
Scheduling and Optimisation of
HeterogeneousTime/Event-Triggered

Distributed Embedded Systems

Traian Pop

ISBN 91-7373-676-7 ISSN 0280-7971
PRINTED IN LINKÖPING, SWEDEN

BY LINKÖPING UNIVERSITY

COPYRIGHT © 2003 TRAIAN POP

To my parents

Abstract

Day by day, we are witnessing a considerable increase in number
and range of applications which entail the use of embedded com-
puter systems. This increase is closely followed by the growth in
complexity of applications controlled by embedded systems, often
involving strict timing requirements, like in the case of safety-criti-
cal applications. Efficient design of such complex systems requires
powerful and accurate tools that support the designer from the
early phases of the design process.

This thesis focuses on the study of real-time distributed embed-
ded systems and, in particular, we concentrate on a certain aspect
of their real-time behavior and implementation: the time-triggered
(TT) and event-triggered (ET) nature of the applications and of the
communication protocols. Over the years, TT and ET systems have
been usually considered independently, assuming that an applica-
tion was entirely ET or TT. However, nowadays, the growing com-
plexity of current applications has generated the need for inter-
mixing TT and ET functionality. Such a development has led us to
the identification of several interesting problems that are
approached in this thesis. First, we focus on the elaboration of a
holistic schedulability analysis for heterogeneous TT/ET task sets
which interact according to a communication protocol based on both
static and dynamic messages. Second, we use the holistic schedula-
bility analysis in order to guide decisions during the design process.
We propose a design optimisation heuristic that partitions the task-
set and the messages into the TT and ET domains, maps and sched-
ules the partitioned functionality, and optimises the communication
protocol parameters. Experiments have been carried out in order to
measure the efficiency of the proposed techniques.

Acknowledgements

THIS THESIS would have not been possible without the gener-
ous support and patient guidance of my supervisors: Petru,
whose energy and dedication always amazed me, and Zebo, the
right person always at the right time and at the right place.

The working environment here at IDA is probably one of the
best I’ll ever see in my life. To every staff member who contrib-
uted in one way or another to the smooth publication process of
this thesis, a sincere thank you. My ESLAB colleagues deserve a
special mention, for being some of my closest friends during the
last years.

Last, but not least, I would like to thank Ruxandra and to the
members of my family, especially to my parents and to my sister,
who have always been there for me. Thank you.

Traian Pop
Linköping, Spring 2003

Contents

1. Introduction 1
1.1.Design Flow of Distributed Embedded Systems 2
1.2.Heterogeneous Event/Time-Triggered Systems 4

1.2.1. Event/Time-Triggered Task Execution 4
1.2.1.1.Event-Triggered Tasks 6
1.2.1.2.Time-Triggered Tasks 7

1.2.2. Event/Time-Triggered Traffic 9
1.2.2.1.Dynamic Communication 10
1.2.2.2.Static Communication 12
1.2.2.3.Mixed Protocols 15

1.2.3. Heterogeneous Systems 16
1.3.Related Work 18

1.3.1. System Level Design 18
1.3.2. Scheduling and Schedulability Analysis 19
1.3.3. Communication in Real-Time Systems 22

1.4.Contribution 23
1.5.Thesis Overview 24

2. System Model 25
2.1.Hardware Architecture 25
2.2.Bus Access 26
2.3.Software Architecture 27
2.4.Application Model 28

3. Scheduling and Schedulability Analysis of
Heterogeneous Time-Triggered/Event-Triggered
Systems 31

3.1.Problem Formulation 31
3.2.Schedulability Analysis of ET Task Sets 32
3.3.Schedulability Analysis of ET Activities under the

Influence of a Static Cyclic Schedule 36
3.4.Global Scheduling and Schedulability Analysis

Strategy 40
3.5.Static Cyclic Scheduling of the TT Activities in a

Heterogeneous TT/ET Environment 42
3.5.1. MxS1 47
3.5.2. MxS2 49
3.5.3. MxS3 51

3.6.Experimental Results 53

4. Design Optimisation of Heterogeneous Time/
Event-Triggered Systems 57

4.1.Specific Design Problems
4.1.1. Partitioning of System Functionality into ET
and TT Activities 57
4.1.2. Bus Access Optimisation 59

4.2.Problem Formulation 60
4.3.Design Heuristic 61

4.3.1. Building an Initial Configuration 63
4.3.2. Adjusting the Initial Configuration 65
4.3.3. Mapping, Partitioning and Scheduling 66
4.3.4. Bus Access Optimisation 69

4.4.Experimental Results 71

5. Conclusions and Future Work 77

References 79

APPENDIX A: List of Notations 91

INTRODUCTION

1

Chapter 1
Introduction

THIS THESIS DEALS with specific issues related to the system-
level design of distributed embedded systems implemented with
mixed, event-triggered (ET) and time-triggered (TT) task sets
which communicate over bus protocols consisting of both static
(ST) and dynamic (DYN) phases. We have focused on the sched-
uling of heterogeneous TT/ET systems and we have studied the
factors which influence the efficiency of the scheduling process.
We have also identified several optimisation problems specific
for this type of heterogeneous systems, and we have approached
these problems in the context of design optimisation heuristics.

This chapter starts by presenting the framework of our thesis,
namely the area of distributed embedded real-time systems. We
make a short introduction to event-triggered and time-triggered
execution of tasks, as well as a brief description of static and
dynamic transmission of messages. We introduce both homoge-
neous and heterogeneous TT/ET distributed embedded systems
and we focus on the later ones, as they constitute the motivation
behind this work.

Analysis and design of distributed embedded systems has
been and will be a prolific area of research, considerably boosted

CHAPTER 1

2

by the variety of communication protocols which are involved.
This thesis is not the first and definitely not the last contribu-
tion in this area. In Section 1.3, the reader is acquainted with
other work related to the one presented in our thesis, while in
Section 1.4 we outline our contributions to the field of analysis
and design of embedded real-time systems.

Finally, Section 1.5 is a feedforward to the following chapters.

1.1 Design Flow of Distributed Embedded
Systems

Today, embedded systems find their place in more and more
applications around us, starting with consumer electronics and
appliances and ending with safety critical systems in applica-
tions such as aerospace/avionics, railway, automotive industry,
medical equipment, etc. Quite often, such systems are also real-
time systems, as they are constrained to perform certain tasks in
a limited amount of time; failure to comply with the timing
requirements leads to consequences whose gravity can vary
from almost imperceptible loss of quality in an MPEG decoder,
up to catastrophic events, like fatal car crashes when braking
and air-bag systems fail to react in time. Depending on the
nature of the timing constraints real-time systems can be classi-
fied into soft real-time systems, in which deadlines can be occa-
sionally missed without the system reaching an intolerable
state, and hard real-time systems, in which missing a deadline
is intolerable because of its possible consequences [Kop97]. This
thesis focuses on hard real-time systems.

Designing a hard real-time embedded system requires proce-
dures for guaranteeing that all deadlines will be met. If such
guarantees cannot be provided, then the system is considered
unschedulable and most likely, its implementation will not meet
the requirements in terms of timeliness.

The continuous increase in range and number of applications

INTRODUCTION

3

entailing the use of embedded systems [Tur99] is closely fol-
lowed by an increase in complexity of the applications them-
selves. Complex environments need more and more complex
control embedded systems. The growing complexity of real-time
embedded systems is also considerably increased by their heter-
ogeneous nature, which goes along several dimensions like:
 • applications can be data or control intensive;
 • the system functionality implies both hard and soft timing

requirements;
 • the controlled environment can generate discrete or continu-

ous stimuli;
 • components inside an embedded computer system can inter-

act among themselves using different synchronisation mech-
anisms;

 • hardware implementations are based on heterogeneous
architectures in which one can find application-specific
instruction processors (ASIPs), digital signal processors
(DSPs), general purpose processors, protocol processors,
application-specific integrated circuits (ASICs), field-pro-
grammable gate arrays (FPGAs), etc., all organised in vari-
ous topologies and interconnected by diverse shared buses,
point-to-point links or networks;

 • the system includes both analog and digital components.
In this thesis, we have studied another dimension of heteroge-

neity, resulted from the two different approaches to the design of
real-time embedded systems:
 • the time-triggered approach, in which the processing and

communication activities are initiated at predetermined
points in time;

 • the event-triggered approach, in which activities happen
when a significant change of state in the system occurs.

As we will see in Chapter 2, the systems which we consider
support both time-triggered and event-triggered processing and
communication activities.

CHAPTER 1

4

In Figure 1.1 we present a system-level design flow (adapted
from [Ele02]) that starts from a high-level system specification,
which may be expressed in several languages, including natural
language. The system specification is later refined into an
abstract formal model (which can be captured in one or several
modelling languages). Starting from the system model, the
methodology follows a design exploration stage in which various
system architectures are selected, different ways to map the
functionality on the available resources are evaluated, and sev-
eral alternatives for scheduling and synthesis of the communi-
cation parameters are examined, so that in the end, the resulted
model of the system will meet the requirements imposed for the
current design.

In Figure 1.1 we marked with dark rectangles the phases in
the design process which are covered in this thesis. First, we
developed a method for scheduling and schedulability analysis
of the activities in a heterogeneous TT/ET embedded system.
This analysis method is then used for guiding the design pro-
cess, and in particular we concentrated on the problems of map-
ping of functionality, communication synthesis and the specific
aspect of partitioning the functionality into TT and ET activi-
ties.

1.2 Heterogeneous ET/TT Systems
In this thesis, we consider heterogeneous embedded systems in
the sense that they consist of both time-triggered (TT) and
event-triggered (ET) activities. In this section, we present the
characteristics of such activities, the typical mechanisms used
for implementation and the advantages and disadvantages
inherent to each approach.

1.2.1 EVENT/TIME-TRIGGERED TASK EXECUTION

We start by describing first the execution mechanism of tasks in

INTRODUCTION

5

System
Specification

Modelling

System ModelArchitecture
Selection

System
Architecture

Mapping &

Scheduling

Estimation

Communication
Synthesis

Synthesised

Analysis

lower levels of design

Figure 1.1: System Level Design Flow

Partitioning

Constraints not satisfied

Constraints
are satisfied

C
on

strain
ts n

ot satisfi
ed

of WCETs

System Model

CHAPTER 1

6

an ET and then in a TT system. In this thesis we consider that
the functionality of the system is decomposed into a set of inter-
acting tasks (Section 2.4). A task is defined as “a computation
that is executed by the CPU in a sequential fashion” [But97].

1.2.1.1 EVENT-TRIGGERED TASKS

In the event-triggered approach, the execution of a task is initi-
ated by the occurrence of a certain event which is related to a
change in the system state. For example, in Figure 1.2, task τ1 is
initiated by event E1 which appears at times t1 and t2. If the
resources needed by task τ1 are available at moment t1 (for
example, the CPU is idle), then task τ1 starts its execution. The
mechanism behaves similarly at moment t2.

Usually, the system functionality is composed of several tasks
and their execution might lead to resource conflicts, like in the
case when two tasks are simultaneously ready for execution and
only one of them can make use of the processing capabilities of
the system. Typically, such conflicts are solved by assigning pri-
orities to tasks and executing the task with the highest priority.
We present below one of the simplest and most common
approaches, the fixed priority approach, in which the priorities
are statically assigned offline to tasks and do not change at run
time.

In order to implement a fixed priority policy for task execu-
tion, a real-time kernel has a main component called scheduler
which has two main responsibilities:
 • to maintain/update the prioritised queue of ready tasks;
 • to select from the queue and execute the ready task with the

highest priority.

t1 t2
time

E1 E1

τ1 τ1

Figure 1.2: ET Task Execution

INTRODUCTION

7

The timeline in Figure 1.3 presents how two conflicting ET
tasks are executed by such a real-time kernel. In the first case,
the kernel implements a preemptive policy for task execution.
When task τ2 is initiated by the occurrence of event E2, task τ1
will be interrupted because it has a lower priority than the pri-
ority of task τ2. Task τ1 is placed in the ready queue and it will
resume its execution only after task τ2 finishes. In the second
case, the execution is non-preemptive and task τ2 has to wait
until task τ1 finishes execution. In this case, even if task τ2 has a
higher priority than task τ1, it will be blocked for an amount of
time B2 and it will have to stay in the ready queue until a subse-
quent activation of the scheduler will find the processor avail-
able.

The advantages of the event-triggered approach are its flexi-
bility and an efficient usage of the available resources. However,
taking into consideration the overheads related to task switch-
ing, scheduler activation, etc. considerably increases the diffi-
culty of the schedulability analysis for such types of systems.

