message m3 can be scheduled only dur-

Figure 7.1: Influence of the Bus Cycle on the Response
Times of ST Messages

m1

m1

m1

m2

m2

m2

m3

m3

m3

gdCycle = 2 x 5

gdCycle = 3 x 4

gdCycle = 2 x 4

C(m1) = 4

C(m3) = 2

C(m2) = 3

slot1 slot2 slot1 slot2

slot1 slot2 slot3

slot1 slot2

R3 = 16

R3 = 12

R3 = 10

N1 N2

1 2

m2

m3

m1

N1 N2

1 2

m2m1

3

m3

gdStaticSlot = 5

gdStaticSlot = 4

gdStaticSlot = 4

a)

b)

N1 N2

1 2

m2

m3

m1

c)

OPTIMISATION OF THE FLEXRAY BUS ACCESS SCHEME

107

ing the second bus cycle, with a response time of 16. If the ST segment
consists of 3 slots (Figure 7.1.b), with N2 being allocated slot2 and slot3,
then N2 is able to send both its messages during the first bus cycle. The
configuration in Figure 7.1.c consists of only two slots, like in
Figure 7.1.a. However, in this case the slots are longer, such that several
messages can be transmitted during the same frame, producing a faster
response time for m3 (one should notice, however, that by extending the
size of the ST slots we delay the reception of messages m1 and m2).1

Similar optimisations can be performed with regard to the DYN seg-
ment. Let us consider the example in Figure 7.2, where we have two nodes

1. It is important to underline here the fact that in FlexRay:
a) all ST slots have the same length
b) each node can have several ST slots during the bus cycle.

Figure 7.2: Influence of the Bus Cycle on the
Response Times of the DYN Messages

N1 N2

1 2

m2

m3

m1

1 3 2

m2m3m1

N1 N2
pr

io
rit

y m
1

>
pr

io
rit

y m
3

m1 m2 m3

FrameID 1 2 1

Table A m1 m2 m3

FrameID 1 2 1

Table A
FrameID

m1 m2 m3

1 2 3
Table B
FrameID

m1 m2 m3

1 2 3FrameID

m1 m2 m3

1 2 3
Table B

ST = 8 STm1 m3m2

M
S

gdCycle = 21

minislot counter: 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

0

... ...

ST = 8 STm1 m3 m2

M
S

gdCycle = 20

minislot counter: 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

0

... ...

c)

DYN slot counter: 1 2

... ...

... ...

1 2

DYN slot counter: 1 2 3 1 2

b)

ST = 8 STm1 m3 m2

M
S

M
S

gdCycle = 20

minislot counter: 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

0

... ...
DYN slot counter: 1 2 3

... ...

1 2

M
S

3

a) R2 = 37

R2 = 35

R2 = 21

ST = 8 STm1 m3m2

M
S

gdCycle = 21

minislot counter: 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

0

... ...

ST = 8 STm1 m3 m2

M
S

gdCycle = 20

minislot counter: 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

0

... ...

c)

DYN slot counter: 1 2

... ...

... ...

1 2

DYN slot counter: 1 2 3 1 2

b)

ST = 8 STm1 m3 m2

M
S

M
S

gdCycle = 20

minislot counter: 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

0

... ...
DYN slot counter: 1 2 3

... ...

1 2

M
S

3

a) R2 = 37

R2 = 35

R2 = 21

a) b-c)

CHAPTER 7

108

N1 and N2. Node N1 is transmitting messages m1 and m3, while N2 sends
m2. Figure 7.2 depicts three configuration scenarios, a-c. Table A depicts
the frame identifiers for the scenario in Figure 7.2.a, while Table B corre-
sponds to Figure 7.2.b-c. The length of the ST slot has been set to 8. In
Figure 7.2.a, the length of the DYN segment is not able to accommodate
both m1 and m2, thus m2 will be sent during the second bus cycle, after the
transmission of m3 ends. Figure 7.2.b and Figure 7.2.c depict the same
system but with a different allocation of DYN slots to messages (Table B).
In Figure 7.2.b we notice that m3, which now does not share the same
frame identifier with m1, can be sent during the first bus cycle, thus m2 will
be transmitted earlier during the second cycle. Moreover, if we enlarge the
size of the DYN segment as in Figure 7.2.c, then the worst-case response
time of m2 will considerably decrease since it will be sent during the first
bus cycle (notice that in this case m3, having a greater frame identifier than
that of m2, will be sent only during the second cycle).

We present three approaches for optimising the bus access such that the
schedulability of the system is improved. The first approach builds a rela-
tively straightforward, basic, bus configuration. The other two approaches
perform optimisation over the basic configuration.

7.2 The Basic Bus Configuration (BBC)
In this section we construct a basic bus configuration which results from
analysing the minimal bandwidth requirements of the application. The
BBC algorithm is presented in Figure 7.3 and it starts by assigning a Fra-
meID to each of the DYN messages (implicitly DYN slots are assigned to
the nodes that generate the message). This assignment (line 1) is per-
formed under the following guidelines:

 • Each DYN message receives an unique FrameID; this is recom-
mended in order to avoid delays due to messages in the set hp(m), as
discussed in 6.1. For example, in Figure 6.2, we notice that message
m3 has to wait for an entire gdCycle when it shares a frame identifier
with the higher priority message m1 (Figure 6.2.a), which is not the

OPTIMISATION OF THE FLEXRAY BUS ACCESS SCHEME

109

case when it has its own FrameID (Figure 6.2.b).

 • DYN messages with a higher criticality receive smaller FrameIDs.;
this is required in order to reduce, for a given message, the delay pro-
duced by lpf(m) and ms(m) (see 6.1). We capture the criticality of a
message m as:

, (7.1)

where Dm is the deadline of the message and LPm is the longest path in
the task graph from the root to the node representing the communication
of message m. A small value of CPm (higher criticality) indicates that the
message should be assigned a smaller FrameID.

In the next step, the algorithm sets the number of ST slots in a bus cycle
(line 2). Since each node that generates ST messages needs at least one ST
slot, the minimum number of ST slots is nodesST, the number of nodes that
send ST messages. Next, the size of an ST slot is set so that it can accom-
modate the largest ST message in the system (line 3). In line 4, the config-
uration of the ST segment is completed by assigning in a round robin
fashion one ST slot to each node that requires one (i.e. in a system with
four nodes, the ST segment will contain four slots: node 1 will use slot 1,
node 2 will use ST slot 2, etc.).

In order to determine the size of the DYN segment, we have to consider
the fact that such a size is restricted by the protocol specifications (there
can be at most 7994 minislots in a DYN segment) and by the application
characteristics (the DYN segment should be large enough in order to
accommodate the transmission of the largest DYN message; in addition,
since we assumed that each DYN message has an unique FrameID, the
DYN segment should have a number of minislots greater or equal than the
number of DYN messages in the system). We denote with and

 the limits of this interval (line 5).
Since the sizes of the ST and DYN segments are now fixed, the bus

period can be easily computed (line 6). Line 7 introduces a restriction

CPm Dm LPm–=

DYNbus
min

DYNbus
max

CHAPTER 7

110

imposed by the FlexRay specification, which limits the maximum bus
cycle length to 16 ms.

Once we have defined the structure of the bus cycle, we can analyse the
entire system (line 8) by performing the global static scheduling and
schedulability analysis described in Section 6. The resulted system is then
evaluated using a cost function that captures the schedulability degree of
the system (line 9). This function has been already defined in
Equation (3.17):

where Rij and Dij are the worst case response times and respectively the
deadlines for all the activities τij in the system. The function is strict posi-
tive if at least one task or message in the system misses its deadline, and
negative if the whole system is schedulable. Its value is used in line 10,
when deciding whether the current configuration is the best so far.

Figure 7.3: Basic Bus Configuration

1 Assign FrameIDs to DYN messages
2 gdNumberOfStaticSlots = nodesST
3 gdStaticSlot = max (Cm), m is an ST message
4 Assign one ST slot to each node (round robin)
5 for = to step gdMinislot do
6 gdCycle = +
7 if gdCycle < 16000 µs then
8 GlobalSchedulingAlgorithm()
9 Compute cost function DSch
10 if DSch < BestDSch then save current solution
11 endif
12 end for

DYNbus DYNbus
min

DYNbus
max

STbus DYNbus

f1 m

j 1=

Ni

∑ ax 0 Rij Dij–,()

i 1=

N

∑=

f2 Rij Dij–()
j 1=

Ni

∑
i 1=

N

∑=

DSch =

, if f1 = 0

, if f1 > 0

OPTIMISATION OF THE FLEXRAY BUS ACCESS SCHEME

111

7.3 Heuristic for Optimised Bus Configuration
(OBC)

The Basic Bus Configuration (BBC) generated as in the previous section
can result in an unschedulable system (the cost function in Equation (3.17)
is positive). In this case, additional points in the solution space have to be
explored. In Figure 7.4 we present the OBC heuristic that further explores
the design space in order to find a schedulable solution.

While for the BBC the number and size of ST slots has been set to the
minimum (gdNumberOfStaticSlotsmin = nodesST, gdStaticSlotmin =
max(Cm)), the proposed heuristic explores different alternatives between
these minimal values and the maxima imposed by the protocol specifica-
tion (the for loops over lines 2-8 and 4-7). Thus, during a bus cycle there
can be at most gdNumberOfStaticSlotsmax = 1023 ST slots (line 3), while
the size of an ST slot can take at most gdStaticSlotmax = 661 macroticks. In
addition, the payload for a FlexRay frame can increase only in 2-byte
increments, which according to the FlexRay specification translates into
20 gdBit, where gdBit is the time needed for transmitting one bit over the
bus (line 3).

The assignment of ST slots (line 5) to nodes is performed, like for the
BBC, in a round robin fashion, with the difference that each node can have
not only one but a quota of ST slots, determined by the ratio of ST mes-

Figure 7.4: OBC Heuristic

1 Assign FrameIDs to DYN messages
2 for gdNumberOfStaticSlots =
 gdNumberOfStaticSlotsmin to gdNumberOfStaticSlotsmax do
3 for gdStaticSlot =gdStaticSlotmin to gdStaticSlotmax

step 20 * gdBit do
4 Assign ST slots to nodes in round-robin fashion
5 DYNbus = Determine_DYN_segment_length()
6 End optimisation if feasible DYNbus and
7 end for
8 end for

DSch 0≤

CHAPTER 7

112

sages that it transmits (i.e. a node that sends more ST messages will be
allocated more ST slots).

For each alternative configuration of the ST segment, the algorithm
searches for that size of the DYN segment that allows the DYN messages
to meet their deadlines and the cost function in Equation (3.17) to be min-
imised (line 6). A straight forward alternative to perform this would be to
evaluate all possible sizes of the DYN segment inside a for loop, like in
the BBC algorithm (lines 5-12, Figure 7.3). Such an exhaustive imple-
mentation is presented in Figure 7.5.

However, as opposed to the BBC, in the proposed heuristic the selection
of the DYN segment length is nested inside two for loops (lines 2 and 3,
Figure 7.4). Moreover, the estimation of each individual solution alterna-
tive implies a complete scheduling and schedulability analysis of the sys-
tems (like in line 4, Figure 7.5). Therefore, in the context of the heuristic
in Figure 7.4, such a straight forward approach is not affordable, due to
excessively long run times. This is important, since, in the context of a
system-level design framework, the bus access optimisation heuristic can
be placed inside other optimisation loops, e.g. for task mapping. Thus,
instead of running the scheduling and schedulability analysis and evaluat-
ing the cost function in Equation (3.17) for all possible lengths of the
DYN segment (like in line 5, Figure 7.5), the evaluation should be per-
formed for only a reduced number of points while, at the same time,

Figure 7.5: Exhaustive Search for the
length of the DYN segment

Determine_DYN_segment_length()

1 for = to step gdMinislot do
2 gdCycle = +
3 if gdCycle < 16000 µs then
4 GlobalSchedulingAlgorithm()
5 Compute schedulability degree DSch
6 if DSch < BestDSch then BestDYNbus =
7 endif
8 end for
9 return BestDYNbus

DYNbus DYNbus
min

DYNbus
max

STbus DYNbus

DYNbus

OPTIMISATION OF THE FLEXRAY BUS ACCESS SCHEME

113

obtaining a close to optimal result. The proposed solution is presented in
the next subsection.