1.2.1.2 TIME-TRIGGERED TASKS

In a time-triggered system, the execution of tasks is initiated at
pre-determined moments in time. The main component of the
real-time kernel is the time interrupt routine and the main con-
trol signal is the clock of the system. The information needed for
task execution is stored in a data structure called schedule table,

t1 t2
time

E1 E2

τ1 τ’1

Figure 1.3: Concurrent ET Execution of Tasks

t1 t2
time

E1 E2

τ1 τ2

τ2a) preemptive

b) non-preemptive

B2

CHAPTER 1

8

where each task has a pre-assigned start time. The schedule
table is obtained through a static scheduling algorithm, which is
executed off-line and which eliminates the possible conflicts
between tasks by imposing appropriate start times.

For example, in Figure 1.4, we consider three periodic tasks,
each task being executed with period T. The schedule table on
the right side of the figure shows that the executions of the three
tasks τ1, τ2 and τ3 are started at moments t1, t2 and t3. Each
start time in the table is computed offline in such a way that the
execution of a task is finished before the next start time stored
in the schedule table. After a certain time TSS, called the period
of the static cyclic schedule, the kernel performs again the same
sequence of decisions.

The period TSS is computed as the least common multiple of
the periods of the individual tasks in the system. The case pre-
sented above is a very particular one, as all three tasks have the
same period T, which gives a perfectly harmonised system, and
therefore TSS = T. However, one may notice that the size of the
schedule table increases substantially if the task periods are not
harmonised.

Also, a time-triggered system based on a static schedule table
has a low flexibility and is usually inappropriate for dynamic
environments for which it provides an inefficient processor util-
isation.

However, the time-triggered approach has several important
advantages. Being highly predictable, deterministic, easy to be
validated and verified, it is particularly suitable for safety-criti-

t1 t3 time
τ1 τ3

Figure 1.4: Time Triggered Execution of Tasks

t2

τ2

Task Time
τ1
τ2

τ3

t1

t3

t2
Tss+t1 Tss+t3

τ1 τ3

Tss+t2

τ2

TSS TSS

INTRODUCTION

9

cal applications [Kop97].

1.2.2 EVENT/TIME-TRIGGERED TRAFFIC

The previous section presented activation mechanisms of tasks
in a real-time system. We continue with a similar discussion but
in the context of communication activities in architectures based
on broadcast buses.

There are two main features characteristic to broadcast buses:
 • all nodes connected to the communication channel (the bus)

receive the same messages; and
 • only one node can send messages at a time on the bus. This

feature enforces the usage of a bus arbitration method.
Below we present some of the main bus access strategies in

use today:

a. Collision Sense Multiple Access (CSMA), in which nodes
are enabled to identify if there is any activity on the bus and,
if there is none, then the nodes may send. It may be the case
that more than one node identifies no activity and sends
messages on the bus at the same time, leading to the appari-
tion of collisions between messages. For this reason, CSMA
is usually combined with another strategy for dealing with
collisions, such as:
 • collision detection (CSMA/CD), where each sending node

withdraws when collisions are sensed on the bus and tries
to send again later, after a random time (for example, the
Ethernet protocol [IEEE98]).

 •collision avoidance (CSMA/CA), where messages have
unique priorities that are used for non-destructive bitwise
arbitration. A node sending a message with a certain prior-
ity stops the transmission when it detects there is another
message with a higher priority being sent on the bus (for
example, the CAN protocol [Bos91]).

b. Token passing, in which a node is allowed to send messages
on the bus only if it is in the possession of a message contain-

CHAPTER 1

10

ing a piece of information called token (for example, the to-
ken bus [IEEE83]).

c. Mini-slotting, in which each node has a uniquely associated
wait time relative to the start of the bus cycle. If the waiting
time has passed and no activity is sensed on the bus, then
the node can send messages on the bus (for example, ARINC
629 [ARI629], Byteflight [Ber03], and FlexRay [Fle03]).

d. Time Division Multiple Access (TDMA), in which each
node has a pre-assigned time slot for transmitting messages.
The access scheme is cyclic and allows each node to send
messages periodically without any interference from other
nodes (for example TTP/C [TTP01C], FlexRay [Fle03]).

e. Central Master, in which a node can send messages on the
bus only at the request of another node, which is the central
master and which is the only one that can initiate the com-
munication protocol (for example, LIN [LIN00], TTP/A
[TTP01A]).

In the following two sub-sections, we discuss two approaches
to communication in distributed real-time systems:

1. Dynamic communication (DYN), in which the communica-
tion activities are triggered dynamically, in response to an
event.

2. Static communication (ST), in which the communication ac-
tivities are triggered at predetermined moments in time. For
such a case, each node in the system knows (from design
time) exactly when and which messages are sent on the bus,
as well as how long their transmission takes.

1.2.2.1 DYNAMIC COMMUNICATION

In the case of DYN communication, the trigger which initiates
the process of sending a message is the generation of the mes-
sage itself (by the sending task).

We will give an example of how messages are sent over the

INTRODUCTION

11

CAN bus, which is one of the most used event-triggered commu-
nication approaches ([Bos91]). The CAN protocol is based on a
CSMA/CA arbitration policy, and for this purpose each message
in the system has a unique identifier associated to it. Whenever
the communication controller in a node receives a message to be
sent on the bus, it will have first to wait until the bus is avail-
able. When no activity is identified on the bus anymore, the mes-
sage will be sent, preceded by its unique identifier. The identifier
of a message acts like a priority, in the sense that if there are
several nodes which transmit at the same time on the bus, only
the message with the highest priority will go through and the
other ones will have to wait the next moment when the bus
becomes available. The collisions between messages whose
transmission start at the same time are avoided by a non-
destructive bitwise arbitration based on the message identifier.

The collision avoidance mechanism is illustrated in
Figure 1.5, where three messages m1, m2 and m3 are simulta-
neously generated on three different nodes. All three messages
start being transmitted at the same time. Each message is pre-
ceded on the bus by the sequence of several bits representing its
priority. The bus is usually hardwired in such a way that it will

m1: 11010010
m2: 11100110
m3: 11101000

Figure 1.5: CSMA/CA Bus - Bitwise Arbitration

Identifiers

Node 1 Node 2 Node 3

CSMA/CA
bus

1 1 1 <- Node1 stops transmitting
1 1 1 0 1 <- Node2 stops transmitting
1 1 1 0 1 0 0 0 <- Node3 starts transmitting m3

Status of the Bus (as seen from each node)

time

CHAPTER 1

12

always have the same value in the case a collision appears. This
means that if two nodes transmit two different bits simulta-
neously, then only the dominant bit will be sensed on the bus.
The example in Figure 1.5 considers the case where the domi-
nant bit is 1, and as a result, after 3 bits have been sent on the
bus, the first node gives up the transmission, as it sensed a
higher priority on the bus than the one sent by itself. The second
node gives up after transmitting 5 bits. Having the highest
value for the identifier, the message transmitted by the third
node will go undeterred on the bus, while messages m1 and m2
will be resent only after transmission of m3 will finish (of course,
the bus access mechanism will decide again which of the
remaining messages goes first).

1.2.2.2 STATIC COMMUNICATION

In Section 1.2.1.2 we presented the time-triggered execution of
tasks. Similarly, static (ST) communication activities are initi-
ated at predetermined moments of time. A consistent behavior
of such a distributed multiprocessor time-triggered system
requires that the clocks in all the nodes in the system are syn-
chronised to provide a global notion of time [Kop97]. Such a syn-
chronisation can be efficiently achieved through the
communication protocol.

In this section, we detail the time-triggered communication
mechanism as it appears in the case of a TDMA bus. As we
already mentioned, in the case of a TDMA bus the bandwidth is
divided into timeslots and each such slot is assigned offline to a
node in the system. During its timeslot, a node has the exclusive
right to send messages on the bus. At run-time, if a node has a
message to send, it will have to wait until the system time has
advanced to the start of its pre-assigned slot. The periodic
sequence in which the timeslots are ordered represents a TDMA
round.

For example, in Figure 1.6, one can see a distributed system

INTRODUCTION

13

with three nodes connected to a TDMA bus. The bus cycle is
composed of four slots, each slot associated to a node. NodeA, for
example, can send messages only during slot1 and slot3 of each
TDMA round, NodeB can send only during slot4, while NodeC
can send only during the second slot of each round. In this way it
is guaranteed that only one node transmits on the bus at a time.
The TDMA round in the example consists of the sequence of
slots 1, 2, 3 and 4.

A typical TDMA based communication protocol is the Time-
Triggered Protocol (TTP) [TTP01C]. In the case of TTP, every
node stores locally the information related to each of the mes-
sages in the system: sender/receiver, starting time of transmis-
sion, message length, etc. A node will send a message on the bus
whenever the global current time reaches one of the start time
values which are stored locally. For example, in Figure 1.7,
NodeA starts sending a message mAB at time t1 relative to the
start of each bus round, during its pre-assigned slot in the sec-
ond round, according to the information stored locally. At the
same time, the communication controller in NodeB will know
from its own local table that at time t1 it will have to start read-

Node A Node B Node C

TDMA
bus

time

Round 2Round 1

Figure 1.6: TDMA Bus

slot1 slot3slot2 slot4 slot1 slot3slot2 slot4
A C A B A C A B

CHAPTER 1

14

ing message mAB. At time t2, another message is scheduled to be
transmitted on the bus from NodeB towards NodeA. The static
schedule illustrated in Figure 1.7 expands along two bus cycles,
called rounds, and the sequence of such two consecutive rounds
forms a hyper cycle. The static schedule stored locally in each
node is repeated periodically with a period equal to the length of
such a hyper cycle.

It is largely accepted that the static properties inherent to the
TDMA communication considerably diminish the flexibility of
the system. Unless bandwidth is reserved from the design time,
adding another sending node in the system requires a reconfigu-
ration of the bus round, which usually triggers many other
updates and validations of the system design.

However, the determinism associated with the TDMA commu-

Figure 1.7: Statically Scheduled TT Communication

Node A Node B

TDMA
bus

time

slot1 slot2 slot1 slot2
mAB

Round 2Round 1

mAB

t2

t2mBA

Message ID Start Time Length Sender Receiver

t1
C2

C1 Node A Node B

Node B Node A

mBA

t1

Hyper cycle 1 Hyperacid 2

slot1 slot2 slot1 slot2
mAB

Round 2Round 1

mBA

t1 t2

INTRODUCTION

15

nication has several major advantages: timing properties of the
system are easily guaranteed, system composability is straight-
forward when extensions are planned, etc.[Kop97].

1.2.2.3 MIXED PROTOCOLS

Nowadays, protocols which support both time-triggered and
event-triggered communication are being developed and placed
on the market. Examples in this sense are Flexray [Fle03],
WorldFIP [Wor03] and FTT-CAN [Ple92]. The main motivation
behind their appearance was to provide a bus support which
combines the advantages of both ET and TT approaches into
powerful and versatile protocols. One of the main advantages of
such protocols is represented by the combination of flexibility
and determinism, making them appropriate for implementation
of flexible real-time systems which have dynamic requirements
as well as timing constraints.

In order to avoid the interferences between ET and TT com-
munication, interference which may have a negative impact on
the properties of the TT messages, such a mixed protocol has to
enforce a temporal isolation between the two types of traffic. The
most common solution is based on the so called communication
cycle which is split into TT and ET phases that repeat periodi-
cally: TT messages are sent during a TT phase, while ET mes-
sages are sent during a ET phase ([Raj93], [Ple92]).

In Figure 1.8, we present a generalised model of such a proto-

Static phase Dynamic phase Static phase Dynamic phase

D
Y

N
 m

sg.

D
Y

N
 m

sg.

D
Y

N
 m

sg.

D
Y

N
 m

sg.

D
Y

N
 m

sg.

slot 1

slot 2

slot 3

slot 4

slot 5

slot 6

slot 7

Communication cycle

Figure 1.8: Mixed Communication Cycle

CHAPTER 1

16

col, called Universal Communication Model (UCM [Dem01]), in
which the communication cycle contains several static (ST) and
dynamic (DYN) phases. A system based on such a protocol will
send the TT messages during ST slots according to a pre-defined
TDMA scheme and to an associated static schedule, while the
ET messages are packed online into frames and sent during the
DYN phases according to an arbitration mechanism (like, for
example, CSMA/CA or mini-slotting).

The Universal Communication Model allows for the modeling
and exploration of a large range of mixed ST/DYN communica-
tion protocols for bus based systems. This is why in this thesis,
we model the communication on the bus using UCM (Section
2.2).

1.2.3 HETEROGENEOUS SYSTEMS

There has been a lot of debate in the literature on the suitability
of the event-triggered paradigm as opposed to the time-triggered
one, for implementation of real-time systems [Aud93], [Kop97],
[Xu93]. Several arguments have been brought concerning com-
posability, flexibility, fault tolerance, jitter control or efficiency in
processor utilisation. The same discussion has also been
extended to the communication infrastructure which can also be
implemented according to the time-triggered or event-triggered
paradigm.

An interesting comparison of the TT and ET approaches, from
a more industrial, in particular automotive, perspective, can be
found in [Lön99]. Their conclusion is that one has to choose the
right approach depending on the particularities of the scheduled
tasks. This means not only that there is no single “best”
approach to be used, but also that, inside a certain application
the two approaches can be used together, some tasks being time-
triggered and others event-triggered.

The growing amount and diversity of functions to be imple-
mented by the current and future embedded applications (like

INTRODUCTION

17

for example, in automotive electronics [Koo02]) has shown that,
in many cases, time-triggered and event-triggered functions
have to coexist on the computing nodes and to interact over the
communication infrastructure (see Figure 1.9).

In order to cope with the complexity of designing such hetero-
geneous embedded systems, only an adequate design environ-
ment can effectively support decisions leading in an acceptable
time to cost-efficient, reliable and high performance solutions.
Developing flexible and powerful tools for the design and analy-
sis of such kind of heterogeneous systems represents the motiva-
tion behind the work presented in this thesis.

Figure 1.9: Heterogeneous TT/ET Distributed System

Node 1

Static phase Dynamic phase Static phase Dynamic phase

Node 2 Node 3

Bus cycle (Tbus)

Node n...

TT
functionality

ET

functionality

Mapping

CHAPTER 1

18

1.3 Related Work
This section presents an overview of the previous research in the
area of analysis and system level design for distributed embed-
ded systems. We concentrate in particular on scheduling and
communication synthesis, with focus on the time-triggered and
event-triggered aspects.

1.3.1 SYSTEM LEVEL DESIGN

System level design methodology is continuously evolving
[Mar00], from ad-hoc approaches based on human designer’s
experience, to hardware/software codesign, and currently to
platform-based design [Keu00] and function-architecture code-
sign [Bal97], [Lav99], [Tab00].

The design flow presented in Figure 1.1 illustrates only some
of the main problems which appear during the system level
phases of design. For a deeper insight into system level design
aspects with focus on hardware/software trade-offs, the reader is
referred to the surveys in [Wol94], [Mic97], [Ern98] and [Wol03].

System modelling has received a lot of attention, as powerful
computational models and expressive specification languages
are needed in order to capture heterogeneous system require-
ments and properties at different levels of abstraction [Edw97],
[Edw00], [Lav99]. Evaluation of system performance with
regard to timing requirements usually starts with static analy-
sis or other means for performance estimation of the functional-
ity [Ern97]. Typical hardware architectures for embedded
systems have evolved from simple ones (involving only one pro-
cessor and one ASIC), to distributed and heterogeneous ones, as
described in Section 1.1. Such an evolution has directly
increased the complexity of the problems related to architecture
selection, mapping, partitioning and scheduling of functionality
and has led to the apparition of new approaches like those pro-
posed in [Bec98], [Bli98], [Dav99], [Lee99], [Wol97], [Yen97].

INTRODUCTION

19

1.3.2 SCHEDULING AND SCHEDULABILITY ANALYSIS OF REAL-
TIME SYSTEMS

Task scheduling and schedulability analysis have been inten-
sively studied for the past decades, one of the reasons being the
high complexity of the targeted problems [Ull75], [Sta94]. The
reader is referred to [Aud95] and [Bal98] for surveys on this
topic.

A comparison of the two main approaches for scheduling hard
real-time systems (i.e., static cyclic scheduling and fixed priority
scheduling) can be found in [Loc92].

The static cyclic (non-preemptive) scheduling approach has
been long considered as the only way to solve a certain class of
problems [Xu93]. This was one of the main reasons why it
received considerable attention. Solutions for generating static
schedules are often based on list scheduling in which the order of
selection for tasks plays the most important role [Coff72],
[Jor97] (see also Section 3.5). However, list scheduling is not the
only alternative, and branch-and-bound algorithms [Jon97],
[Abd99], mixed integer linear programming [Pra92], constraint
logic programming [Kuc97], [Eke00], or evolutionary [Sch94]
approaches have also been proposed.

For event-triggered tasks, in this thesis we are interested only
in static priority based scheduling policies. In the case of fixed
priority (preemptive) scheduling, determining whether a set of
tasks is schedulable involves two aspects:

1. The assignment of priorities to system activities, i.e. what
priority should be associated with each task and message in
the system so that the task set is schedulable.

2. The schedulability test, which determines whether all activi-
ties in the system will meet their deadlines under the cur-
rent policy.

In order to solve the problem of assigning priorities to system
activities so that the system is schedulable, two main policies
have been developed; they both work under restricted assump-

CHAPTER 1

20

tions, i.e. the task set to be scheduled is composed of periodic and
independent tasks mapped on a single processor:

a. rate-monotonic (RM) [Liu73] which assigns higher priorities
to tasks with shorter periods; it works under the constraint
that task deadlines are identical with task periods.

b. deadline-monotonic (DM) [Leu82] which assigns higher pri-
orities to tasks with shorter relative deadlines; this policy as-
sumes that task deadlines are shorter than task periods.

If, for example, tasks are not independent, then the optimality
does not hold anymore for RM and DM policies. Therefore, in
[Aud93], the authors proposed an optimal1 solution for priority
assignment in the case of tasks with arbitrary release times.
Their algorithm is of polynomial complexity in the number of
tasks. However, for the case of multiprocessor/distributed hard
real-time systems, obtaining an optimal solution for priority
assignment is often infeasible, due to complexity reasons. A
solution based on simulated annealing has been proposed in
[Tin92], where the authors present an algorithm which simulta-
neously maps the tasks on processors and assigns priorities to
system activities so that the resulted system is schedulable. In
order to avoid the large amount of computation time required by
such a general-purpose approach, an optimised priority assign-
ment heuristic called HOPA has been suggested in [Gut95],
where the authors iteratively compute deadlines for individual
tasks and messages in the system, while relying on the DM pol-
icy to assign priorities to the tasks. Their algorithm has shown a
better efficiency than simulated annealing, both in quality and
especially in speed, making it appropriate for being used inside
a design optimisation loop which requires many iterations. As
an example, HOPA has been adapted for the design optimisation
of multi-cluster distributed embedded systems [Pop03b].

1. The algorithm is optimal in the sense that it finds a solution whenever
one exists.

INTRODUCTION

21

For the second aspect of fixed priority scheduling, there are
two main approaches for performing schedulability tests:

a. utilisation based tests, in which the schedulability criterion
is represented by inequations involving processor utilisation
and utilisation bounds. However, such approaches are valid
only under restricted assumptions [Liu73], [Bin01], [Leu82].

b. response time analysis, in which determining whether the
system is schedulable or not requires first the computation of
the worst-case response time of a task or message. The worst
case response time of an activity is represented by the long-
est possible time interval between the instant when that ac-
tivity is initiated in the system and the moment when the
same activity is finished. If the worst case response time re-
sulted for each task/message is lower or equal than the asso-
ciated deadline for that activity, then the system is schedula-
ble.

Response time analysis is usually more complex but also more
powerful than the utilisation based tests. The main reason for
this is because response time analysis can take into consider-
ation more factors that influence the timing properties of tasks
and messages in a system.

The response time analysis in [Leh89] offers a necessary and
sufficient condition for scheduling tasks running on a mono-pro-
cessor system, under fixed priority scheduling and restricted
assumptions (independent periodic tasks with deadlines equal
with periods). In order to increase the range of target applica-
tions, relaxing/restricting assumptions is necessary. Moreover,
considering the effects of more and more factors that influence
the timing properties of the tasks decreases the pessimism of
the analysis by determining tighter worst case response times
and leading to a smaller number of false negatives (which can
appear when a system which is practically schedulable cannot
be proven so by the analysis). Over the time, extensions have
been offered to response time analysis for fixed priority schedul-

CHAPTER 1

22

ing by taking into account task synchronisation [Sha90], arbi-
trary deadlines [Leh90], precedence constraints between tasks
[Pal99] and tasks with varying execution priorities [Gon91],
arbitrary release times [Aud93], [Tin94c], tasks which suspend
themselves [Pal98], tasks running on multiprocessor systems
[Tin94a], [Pal98], etc. In [Ric02] and [Ric03], the authors model
the multiprocessor heterogeneous systems as components that
communicate through event streams and propose a technique
for integrating different local scheduling policies based on such
event-model interfaces.

1.3.3 COMMUNICATION IN REAL-TIME SYSTEMS

The aspects related to communication in real-time systems
are receiving a continuously increasing attention in the litera-
ture. Building safety critical real-time systems requires consid-
eration for all the factors that influence the timing properties of
a system. For the case of distributed systems, in order to guaran-
tee the timing requirements of the activities in the system, one
should consider the effects of communication aspects like the
communication protocol, bus arbitration, clock synchronisation,
packaging of messages, characteristics of the physical layer, etc.
Due to the variety of communication protocols, scheduling and
schedulability analysis involving particular communication pro-
tocols has become a prolific area of research. Following a similar
model for determining task response time under rate monotonic
analysis, message transmission times have been analysed for
protocols like TTP bus [Kop92], Token Ring [Ple92], [Str89],
FDDI [Agr94], ATM [Erm97], [Han97] and CAN bus [Tin94b].

Usually, communication protocols allow either static (time-
triggered) or dynamic (event-triggered) services, influencing
several levels in the design flow and giving more weight in the
design output to either flexibility or time-determinism of the
system. As a result, a lot of work has been concentrated on cop-
ing with the disadvantages of the TT/ET approaches and on try-

INTRODUCTION

23

ing to combine their advantages. For example, in [Pop01a] and
[Pop01b], the authors present a method for dealing with flexibil-
ity in TTP based systems by considering consecutive design
stages in a so called incremental design flow. In order to combine
the advantages of rigid off-line static scheduling with flexible
online fixed priority scheduling, in [Dob01a] and [Dob01b], fixed
priority scheduling is adapted in such a way that it emulates
static cyclic schedules which are generated offline.

In the case of bus-based distributed embedded systems, one of
the main directions of evolution for communication protocols is
towards mixed protocols, which support both ET and TT traffic.
The proponents of the Time-Triggered Architecture showed that
TTP can be enhanced in order to transmit ET traffic, while still
maintaining time composability and determinism of the system,
properties which are normally lost in event-triggered systems
[Kop92]. A modified version of CAN, called Flexible Time-Trig-
gered CAN [Alm99], [Alm02], is based on communication cycles
which are divided into asynchronous and synchronous windows.
Several other mixed communication protocols can be found in
[Fuh00],[Wor03], [Fle03].

1.4 Contributions
Our approach considers distributed embedded systems imple-
mented with mixed, event-triggered and time-triggered task
sets, which communicate over bus protocols consisting of both
static and dynamic phases.

We have considered that the time-triggered activities are exe-
cuted according to a static cyclic schedule, while the event-trig-
gered activities follow a fixed priority policy, which is preemptive
for the execution of tasks and non-preemptive for the transmis-
sion of messages. We have modelled the heterogeneous commu-
nication protocol using UCM.

The main contributions of this thesis are:

CHAPTER 1

24

 • A holistic schedulability analysis for heterogeneous TT/ET
task sets which communicate through mixed ST/DYN com-
munication protocols [PopT02], [PopT03a]. Such an analysis
presents two aspects:

a) It computes the response times of the ET activities while
considering the influence of a static schedule;
b) It builds a static cyclic schedule for the TT activities
while trying to minimise the response times of the ET ac-
tivities.

 • The identification of several design issues which are specific
to heterogeneous TT/ET embedded systems, along with the
motivation for considering them during a design optimisa-
tion phase.

 • A design optimisation heuristic which simultaneously maps,
schedules and partitions the system functionality into ET
and TT domains, while also optimises the parameters of the
ST/DYN communication protocol [PopT03b].

1.5 Thesis Overview
The next chapter presents the system model we used. In Chap-
ter 3, we present our analysis method for deriving response
times of tasks and of messages in a heterogeneous TT/ET sys-
tem. In Chapter 4, we first discuss some optimisation aspects
which are particular to the studied systems, and then we define
and solve the design optimisation problem. Finally, in Chapter 5
we draw some conclusions and discuss possible research direc-
tions for the future.

SYSTEM MODEL

25

Chapter 2
System Model

IN THIS CHAPTER WE PRESENT THE SYSTEM MODEL which
we use during scheduling and design optimisation. First, we
briefly describe the hardware architecture and the structure of
the bus access cycle. Then, we present the minimal require-
ments regarding the software architecture for a system which is
able to run both event-triggered and time-triggered activities.
The last section of this chapter presents the abstract represen-
tation which we use for modelling the applications that are
assumed to implement the functionality of the system.

2.1 Hardware Architecture
We consider architectures consisting of nodes connected by a
unique broadcast communication channel. Each node consists
of:

 • a communication controller which controls the transmission
and reception of both ST and DYN messages;

 • a CPU for running the processes mapped on that particular
node;

CHAPTER 2

26

 • local memories for storing the code of the kernel (ROM), the
code of the processes and the local data (RAM); and

 • I/O interfaces to sensors and actuators.