7.3.1 CURVE-FITTING BASED HEURISTIC FOR DYN SEGMENT
LENGTH

Let us go back to the schedulability analysis in 6.1. One can notice in
Equation (6.3) that the dominant part of the message delay is represented
by the product between BusCyclesm (number of bus cycles that the mes-
sage under analysis has to wait) and gdCycle (length of the bus cycle). If
we consider a time interval t on which a fixed set of DYN messages S is
generated, then a shorter size for the DYN segment means that fewer mes-
sages will be served during each bus cycle; consequently, several such bus
cycles are needed to transmit all the messages in S (considering a fixed
size STbus for the static segment, then a shorter DYNbus results in a shorter
gdCycle but in a larger value for BusCyclesm). A longer DYN segment
generally means that more DYN messages can be sent during the same bus
period, resulting in a lower number of bus cycles required for the transmis-
sion of all messages (a larger DYNbus increases the length gdCycle, but
results in smaller value for BusCyclesm). The resulted trade-off is illus-
trated in Figure 7.6, where we consider a system composed of 45 tasks
which communicate through 10 static and 20 dynamic messages. We have
performed the response time analysis for this system, assuming the length
of the dynamic segment between 2285.4 and 13000 µs. The static segment
size is fixed at 1286 and, consequently, the total size of the bus cycle is
varying between 3571.4 and 14286µs. Figure 7.6 shows the response time
for several dynamic messages in this system. The curves confirm the
trade-off outlined above. Large sizes of the bus cycle lead to increased
response times. However, very short bus cycles will also lead to large
response times due to the fact that the number of cycles to wait (BusCy-
clesm in Equation (6.3)) increases. This phenomenon has been confirmed
by a large number of experiments similar to those illustrated in Figure 7.6.
This regularity of the dependence response time vs. size of the dynamic
segment is at the foundation of our heuristic presented in Figure 7.7
(which is invoked in line 5 of the OBC algorithm in Figure 7.4). Instead of

CHAPTER 7

114

exhaustively perform the scheduling and schedulability analysis for all
possible values of the DYN segment length, we will evaluate response
times for only a small number of points and use a curve fitting approach to
extrapolate the response time corresponding to all other points.

The algorithm in Figure 7.7 stores, in the set Points, the characteristics
(DYN segment length, message response times, cost function) for a
reduced set of bus configurations, The set initially contains only a small
number (in our experiments we used five) of DYN segment sizes in the
interval [,] (line 1). For each alternative configuration
in this initial set, the system is completely specified, allowing us to run our
global scheduling and analysis algorithm, in order to determine the worst-
case response times of all tasks and messages and the corresponding val-
ues of the cost function (line 4).

The algorithm maintains a data structure similar to the one presented in
Table 7.1. Each cell (i,j) in the table stores the response time of the DYN
message i when the DYN segment has value j. If the value j is in the set
Points, then all the values on that particular column are computed exactly,

Figure 7.6: Influence of DYN Segment Length on
Message Response Times

0

20000

40000

60000

80000

100000

120000

22
85

24
18

25
60

28
81

30
62

32
59

34
76

37
14

39
77

42
70

45
96

49
64

53
81

58
57

64
06

70
47

78
05

87
14

98
25

11
21

4

13
00

0

DYN segment length (µs)

M
es

sa
g

e
re

sp
o

n
se

 t
im

es
 (

 µ
s

)

DYNbus
min

DYNbus
max

OPTIMISATION OF THE FLEXRAY BUS ACCESS SCHEME

115

Figure 7.7: Determining the Size of the DYN segment
using interpolation

Determine_DYN_segment_length()
1 Points = { , , ,..., }
2 for in Points do
3 set current DYN segment length to
4 GlobalSchedulingAlgorithm()
5 Store message response times Rm()
6 Compute and store schedulability degree DSch()
7 end for
8 do
9 for = to step gdMinislot do
10 if is not in Points then
11 foreach DYN msg m do
12 interpolate Rm() based on Rm(Points)
13 endfor
14 Compute and store MsgDSch()
15 endif
16 end for
17 select with minimum stored DSchmin
18 if then
19 return -- system is schedulable
20 endif
21 select with minimum MsgDSchmin(
22 set current DYN segment length to
23 GlobalSchedulingAlgorithm()
24 Compute and store DSch()
25 Add to Points
26 if then
27 return -- system is schedulable
28 endif
29 while not termination condition
30 return infeasible

DYNbus
min

DYNbus
1

DYNbus
2

DYNbus
max

DYNbus
DYNbus

DYNbus
DYNbus

DYNbus DYNbus
min

DYNbus
max

DYNbus

DYNbus

DYNbus

DYNbus Points∈
DSchmin 0≤

DYNbus

DYNbus Points∉ DYNbus
DYNbus

DYNbus
DYNbus

DSch 0≤
DYNbus

DYNbus

CHAPTER 7

116

using the global scheduling and analysis algorithm (these values are
marked with C in the table). For the DYN segment values that are not in
the set Points, these values are interpolated and are marked with an I in the
table. The last two lines of the table contain the degree of schedulability
DSch and a variation of the same cost function (Equation (3.17)), called
MsgDSch in which only the DYN messages are considered:

(7.2)

The values DSch and MsgDSch are computed using the message worst-
case response time in each column, regardless of the fact that those
response times are computed with the global scheduling and analysis algo-
rithm. However, the table denotes with C those values of MsgDSch that
are relying on message response times that are determined using the
schedulability analysis, and with I the values of MsgDSch that are based
on message response times that are determined using the interpolation
algorithm (I). The global cost function DSch can be computed only for the
situations when the schedulability analysis has been run (C), otherwise the
table stores no value since there is no information about the worst-case
response times of the tasks that are executed on each node in the system.

...

Rm1 C I C I C

Rm2 C I C I C

... C I C I C

Rmp C I C I C

DSch C - C - C

MsgDSch C I C I C

Table 7.1: Data structure used for interpolation

DYNbus DYNbus
min

DYNbus
max

MsgDSch

f1 max Rij Dij 0,–() if f1 0>,
τi j DYNmsgs∈

∑=

f2 Rij Dij–() if f1 0=,
τi j DYNmsgs∈

∑=
={

OPTIMISATION OF THE FLEXRAY BUS ACCESS SCHEME

117

The algorithm presented in Figure 7.7 tries to find that length of the
DYN segment for which the system is schedulable (i.e. find that DYNbus
for which). For all possible values of the size of the
DYN segment (line 9) that have not been evaluated yet (line 10), the
response times of messages in the system are computed using an interpo-
lation algorithm based on a Newton polynomial. Considering a given
DYN message m and a value DYNbus then we denote with Rm(DYNbus) the
value of the worst-case response time of message m when the length of the
dynamic segment of the bus is DYNbus. Since for the values

 we can compute accurately the values of the response
times, then we will use these values to rapidly interpolate the values
Rm(DYNbus) for any . Each time a new point is added to
the set Points, the interpolated values of Rm are recomputed (line 12).

In each step of the algorithm, after the Table 7.1 has been filled up with
computed or interpolated values, the algorithm selects that point

 that leads to the system configuration with the best
schedulability degree DSchmin (i.e. minimum cost function) (line 17). If
the associated then the system is schedulable and the cost
function is based on exact schedulability analysis, meaning that we have
found the desired result (line 19).

If none of the investigated configurations captured by the set Points
leads to a schedulable system, then the algorithm selects that value

 with the smallest (line 21). The selection
process uses the function expressed in Equation (7.2) which favours bus
configurations that lead to smaller response times for the DYN messages
in the system. The selected configuration is added to the set Points and
evaluated (lines 22-25). If the evaluation of the resulted architecture leads
to a cost function then the algorithm returns the DYNbus
value as the one that produces a schedulable system (line 26). Otherwise,
the algorithm repeats the above steps (approximation of response times,
selection and evaluation of another DYN bus size) until either a schedula-
ble solution is found, or when a certain termination condition is met. This
condition is that a certain number Nmax of iterations have been performed
without finding a schedulable solution and without any improvement of
the cost function (in our experiments we had Nmax=10).

DSch DYNbus() 0≤

DYNbus Points∈

DYNbus Points∉

DYNbus Points∈

DSchmin 0≤

DYNbus Points∉ MsgDSchmin

DSchmin 0≤

CHAPTER 7

118

7.4 Simulated Annealing Based Approach
We have also implemented an approach based on simulated annealing
[Kir83] for bus access optimisation. The SA heuristic explores the design
space performing the following set of moves:
 • gdNumberOfStaticSlots is incremented or decremented, inside the

allowed limits (when an ST slot is added, it is allocated randomly to a
node; when an ST slot is removed, the operation has to be done in
such a way that each node that transmits ST messages will still have a
ST slot allocated to it);

 • gdStaticSlot is increased or decreased with 20 x gdBit, inside the
allowed limits;

 • the assignment of ST slots to nodes is changed by re-assigning a ran-
domly selected ST slot from a node N1 to another node N2. We also
use in this context a similar transformation that switches the allocation
of two ST slots, FrameID1 and FrameID2, used by two nodes N1 and
N2 respectively;

 • the assignment of DYN slots to messages is modified by switching the
slots used by two DYN messages.

In Section 7.5 we used extensive, time consuming runs with the Simu-
lated Annealing approach, in order to produce a reference point for the
evaluation of our greedy heuristic.

7.5 Evaluation of FlexRay Bus Optimisation
Heuristics

In order to evaluate our optimisation algorithms we generated 7 sets of 25
applications representing systems of 2 to 5 nodes respectively. We consid-
ered 10 tasks mapped on each node, leading to applications with a number
of 20 to 50 tasks. Depending on the mapping of tasks, each such system
had up to 50 additional nodes in the application task graph due to the com-
munication tasks. The tasks were grouped in task graphs of 5 tasks each.
Half of the tasks in each system were time triggered and half were event
triggered. The execution times were generated in such a way that the utili-
sation on each node was between 30% and 60% (similarly, the message

OPTIMISATION OF THE FLEXRAY BUS ACCESS SCHEME

119

transmission times were generated so that the bus utilisation was between
10% and 70%). All experiments were run on an AMD Athlon 2400+ PC.

We have performed the bus optimisation using four approaches:
 1. Basic Bus Configuration BBC (Section 7.2);
 2. OBCCF - the OBC heuristic with the curve fitting procedure (Section

7.3);
 3. OBCEE - the OBC heuristic with an exhaustive exploration of the sizes

for the DYN segment; and
 4. SA - the Simulated Annealing based heuristic.

Figure 7.8 shows the results obtained after running our algorithms on
the generated applications. On the upper side of the figure one can see the
average percentage deviation for the cost function obtained with BBC,
OBCCF and OBCEE respectively, relative to the cost function obtained
with SA. On the diagram in the lower part of the figure we present the
computation times required by each algorithm (except the running times
for SA, which are inherently large and were left out in order to provide a
better view of the results).