Such hardware architectures are common in applications such
as automotive electronics, robotics, etc. In Figure 2.1, we illus-
trate a heterogeneous distributed architecture interconnected
by a bus based infrastructure.

2.2 Bus Access
We model the bus access scheme using the Universal Communi-
cation Model (see Section 1.2.2.3). The bus access is organised as
consecutive cycles, each with the duration Tbus. We consider
that the communication cycle is partitioned into static and
dynamic phases (Figure 2.1). Static phases consist of time slots,
and during a slot only one node is allowed to send ST messages;
this is the node associated to that particular slot. During a
dynamic phase, all nodes are allowed to send DYN messages
and the conflicts between nodes trying to send simultaneously
are solved by an arbitration mechanism based on priorities

Node 1

Static phase Dynamic phase Static phase Dynamic phase

Figure 2.1: System Architecture

D
Y

N
 m

sg.

D
Y

N
 m

sg.

D
Y

N
 m

sg.

D
Y

N
 m

sg.

D
Y

N
 m

sg.

slot 1

slot 2

slot 3

slot 4

slot 5

slot 6

slot 7

Node 2 Node 3

Bus cycle (Tbus)

communication
controller

CPU
I/O

RAM

ROM
Node 7...

SYSTEM MODEL

27

assigned to messages. The bus access cycle has the same struc-
ture during each period Tbus. Every node has a communication
controller that implements the static and dynamic protocol serv-
ices. The controller runs independently of the node’s CPU.

2.3 Software Architecture
For the systems we are studying, we have designed a software
architecture which runs on the CPU of each node. The main
component of the software architecture is a real-time kernel
which supports both time-triggered and event-triggered activi-
ties. An activity is defined as either the execution of a task or as
the transmission of a message on the bus. For the TT activities,
the kernel relies on a static schedule table which contains all the
information needed to take decisions on activation of TT tasks or
transmission of ST messages. For the ET tasks, the kernel
maintains a prioritised ready queue in which tasks are placed
whenever their triggering event has occurred and they are ready
for activation, or when they have been pre-empted.

The real-time kernel will always activate a TT task at the par-
ticular time fixed for that task in the schedule table. If at that
moment, an ET task is running on that node, that task will be
pre-empted and placed into the ready queue according to its pri-
ority. If no tasks are active, ET tasks are extracted from the
ready queue and are (re)activated. ET tasks can pre-empt each
other based on their priority.

The transmission of messages is handled in a similar way: for
each node, the sending and receiving times of ST messages are
stored in the schedule table; the DYN messages are organised in
a prioritised ready queue. ST messages will be placed at prede-
termined time moments into a bus slot assigned to the sending
node. DYN messages can be potentially sent during any
dynamic phase. Conflicts due to simultaneous transmission of
messages from different nodes are avoided, based on message

CHAPTER 2

28

priorities, by the communication controllers. We consider that
the transmission of messages is non-preemptive, i.e. once the
transmission of a DYN message has started, no other message
will be sent on the bus until the current transmission finishes.
In order to prevent the delay of an ST message by a DYN frame,
the DYN messages will be sent only if there is enough time
available for that message before the dynamic phase ends.

TT activities are triggered based on a local clock available in
each processing node. The synchronisation of local clocks
throughout the system is provided by the communication proto-
col.

2.4 Application Model
We model an application as a set of task graphs. Nodes repre-
sent tasks and arcs represent communication (and implicitly
dependency) between the connected tasks.

 • A task can belong either to the TT or to the ET domain.

 • Communication between tasks mapped to different nodes is
performed by message passing over the bus. Such a message
passing is modelled as a communication task inserted on the
arc connecting the sender and the receiver tasks. The com-
munication time between tasks mapped on the same node is
considered to be part of the task execution time. Thus, such a
communication activity is not modelled explicitly. For the
rest of the thesis, when referring to messages we consider
only the communication activity over the bus.

 • A message can belong either to the static (ST) or to the
dynamic (DYN) domain. We consider that static messages
are those sent during the ST phases of the bus cycle, while
dynamic messages are those transmitted during the DYN

SYSTEM MODEL

29

phases.

 • All tasks in a certain task graph belong to the same domain,
either ET, or TT, which is called the domain of the task
graph. The messages belonging to a certain task graph can
belong to any domain (ST or DYN). Thus, in the most general
case, tasks belonging to a TT graph, for example, can com-
municate through both ST and DYN messages. In this thesis
we restrict our discussion to the situation when TT tasks
communicate through ST messages and ET tasks communi-
cate through DYN messages.

 • Each task τij (belonging to the task graph Γi) has a period Tij,
and a deadline Dij and, when mapped on node Prock, it has a
worst case execution time Cij(Prock). The node on which τij is
mapped is denoted as Nodeij. Each ET task also has a given
priority Prioij. Individual release times or deadlines of tasks
can be modelled by introducing dummy tasks in the task
graphs; such dummy tasks have an appropriate execution
time and are not mapped on any of the nodes [Ele00a].

 • All tasks τij belonging to a task graph Γi have the same
period Ti which is the period of the task graph.

 • For each message we know its size (which can be directly
converted into communication time on the particular com-
munication bus). The period of a message is identical with
that of the sender task. Also, DYN messages have given pri-
orities.

Figure 2.2 shows an application modelled as two task-graphs
Γ1 and Γ2 mapped on two nodes, Node1 and Node2. Task-graph
Γ1 is time-triggered and task-graph Γ2 is event-triggered. Data-
dependent tasks mapped on different nodes communicate
through messages transmitted over the bus, which can be either
statically scheduled, like m1 and m3, or dynamic, like the mes-
sages m2 and m4.

In order to keep the separation between the TT and ET

CHAPTER 2

30

domains, which are based on fundamentally different triggering
policies, communication between tasks in the two domains is not
included in the model. Technically, such a communication is
implemented by the kernel, based on asynchronous non-block-
ing send and receive primitives (using proxy tasks if the sender
and receiver are on different nodes). Such messages are typi-
cally non-critical and are not affected by hard real-time con-
straints.

Figure 2.2: Application Model Example

Γ2:ET

τ2,3

Γ1:TTτ1,1

m1
τ1,3

m2

τ1,4

τ1,2

τ2,1

m4m3

τ2,2

Node1: τ1,1, τ1,3, τ2,1
Node2: τ1,2, τ1,4, τ2,2, τ2,3

Messages:
ST: m1, m3
DYN: m2, m4

Tasks:

SCHEDULING AND SCHEDULABILITY ANALYSIS OF MIXED TT/ET SYSTEMS

31

Chapter 3
Scheduling and

Schedulability Analysis of
Heterogeneous TT/ET

Systems

IN THIS CHAPTER we present an analytic approach for comput-
ing task response times and message transmission delays for
heterogeneous TT/ET systems.

3.1 Problem Formulation
Given an application and a system architecture as presented

in Chapter 2, the following problem has to be solved: construct a
correct static cyclic schedule for the TT tasks and ST messages
(a schedule which meets all time constraints related to these
activities), and conduct a schedulability analysis in order to
check that all ET tasks and DYN messages meet their deadlines.
Two important aspects should be noticed:
1. When performing the schedulability analysis for the ET

CHAPTER 3

32

tasks and DYN messages, one has to take into consideration
the interference from the statically scheduled TT tasks and
ST messages.

2. Among the possible correct schedules for TT tasks and ST
messages, it is important to construct one which favours, as
much as possible, the schedulability of ET tasks and DYN
messages.

In the next two sections, we will present the schedulability
analysis algorithm proposed in [Pal98] for distributed real-time
systems and we will show how we extended this analysis in
order to consider the interferences induced by an existing static
schedule. Section 3.4 presents a general view over our approach
for the global scheduling and schedulability analysis of hetero-
geneous TT/ET distributed embedded systems. In Section 3.5 we
present our complete scheduling algorithm, which statically
schedules the TT activities while trying to minimise the influ-
ence of TT activities onto ET ones. Several alternative imple-
mentations of the algorithm have been proposed and compared.
Section 3.6 presents the experimental results and evaluations of
the proposed heuristics.

It has to be mentioned that our analysis is restricted, for the
moment, to the model in which TT tasks communicate only
through ST messages, while communication between ET tasks
is performed by DYN messages. This is not an inherent limita-
tion of our approach. For example, schedulability analysis of ET
tasks communicating through ST messages has been presented
in [Pop00] and [Pop03a].

3.2 Schedulability Analysis of Event-Triggered
Task Sets

In this section we briefly describe the schedulability analysis
approach presented in [Pal98]. The algorithm is based on com-
puting the worst case response time of ET activities.

SCHEDULING AND SCHEDULABILITY ANALYSIS OF MIXED TT/ET SYSTEMS

33

An ET task graph Γi is activated by an associated event which
occurs with a period Ti. Tasks and messages are modelled simi-
larly, by considering the bus as a processing node and account-
ing for the non-preemptability of the messages during the
analysis. Each activity τij (task or message) in an ET task graph
has an offset φij which specifies the earliest activation time of τij
relative to the occurrence of the triggering event. The delay
between the earliest possible activation time of τij and its actual
activation time is modelled as a jitter Jij (Figure 3.1.a). Offsets
are the means by which dependencies among tasks are modelled
for the schedulability analysis. For example, if in Figure 3.1.a),
task τij+1 is data dependant on task τij, then such a relation can
be enforced by associating to τij+1 an offset φij+1 which is equal or
greater than the worst case response time Rij of its predecessor,
τij. In this way, it is guaranteed that task τij+1 starts only after
its predecessor has finished execution.

The response time of an activity τij is the time measured from
the occurrence of the associated event until the completion of τij.
Each ET activity τij has a best case response time Rb,ij. The
worst case response time Rij of an activity τij is determined by

ev
en

t

φij
ϕij wij

Rij

tc

Cij

Figure 3.1: Execution Model of the ET Sub-System

Rij wij φij ϕij– p 1–()T i–+=

φij+1 φij+1 Jij+1

Ti

φij
τij τij+1

τij τij+1

a) Tasks with offsets

b) Response time and busy period w for task τij

Jij

φij Jij

CHAPTER 3

34

creating first a critical instant tc, which represents the starting
point of the worst-case busy window wij, a time interval which
ends when τij finishes execution (Figure 3.1.b). During the busy
window wij, Nodeij executes only task τij or higher priority tasks.
The variable ϕij represents the time interval between the critical
instant and the earliest time for the first activation of the task
after this instant.

01 do

02 Done = true

03 for each transaction Γi do

04 for each task τij in Γi do

05 for each task τik in Γi do
06 if Prioik ≥ Prioij andNodeik=Nodeij then

08 for each job p of τij do

09 Consider that τik initiates tc
10 Compute Rij

p

11 if (Rij
p > Rij

max) then

12 Rij
max = R ij

p

13 endif

14 endfor

15 endif

16 endfor

17 if Rij
max > R ij then // larger R ij found

18 Rij = Rij
max

19 Done = false

20 for each successor τik of τij do

20 Jik = Rij - R
b
ij // update jitters

21 endfor

22 endif

23 endfor

24 endfor

25 while (Done != true)

Figure 3.2: Schedulability Analysis Algorithm

SCHEDULING AND SCHEDULABILITY ANALYSIS OF MIXED TT/ET SYSTEMS

35

Considering a set of data dependent ET tasks, the analysis in
[Pal98] computes the worst case response time Rij of a task τij,
based on the length of its busy period, considering all the critical
instants initiated by higher priority activities in Γi and by τij
itself, and all job instances p of τij which can appear in the busy
window wij:

where wijk(p) is the length of the worst-case busy window of the
p-th job of τij, numbered from the critical instant tc initiated by
τik; ϕijk is the time interval between the critical instant initiated
by τik, and the earliest time for the first activation of τij after this
instant.

The value of wijk(p) is determined as follows:

where Bij represents the maximum interval during which τij can
be blocked by lower priority activities2, Wik(τij, t) is the interfer-
ence from higher priority activities in the same task graph Γi at
during a time interval of length t relative to tc, and W*

a(τij, t) is
the maximum interference of activities from other task graphs
Γa on τij during the same interval.