One can notice that the BBC approach runs in almost zero time, but it
fails to find any schedulable configurations for systems with more than 3
processors. On the other hand, the other approaches continue to find
schedulable solutions even for larger systems. Comparing OCCF and
OBCEE, we can observe that both produce results which are very close to
the reference values produced by SA (max. 4-5% deviation). OBCCF gen-
erates results which are less than 0.5% away from those produced by
OBCEE, but with a run time that is up to 2 orders of magnitude smaller.
This confirms the high efficiency of our curve fitting based optimisation.

Finally, we considered the real-life example implementing a vehicle
cruise controller described in Appendix C. We have partitioned the func-
tionality in such a way that two of the task graphs were time triggered and
the other two were event triggered. Configuring the system using the BBC
approach took less than 5 seconds but resulted in an unschedulable sys-
tem. Using the OBCCF approach took 137 seconds, while the OBCEE
required 29 minutes. The cost function obtained by OBCCF was 1.2%
larger in the solution obtained with OBCEE. In both cases the selected bus
configuration resulted in a schedulable system.

CHAPTER 7

120

Figure 7.8: Evaluation of Bus Optimisation Algorithms

0

1

2

3

4

5

6

2 3 4 5

Processors

S
ch

ed
u

la
b

ili
ty

D
eg

re
e

(%
d

ev
)

BBC
OBCCF
OBCEE

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2 3 4 5

Processors

T
im

e
(s

)

BBC
OBCCF
OBCEE

OPTIMISATION OF THE FLEXRAY BUS ACCESS SCHEME

121

7.6 Conclusions
In this chapter, we have shown the importance of finding a FlexRay bus
configuration that is customised according to the particular needs of the
application. We have also proposed and evaluated three different heuris-
tics that are able to generate such a configuration.

CHAPTER 7

122

CONCLUSIONS AND FUTURE WORK

123

Chapter 8
Conclusions and Future

Work

8.1 Conclusions
In this thesis we have studied several problems that appear in distributed
embedded systems that support heterogeneous scheduling policies and
communication protocols.

We have first defined and solved the problem of scheduling heterogene-
ous ET/TT distributed embedded systems that rely on a combination of
static cyclic scheduling and EDF-within-priorities scheduling. For the
communication we have assumed a bus modelled using the Universal
Communication Model, and we have shown how the communication
delays can be accounted for during the scheduling and schedulability anal-
ysis of the entire system.

Once we have solved the scheduling and schedulability analysis prob-
lem, we addressed several design problems which we identified as specific
for the type of heterogeneous systems we are studying: the assignment of
scheduling policies to the activities in the system, and the synthesis of
parameters of the heterogeneous ST/DYN communication protocol. These
two aspects have been approached in a larger design context, which also
involved mapping and scheduling of the functionality. Our experiments

CHAPTER 8

124

have shown the importance of each of the optimisation aspects taken into
consideration and the efficiency of the proposed optimisation heuristic.

The second part of the thesis concentrates on similar problems, by tak-
ing the analysis and optimisation methodology described in the first part
of the thesis and applying it on a particular case of systems that use
FlexRay as a communication protocol.

For each problem we have run extensive experiments, based on syn-
thetic applications and a real-life example, that were used to evaluate the
efficiency of our solutions.

8.2 Future Work
While the work presented in this thesis may seem complete, we consider it
only as the foundation that has to be considered in the future, when look-
ing for solutions to more complex problems. There are several possible
extensions to our work that a careful reader can already imagine:

First, in this thesis we have concentrated on distributed architectures
interconnected by a single bus. While the main difficulty regarding the
communication aspects in our study was represented by the heterogeneity
of the communication protocol, the system architecture that has been con-
sidered is somewhat simplistic. The growing complexity of nowadays
embedded applications and the limitations on the number of nodes that can
be connected to one bus are two main reasons causing the current distrib-
uted architectures to actually rely not only on one single bus, but on a large
set of buses, interconnected by gateways in a hierarchical manner (see for
example in Figure 8.1 an architecture consisting of four node clusters).
Such architectures represent complex extensions of our studied problems,
and their investigation is worth being considered. Similar bus interconnec-
tions have been studied in [PopP06], but the communication protocols
inside each cluster were not heterogeneous in the sense defined in our
work. While our timing analysis for heterogeneous protocols can deter-
mine worst-case response times for messages transmitted over one bus, it
does not provide yet the generalisations needed to cover hierarchical bus
infrastructures. The work presented in [PopP06] and in this thesis can

CONCLUSIONS AND FUTURE WORK

125

therefore represent a good starting point for studying the worst-case tim-
ing scenarios in the more general context of a system architecture based on
a hierarchy of buses.

A second possible direction of study is arising from the fact that the
hierarchy of schedulers that has been considered on each node in the sys-
tem is fixed. While the hierarchy that we chose may serve well for imple-
menting a wide range of hard real-time applications, it may also be
considered a restricted model. Consequently, system models that allow for
a flexible specification of the scheduler hierarchies while permitting for a
straightforward timing analysis could represent an important generalisa-
tion of our work.

Finally, another direction of study could explore the case when our opti-
misation approach is not able to produce a schedulable system under the
limited set of resources specified in the initial architecture. In such situa-
tions, the most common solution for improving the timing properties of
the system is to add new hardware resources to the existing configuration.
Allocating more nodes and buses to the system architecture is in itself a
complex problem, since it will bring up new questions, like:

Figure 8.1: Hierarchical Bus-based Infrastructure

Gateways

Bus A

Bus B

Bus C

Bus D

CHAPTER 8

126

 • how many new buses need to be added to the communication infra-
structure?

 • how many processing nodes should be added to the system?
 • to what bus should the new nodes be connected?

Increasing the number of buses usually adds more bandwidth to the en-
tire communication support. Similarly, adding more nodes in the system
will increase its processing power. However, such solutions have also
drawbacks that need to be taken into consideration during the design pro-
cess. Additional resources almost always increase the cost of the
application, and one has to take care when extending the hardware architec-
ture, in order to avoid unnecessary or significant increases of the final cost.

One particular drawback of the growing amount of buses inside a vehi-
cle is represented by the large weight produced by such an increased
number of wires. This represents a more and more important problem in ap-
plication areas like automotive electronics, where the efficiency of the
product is heavily influenced by the physical properties of the system. As a
consequence, future systems may be forced to consider also solutions based
on wireless communication protocols, meaning that investigating the real-
time properties of such protocols could represent a viable research topic.

127

Appendix A
List of Notations

Application Model notations

Notation Description

Γi Task-graph i

τij Activity j belonging to task-graph Γi

Tij Period of activity τij

Cij Worst-case execution time of activity τij

Dij Deadline for activity τij

Φij Offset for activity τij measured from the release of the
event that initiates the task-graph Γi

Jij Jitter for activity τij

Bij Blocking time for activity τij

Rb
ij Best-case response time for activity τij

Rij Worst-case response time for activity τij

Prioij Priority for activity τij

M(τij) The node on which task τij is mapped

Tss LCM of the periods of all the task-graphs in the appli-
cation

128

Design Optimisation notations

Notation Description

ΨP The set of task-graphs which can be repartitioned
between time-triggered and event-triggered domains

ΨM The set of tasks which can be remapped

P The set of tasks in the system

PSCS The set of tasks in the system that are assigned to SCS
by the designer

PFPS The set of tasks in the system that are assigned to FPS
by the designer

PEDF The set of tasks in the system that are assigned to
EDF by the designer

PM The set of tasks in the system that are mapped by the
designer

P* The set of tasks in the system that can be remapped
during design optimisation

A System application

N Number of nodes in the distributed architecture

M Mapping function that assigns each task in the system
to one of the nodes in the architecture

B Bus configuration

S Scheduling policy assignment

DSch Degree of schedulability for all system activities

MsgDSch Degree of schedulability for DYN messages

129

Scheduling and Schedulability Analysis notations

Notation Description

Rabc(p) Response time of the p-th job of a FPS task τab, in a
busy window initiated by task τac

RA
abc(p) Response time of the p-th job of an EDF task τab, in a

busy window starting at time A, with a critical instant
initiated by task τac

ϕijk Phase between event arivals and the critical instant of
task τij

p A job of task under analysis τab

Wik(τab, t)

WFP
ik(τab, t)

Worst-case interference produced by strictly higher
priority activities in task graph Γi over the execution of
the FPS task τab, when the critical instant is initiated
by τik

Wi(τab,t)
WFP

i(τab,t)
Worst-case interference produced by strictly higher
priority activities in task graph Γi over the execution of
the FPS task τab

WEDF
ik(τab, t) Worst-case interference produced by equal priority

activities in task graph Γi over the execution of the
EDF task τab, when the critical instant is initiated by
τik

WEDF
i(τab,t) Worst-case interference produced by equal priority

activities in task graph Γi over the execution of the
EDF task τab

Aij(t) ET availability over an interval of time t, associated
with the busy period of activity τij

Hij(t) ET demand associated with the busy period of length t
of activity τij

130

FlexRay notations

Notation Description

gdCycle Length of the bus cycle (Tbus)

gNumber-
OfMinislots

Length of DYN segment, expressed in minislots

gdMinislot Length of the minislot

STbus Length of the ST segment in time units

DYNbus Length of the DYN segment in time units

gdStaticSlot Length of a ST slot in time units

pLatestTx The largest value of the minislot counter that allows
the start of a DYN transmission

FrameIDm The frame identifier for a message m

hp(m) Set of DYN messages sent by the same node that
transmits m, having the same FrameIDm but a higher
local priority than m

lf(m) Set of DYN messages that have lower frame identifiers
than FrameIDm

Rm Worst-case response time for a message m

131

Appendix B
Bin-Covering Heuristics

In this appendix we briefly present the bin covering heuristics that we used
in our timing analysis. These heuristics are presented in more detail in
[Lab95].

The bin covering problem considers a set of n items of weights w1..wn
and an unlimited number of bins of infinite capacity. The target is to fill as
many bins as possible with a minimum capacity Cmin, using the n given
items.

The heuristics presented below determine upper bounds for a given
instance of the bin covering problem. All the following operations assume
that the items are sorted in decreasing order of their weights:

.

Before computing the upper bounds, the list of items is first processed
based on the following reduction criteria:
 1. Any item with wj > Cmin can be assigned alone to a bin. We denote with

R1 the number of such items and we eliminate them from the list of
items.

 2. If two items k and l satisfy the condition wk + wl = Cmin then there ex-
ists an optimal solution in which a bin contains only items k and l. We
denote with R2 the number of bins that can be filled in this way and we
remove from the list the items that satisfy this reduction criterion.

w1 w2 … wn≥ ≥ ≥

132

 3. Let k be the maximum index such that:

.

If then there exists an optimal solution in which a bin

contains only items 1 and k. The number of bins that can be filled in
this way is denoted with R3 and the items that fill these bins according

to the 3rd criterion are removed from the list.
In a second step, we use the n’ remaining items to fill bins with at least

Cmin. The heuristics presented bellow will determine upper bounds for the
maximum value we are looking for.
 1. Since no two remaining items can fill a bin up to Cmin, then .

 2. The continuous relaxation of the problem gives another bound:

 3. Let t = min{s: } and define p(j) = min{p: } for

j = 1,..., .

Then, for k = 0, 1,...τ, where and

 for k > 0, is a valid upper bound for the bin covering

problem that considers the reduced set of items. We denote with U2 the
minimum of all these values: .

 4. Let be the smallest index k such that and define

 if , otherwise. Then is a

valid upper bound for the bin covering problem using the reduced set of
items.

w1 wj Cmin≥
j k=

n

∑+

w1 wk Cmin≥+

U0
n′
2
----=

U1

wj

Cmin

j 1=

n′

∑=

wh Cmin<
h s=

n ′

∑ wh Cmin≥
h j=

j p+

∑

τ min n′
2
---- t 1–,

 =

U2 k() k
wj

Cmin

j k 1+=

n ′ α k()–

∑+= α 0() 0=

α k() p j()
j 1=

k

∑=

U2 min U2 k()() k, 1…τ= =

β j() wj wk Cmin≥
k 1 k j≠,=

β j()

∑+

q j() β j()= β j() j> q j() β j() 1+= U3
1

q j()---------
j 1=

n ′

∑=

133

The upper bound we are looking for is determined as the minimum of
the four values U0, U1, U2, U3:

U = min(U0, U1, U2, U3).
This result can be further improved as follows: given an upper bound

value U, if

then U - 1 is a valid upper bound value.
Considering now the initial set of items, before the reductions in the

first step, the upper bound UB of the maximum number of bins that can be
filled with Cmin is: UB = R1 + R2 + R3 + U.

U

wj 3U n′–()–
j 1=

n′

∑
Cmin

--->

134

135

Appendix C
Real-Life Example

During our experiments we have also used a safety critical application,
with hard real-time constraints, implementing a vehicle cruise controller
(CC). As described in [PopP04a], such an application has to deliver the
following functionality:
 • “It maintains a constant speed for speeds over 35 km/h and under 200

km/h.
 • offers an interface (buttons) to increase/decrease the reference speed,

and
 • is able to resume its operation at the previous reference speed.
 • The CC operation is suspended when the driver presses the brake

pedal.”
The process graph that models the CC has 32 processes and 22 mes-

sages grouped in 4 task graphs.
Figure C.1 shows the structure of the four task graphs that compose the

real life example. In the task graphs, the activities are marked with big cir-
cles for tasks and small black circles for messages. All tasks have periods
and deadlines equal to 460 ms. For each task we show the worst-case exe-
cution time, and for each message we show its worst case transmission
time.

136

The CC has a functionality grouped in five modules -- Electronic Throt-
tle Module (ETM), Anti-lock Breaking System (ABS), Engine Control
Module (ECM), Central Electronic Module (CEM) and Transmission
Control Module (TCM) --, that are mapped on an architecture consisting
of five nodes. Figure C.1 also shows the mapping of tasks on the five
nodes in the architecture.

Figure C.1: Real-Life Example

6

7

10

12

5

8

14

18

10

7

12

6

10

11

8

5

11

7

17

3

6

15

9

5

20

5

6

5

0.5

0.5

0.5

2

2

0.5

0.5

0.5

0.5

1

1

0.5

0.5

0.5

0.5

0.5

0.5

0.5

2

0.5 2

0.5 0.5

2

1

1

ABS

CEM

ETM

ECM

TCM

137

As shown in Figure C.2, the nodes in the architecture are interconnected
by a heterogeneous ST/DYN bus, with 50% ST and 50% DYN bandwidth.
The period for the bus access cycle is 10 ms.

Figure C.2: Architecture of the Cruise Controller

ST/DYN Bus

ABS CEM ETM ECM TCM

ST DYNSTST DYNDYN

10 ms

138

139

Appendix D
List of Figures

1.1.System Level Design Flow 4
1.2.ET Task Execution 6
1.3.Concurrent ET Execution of Tasks 6
1.4.Time Triggered Execution of Tasks 7
1.5.Hierarchy of Schedulers 9
1.6.CSMA/BA Bus - Bitwise Arbitration 11
1.7.TDMA Bus 12
1.8.Statically Scheduled TT Communication 13
1.9.Mixed Communication Cycle 14
1.10.Heterogeneous TT/ET Distributed System 16

2.1.System Architecture 28
2.2.Software Architecture 29
2.3.Execution of Tasks in a Hierarchical Scheduler 30
2.4.2.4 Application Model Example 33

3.1.Scheduling and Schedulability Analysis for Mixed
TT/ET Distributed Embedded Systems 36

3.2.Tasks with Offsets 39
3.3.Schedulability Analysis Algorithm 42

140

3.4.Availability and Demand 44
3.5.Determining the Length of the Busy Window 45
3.6.Holistic Scheduling Algorithm based on Simple

List Scheduling 48
3.7.Static Scheduling, its influence over the execution

of ET tasks (a-b) and minimisation of such an interference
(c) 49

3.8.Optimised Static Scheduling: trade-off between
minimising the TT interference over ET tasks (a) and
allowing TT interference (b) while also maximising the
chances of building a feasible static schedule (c) 50

3.9.Alternative Start Time for a TT task τij in the
Model with Synchronised Task Graphs 53

3.10.Alternative Start Times for a TT task τ2 in the
Model with Arbitrary Offsets 54

3.11.Avoiding Unnecessary TT Interference over the
Execution of ET Tasks 55

3.12.Optimised TT Task Scheduling 56
3.13.Performance of the Scheduling and

Schedulability Analysis Algorithm 58

4.1.Scheduling Policy Assignment Example #1 63
4.2.Scheduling Policy Assignment Example #2 64
4.3.Mapping Example 65
4.4.Optimization of Bus Access Cycle 66
4.5.The General Strategy 68
4.6.Initial Bus Configuration 69
4.7.Policy Assignment and Mapping Heuristic 71
4.8.Adjustment of the Bus Access Cycle 72
4.9.Bus Access Optimization 73
4.10.Performance of the Design Optimisation

Heuristic 76

5.1.FlexRay Communication Cycle Example 82

141

6.1.Response Time of a DYN Message 86
6.2.Transmission Scenarios for DYN Messages 88
6.3.Iterative process for solving Equation (6.3) 90
6.4.Worst Case Scenario for DYN message mg 91
6.5.Schedulability Analysis Algorithm for FlexRay-

based Systems 98
6.6.Quality of HH 103

7.1.Influence of the Bus Cycle on the Response Times
of ST Messages 106

7.2.Influence of the Bus Cycle on the Response Times
of the DYN Messages 107

7.3.Basic Bus Configuration 110
7.4.OBC Heuristic 111
7.5.Exhaustive Search for the length of the DYN

segment 112
7.6.Influence of DYN Segment Length on Message

Response Times 114
7.7.Determining the Size of the DYN segment using

interpolation 115
7.8.Evaluation of Bus Optimisation Algorithms 120

8.1.Hierarchical Bus-based Infrastructure 125

C.1.Real-Life Example 136
C.2.Architecture of the Cruise Controller 137

142

143

References

[ARI629] ARINC, “Multi-Transmitter Data Bus, Part 1, Tech-
nical Description”, ARINC Document 629P1-4, Aero-
nautical Radio, Inc., Annapolis, MD, USA, 1995.

[Abd99] T. F. Abdelhazer, K. G. Shin, “Combined Task and
Message Scheduling in Distributed Real-Time Sys-
tems”, IEEE Transactions on Parallel and Distrib-
uted Systems, 10(11), pages 1179-1191, 1999.

[Agr94] G. Agrawal, B. Chen, W. Zhao, S. Davari, “Guaran-
teeing Synchronous Message Deadlines with the
Timed Token medium Access Control Protocol”,
IEEE Transactions on Computers, 43(3), pages 327-
339, 1994.

[Alm99] L. Almeida, “Flexibility and Timeliness in Fieldbus-
based Real-Time Systems“, Ph. D. Thesis, University
of Aveiro, Portugal, 1999.

[Alm02] L. Almeida, P. Pedreiras, J. A. G. Fonseca, “The FTT-
CAN Protocol: Why and How”, IEEE Transactions on
Industrial Electronics, 49(6), pages 1189-1201, 2002.

[And01] B. Andersson, S. Baruah, J. Jonsson, “Static-Priority
Scheduling on Multiprocessors”, Proceedings of the
IEEE Real-Time Systems Symposium, pages 193-20,
2001.

144

[Ass84] S.F. Assman, D.S. Johnson, D.J. Kleitman, J.Y.-T.
Leung, “On a Dual Version of the One-Dimensional
Bin Packing Problem”, Journal of Algorithms, 5,
pages 502–525, 1984.

[Aud93] N. Audsley, K. Tindell, A. et. al., “The End of Line for
Static Cyclic Scheduling?”, 5th Euromicro Workshop
on Real-Time Systems, 1993.

[Aud95] N. Audsley, A. Burns, et. al., “Fixed Priority Preemp-
tive Scheduling: An Historical Perspective”, Real-
Time Systems, 8(2/3), 1995.

[Bal97] F. Balarin, editor, Hardware-Software Co-Design of
Embedded Systems: The Polis Approach, Kluwer
Academic Publishers, 1997.

[Bal98] F. Balarin, L. Lavagno, et. al., “Scheduling for
Embedded Real-Time Systems”, IEEE Design and
Test of Computers, January-March,1998.

[Bar98] S. Baruah, “A General Model for Recurring Real-
Time Tasks”, Proceedings of the IEEE Rel-Time Sys-
tems Symposium, pages 114-122, 1998.

[Bec98] J. E. Beck, D. P. Siewiorek, “Automatic Configuration
of Embedded Multicomputer Systems”, IEEE Trans-
actions on CAD, 17(2), pages 84-95, 1998.

[Ben02] L. Benini, G. De Micheli, “Networks on Chips: A New
SoC Paradigm”, IEEE Computer, 35(1), pages 70-78,
2002.

[Ben05] L. Benini, D. Bertozzi, “Network-on-Chip Architec-
tures and Design Methods”, IEEE Proceedings of
Computers and Digital Techniques, 152(2), pages
261-272, 2005.

145

[Ber03] J. Berwanger, M. Peller, R. Griessbach, “A New High-
Performance Data Bus System for Safety Related
Applications”, http://www.byteflight.com, 2003.

[Bin01] Enrico Bini, Giorgio Butazzo, Giuseppe Butazzo, “A
Hyperbolic Bound for the Rate Monotonic Algo-
rithm”, Proceedings of the 13th Euromicro Confer-
ence on Real-Time Systems, pages 59-66, 2001.

[Bli98] T. Blicke, J. Teich, L. Thiele, “System-Level Synthe-
sis using Evolutionary Algorithms”, Design Automa-
tion for Embedded Systems, 4(1), pages 23-58, 1998.

[Bos91] R. Bosch GmbH, “CAN Specification Version 2.0”,
1991.

[But97] Giorgio C. Butazzo, “Hard Real-Time Computing
Systems - Predictable Scheduling Algorithms and
Applications”, Kluwer Academic Publishers, 1997.

[But05] G. Butazzo, “Rate Monotonic vs EDF: Judgement
Day”, Real-Time Systems, 29(1), 2005.

[Cen04] G. Cena, A. Valenzano, “Performance analysis of
Byteflight networks”, Proceedings of the IEEE Inter-
national Workshop on Factory Communication Sys-
tems, pages 157–166, 2004.

[Cof72] E.G. Coffman Jr., R.L. Graham, “Optimal Scheduling
for two Processor Systems”, Acta Informatica, 1,
1972.

[Dav99] B. P. Dave, G. Lakshminarayana, N. K. Jha,
“COSYN: Hardware-Software Co-Synthesis of Heter-
ogeneous Distributed Embedded Systems”, IEEE
Transactions on VLSI Systems, pages 92-104, 1999.

146

[Dav07] R.I. Davis, A. Burns, R.J. Bril, J.J. Lukkien, “Control-
ler Area Network (CAN) schedulability analysis:
Refuted, revisited and revised”, Real-Time Systems
Journal, 35(3), pages 239-272, April 2007.

[Dem01] T. Demmeler, P. Giusto, “A Universal Communication
Model for an Automotive System Integration Plat-
form”, Design, Automation and Test in Europe
(DATE’01) Conference, Munich, pages 47-54, 2001.

[Din05] S. Ding, N. Murakami, H. Tomiyama, H. Takada, “A
GA-Based Scheduling Method for FlexRay Systems”,
Proceedings of EMSOFT, 2005.