Figure 3.2 represents the pseudocode for the schedulability
analysis proposed in [Pal98]. According to this algorithm, the
worst case response time Rij of each task τij is computed by con-
sidering all critical instants initiated by each task τik mapped on
the same Nodeij and with a higher priority than Prioij. Accord-
ing to the same schedulability analysis, jitters are taken into
consideration when the algorithm computes the length of the

2. Such blocking can occur at access to a shared critical resource.

Rij max max wijk p() ϕijk– p 1–()T i– φij+()[]()
k Prioik Prioij job p of τij∀,>∀

,=

wijk p() Bij p p0 ijk,– 1+() Cij⋅ W ik τij wijk p(),()

W *
a

τij wijk p)(),()
a i≠()∀
∑

+ + +=

CHAPTER 3

36

busy windows and, implicitly, the response times of the tasks
[Pal98]. This means that the length of the busy window depends
on the values of task jitters, which, in turn, are computed as the
difference between the response times of two successive tasks
(for example, if τij precedes τik in Γi, then Jik = Rij - Rb,ij, like in
lines 20-21 in Figure 3.2). Because of this cyclic dependency
(response times depend on jitters and jitters depend on response
times), the process of computing Rij is an iterative one: it starts
by assigning Rb,ij to Rij and then computes the values for jitters
Jij, busy windows wijk(p) and then again the worst-case
response times Rij, until the response times converge to their
final value.

3.3 Schedulability Analysis of Event-Triggered
Activities under the Influence of a Static
Cyclic Schedule

Considering the algorithm presented in the previous section as a
starting point, we have to solve the following problem: compute
the worst case response time of a set of ET tasks and DYN mes-
sages by taking into consideration:
 • The interference from the set of statically scheduled tasks.
 • The characteristics of the communication protocol, which

influence the worst case delays induced by the messages
communicated on the bus.

As a first step towards the solution of the problem, we intro-
duce the notion of ET demand associated with an ET activity τij
as the amount of CPU time or bus time which is demanded only
by higher priority ET activities and by τij itself during the busy
window wij. In Figure 3.3, the ET demand of the task τij during
the busy window wij is represented with Hij(wij), and it is the
sum of worst case execution times for task τij and two other
higher priority tasks τab and τcd. During the same busy period
wij, we define the availability as the processing time which is not

SCHEDULING AND SCHEDULABILITY ANALYSIS OF MIXED TT/ET SYSTEMS

37

used by statically scheduled activities. In Figure 3.3, the CPU
availability for the interval of length wij is obtained by sub-
stracting from wij the amount of processing time needed for the
TT activities.

During a busy window wij, the ET demand Hij of a task τij is
equal with the length of the busy window which would result
when considering only ET activity on the system:

During the same busy window wij, the availability Aij associ-
ated with task τij is:

,

where Aq
ij(w) is the total available CPU-time on Nodeij in the

interval [q Ti + φij− ϕijk, q Ti + φij − ϕijk + wij], Ti is the period of Γi,
and TSS is the period of the static schedule (see Section 3.5). The
value of Aq

ij(w) is computed using the following equation, which
substracts from the given time interval of length wij those time
intervals which are used for execution of TT activities:

φij
ϕij wijtc

Cij

Figure 3.3: Availability and Demand for a
Given Time Interval

Rij w φij ϕij– p 1–()T i–+=

T
T

Ccd
Cab

ET availability: Aq
ij(wij) = wij - Ttt

ET demand: Hij(wij) = Cij + Cab + Ccd

ac
tiv

ity

For interval [tc, tc+wij]{

qTi
Ttt

H ij wij() Bij p p0 ijk,– 1+() Cij W ik τij wij,()

W *
a τab wij,()

a i≠()∀
∑

+ +⋅+=

Aij wij() min Aij
q

wij()= q 0
LCM T i T SS,()

T i
--------------------------------------,=

CHAPTER 3

38

,

where H
k
TT represents the duration of the k-th TT activity

which takes place inside the interval under analysis.
Figure 3.3 presents how the availability Aq

ij(w) and the
demand Hij(w) are computed for a task τij: the busy window of τij
starts at the critical instant q Ti + tc initiated by task τab and
ends at moment qTi + tc + wij, when both higher priority tasks
(τab, τcd), all TT tasks scheduled for execution in the analysed
interval, and τij have finished execution.

The discussion above is, in principle, valid for both ET tasks
and DYN messages. However, there exist two important differ-
ences. First, messages do not pre-empt each other, therefore, the
demand equation is modified so that it will not consider the time
needed for the transmission of the message under analysis (once
the message has gained the bus it will be sent without any inter-
ference [Ple92]). Second, the availability for a message is com-
puted by substracting from wij the length of the ST slots which
appear during the considered interval; moreover, because a DYN
message will not be sent unless there is enough time before the
current dynamic phase ends, the availability is further
decreased with CA for each dynamic phase in the busy window
(where CA is the transmission time of the longest DYN mes-

Aij
q

wij() wij H k
TT

∑–=

01 wij = p • Cij + Bij
02 do
03 Compute demand Hij(wij)
04 Compute availability Aij(wij)
05 if Hij(wij) > Aij(wij) then
06 wij = Hij(wij) - Aij(wij)
07 endif
08 while Hij(wij) ≥ Aij(wij)
09 return wij

Figure 3.4: Determining the Length of the Busy Window

SCHEDULING AND SCHEDULABILITY ANALYSIS OF MIXED TT/ET SYSTEMS

39

sage). This modifications can be noticed in the equations pre-
sented below, which are used to determine the values of
availability and demand for messages:

,

where m represents the number of DYN phases in the interval
under analysis, while H

k
TT represents the length of the k-th ST

phase during the same interval.
Our schedulability analysis algorithm determines the length

of a busy window wij for an ET task or DYN message by identi-
fying the appropriate size of wij for which the ET demand is sat-
isfied by the availability: Hij(wij) ≤ Aij(wij) (Figure 3.4). This
procedure for the calculation of the busy window is included in
the iterative process for calculation of response times, presented
in the previous subsection (lines 09-10 in Figure 3.2). It is impor-
tant to notice that this process includes both tasks and messages
and, thus, the resulted response times of the ET tasks are com-
puted by taking into consideration the delay induced by the bus
communication.

After performing the schedulability analysis, we can check if
Rij ≤ Dij for all the ET tasks. If this is the case, the set of ET
activities is schedulable. In order to drive the global scheduling
process, as it will be explained in the next section, it is not suffi-
cient to test if the task set is schedulable or not, but we need a
metric that captures the “degree of schedulability” of the task
set. For this purpose we use the function DSch, similar with the

H ij wij() Bij p p0 ijk,–() Cij W ik τij wij,()

W *
a τab wij,()

a i≠()∀
∑

+ +⋅+=

Aij
q

wij() wij m Ca H k
TT

∑–⋅–=

CHAPTER 3

40

one described in [Pop00]:

where N is the number of ET task graphs and Ni is the number
of activities in the ET task graph Γi.

If the task set is not schedulable, there exists at least one task
for which Rij > Dij. In this case, f1 > 0 and the function is a metric
of how far we are from achieving schedulability. If the set of ET
tasks is schedulable, f2 ≤ 0 is used as a metric. A value f2 = 0
means that the task set is “just” schedulable. A smaller value for
f2 means that the ET tasks are schedulable and a certain
amount of processing capacity is still available.

Now, that we are able to perform the schedulability analysis
for the ET tasks considering the influence from a given static
schedule of TT tasks, we can go on to perform the global sched-
uling and analysis of the whole application.

3.4 Global Scheduling and Schedulability
Analysis Strategy

Figure 3.5 illustrates our strategy for scheduling and schedula-
bility analysis of heterogeneous TT/ET distributed embedded
systems: the activities to be scheduled are the TT and ET task
graphs, consisting of TT tasks/ST messages and ET tasks/DYN
messages respectively. The TT activities are statically scheduled
and, as an output, a static cyclic schedule will be produced. Sim-
ilarly, the worst case response times of the ET activities are
determined using the schedulability analysis presented in the
previous section. As a result, the system is considered schedula-
ble if the static schedule is valid and if the ET activities are

f 1 m
j 1=

Ni
∑ ax 0 Rij Dij–,()

i 1=

N

∑=

f 2 Rij Dij–()
j 1=

N i
∑

i 1=

N

∑=

DSch =

, if f1 = 0

, if f1 > 0

SCHEDULING AND SCHEDULABILITY ANALYSIS OF MIXED TT/ET SYSTEMS

41

guaranteed to meet their deadlines. For the case of a mixed TT/
ET system, building a static cyclic schedule for the TT activities
has to take into consideration both the characteristics of the
mixed ST/DYN communication protocol and our assumption
that execution of TT tasks is non-preemptible, while the execu-
tion of an ET task can be interrupted either by a TT task or by
another ET task which has a higher priority. This means that
the static schedule will have not only to guarantee that TT activ-
ities meet their deadlines, but also that the interference intro-
duced from such a schedule will not increase in an unacceptable
way the response times of ET activities. In conclusion, an effi-
cient scheduling algorithm requires a close interaction between
the static scheduling of TT activities and the schedulability
analysis of the ET activities.

Figure 3.5: Scheduling and Schedulability Analysis for
Mixed TT/ET Distributed Embedded Systems

Inputs

ET tasks
DYN messages

TT tasks
ST messages

Valid Static

Outputs

Schedule?

Static Cyclic
Scheduling

Schedulability
Analysis

?Rij Dij≤

Rij

Activity

Response
times

Start Time

CHAPTER 3

42

3.5 Static Cyclic Scheduling of Time-Triggered
Activities in a Heterogeneous TT/ET
Environment

For the construction of the static cyclic schedule for TT tasks
and ST messages, we use a list scheduling based algorithm
[Coff72]. Assuming that in our application we have N time-trig-
gered task graphs Γ1, Γ2, ..., ΓΝ, the static schedule will be com-
puted over a period TSS = LCM(T1, T2, ..., TN). The input to the
list scheduling algorithm is a graph consisting of ni instances of
each Γi, where ni = TSS / Ti.

A generic list scheduling algorithm is illustrated in Figure 3.6.
The algorithm starts by associating priorities to each of the
tasks in the task set. Then, in line 02, a ReadyList is created
with all the tasks which have no predecessors and therefore are
ready for being scheduled. The body of the algorithm consists of
a loop (lines 02-07) which, during each iteration, selects from
ReadyList the task with the highest priority, assigns it to a pro-
cessor if it was not already mapped, and then schedules the task.
Before a new iteration starts, the ReadyList is updated by add-
ing those tasks which have all their predecessors scheduled. The
algorithm ends when all the tasks have been scheduled and the
ReadyList is empty. Alternative versions of list scheduling differ

Figure 3.6: Static Cyclic Scheduling
The List Scheduling Algorithm

01 Assign priorities to tasks
02 Initialise ReadyList
02 Repeat
03 Select ready task with highest priority
04 (Assign task to a processing node)
05 Schedule task (Set its start time)
06 Update ReadyList
07 Until ReadyList is empty

SCHEDULING AND SCHEDULABILITY ANALYSIS OF MIXED TT/ET SYSTEMS

43

from each other mainly in the way the task priorities are com-
puted (for example, the priorities can be updated/recomputed
after each loop) and the way tasks are scheduled (like ASAP - as
soon as possible, for example).

Considering our particular problem formulation, the generic
list scheduling algorithm presented in Figure 3.6 needed several
modifications. First, the ReadyList contains all TT tasks and ST
messages which are ready to be scheduled (they have no prede-
cessors or all their predecessors have been scheduled). From the
ready list, tasks and messages are extracted one by one to be
scheduled on the processor they are mapped to, or into a static
bus-slot associated to that processor on which the sender of the
message is executed, respectively. Second, the priority function
which is used to select among ready tasks and messages is a crit-
ical path metric, modified for the particular goal of scheduling
tasks mapped on distributed systems [Pop00].

However, an important aspect of the static scheduling for het-
erogeneous TT/ET systems is represented by the actual schedul-
ing of a given TT task, i.e. determining its start time such that
the interference on ET activities is minimised (line 05 in Figure
3.6). For example, let us consider a particular task τij selected
from the ready list to be scheduled. We consider that ASAPij is
the earliest time moment which satisfies the condition that all
preceding activities (tasks or messages) of τij in graph Γi are fin-
ished and Nodeij is free. The moment ALAPij is the latest time
when τij can be scheduled. With only the TT tasks in the system,
the straightforward solution would be to schedule τij at ASAPij.
In the example illustrated in Figure 3.7.b), however, such a solu-
tion could have negative effects on the schedulability of the ET
task τab, which misses its deadline Dab. In the case when task τij
is scheduled as late as possible (Figure 3.7.c), task τcd misses its
deadline Dcd; moreover, because of data dependencies, there is a
risk that, by scheduling τij at ALAPij, the TT tasks which are not
scheduled yet will miss their deadline (this aspect will be dis-
cussed more in the following sub-section). What we have to do is

CHAPTER 3

44

to place task τij in such a position inside the interval [ASAPij,
ALAPij] so that the chance to finally get a globally schedulable
system is maximised.