[Dob01a] R. Dobrin, G. Fohler, “Implementing Off-Line Mes-
sage Scheduling on Controller Area Network (CAN)”,
Proceedings of the 8th IEEE International Confer-
ence on Emerging Technologies and Factory Automa-
tion, 1, 2001.

[Dob01b] R. Dobrin, G. Fohler, P. Puschner, “Translating Off-
line Schedules into Task Attributes for Fixed Priority
Scheduling”, Proceedings of Real-Time Systems
Symposium, 2001.

[Eche07] Echelon, LonWorks: The LonTalk Protocol Specifica-
tion, http://www.echelon.com, 2007.

[Eke00] C. Ekelin, J. Jonsson, “Solving Embedded System
Scheduling Problems using Constraint Program-
ming”, Chalmers University of Technology, Sweden,
Report number TR 00-12, 2000.

[Ele00a] P. Eles, A. Doboli, P. Pop, Z. Peng, “Scheduling with
Bus Access Optimization for Distributed Embedded
Systems”, IEEE Transactions on VLSI Systems, 8(5),
pages 472-491, 2000.

[Ele02] P. Eles, Lecture Notes for System Design and Meth-
odology, http://www.ida.liu.se/~TDTS30, 2002.

147

[Erm97] H. Ermedahl, H. Hansson, M. Sjödin, “Response
Time Guarantees in ATM Networks”, Proceedings of
Real-Time Systems Symposium, 1997.

[Ern98] R. Ernst, “Codesign of Embedded Systems: Status and
Trends”, IEEE Design&Test of Comp., April-June,
1998.

[Edw97] S. Edwards, L. Lavagno, E. A. Lee, A. Sangiovanni-
Vincentelli, “Design of Embedded Systems: Formal
Models, Validation and Synthesis”, Proceedings of
the IEEE, 85(3), pages 366-390, 1997.

[Edw00] S. Edwards, “Languages for Digital Embedded Sys-
tems”, Kluwer Academic Publishers, 2000.

[Fan05] X. Fan, M. Jonsson, “Guaranteed Real-Time Services
oveer Standard Switched Ethernet”, Proceedings of
the 30th IEEE Conference on Local Computer Net-
works, 2005.

[Fle07] FlexRay homepage: http://www.flexray-group.com,
2007.

[Fuh00] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R.
Hugel, M. Walther, Robert Bosch GmbH, “Time-Trig-
gered Communication on CAN (Time-Triggered
CAN- TTCAN)”, Proceedings of International CAN
Conference, Amsterdam, The Netherlands, 2000.

[Gon91] M. González Harbour, M. H. Klein, J. P. Lehoczky,
“Fixed Priority Scheduling of Periodic Tasks with
Varying Execution Priority, Proceedings of 12th
IEEE Real-Time Systems Symposium, pages 116 -
128, 1991.

[Gon03] M. Gonzaléz Harbour, J. C. Palencia, “Response Time
Analysis for Tasks Scheduled under EDF within
Fixed Priorities”, Proceedings of Real-Time Systems
Symposium, pages 200–209, 2003.

148

[Gut95] J. J. Gutiérrez García, M. González Harbour, “Opti-
mized Priority Assignment for Tasks and Messages
in Distributed Hard Real-Time Systems”, Proceed-
ings of the 3rd Workshop on Parallel and Distributed
Real-Time Systems, Santa Barbara, pages 124-132,
1995.

[Ham05] A. Hamann, R. Ernst, “TDMA Time Slot and Turn
Optimization with Evolutionary Search Techniques”,
Proceedings of the Design, Automation and Test in
Europe Conference, Volume 1, pages 312–317, 2005.

[Han97] H. Hansson, M. Sjödin, K. Tindell, “Guaranteeing
Real-Time Traffic Through an ATM Network”, Pro-
ceedings of the 30th Hawaii International Confer-
ence on System Sciences, 5, 1997.

[Hoy92] K. Hoyme, K. Driscoll, “SAFEbus”, IEEE Aerospace
and Electronic Systems Magazine, 8(3), pages 34–39,
1992.

[Hu03] J. Hu, R. Marculescu, “Exploiting the Routing Flexi-
bility for Energy/Performance-Aware Mapping of
Regular Architectures”, Proceedings of Design, Auto-
mation and Test in Europe, pages 10688, 2003.

[ISO02] International Organization for Standardization,
“Road vehicles-Controller Area Network (CAN)—
Part 4: Time-triggered communication”, ISO/DIS
11898–4, 2002.

[Jer04] A. Jerraya, W. Wolf (editors), “Multiprocessor Sys-
tems-on-Chips“, Morgan Kaufman, 2004.

[Jon97] J. Jonsson, K. J. Shin, “A Parametrized Branch-and-
Bound Strategy for Scheduling Precedence-Con-
strained Tasks on a Multiprocessor System“, Pro-
ceedings of the International Conference on Parallel
Processing (ICPP), pages 158-165, 1997.

149

[Jor97] P. B. Jorgensen, J. Madsen, “Critical Path Driven
Cosynthesis for Heterogeneous Target Architec-
tures”, Proceedings of the 5th International Work-
shop on Hardware-Software Co-design, pages 15-19,
1997.

[Keu00] K. Keutzer, S. Malik, A. R. Newton, “System-Level
Design: Orthogonalization of Concerns and Platform-
Based Design”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
19(12), 2000.

[Kir83] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, “Optimisa-
tion by simulated annealing”, Science, 220, pages
671-680, 1983.

[Koo02] P. Koopman, “Critical Embedded Automotive Net-
works”, IEEE Micro, 22(4), pages 14-18, 2002.

[Kop92] H. Kopetz, G. Fohler, G. Grünsteidl, H. Kantz, G.
Pospischil, P. Puschner, J. Reisinger, R. Schlatter-
beck, W. Schütz, A. Vrchoticky, R. Zainlinger, “The
Programmer’s View of MARS”, Proceedings of 13th
IEEE Real-Time Systems Symposium, pages 223-
226, 1992.

[Kop97] H. Kopetz, “Real-Time Systems - Design Principles
for Distributed Embedded Applications”, Kluwer
Academic Publisher, 1997.

[Kop03] H. Kopetz, G. Bauer, “The time-triggered architec-
ture”, Proceedings of the IEEE, 91(1), pages 112–126,
2003.

[Kuc97] K. Kuchcinski, “Embedded System Synthesis by
Timing Constraint Solving”, Proceedings of the
International Symposium on System Synthesis,
pages 50-57, 1997.

150

[Lab95] M. Labbe, G. Laporte, S. Martello, “An exact algo-
rithm for the dual bin packing problem”, Operations
Research Letters 17, pages 9–18, 1995.

[Lav99] L. Lavagno, A. Sangiovanni-Vincentelli, E. Sentov-
ich, “Models of Computation for Embedded System
Design”, A. A. Jerraya and J. Mermet eds: System
Level Synthesis, Kluwer, 1999.

[Lee99] C. Lee, M. Potkonjak, W. Wolf, “Synthesis of Hard
Real-Time Application Specific Systems”, Design
Automation for Embedded Systems, 4(4), pages 215-
241, 1999.

[Leh89] J. Lehoczky, L. Sha, Y. Ding, “The Rate Monotonic
Scheduling Algorithm: Exact Characterization and
Average Case Behaviour”, Proceedings of 11th Real-
Time Systems Symposium, pages 166-171, 1989.

[Leh90] J. P. Lehoczky, “Fixed Priority Scheduling of Periodic
Task Sets with Arbitrary Deadlines”, Proceedings of
11th IEEE Real-Time Systems Symposium, pages
201 -209, 1990.

[Leu82] J. Y. T. Leung, J. Whitehead, “On the Complexity of
Fixed Priority Scheduling of Periodic, Real-Time
Tasks”, Performance Evaluation, 2(4), pages 237-
250, 1989.

[LIN07] Local Interconnect Network Protocol Specification,
http://www.lin-subbus.org, 2007.

[Lip04] G. Lipari, E. Bini, “A Methodology for Designing
Hierarchical Scheduling Systems”, Journal of
Embedded Computing, 1(2), pages 257-269, 2004.

[Liu73] C. L. Liu, J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environ-
ment”, Journal of the ACM, 20(1), pages 46-61, 1973.

151

[Liv98] M. A. Livani, J. Kaiser, “EDF Consensus on CAN Bus
Access for Dynamic Real-Time Applications”, Pro-
ceedings of the IPPS/SPDP Workshops, pages 1088–
1097, 1998.

[Loc92] C. Douglas Locke, “Software Architecture for Hard-
Real Time Applications: Cyclic Executives vs. Fixed
Priority Executives”, Journal of Real-Time Systems,
4, pages 37-53, 1992.

[Lön99] H. Lönn, J. Axelsson, “A Comparison of Fixed-Prior-
ity and Static Cyclic Scheduling for Distributed
Automotive Control Applications”, Proceedings of the
11th Euromicro Conference on Real-Time Systems,
pages 142-149, 1999.

[Mar00] G. Martin, “The Future of High-Level Modelling and
System Level Design: Some Possible Methodology
Scenarios”, 9th IEEE/DATC Electronic Design Proc-
esses Workshop, 2000.

[Mar03] P. Marwedel, “Embedded System Design”, Kluwer
Academic Publishers, 2003.

[Mey03] T. Meyerowitz, C. Pinello, A. Sangiovanni-Vincen-
telli, “A tool for describing and evaluating hierarchi-
cal real-time bus scheduling policies”, Proceedings of
the Design Automation Conference, pages 312–317,
2003.

[Mil99] D. Millinger, P. Gansterer, “The Time-Triggered
Operating System Technical Manual”, http://
www.vmars.tuwien.ac.at/~fstue/manuals/ttos/
doku.html, March, 2003.

[Mic97] G. de Micheli, R. K. Gupta, “Hardware/Software Co-
Design”, Proceedings of the IEEE, 85(3), pages 349-
365, 1997.

152

[Min00] P. S. Miner, “Analysis of the SPIDER Fault-Tolerance
Protocols”, Proceedings of the 5th NASA Langley For-
mal Methods Workshop, 2000.

[Mul04] K. D. Muller-Glaser et al., “Multiparadigm Modelling
in Embedded Systems Design”, IEEE Transactions
on Control Systems Technology, 12(2), pages 279-292,
2004.

[Nav05] N. Navet, Y. Song, F. Simont-Lion, C. Wilwert,
“Trends in Automotive Communication Systems”,
Proceedings of the IEEE, 93(6), pages 1204–1223,
2005.

[Nur04] J. Nurmi, H. Tenhunen, J. Isoaho, A. Jantsch (edi-
tors), “Interconnect-Centric Design for Advanced
SoCs and NoCs”, Kluwer Academic Publishers, 2004.

[Pal98] J. C. Palencia, M. González Harbour, “Schedulability
Analysis for Tasks with Static and Dynamic Offsets”,
Proceedings of the 19th IEEE Real-Time Systems
Symposium, pages 26-37, 1998.

[Pal99] J. C. Palencia, M. González Harbour, “Exploiting
Precedence Relations in the Schedulability Analysis
of Distributed Real-Time Systems”, Proceedings of
the 20th IEEE Real-Time Systems Symposium,
1999.

[Pal03] J. C. Palencia, M. Gonzaléz Harbour, “Offset-Based
Response Time Analysis of Distributed Systems
Scheduled under EDF”, Proceedings of the Euromi-
cro Conference on Real-Time Systems, pages 3–12,
2003.

[Ple92] P. Pleinevaux, “An Improved Hard Real-Time Sched-
uling for IEEE 802.5”, Journal of Real-Time Sys-
tems, 4(2), 1992.