The number of possible scheduling times for task τij in the
interval [ASAPij, ALAPij] is potentially infinite. In order to con-

Figure 3.7: Scheduling a TT task in a mixed TT/ET
environment

τij

τij

τij

τij

ASAPij ALAPijDab Dcd

a)

b)

c)

d)

a) τij not scheduled yet
b) τij scheduled ASAP, τab misses its deadline
c) τij scheduled ALAP, τcd misses its deadline
d) τij scheduled inside [ASAPij, ALAPij] so that tasks

τab τcd

τab

τab

τab

τcd

τcd

τcd

τab and τcd are not disturbed and meet their deadlines

SCHEDULING AND SCHEDULABILITY ANALYSIS OF MIXED TT/ET SYSTEMS

45

sider only a limited number of possible alternatives for the start
time of a TT task τij, we take into account the information
obtained from the schedulability analysis described in Section
3.3, which allows us to compute the response times of ET tasks.
We started from the obvious observation that statically schedul-
ing τij after an ET task τkl has finished its execution will guaran-
tee that task τij will not interfere with τkl. Thus, we consider as
alternative start times for τij the response times of all ET tasks
which finish their execution inside the [ASAPij, ALAPij] inter-
val:

The moment referred by ASAPij is added to
alternative_start_times so that the set of alternative start times
of a TT task will not be empty even if no ET tasks finish their
execution during the interval [ASAPij, ALAPij].

We illustrate the choice of possible start times of a TT task τij
in Figure 3.8 where three ET tasks τkl, τkl+1, τkl+2 finish their
execution inside [ASAPij, ALAPij] leading to
alternative_start_times(τij) = {ASAPij, Rkl, Rkl+1, Rkl+2}. Stati-
cally scheduling τij at time Rkl avoids the interferences from τij
to τkl, while scheduling τij even later, at Rkl+1, will guarantee
that τij does not interfere with either τkl or τkl+1.

After identifying the set of candidate start times of a task, we
have to select one of them as the static schedule for that task.
Two aspects have to be considered in this context:

1. The interference with the ET activities should be minimised;
2. The deadlines of TT activities should be satisfied.

In order to evaluate the first goal, the value of the function
DSch (see Section 3.3) is computed for each alternative start
time t after performing the schedulability analysis of the ET
task set considering the influence from the TT tasks, with τij
scheduled at t. As will be shown in the following section, a global

alternative_start_times τij() ASAPij{ } ASAPij ALAPij,[]
Rkl τkl ETdomain Nodekl Nodeij=,∈{ }

∩(
)

∪=

CHAPTER 3

46

cost function is computed, which combines both goals defined
above, and, based on a greedy approach, the start time of the
task will be selected.

The scheduling algorithm is presented in Figure 3.9. If the
selected TT activity extracted from the ready_list is a task τij,
then the alternative_start_times are evaluated and the algo-
rithm selects the one which generates the smallest value of the
cost function. When scheduling an ST message extracted from
the ready list, we place it into the first bus-slot associated with
the sender node in which there is sufficient space available. If all
TT tasks and ST messages have been scheduled and the schedu-
lability analysis for the ET tasks indicates DSch ≤ 0, then the
global system scheduling has succeeded.

For the case that no correct schedule has been produced, we
have implemented a backtracking mechanism in the list sched-
uling algorithm, which allows to turn back to previous schedul-
ing steps and to try alternative solutions. In order to avoid
excessive scheduling times, the maximum number of backtrack-
ing steps can be limited.

ASAPij ALAPij

ASAPij Rk l Rk l+1 Rk l+2

Figure 3.8: Selection of Alternative Start Times

τkl τk l+1 τk l+2

τij τij τij τij

time on
 Processor(τij)

SCHEDULING AND SCHEDULABILITY ANALYSIS OF MIXED TT/ET SYSTEMS

47

In the following subsections we present three alternative
ways to compute the cost function which drives the heuristic in
Figure 3.9. The three alternatives are identified as MxS1, MxS2
and MxS3 (from mixed scheduling).

3.5.1 MXS1

Scheduling a TT task τij inside its [ASAPij, ALAPij] interval will,
of course, guarantee that deadlines related to this particular
task are satisfied, and that there exists the possibility that a
valid static schedule can be constructed for the system. How-
ever, due to the data dependencies, scheduling τij later inside
[ASAPij, ALAPij] decreases the probability of finding a feasible
static schedule for the tasks further down. This is why, for the

Figure 3.9: Static Scheduling Algorithm

00 compute [ASAP,ALAP] for each TT activity
01 while ready_list is not empty
02 select TT activity τij
03 if τij is a task
04 Schedulability Analysis -> Compute

response times of ET activities
05 Compute alternative_start_times(τij)
06 for t in alternative_start_times(τij
07 schedule τij at t
08 Schedulability Analysis ->

Compute DSch ->
Compute CostFunction

09 endfor
10 schedule τij at t for which

the CostFunction is minimum
11 else // τij is a message
12 ASAP schedule τij in sloti
13 endif
14 update ready_list
15 endwhile

CHAPTER 3

48

evaluation of the alternative start times of a TT task τij (line 08
in Figure 3.9), we introduced a cost function which combines the
degree of schedulability of the ET activities (DSch in Section
3.3) with a second metric which captures the “risks” taken by
scheduling τij at later times:

where t is one of the alternative start times, A and B are normal-
isation constants, and slack(t, τij) represents the available
processing capability on Nodeij (the processing time inside the
interval [t + Cij, TSS] which is not used by any of the ET or TT
tasks). The value of slack is computed as follows:

where UnschHTT represents the sum of execution times of all
yet unscheduled TT tasks mapped on Nodeij. The term HET rep-
resents the time demanded by ET tasks in the interval [t + Cij,
TSS] on Nodeij and is computed in the following steps:

1. For each ET task τab mapped on Nodeij consider its worst
case response interval Iab = [φab, Rab] using the response
times computed in line 08 of the algorithm in Figure 3.9.

2. For each scheduled TT task τab mapped on Nodeij, we know
the start time tab and consider the associated execution in-
terval Iab = [tab, tab + Cab].

3. Compute the unions of intervals in which ET and scheduled
TT activities take place: and

.

4. Compute HET as the sum of lengths of each of the intervals

in .

It is easy to notice that if the slack has a very small value (even

f t τij,() A e
slack t τij,()–

t B DSch⋅+⋅ ⋅=

slack t τij,() T SS t Cij+()–[] H ET t Cij T SS Procij, ,+()–

UnschH TT Procij()
–=

I ET I ab
τab ET∈∀
∪=

I schedTT I ab
τab schedTT∈∀

∪=

I ET I schedTT∪() tij Cij T SS,+[]∩

SCHEDULING AND SCHEDULABILITY ANALYSIS OF MIXED TT/ET SYSTEMS

49

negative, if the demand is higher than the available processing
time), then the first term in function f (the one depending on
time t) has a much greater weight on the value of f than the sec-
ond term of the function f. Consequently, earlier start times for
τab will be preferred. On the other hand, if there is more availa-
ble processor time than needed (in other words, slack has a high
value), the function f will depend mainly on the value of the sec-
ond term, thus the main aspect taken into consideration will be
the influence of TT activities on the ET ones, which is captured
by DSch.

The static scheduling algorithm will select, among the alter-
native start times, that time t for which the value of the cost
function f is minimum.

3.5.2 MXS2

The schedulability analysis algorithm described in Section 3.3 is
applied very often during the static scheduling procedure pre-
sented in Figure 3.9, both in order to compute the values of the
possible start times (line 04) and the Cost associated with each
such start time (line 08). In order to reduce the amount of time
needed for scheduling, we experimented with an algorithm
which uses the schedulability analysis only for determining the
set of start_times(line 04), while the evaluation process in line 08
is based on a simpler version of function f. In MxS1, when the
alternative start times of a TT task are evaluated, running the
schedulability analysis returns the value DSch which reflects
the amount of new interference that has been introduced in the
ET subsystem at a global level. The simpler function f, which we
use in this second algorithm, avoids calling the global schedula-
bility analysis for each possible start time of a TT task τij and
considers only the interferences produced by τij on the ET tasks
mapped on Nodeij.

,f′ t τij,() A e⋅
slack t τij,()–

t B DSch ∆DSch+()⋅+⋅=

CHAPTER 3

50

where the value of DSch (as expressed in Section 3.3) is com-
puted (on line 4, Figure 3.9) before τij has been scheduled, and
∆DSch is the amount of interference introduced by τij on the ET
tasks mapped on Nodeij:

where Rkl is the response time of an ET task τkl before τij has
been scheduled and R’kl is an approximation of the response
time of τkl after τij has been scheduled at time t. We estimate
that, depending on the time t when a TT task τij is scheduled,
the response time of an ET task τkl mapped on the same Nodeij
either remains unchanged (is not influenced at all) or is
increased with a value up to the worst case execution time Cij of
the TT task.

Figure 3.10 presents the situations when the response time of
an ET task τkl remains unchanged (Figure 3.10.a) and when it is
increased because of the influence of a TT task τij
(Figure 3.10.b). The cases represented in Figure 3.10.a) show
that when a TT task τij is scheduled at time t so that its associ-
ated execution interval [t, t + Cij] does not intersect with the
time interval where an ET task executes in the worst case [φkl,
Rkl], then we estimate that after scheduling τij at t, the response
time for τkl will be the same, R’kl = Rkl. However, if the intersec-
tion is not empty (like in the cases in Figure 3.10.b), then R’kl =
Rkl + ∆DSchkl. The value for the increment used in the function
f’(t,τij) will be computed as ∆DSch = Σ∆DSchkl, for all τkl in the
ET domain and Nodekl = Nodeij.

In this algorithm, MxS2, the schedulability analysis of the
system is called only once for each TT task (step 04), which will
lead, as we will see in Section 3.6, to shorter computation times.

DSch Rkl
′

Rkl– 
 

τkl ET∈
Nodekl Nodeij=

∑=

SCHEDULING AND SCHEDULABILITY ANALYSIS OF MIXED TT/ET SYSTEMS

51

3.5.3 MXS3

List scheduling, which is the basis for our scheduling algorithm,
is a constructive method that builds the static schedule table
incrementally, by adding one TT task or ST message at a time.
In the previous two versions of the algorithm (Section 3.5.1 and
Section 3.5.2), at each step, the effect of the static schedule,
including the newly introduced task, on the ET subsystem is
measured by function DSch. However, the problem is that the
available static schedule is not complete when estimating, for a
given task τij, the global influence of TT activities on the set of
ET ones. For the alternatives MxS1 and MxS2 we have chosen
the following simple approach: for evaluating the influence of
the decision of which alternative start time to select for τij, we

τkl τij

τij

τij

τij

τkl

τkl

τkl

b) Rkl is increased with ∆DSch

∆DSchkl = Cij

∆DSchkl = t + Cij - φkl

φkl

t

Figure 3.10: Estimation of ET response times in MxS2

a) Rkl remains unchanged

CHAPTER 3

52

consider only that part of the static schedule which already has
been built, up to that particular moment. The selection is fair, as
the same conditions are applied to all alternative times; how-
ever, it is inaccurate, since a part of the final static schedule is
ignored when taking the decision. For the alternative MxS3 we
have considered a solution which tries to improve on this lack of
accuracy by considering the whole set of TT activities when eval-
uating the degree of schedulability of the ET tasks and mes-
sages. This is solved by considering an approximate static
schedule for the yet unscheduled TT activities. Therefore, a pre-
liminary step is performed in preparation of the algorithm in
Figure 3.9.

First, we build an initial static schedule by using a simpler
and faster version of the algorithm in Figure 3.9. In this version,
the response times of the ET activities are computed only once
in the beginning of the algorithm and the evaluation of possible
start times is performed using a simple function like in MxS2.
This step allows us to rapidly obtain a static schedule which will
be at the basis of the second step of our approach.

After the preparation step, we run the algorithm in Figure 3.9,
but whenever schedulability analysis of the ET subsystem is
performed, we consider that the interfering static schedule not
only contains the TT activities which were scheduled so far, but
all the TT tasks and ST messages in the system. We obtain such
a complete static schedule by considering:

 • the start times of the TT tasks/ ST messages scheduled so far
in this second step;

 • for the unscheduled TT tasks/ ST messages, we consider
their start times as identified in the first step of the algo-
rithm

Figure 3.11 illustrates the way we obtain such a complete
static schedule. The static schedule considered during the sched-
ulability analysis of the ET subsystem (Figure 3.11.c) contains
all the TT tasks and ST messages in the system. Such a com-

SCHEDULING AND SCHEDULABILITY ANALYSIS OF MIXED TT/ET SYSTEMS

53

plete schedule is obtained by putting together the start times for
tasks τ1 and τ4 (which have been scheduled already, see Figure
3.11.b) and the start times identified in the first step for the
unscheduled tasks τ2, τ3, τ5 and message m1 (Figure 3.11.a).