153

[Ped00] P. Pedreiras, L. Almeida, “Combining Event-Trig-
gered and Time-Triggered Traffic in FTT-CAN: Anal-
ysis of the Asynchronous Messaging System”,
Proceedings of the Workshop on Factory Communica-
tion Systems, pages 67–75, 2000.

[Ped03] P. Pedreiras, L. Almeida, “The Flexible Time-Trig-
gered(FTT) Paradigm: An Approach to QoS Manage-
ment in Distributed Real-Time Systems”,
International Parallel and Distributed Processing
Symposium, pages 123a, 2003.

[Ped05] P. Pedreiras, P. Gai, L. Almeida, G.C. Buttazzo, “FTT-
Ethernet: A Flexible Real-Time Communication Pro-
tocol That Supports Dynamic QoS Management on
Ethernet-Based Systems”, IEEE Transactions on
Industrial Informatics, 1(3), August 2005.

[PopP00a] Paul Pop, Petru Eles, Zebo Peng, Alexa Doboli,
“Scheduling with Bus Access Optimization for Dis-
tributed Embedded Systems“, IEEE Transactions on
VLSI Systems, 8(5), pages 472–491, 2000.

[PopP00b] Paul Pop, Petru Eles, Zebo Peng, “Bus Access Opti-
mization for Distributed Embedded Systems based
on Schedulability Analysis”, Design, Automation and
Test in Europe (DATE’00), pages 567-574, 2000.

[PopP01a] Paul Pop, Petru Eles, Traian Pop, Zebo Peng, “An
Approach to Incremental Design of Distributed
Embedded Systems”, Proceedings of the 38th Design
Automation Conference (DAC), Las Vegas, USA,
pages 450-455, 2001.

[PopP01b] Paul Pop, Petru Eles, Traian Pop, Zebo Peng, “Mini-
mizing System Modification in an Incremental
Design Approach”, Proceedings of the 9th Interna-

154

tional Workshop on Hardware/Software Codesign
(CODES 2001), Copenhagen, Denmark, pages 183-
188, 2001.

[PopP03a] Paul Pop, Petru Eles, Zebo Peng, “Schedulability-
Driven Communication Synthesis for Time-Trig-
gered Embedded Systems”, Real-Time Systems Jour-
nal, 24, pages 297-325, 2004.

[PopP03b] Paul Pop, Petru Eles, Zebo Peng, “Schedulability
Analysis and Optimization for the Synthesis of
Multi-Cluster Distributed Embedded Systems”,
Design, Automation and Test in Europe (DATE’03)
Conference, Munich, Germany, pages 184-189, 2003.

[PopP04a] Paul Pop, Petru Eles, Zebo Peng, “Schedulability-
Driven Communication Synthesis for Time-Trig-
gered Embedded Systems”, Real-Time Systems Jour-
nal, 24, pages 297–325, 2004

[PopP04b] Paul Pop, Petru Eles, Zebo Peng, Traian Pop,
“Scheduling and Mapping in an Incremental Design
Methodology for Distributed Real-Time Embedded
Systems”, IEEE Transactions on VLSI Systems,
12(8), August 2004.

[PopP05] Paul Pop, Petru Eles, Zebo Peng, “Schedulability-
Driven Frame Packing for Multi-Cluster Distributed
Embedded Systems”, ACM Transactions on Embed-
ded Computing Systems, 4(1), pages 112–140, 2005.

[PopP06] Paul Pop, Petru Eles, Zebo Peng, Traian Pop, “Analy-
sis and Optimization of Distributed Real-Time
Embedded Systems”, ACM Transactions on Design
Automation of Electronic Systems (TODAES), Vol.
11, Issue 3, pages 593-625, July 2006.

155

[PopT02] Traian Pop, Petru Eles, Zebo Peng, “Holistic Sched-
uling and Analysis of Mixed Time/Event-Triggered
Distributed Embedded Systems”, Proceedings of the
10th International Symposium on Hardware/Soft-
ware Codesign (CODES 2002), Estes Park, Colorado,
USA, pages 187-192, 2002.

[PopT03a] Traian Pop, Petru Eles, Zebo Peng, “Schedulability
Analysis for Distributed Heterogeneous Time/Event-
Triggered Real-Time Systems”, Proceedings of the
15th Euromicro Conference on Real-Time Systems
(ECRTS 2003), Porto, Portugal, pages 257-266, July
2-4, 2003.

[PopT03b] Traian Pop. Petru Eles, Zebo Peng, “Design Optimi-
zation of Mixed Time/Event Triggered Distributed
Embedded Systems”, CODES+ISSS 2003 (merged
conference), Newport Beach, California, USA, Octo-
ber 1-3, pages 83-89., 2003.

[PopT05] Traian Pop, Paul Pop, Petru Eles, Zebo Peng, “Opti-
mization of Hierarchically Scheduled Heterogeneous
Embedded Systems”, Proceedings of 11th IEEE
International Conference on Embedded and Real-
Time Computing Systems and Applications, pages
67–71, 2005.

[PopT06] Traian Pop, Paul Pop, Petru Eles, Zebo Peng, Alex-
andru Andrei, “Timing Analysis of the FlexRay Com-
munication Protocol”, 18th Euromicro Conference on
Real-Time Systems (ECRTS 06), Dresden, Germany,
July 5-7, pages 203-213, 2006.

[PopT07a] Traian Pop, Paul Pop, Petru Eles, Zebo Peng, “Bus
Access Optimisation for FlexRay-based Distributed
Embedded Systems”, Design, Automation, and Test
in Europe Conference (DATE'07), Nice, France,
pages 51-62, 2007.

156

[PopT07b] Traian Pop, Paul Pop, Petru Eles, Zebo Peng, “Anal-
ysis and Optimisation of Hierarchically Scheduled
Multiprocessor Embedded Systems”, International
Journal on Parallel Programming (to appear).

[PopT07c] Traian Pop, Paul Pop, Petru Eles, Zebo Peng, Alex-
andru Andrei, “Timing Analysis of the FlexRay Com-
munication Protocol”, Real-Time Systems Journal (to
appear).

[Pra92] S. Prakash, A. Parker, “SOS: Synthesis of Applica-
tion Specific Heterogeneous Multiprocessor Sys-
tems”, Journal of Parallel and Distributed
Computers, 16, pages 338-351, 1992.

[Pro01] Profibus International, PROFIBUS DP Specifica-
tion, http://www.profibus.com, 2007.

[Raj93] P. Raja, G. Noubir, “Static and Dynamic Polling
Mechanisms for Fieldbus Networks”, ACM Operating
Systems Review, 27(3), 1993.

[Ric02] K. Richter, R. Ernst, “Event Model Interfaces for
Heterogeneous System Analysis”, Proceedings of
Design, Automation and Test in Europe Conference
(DATE’02), Paris, France, 2002.

[Ric03] K. Richter, M. Jersak, R. Ernst, “A Formal Approach
to MpSoC Performance Verification”, IEEE Com-
puter, 36(4), pages 60-67, 2003.

[Rus01] J. Rushby, “Bus Architectures for Safety-Critical
Embedded Systems”, Springer-Verlag Lecture Notes
in Computer Science, 2211, pages 306–323, 2001.

[SAE94] SAE Vehicle Network for Multiplexing and Data
Communications Standards Committee, SAE J1850
Standard, 1994.

CONCLUSIONS AND FUTURE WORK

157

[San03] A. Sangiovanni-Vincentelli, “Electronic-System
Design in the Automobile Industry”, IEEE Micro,
23(3), pages 8-18, 2003.

[Sch94] M. Schwehm, T. Walter, “Mapping and Scheduling by
Genetic Algorithms“, Conference on Algorithms and
Hardware for Parallel Processing, pages 832-841,
1994.

[Sha90] L. Sha, R. Rajkumar, J. P. Lehoczky, “Priority Inher-
itance Protocols: An Approach to Real Time Synchro-
nization”, IEEE Transactions on Computers, 39(9),
pages 1175 -1185, 1990.

[Sta94] J. A. Stankovic, M. Spuri, M. di Natale, and G. C.
Butazzo, “Implications of Classical Scheduling
Results for Real-Time Systems”, Technical Report
UM-CS-94-089, Computer Science Department, Uni-
versity of Massachusetts, 1994.

[Str89] J. K. Strosnider, T. E. Marchok, “Responsive, Deter-
ministic IEEE 802.5 Token Ring Scheduling”, Jour-
nal of Real-Time Systems, 1(2), pages 133–158, 1989.

[Tab00] B. Tabbara, A. Tabbara, A. Sangiovanni-Vincentelli,
“Function/Architecture Optimization and Co-Design
of Embedded Systems”, Kluwer Academic Publish-
ers, 2000.

[Thi04] L. Thiele, R. Wilhelm, “Design for Timing Predicta-
bility”, Real-Time Systems Journal, 28(2/3), pages
157-177, 2004.

[Tin92] K. Tindell, A. Burns, A.J. Wellings, “Allocating Hard
Real-Time Tasks (An NP-Hard Problem Made
Easy)”, Journal of Real-Time Systems, 4(2), pages
145-165, 1992.

CHAPTER 8

158

[Tin94a] K. Tindell, J. Clark, “Holistic Schedulability Analysis
for Distributed Hard Real-Time Systems”, Micro-
processing & Microprogramming, Vol. 50, No. 2-3,
1994.

[Tin94b] K. Tindell, H. Hansson, A. J. Wellings, “Analysing
Real-Time Communications: Controller Area Net-
work (CAN)”, Proceedings of Real-Time Systems
Symposium, 1994.

[Tin94c] K. Tindell, “Adding Time-Offsets to Schedulability
Analysis”, Department of Computer Science, Univer-
sity of York, Report Number YCS-94-221, 1994.

[Tin95] K. Tindell, A. Burns, A. Wellings, “Calculating CAN
Message Response Times”, Control Engineering
Practice, 3(8), pages 1163-1169, 1995.

[Tov99] E. Tovar, F. Vasques, “Analysis of the Worst-Case
Real Token Rotation Time in PROFIBUS Networks”,
Proceedings of the Fieldbus Conference, pages 359-
366, 1999.

[TTP01C] TTP/C Specification, WebSite of Time-Triggered
Technology, http://www.tttech.com/, 2007.

[Tur99] J. Turley, “Embedded Processors by the Numbers”,
Embedded Systems Programming, 1999.

[Ull75] D. Ullman, “NP-Complete Scheduling Problems”,
Journal of Computer Systems Science, 10(3), pages
384-393, 1975.

[Wan05] E. Wandeler, L. Thiele, “Real-Time Interfaces for
Interface-Based Design of Real-Time Systems with
Fixed Priority Scheduling”, ACM Conference on
Embedded Software (EMSOFT), pages 80-89, 2005.

CONCLUSIONS AND FUTURE WORK

159

[Wor03] WorldFIP: Digital data communications for measure-
ment and control - Fieldbus standard for use in
industrial control systems. parts 1 to 6, IEC Stand-
ard 61158, 2003.

[Wol94] W. Wolf, “Hardware-Software Co-Design of Embed-
ded Systems”, Proceedings of the IEEE, V82, N7,
1994.

[Wol97] W. Wolf, “An Architectural Co-Synthesis Algorithm
for Distributed Embedded Computing Systems”,
IEEE Transactions on VLSI Systems, pages 218-229,
1997.

[Wol03] W. Wolf, “A Decade of Hardware/Software Codesign”,
IEEE Computer, 36(4), pages 38-43, 2003.

[Wol06] W. Wolf, “High Performance Embedded Computing:
Architectures, Applications and Methodologies“,
Morgan Kaufman, 2006.

[Xu93] J. Xu, D.L. Parnas, “On satisfying timing constraints
in hard-real-time systems”, IEEE Transactions on
Software Engineering, 19(1), 1993.

[Yen97] T. Y. Yen, W. Wolf, “Hardware-Software Co-Synthesis
of Distributed Embedded Systems”, Kluwer Aca-
demic Publishers, 1997.

Department of Computer and Information Science
Linköpings universitet

Dissertations

Linköping Studies in Science and Technology

No 14 Anders Haraldsson: A Program Manipulation
System Based on Partial Evaluation, 1977, ISBN
91-7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verification
of Time Margins in Digital Designs, 1977, ISBN
91-7372-157-3.

No 18 Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt språk, 1977, ISBN 91-
7372-168-9.

No 22 Jaak Urmi: A Machine Independent LISP Compil-
er and its Implications for Ideal Hardware, 1978,
ISBN 91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File Queries
in a Meta-Database System 1978, ISBN 91-7372-
232-4.

No 51 Erland Jungert: Synthesizing Database Structures
from a User Oriented Data Model, 1980, ISBN 91-
7372-387-8.

No 54 Sture Hägglund: Contributions to the Develop-
ment of Methods and Tools for Interactive Design
of Applications Software, 1980, ISBN 91-7372-
404-1.

No 55 Pär Emanuelson: Performance Enhancement in a
Well-Structured Pattern Matcher through Partial
Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The Human-
Computer Interface in Commercial Systems, 1981,
ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Ab-
stract Prolog Machine and its Application to Partial
Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Techniques
and Tools for Expert Systems, 1981, ISBN 91-
7372-489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiability in
large Software Systems, 1982, ISBN 91-7372-527-
7.

No 94 Hans Lunell: Code Generator Writing Systems,
1983, ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Program-
ming Environment based on Incremental Compila-
tion,1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372-805-5.

No 155 Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-7870-
133-3.

No 165 James W. Goodwin: A Theory and System for

Non-Monotonic Reasoning, 1987, ISBN 91-7870-
183-X.

No 170 Zebo Peng: A Formal Methodology for Automated
Synthesis of VLSI Systems, 1987, ISBN 91-7870-
225-9.

No 174 Johan Fagerström: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-
7870-301-8.

No 192 Dimiter Driankov: Towards a Many Valued Logic
of Quantified Belief, 1988, ISBN 91-7870-374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for an
Object Oriented Knowledge Base, 1989, ISBN 91-
7870-485-5.

No 214 Tony Larsson: A Formal Hardware Description and
Verification Method, 1989, ISBN 91-7870-517-7.

No 221 Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN 91-
7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design Support
and Discourse Management in User Interface Man-
agement Systems, 1991, ISBN 91-7870-720-X.

No 244 Henrik Eriksson: Meta-Tool Support for Knowl-
edge Acquisition, 1991, ISBN 91-7870-746-3.

No 252 Peter Eklund: An Epistemic Approach to Interac-
tive Design in Multiple Inheritance Hierar-
chies,1991, ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic For-
malism with Explicit Defaults, 1991, ISBN 91-
7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic De-
bugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-Cog-
nitive and Computational Aspects, 1992, ISBN 91-
7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Abstract
Machines: Contributions to a Methodology for the
Implementation of Logic Programs, 1992, ISBN 91-
7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of Tense-
bound Object References, 1992, ISBN 91-7870-
873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI Data
Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn Clause
Logic with External Polymorphic Functions, 1992,
ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge Man-
agement Systems with an Active Expert Methodolo-
gy, 1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complexity

of Reasoning about Plans, 1992, ISBN 91-7870-
979-2.

No 292 Mats Wirén: Studies in Incremental Natural Lan-
guage Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic Slic-
ing with Applications to Debugging and Testing,
1993, ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using Clas-
sification and Defaults, 1993, ISBN 91-7871-078-2.

No 312 Arne Jönsson: Dialogue Management for Natural
Language Interfaces - An Empirical Approach,
1993, ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in Phys-
ical Environments: Compositional Modelling and
Framework for Verification, 1994, ISBN 91-7871-
237-8.

No 371 Bengt Savén: Business Models for Decision Sup-
port and Learning. A Study of Discrete-Event Man-
ufacturing Simulation at Asea/ABB 1968-1993,
1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-7871-
516-4.

No 383 Andreas Kågedal: Exploiting Groundness in Log-
ic Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Description,
Identification and Recovery from Problematic Con-
trol Situations, 1995, ISBN 91-7871-603-9.

No 413 Mikael Pettersson: Compiling Natural Semantics,
1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996,
ISBN 91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996,
ISBN 91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Industrial
Training from an Organisational Learning Perspec-
tive - Development and Evaluation of the SSIT
Method, 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning: Algo-
rithms and Complexity, 1996, ISBN 91-7871-704-
3.

No 437 Johan Boye: Directional Types in Logic Program-
ming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-
7871-728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in De-
scription Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsborn: On Extensible and Object-Rela-
tional Database Technology for Finite Element
Analysis Applications, 1996, ISBN 91-7871-827-9.

No 459 Olof Johansson: Development Environments for
Complex Product Models, 1996, ISBN 91-7871-
855-4.

No 461 Lena Strömbäck: User-Defined Constructions in

Unification-Based Formalisms,1997, ISBN 91-
7871-857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Program-
ming: A Multi-Level View of Query Answering,
1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrning -
En studie av hur ekonomiska styrsystem utformas
och används efter företagsförvärv, 1997, ISBN 91-
7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of Require-
ments-Driven Impact Analysis in Object-Oriented
Software Evolution, 1997, ISBN 91-7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The Co-
operative Perspective on Knowledge-Based Deci-
sion Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management Sys-
tems for Monitoring and Control, 1997, ISBN 91-
7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri Nets in
a CLP framework, 1997, ISBN 91-7219-011-6.

No 498 Thomas Drakengren: Algorithms and Complexity
for Temporal and Spatial Formalisms, 1997, ISBN
91-7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of Hetero-
geneous Real-Time Systems, 1997, ISBN 91-7219-
035-3.

No 503 Johan Ringström: Compiler Generation for Data-
Parallel Programming Langugaes from Two-Level
Semantics Specifications, 1997, ISBN 91-7219-
045-0.

No 512 Anna Moberg: Närhet och distans - Studier av
kommunikationsmmönster i satellitkontor och flexi-
bla kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a Par-
allel Data Server for Telecom Applications, 1998,
ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault
Prevention - An Empirical Study in Software Engi-
neering, 1998, ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for Pri-
oritizing Software Requirements, 1998, ISBN 91-
7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for Lazy
Functional Languages, 1998, ISBN 91-7219-197-x.

No 555 Jonas Hallberg: Timing Issues in High-Level Syn-
thesis,1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data -
From Discrete to Continuous, 1999, ISBN 91-7219-
402-2.

No 563 Eva L Ragnemalm: Student Modelling based on
Collaborative Dialogue with a Learning Compan-
ion, 1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On geo-
graphical dispersion in organisations, 1999, ISBN
91-7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and

Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating Inhib-
itory Mechanisms in Mental Image Reinterpretation
- Towards Cooperative Human-Computer Creativi-
ty, 1999, ISBN 91-7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Narra-
tives, 1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organization-
al Aspects of Requirements Engineering Methods -
A practice-oriented approach, 1999, ISBN 91-
7219-541-X.

No 595 Jörgen Hansson: Value-Driven Multi-Class Over-
load Management in Real-Time Database Systems,
1999, ISBN 91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in the
Design of Information Systems and Services in the
Public Sector: A Methods Approach, 1999, ISBN
91-7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective on
the Analysis of Impacts of Information Technology:
From Case Studies in Health-Care towards General
Models and Theories, 1999, ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in Computer-
Supported Taskforce Training, 1999, ISBN 91-
7219-547-9.

No 607 Magnus Merkel: Understanding and enhancing
translation by parallel text processing, 1999, ISBN
91-7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to sensory
data, 1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture
Perspective, 1999, ISBN 91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i praktiken
- En studie av logiker i fyra projekt, 1999, ISBN 91-
7219-657-2.

No 627 Vadim Engelson: Tools for Design, Interactive
Simulation, and Visualization of Object-Oriented
Models in Scientific Computing, 2000, ISBN 91-
7219-709-9.

No 637 Esa Falkenroth: Database Technology for Control
and Simulation, 2000, ISBN 91-7219-766-8.

No 639 Per-Arne Persson: Bringing Power and
Knowledge Together: Information Systems Design
for Autonomy and Control in Command Work,
2000, ISBN 91-7219-796-X.

No 660 Erik Larsson: An Integrated System-Level Design
for Testability Methodology, 2000, ISBN 91-7219-
890-7.

No 688 Marcus Bjäreland: Model-based Execution
Monitoring, 2001, ISBN 91-7373-016-5.

No 689 Joakim Gustafsson: Extending Temporal Action
Logic, 2001, ISBN 91-7373-017-3.

No 720 Carl-Johan Petri: Organizational Information Pro-
vision - Managing Mandatory and Discretionary Use
of Information Technology, 2001, ISBN-91-7373-
126-9.

No 724 Paul Scerri: Designing Agents for Systems with
Adjustable Autonomy, 2001, ISBN 91 7373 207 9.

No 725 Tim Heyer: Semantic Inspection of Software Arti-
facts: From Theory to Practice, 2001, ISBN 91 7373
208 7.

No 726 Pär Carlshamre: A Usability Perspective on Re-
quirements Engineering - From Methodology to
Product Development, 2001, ISBN 91 7373 212 5.

No 732 Juha Takkinen: From Information Management to
Task Management in Electronic Mail, 2002, ISBN
91 7373 258 3.

No 745 Johan Åberg: Live Help Systems: An Approach to
Intelligent Help for Web Information Systems,
2002, ISBN 91-7373-311-3.

No 746 Rego Granlund: Monitoring Distributed Team-
work Training, 2002, ISBN 91-7373-312-1.

No 757 Henrik André-Jönsson: Indexing Strategies for
Time Series Data, 2002, ISBN 917373-346-6.

No 747 Anneli Hagdahl: Development of IT-suppor-ted In-
ter-organisational Collaboration - A Case Study in
the Swedish Public Sector, 2002, ISBN 91-7373-
314-8.

No 749 Sofie Pilemalm: Information Technology for Non-
Profit Organisations - Extended Participatory De-
sign of an Information System for Trade Union Shop
Stewards, 2002, ISBN 91-7373-
318-0.

No 765 Stefan Holmlid: Adapting users: Towards a theory
of use quality, 2002, ISBN 91-7373-397-0.

No 771 Magnus Morin: Multimedia Representations of
Distributed Tactical Operations, 2002, ISBN 91-
7373-421-7.

No 772 Pawel Pietrzak: A Type-Based Framework for Lo-
cating Errors in Constraint Logic Programs, 2002,
ISBN 91-7373-422-5.

No 758 Erik Berglund: Library Communication Among
Programmers Worldwide, 2002,
ISBN 91-7373-349-0.

No 774 Choong-ho Yi: Modelling Object-Oriented
Dynamic Systems Using a Logic-Based Framework,
2002, ISBN 91-7373-424-1.

No 779 Mathias Broxvall: A Study in the
Computational Complexity of Temporal
Reasoning, 2002, ISBN 91-7373-440-3.

No 793 Asmus Pandikow: A Generic Principle for
Enabling Interoperability of Structured and
Object-Oriented Analysis and Design Tools, 2002,
ISBN 91-7373-479-9.

No 785 Lars Hult: Publika Informationstjänster. En studie
av den Internetbaserade encyklopedins bruksegen-
skaper, 2003, ISBN 91-7373-461-6.