3.6 Experimental Results
For evaluation of our scheduling and analysis algorithm we gen-
erated a set of 3600 tests representing systems of 2 to 10 nodes.
The number of tasks mapped on each node varied between 10
and 30, leading to applications with a number of 20 up to 300
tasks. The tasks were grouped in task-graphs of 5, 10 or 15
tasks. Between 20% and 80% of the total number of tasks were
considered as event-triggered and the rest were set as time-trig-
gered. The execution times of the tasks were generated in such a
way that the utilisation on each processor was between 20% and
80%. In a similar manner we assured that 20% and up to 60% of

Proc 1

Proc 2

Bus

τ1 τ2 τ3

τ4 τ5

m1

τ1

τ4

τ1 τ2 τ3

τ4 τ5

m1

a) Initial static schedule b) Current static schedule

c) Static schedule considered for
system evaluation

Figure 3.11: Construction of a static schedule for
complete evaluation of the system timing properties

CHAPTER 3

54

the total utilisation on a processor is required by the ET activi-
ties. All experiments were run on an AMD Athlon 850MHz PC.

The first set of experiments compares the three versions of the
holistic scheduling algorithm we proposed in Section 3.5. In
Figure 3.12.a) we illustrate the capacity of MxS1 and MxS2 to
produce schedulable systems, compared to that of MxS3. For
example, in the case of a 60% load, MxS2 was able to generate
18% and MxS1 16% less schedulable solutions than MxS3. In
addition, for each heuristic, we computed the quality of the iden-
tified solutions, as the percentage deviation of the schedulability

a) Deviation of Number of solutions (smaller is better)

0

5

10

15

20

20% 40% 60% 80% Processor

P
er

ce
nt

ag
e

de
vi

at
io

n
re

la
ti

ve
 t

o
M

xS
3 MxS1

MxS2

P
er

ce
nt

ag
e

de
vi

at
io

n
re

l.
to

 t
he

 id
ea

l c
as

e

utilization

14
12
10

8
6
4
2
0

2 4 6 8 10 No.Processors

MxS1

MxS2

MxS3

b) Degree of interference (smaller is better)

Figure 3.12: Evaluation of Scheduling Heuristics
MxS1, MxS2 and MxS3

SCHEDULING AND SCHEDULABILITY ANALYSIS OF MIXED TT/ET SYSTEMS

55

degree (DSchMxS) of the ET activities in the resulted system, rel-
ative to the schedulability degree of an ideal solution (DSchref)
in which the static schedule does not interfere at all with the
execution of the ET activities:

In other words, we used the function DSch as a measure of the
interference introduced by the TT activities on the execution of
ET activities. In Figure 3.12.b), we present the average quality
of the solutions found by the three algorithms. For this diagram,
we used only those results where all three algorithms managed
to find a schedulable solution. It is easy to observe that the solu-
tions obtained with MxS3 are constantly at a minimal level of
interference. The heuristics MxS1 and MxS2 produce solutions
in which the TT interference is considerably higher, resulting in
significantly larger response times of the ET activities and con-

Interference
DSchref DSchMxS–

DSchref
--- 100⋅=

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300

MxS1
MxS2
MxS3

Figure 3.13: Average Computation Times

T
im

e
(s

)

Number of Tasks

CHAPTER 3

56

sequently to a decrease of the schedulability degree by 7-13%.
Not surprisingly, our experiments prove that the heuristic MxS3
is the most accurate and consequently produces results of the
best quality. MxS2, which uses local approximation for the eval-
uation of the ET schedulability, has a slightly lower quality than
MxS1.

In Figure 3.13 we present the average execution times of the
three scheduling heuristics. According to expectations, MxS2 is
the fastest of the three heuristics, while MxS3 is slightly slower
than MxS1. In conclusion, the heuristic MxS3 is the one which
offers the best solutions at an acceptable computation time.
MxS2 is very fast and can be used in certain particular cases
like, for example, inside a design space exploration loop with an
extremely large number of iterations.

DESIGN OPTIMISATION OF HETEROGENEOUS TT/ET SYSTEMS

57

Chapter 4
Design Optimisation Of

Heterogeneous Time/Event-
Triggered Systems

NOW THAT WE ARE ABLE to derive the schedulability degree
of a heterogeneous TT/ET system, we consider in this chapter a
larger design context, which involves mapping, scheduling and a
couple of specific optimisation aspects which are characteristic
for this type of systems.

4.1 Specific Optimisation Problems

4.1.1 PARTITIONING OF SYSTEM FUNCTIONALITY INTO EVENT
AND TIME-TRIGGERED ACTIVITIES

During the design process, a decision should be made on which
tasks and messages will be implemented as TT/ET and ST/DYN
activities, respectively. Typically, this decision is taken, based
on the experience and preferences of the designer considering
aspects like the functionality implemented by the task, the

CHAPTER 4

58

hardness of the constraints, sensitivity to jitter, legacy, etc.
There exists, however, a subset of tasks/messages which could
be assigned to any of the domains. Decisions concerning the par-
titioning of this set of activities can lead to various trade-offs
concerning, for example, the size of the schedule table or the
schedulability properties of the system. For example, in Figure
4.1 we show a system with two nodes on which three tasks are
mapped: τ1 on Node1, τ2 and τ3 on Node2; τ2 is data dependant on
τ1; worst case execution times (Ci) and deadlines (Di) are shown
in the figure. In order to keep the example simple, communica-
tion delays are ignored. When all three tasks belong to the TT
domain, the system is unschedulable. In this case, either τ2
(scheduling alternative depicted in Figure 4.1.a) or τ3 (Figure
4.1.b) misses its deadline. If, however, τ3 is moved into the ET
domain (Figure 4.1.c), all tasks are schedulable (in this case, τ2
will pre-empt the execution of τ3).

In Figure 4.2 we illustrate the opposite movement, from the
ET into the TT domain. The ET task τ1 cannot meet its deadline
D1, because no matter how much its priority is increased, it will
still be pre-empted and delayed by the execution of a TT task τ2

Figure 4.1: Partitioning into TT/ET domains (TT→ET)

0 10 155

τ1

τ2

τ3 C D

8 15

5 7
3 10

τ1
τ2
τ3

Node1
Node2

τ1

τ1

τ1

τ2

τ2

τ2

τ3

τ3

τ3τ3

Node1
Node2

Node1
Node2

Node1
Node2

a)

b)

c)

a), b) domain(τ1,τ2,τ3) = TT

c) domain(τ1,τ2) = TT
domain(τ3) = ET

D2 D3

Figure 4.2: Partitioning into TT/ET domains (ET→TT)

τ2 τ1 τ2τ1 τ1

D1 D1D2 D2
a) b)

DESIGN OPTIMISATION OF HETEROGENEOUS TT/ET SYSTEMS

59

which is mapped on the same node (Figure 4.2.a). In Figure
4.2.b), task τ1 has been assigned to the TT domain and it meets
its deadline because the static scheduling algorithm will be able
to avoid the previous resource conflict.

4.1.2 BUS ACCESS OPTIMISATION

The configuration of the bus access cycle has a strong impact on
the global performance of the system. The parameters of this
cycle have to be optimised such that they fit the particular appli-
cation and the timing requirements. Parameters to be optimised
are the number of static and dynamic phases during a communi-
cation cycle, as well as the length and order of these phases.
Considering the static phases, parameters to be fixed are the
order, number, and length of slots assigned to the different
nodes. For example, consider the situation in Figure 4.3, where
task τ1 is mapped on node N1 and sends a message m to task τ2
which is mapped on node N2. In case a), task τ1 misses the start

Figure 4.3: Optimization of Bus Access Cycle

Slot1 Slot2 Slot1 Slot2

Slot1Slot2 Slot1 Slot2

DYN DYN DYN DYN

DYNDYNDYNDYN

τ1

N2

τ2

τ2

m

N1
N2

m

D2

Bus

Bus

a)

b)

Slot1Slot2 Slot1 Slot2 DYN
Bus CycleBus Cycle

N2 τ2

mBus

c)

Bus CycleBus Cycle

DYN

τ1N1 D2

τ1N1 D2

CHAPTER 4

60

of the ST Slot1 and, therefore, message m will be sent during the
next bus cycle, causing the receiver task τ2 to miss its deadline
D2. In case b), the order of ST slots inside the bus cycle is
changed, the message m will be transmitted earlier and τ2 will
meet its deadline. The resulted situation can be further
improved, as it can be seen in Figure 5.c), where task τ2 finishes
even earlier, if the first DYN phase in the bus cycle can be elim-
inated without producing intolerable delays of the DYN mes-
sages (which have been ignored in this example).

4.2 Problem Formulation
We consider a system specification and an architecture as
described in Chapter 2. We also consider that some of the tasks
are already mapped to nodes and their domain (TT or ET) is
fixed. This can be the result of decisions already taken by the
designer or/and because part of the functionality is inherited
from previous generations of the product. However, we assume
that there are tasks which are not mapped yet and some of the
task graphs are not yet partitioned between the two domains.
We denote with ΨP the set of all tasks which are not yet assigned
to any of the ET or TT domains and with ΨM the set of all tasks
which are not mapped to any node. Note that ΨP∩ΨM is not nec-
essarily empty, which means that some tasks have neither a
fixed domain, nor are they mapped on any node. The tasks in the
set ΨP∪ΨM are those to which we refer in the rest of this chapter
when we discuss mapping and partitioning. None of the other
tasks is affected, in terms of partitioning and mapping, by any of
the design decisions. Our goal is threefold:
 • to partition the task set ΨP among the ET and TT domains;
 • to map the tasks in the set ΨM onto the nodes in the architec-

ture; and
 • to optimise the parameters of the communication protocol.

The above design tasks have to be performed with the overall
goal that the timing constraints of the resulted system are satis-

DESIGN OPTIMISATION OF HETEROGENEOUS TT/ET SYSTEMS

61

fied. If this is achieved, we say that we have obtained a schedu-
lable implementation of the system, which implies that the
following two conditions are satisfied:

1. The tasks in the TT domain are schedulable, meaning that
we were able to build a static schedule (Section 3.5) for all
the tasks in the TT partition such that their deadlines are
satisfied;

2. The tasks in the ET domain are schedulable. This means
that after running the scheduling process described in Sec-
tion 3.5, the function DSch, expressing the schedulability de-
gree of the ET activities, will have a value DSch ≤ 0.

Before starting to discuss the actual heuristics, some further
observations have to be made. According to the application
model presented in Section 2.4, all tasks in a task graph belong
to the same domain. Thus, the task set ΨP contains complete
task graphs and, by deciding on the partitioning of a certain
task, the whole task graph is assigned to either the TT or ET
domain.

A similar partitioning problem, as formulated above for tasks,
could be also defined at the level of messages: considering a set
of messages, for each message it has to be decided if it should be
transmitted in an ST phase (statically scheduled) or in a DYN
phase (dynamically scheduled). In order to keep the presenta-
tion reasonably simple, we consider that all messages are preas-
signed as ST or DYN. For the same reason, we also consider that
all tasks in the set ΨP have a pre-assigned priority which is used
if the task is assigned to the ET domain.

4.3 Design Heuristic
The design problem outlined above is a combination of subprob-
lems, each of exponential complexity. Therefore, we have elabo-
rated a design space exploration strategy based on the
application of several heuristics in three successive steps, as

CHAPTER 4

62

shown in Figure 4.4:

1. The first step (lines 01-06) starts by generating an initial
mapping, partitioning and bus structure, using several basic
criteria (line 01). If this initial solution is not schedulable,
successive transformations are applied to the partitioning,
mapping, and the bus cycle, with the aim of finding a solu-
tion such that the TT tasks are schedulable. This is per-
formed by generating configurations (in terms of partition-
ing, mapping and bus cycle) which are more and more fa-
vourable to the TT partition.
The first step is stopped once a solution with a schedulable
TT partition has been reached. If at the end of the first step
no such solution has been found, we conclude that, given the
amount of available resources, no correct implementation of
the system can be generated. This decision is justified by the
fact that, if under the most favorable conditions no static
schedule could be generated for the TT tasks, no further
design transformations could lead to a globally schedulable
solution, except for modifications of the underlying system
architecture (e.g adding a new node, replacing a node with a

01 Gen_Part, Gen_Map, Gen_Bus_Cycle
02 if TT not schedulable then
03 change partitioning (TT to ET)
04 change mapping
05 change bus cycle
06 endif
07 if TT not schedulable then stop endif
08 if ET not schedulable then
09 Mapping_and_Partitioning
10 if ET not schedulable then
11 Optimize_Bus_Access
12 endif
13 endif

Figure 4.4: Overview of the Design Heuristic

DESIGN OPTIMISATION OF HETEROGENEOUS TT/ET SYSTEMS

63

faster one or a similar replacement of the bus). If the configu-
ration generated after the first step is not globally schedula-
ble, but a correct schedule of the TT tasks and ST messages
has been found, the heuristic moves into the second step.