No 800 Lars Taxén: A Framework for the Coordination of
Complex Systems´ Development, 2003, ISBN 91-
7373-604-X

No 808 Klas Gäre: Tre perspektiv på förväntningar och
förändringar i samband med införande av informa-

tionsystem, 2003, ISBN 91-7373-618-X.
No 821 Mikael Kindborg: Concurrent Comics - program-

ming of social agents by children, 2003,
ISBN 91-7373-651-1.

No 823 Christina Ölvingson: On Development of Infor-
mation Systems with GIS Functionality in Public
Health Informatics: A Requirements Engineering
Approach, 2003, ISBN 91-7373-656-2.

No 828 Tobias Ritzau: Memory Efficient Hard Real-Time
Garbage Collection, 2003, ISBN 91-7373-666-X.

No 833 Paul Pop: Analysis and Synthesis of
Communication-Intensive Heterogeneous Real-
Time Systems, 2003, ISBN 91-7373-683-X.

No 852 Johan Moe: Observing the Dynamic
Behaviour of Large Distributed Systems to Improve
Development and Testing - An Emperical Study in
Software Engineering, 2003, ISBN 91-7373-779-8.

No 867 Erik Herzog: An Approach to Systems Engineer-
ing Tool Data Representation and Exchange, 2004,
ISBN 91-7373-929-4.

No 872 Aseel Berglund: Augmenting the Remote Control:
Studies in Complex Information Navigation for

Digital TV, 2004, ISBN 91-7373-940-5.
No 869 Jo Skåmedal: Telecommuting’s Implications on

Travel and Travel Patterns, 2004, ISBN 91-7373-
935-9.

No 870 Linda Askenäs: The Roles of IT - Studies of Or-
ganising when Implementing and Using Enterprise
Systems, 2004, ISBN 91-7373-936-7.

No 874 Annika Flycht-Eriksson: Design and Use of On-
tologies in Information-Providing Dialogue Sys-
tems, 2004, ISBN 91-7373-947-2.

No 873 Peter Bunus: Debugging Techniques for Equation-
Based Languages, 2004, ISBN 91-7373-941-3.

No 876 Jonas Mellin: Resource-Predictable and Efficient
Monitoring of Events, 2004, ISBN 91-7373-956-1.

No 883 Magnus Bång: Computing at the Speed of Paper:
Ubiquitous Computing Environments for Health-
care Professionals, 2004, ISBN 91-7373-971-5

No 882 Robert Eklund: Disfluency in Swedish
human-human and human-machine travel booking
dialogues, 2004. ISBN 91-7373-966-9.

No 887 Anders Lindström: English and other Foreign Lin-
quistic Elements in Spoken Swedish. Studies of
Productive Processes and their Modelling using Fi-
nite-State Tools, 2004, ISBN 91-7373-981-2.

No 889 Zhiping Wang: Capacity-Constrained Production-
inventory systems - Modellling and Analysis in
both a traditional and an e-business context, 2004,
ISBN 91-85295-08-6.

No 893 Pernilla Qvarfordt: Eyes on Multimodal Interac-
tion, 2004, ISBN 91-85295-30-2.

No 910 Magnus Kald: In the Borderland between Strategy
and Management Control - Theoretical Framework
and Empirical Evidence, 2004, ISBN 91-85295-82-
5.

No 918 Jonas Lundberg: Shaping Electronic News: Genre
Perspectives on Interaction Design, 2004, ISBN 91-
85297-14-3.

No 900 Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN 91-
85295-42-6.

No 920 Luis Alejandro Cortés: Verification and Schedul-
ing Techniques for Real-Time Embedded Systems,
2004, ISBN 91-85297-21-6.

No 929 Diana Szentivanyi: Performance Studies of Fault-
Tolerant Middleware, 2005, ISBN 91-85297-58-5.

No 933 Mikael Cäker: Management Accounting as Con-
structing and Opposing Customer Focus: Three Case
Studies on Management Accounting and Customer
Relations, 2005, ISBN 91-85297-64-X.

No 937 Jonas Kvarnström: TALplanner and Other Exten-
sions to Temporal Action Logic, 2005, ISBN 91-
85297-75-5.

No 938 Bourhane Kadmiry: Fuzzy Gain-Scheduled Visual
Servoing for Unmanned Helicopter, 2005, ISBN 91-
85297-76-3.

No 945 Gert Jervan: Hybrid Built-In Self-Test and Test
Generation Techniques for Digital Systems, 2005,
ISBN: 91-85297-97-6.

No 946 Anders Arpteg: Intelligent Semi-Structured Infor-
mation Extraction, 2005, ISBN 91-85297-98-4.

No 947 Ola Angelsmark: Constructing Algorithms for
Constraint Satisfaction and Related Problems -
Methods and Applications, 2005, ISBN 91-85297-
99-2.

No 963 Calin Curescu: Utility-based Optimisation of Re-
source Allocation for Wireless Networks, 2005.
ISBN 91-85457-07-8.

No 972 Björn Johansson: Joint Control in Dynamic Situa-
tions, 2005, ISBN 91-85457-31-0.

No 974 Dan Lawesson: An Approach to Diagnosability
Analysis for Interacting Finite State Systems, 2005,
ISBN 91-85457-39-6.

No 979 Claudiu Duma: Security and Trust Mechanisms for
Groups in Distributed Services, 2005, ISBN 91-
85457-54-X.

No 983 Sorin Manolache: Analysis and Optimisation of
Real-Time Systems with Stochastic Behaviour,
2005, ISBN 91-85457-60-4.

No 986 Yuxiao Zhao: Standards-Based Application Inte-
gration for Business-to-Business Communications,
2005, ISBN 91-85457-66-3.

No 1004 Patrik Haslum: Admissible Heuristics for Auto-
mated Planning, 2006, ISBN 91-85497-28-2.

No 1005 Aleksandra Tešanovic: Developing Re-
usable and Reconfigurable Real-Time Software us-
ing Aspects and Components, 2006, ISBN 91-
85497-29-0.

No 1008 David Dinka: Role, Identity and Work: Extending
the design and development agenda, 2006, ISBN 91-
85497-42-8.

No 1009 Iakov Nakhimovski: Contributions to the Modeling
and Simulation of Mechanical Systems with De-
tailed Contact Analysis, 2006, ISBN 91-85497-43-
X.

No 1013 Wilhelm Dahllöf: Exact Algorithms for Exact Sat-
isfiability Problems, 2006, ISBN 91-85523-97-6.

No 1016 Levon Saldamli: PDEModelica - A High-Level
Language for Modeling with Partial Differential
Equations, 2006, ISBN 91-85523-84-4.

No 1017 Daniel Karlsson: Verification of Component-based
Embedded System Designs, 2006, ISBN 91-85523-
79-8.

No 1018 Ioan Chisalita: Communication and Networking
Techniques for Traffic Safety Systems, 2006, ISBN
91-85523-77-1.

No 1019 Tarja Susi: The Puzzle of Social Activity - The
Significance of Tools in Cognition and Coopera-
tion, 2006, ISBN 91-85523-71-2.

No 1021 Andrzej Bednarski: Integrated Optimal Code
Generation for Digital Signal Processors, 2006,
ISBN 91-85523-69-0.

No 1022 Peter Aronsson: Automatic Parallelization of
Equation-Based Simulation Programs, 2006, ISBN
91-85523-68-2.

No 1023 Sonia Sangari: Some Visual Correlates to Focal
Accent in Swedish, 2006, ISBN 91-85523-67-4.

No 1030 Robert Nilsson: A Mutation-based Framework for
Automated Testing of Timeliness, 2006, ISBN 91-
85523-35-6.

No 1034 Jon Edvardsson: Techniques for Automatic
Generation of Tests from Programs and Specifica-
tions, 2006, ISBN 91-85523-31-3.

No 1035 Vaida Jakoniene: Integration of Biological Data,
2006, ISBN 91-85523-28-3.

No 1045 Genevieve Gorrell: Generalized Hebbian
Algorithms for Dimensionality Reduction in Natu-
ral Language Processing, 2006, ISBN 91-85643-
88-2.

No 1051 Yu-Hsing Huang: Having a New Pair of
Glasses - Applying Systemic Accident Models on
Road Safety, 2006, ISBN 91-85643-64-5.

No 1054 Åsa Hedenskog: Perceive those things which can-
not be seen - A Cognitive Systems Engineering per-
spective on requirements management, 2006, ISBN
91-85643-57-2.

No 1061 Cécile Åberg: An Evaluation Platform for
Semantic Web Technology, 2007, ISBN 91-85643-
31-9.

No 1073 Mats Grindal: Handling Combinatorial Explosion
in Software Testing, 2007, ISBN 978-91-85715-74-
9.

No 1079 Magnus Wahlström: Algorithms, measures, and
upper bounds for satisfiability and related prob-
lems, 2007, ISBN 978-91-85715-55-8.

No 1083 Jesper Andersson: Dynamic Software Architec-
tures, 2007, ISBN 978-91-85715-46-6.

No 1089 Traian Pop: Analysis and Optimisation of
Distributed Embedded Systems with Heterogene-
ous Scheduling Policies, 2007, ISBN 978-91-
85715-27-5.

Linköping Studies in Information Science

No 1 Karin Axelsson: Metodisk systemstrukturering- att
skapa samstämmighet mellan informa-tionssyste-
markitektur och verksamhet, 1998. ISBN-9172-19-
296-8.

No 2 Stefan Cronholm: Metodverktyg och användbar-
het - en studie av datorstödd metodbaserad syste-
mutveckling, 1998. ISBN-9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om an-
veckling med kalkylprogram, 1999. ISBN-91-
7219-606-8.

No 4 Owen Eriksson: Kommunikationskvalitet hos in-

formationssystem och affärsprocesser, 2000. ISBN
91-7219-811-7.

No 5 Mikael Lind: Från system till process - kriterier för
processbestämning vid verksamhetsanalys, 2001,
ISBN 91-7373-067-X

No 6 Ulf Melin: Koordination och informationssystem i
företag och nätverk, 2002, ISBN 91-7373-278-8.

No 7 Pär J. Ågerfalk: Information Systems Actability -
Understanding Information Technology as a Tool
for Business Action and Communication, 2003,
ISBN 91-7373-628-7.

No 8 Ulf Seigerroth: Att förstå och förändra
systemutvecklingsverksamheter - en taxonomi
för metautveckling, 2003, ISBN91-7373-736-4.

No 9 Karin Hedström: Spår av datoriseringens värden -
Effekter av IT i äldreomsorg, 2004, ISBN 91-7373-
963-4.

No 10 Ewa Braf: Knowledge Demanded for Action -
Studies on Knowledge Mediation in Organisations,
2004, ISBN 91-85295-47-7.

No 11 Fredrik Karlsson: Method Configuration -
method and computerized tool support, 2005, ISBN
91-85297-48-8.

No 12 Malin Nordström: Styrbar systemförvaltning - Att
organisera systemförvaltningsverksamhet med hjälp
av effektiva förvaltningsobjekt, 2005, ISBN 91-
85297-60-7.

No 13 Stefan Holgersson: Yrke: POLIS - Yrkeskunskap,
motivation, IT-system och andra förutsättningar för
polisarbete, 2005, ISBN 91-85299-43-X.

No 14 Benneth Christiansson, Marie-Therese Chris-
tiansson: Mötet mellan process och komponent -
mot ett ramverk för en verksamhetsnära kravspeci-
fikation vid anskaffning av komponentbaserade in-
formationssystem, 2006, ISBN 91-85643-22-X.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.449 inches / 165.0 x 240.0 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20070221161557
 680.3150
 S-5
 Blank
 467.7165

 Tall
 1
 0
 No
 635
 395
 None
 Down
 5.6693
 0.0000

 Both
 97
 AllDoc
 107

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 0
 171
 170
 171

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 562
 409

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 same as current

 1
 1
 1
 562
 409

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