2. During the second step (line 09), a partitioning and mapping
algorithm tries to produce a solution such that not only the
TT static schedule is correct, but also the degree of schedula-
bility of the ET partition is as good as possible. The cost func-
tion driving the design space exploration during this step is
DSch (see Section 3.3). Simultaneously with each partition-
ing and mapping decision, also the bus cycle is modified in
order to fit the new configuration.

3. If the second step did not succeed in producing a schedulable
ET partition, the third step (line 11) tries to further improve
the degree of schedulability by an aggressive optimisation of
the bus access cycle.

In the following subsections we further elaborate on the optimi-
sation steps outlined above.

4.3.1 BUILDING AN INITIAL CONFIGURATION

The first step starts with generating, based on a very simple and
fast heuristic, a mapping and partitioning of the tasks, as well
as a bus cycle (line 01 in Figure 4.4):

 • The partitioning is performed with the only constraint to
evenly distribute the load between the TT and the ET
domains.

 • The mapping is based on a very fast heuristic aimed at mini-
mising inter-processor communication while keeping a bal-
anced processor load.

 • The initial bus cycle is constructed in the following two steps:

1. We consider that each node can transmit messages during
only one ST slot inside a bus cycle. The ST slots are assigned

CHAPTER 4

64

in order to the nodes such that Nodei transmits during Sloti

(Figure 2.1). The length of Sloti is set to a value which is
equal to the length of the largest ST message generated by a
task mapped on Nodei. Considering an architecture of 4
nodes, a structure like the one in Figure 4.5.(a) is produced
after this step.
2. Dynamic phases are introduced in order to generate a
mixed ST/DYN bus cycle. We start from the rough assump-
tion that the total length of the dynamic phases over a period
TSS (TSS is the length of the static schedule, see Section 3.5)
is equal to the total length of the DYN messages transmitted
over the same period, which is:

,

where Ti and Li are the period and the length (expressed in
time units) of the DYN message mi. We set the length of each

DYN phase to the length Lmax
DYN. of the largest DYN mes-

sage. The number n of dynamic phases in each cycle can be
determined from the following equation:

,

Figure 4.5: Initial Bus Configuration

bus cycle 1 bus cycle 2 bus cycle k
...

a)

b)

LST

LST + n Lmax
DYN

slot1

slot2

slot3

slot4

slot1

slot2

slot3

slot4

slot1

slot2

slot3

slot4

slot1

slot2

slot3

slot4

TSS

Lmax
DYN }}

Lmax
DYN(n = 2)

T SS
T i

---------- Li⋅
mi DYNdomain∈

∑

T SS

LST n LDYN
max⋅+

--- n LDYN
max⋅ ⋅

T SS
T i

---------- Li⋅
mi DYNdomain∈

∑=

DESIGN OPTIMISATION OF HETEROGENEOUS TT/ET SYSTEMS

65

where LST is the total length of the static slots in a bus cycle

and LST + n Lmax
DYN is the length of the bus cycle. Finally,

the dynamic phases are evenly distributed inside the bus
cycle. Figure 4.5.(b) illustrates such an initial bus configura-
tion.

4.3.2 ADJUSTING THE INITIAL CONFIGURATION

Once we have decided on the above configuration, we can run
the holistic scheduling algorithm, which will lead to one of the
following outcomes:

a. the system is found schedulable;

b. the TT activities are schedulable but the ET ones are not, i.e.
a valid static schedule has been built but the analysis has
identified at least one ET activity for which Rij > Dij;

c. the ET activities are schedulable but the TT ones are not;

d. both ET and TT activities are not schedulable.

In the first case, a), the design goal has been achieved and,
therefore, no further optimisations are performed. In the cases
c) and d), we perform the following successive operations, aimed
at achieving a schedulable TT domain (lines 03-05 in Figure
4.4):

1. Task graphs are moved, one by one, from the TT to the ET
domain, until either the remaining TT activities are schedu-
lable or there are no more task graphs to be moved (whole
task graphs are moved and not individual tasks, because, as
mentioned earlier, all tasks in a task graph belong to the
same domain). The order in which task graphs are moved is
based on a priority function that captures the mobility of
tasks in the graph:

RelAvgMob Γi() 1
ni

Dij ASAPij–

Cij

j 1=

ni

∑⋅=

CHAPTER 4

66

where ni is the number of tasks in the task graph Γi, and
ASAPij is the earliest possible start time for task τij. Task
graphs with a low average relative mobility are moved first,
because, in principle, they are the most difficult to be sched-
uled statically.

2. If the TT domain still is unschedulable, TT tasks are rema-
pped with the goal of avoiding unbalanced node utilisation
by TT tasks.

3. If no schedulable TT domain has been yet produced, trans-
formations of the bus cycles are performed such that the de-
lays produced by ST messages are reduced. In this step, a
simpler and faster version of the heuristic presented in Sec-
tion 4.3.4 is used.

If no schedulable TT domain has been produced by the above
transformations, no correct implementation can be obtained
with our heuristic given the available resources. If both the TT
and ET domains are schedulable, we have achieved our design
goal, while in the case of an unschedulable ET domain, the heu-
ristic is continued with the second step.

4.3.3 MAPPING, PARTITIONING AND SCHEDULING

The mapping and partitioning step (line 09 in Figure 4.4)
receives as an input a configuration in which the TT activities
are schedulable and the ET ones are not. The algorithm is illus-
trated in Figure 4.6. It selects iteratively tasks τij∈ ΨP∪ΨM (line
03) in order to be remapped and/or repartitioned. The order in
which tasks are processed is defined by the following two rules,
similar to those used in list scheduling:

1. τij is selected only after all its predecessors in the task graph
Γi have already been processed (these tasks are called ready).

2. Among the ready tasks, the selection is based on a priority
function PF similar to the one proposed in [Pop00] (line 03).

DESIGN OPTIMISATION OF HETEROGENEOUS TT/ET SYSTEMS

67

01 while (ΨP∪ΨM ≠ ∅ and BestCost > 0) do
02 update priority function PF
03 select task τij∈ ΨP∪ΨMwith highest PF
04 BestCost = ∞
05 if τij∈ ΨM then -- task is not mapped

06 for (p = 1 to NrNodes)do
07 map τij on Nodep
08 adjust bus access cycle
09 if τij∈ΨPthen Cost,d = partition(τij)
10 else Cost = DSch; d = domain of τij
11 endif
12 if BestCost > Cost then
13 BestCost = Cost; BestDomain = d;
14 BestNode = p; BestCycle = BusCycle;
15 endif
16 endfor
17 else
18 BestNode = Node on which τij is mapped
19 BestCycle = BusCycle;
20 BestCost, BestDomain = partition(τij);
21 endif
22 τij.node = BestNode; BusCycle=BestCycle;
23 set domain(Γi) to BestDomain
24 ΨP=ΨP \ {τij}; ΨM = ΨM \ {τij}
25 end while

26 function partition(τij)
27 τij.domain = ET; Cost1 = DSch; d1 = ET;
28 τij.domain = TT; Cost2 = DSch; d2 = ET;
29 return min(Cost1, Cost2) and associated di
30 end partition

Figure 4.6: Mapping and Partitioning Algorithm

CHAPTER 4

68

This function is based on a critical path metric and it also
takes into consideration the delay introduced by message
passing considering the particular communication protocol,
as well as the nature of the messages (ST or DYN).

Once a task τij has been selected, its mapping and domain will
be decided in a greedy fashion. If τij∈ ΨM (the task mapping is
not fixed), it will be successively mapped to each node (lines 06-
16) and for each alternative, the schedulability analysis (Section
3.3) returns the cost DSch, which captures the degree of schedu-
lability of the produced configuration. If the domain, ET or TT,
is also to be decided (τij∈ ΨP), both alternatives are evaluated
(line 09). This is performed using the function partition (lines
26-30). Finally, that node and domain are selected for τij which
produces the smallest value for DSch. If only the domain of τij is
to be decided, but the mapping is fixed, the best of the two alter-
natives is selected. It should be mentioned that a mapping or
partitioning alternative is considered only if, with the resulted
configuration, the TT domain is still schedulable (this aspect is
not captured in Figure 4.6).

Whenever the mapping of a task is modified, the bus cycle has
to be adjusted so that it can ensure the minimum requirements
for transmitting the messages. Such an adjustment of the bus
access cycle is illustrated in Figure 4.7, where 4 TT tasks are
mapped on 3 nodes (N1, N2 and N3). The number at the side of

N1 N2 N3
2 1

34

τ1

τ3

τ4

τ1 τ2,τ3 τ4

Slot1 = max (2, 1) = 2
Slot2 = max (4, 3) = 4

Remap τ2 from N2 to N1
Slot1 = max (1, 4) = 4
Slot2 = max (3) = 3

Remap τ3 from N2 to N1
Slot1 = max (2, 3) = 3
Slot2 = max (4) = 4

Initial slot lengths:
τ2

Figure 4.7: Adjustment of the Bus Access

DESIGN OPTIMISATION OF HETEROGENEOUS TT/ET SYSTEMS

69

each message represents its length. Tasks mapped on different
nodes communicate through ST messages and an ST slot should
be able to accommodate the longest message transmitted by the
associated node. The figure shows how the lengths of the slots
associated with N1 and N2 are modified after a task has been
remapped. In one case, task τ2 is moved from N2 to N1and there-
fore, the message m1,2 will disappear (τ1 and τ2 are both mapped
on N1), while message m2,4 will be transmitted in Slot1 instead
of Slot2. In the second case, τ3 is moved from N2 to N1, which
means that m1,3 disappears, while m3,4 is transmitted in Slot1.

4.3.4 BUS ACCESS OPTIMISATION

It may be the case that even after the mapping and partitioning
step, some ET activities are still not schedulable. In the third
step (lines 10-12, Figure 4.4), our algorithm tries to remedy this
problem by changing the parameters of the bus cycle, like ST
slot lengths and order, as well as the number, length and order
of the ST and DYN phases. The goal is to generate a bus access
scheme which is adapted to the particular task configuration.
The heuristic is illustrated in Figure 4.8. The algorithm itera-
tively looks for the right place and size of Sloti used for trans-
mission of ST messages from Nodei (outermost loops). The
position of Sloti is swapped with all the positions of slots of
higher order (line 03). Also, all alternative lengths (lines 04-05)
of Sloti larger than its minimal allowed length (which is equal to
the length of the largest ST message generated by a task
mapped on Nodei) are considered. For any particular length and
position of Sloti, alternative lengths of the adjacent ET phase
Phi are considered (innermost loop). For each alternative, the
schedulability analysis evaluates cost DSch, and the solution
with the lowest cost is selected. If DSch ≤ 0, the system is sched-
ulable and the heuristic is stopped.

It is important to notice that the possible length π of an ET
phase (line 06) includes also the value 0. Therefore, in the final

CHAPTER 4

70

bus cycle, it is not needed that each static slot is followed by a
dynamic phase (see also Figure 2.1). Dynamic phases introduced
as result of the previous steps can be eliminated by setting the
length to π = 0 (such a transformation is illustrated in Figure
4.3.c). It should be also mentioned that enlarging a slot/phase
can increase the schedulability by allowing several ST/DYN
messages to be transmitted quickly immediately one after
another. At the same time, the following slots are delayed, which
means that ST messages transmitted by nodes assigned to
upcoming slots will arrive later. Therefore, the optimal schedu-
lability will be obtained for slot and phase lengths which are not
tending towards the maximum. The number of alternative slot
and phase lengths to be considered by the heuristic in Figure 4.8
is limited by the following two factors:

1. The maximum length of a static slot or dynamic phase is
fixed by the technology (e.g. 32 or 64 bits).

2. Only frames consisting of entire messages can be transmit-

01 for i = 1 to NrNodes
02 for j = i to NrNodes
03 swap Sloti with Slotj
04 for all slot lengths λ > min_len(Sloti)
05 len(Sloti) = λ
06 for all DYN phase lengths π
07 len(Phi) = π
08 if DSch ≤ 0 then stop endif
09 keep solution with lowest DSch
10 end for
11 end for
12 swap back Sloti and Slotj
13 end for
14 bind best position and length of Sloti
15 bind length of Phi
16 end for

Figure 4.8: Bus Access Optimization

DESIGN OPTIMISATION OF HETEROGENEOUS TT/ET SYSTEMS

71

ted, which excludes several alternatives.

4.4 Experimental Results
In order to evaluate the proposed heuristic, we have generated a
large set of applications with different characteristics. All exper-
iments were run on an AMD Athlon 850 MHz PC. For our first
experiments we considered an architecture consisting of 6
nodes. We have generated 4 sets of applications composed of 60,
75, 90, and 120 tasks respectively. Each set consists of 40 appli-
cations. The number of unmapped tasks was between 10 and the
total number of tasks in the application. Ten task graphs are
considered to be unassigned to any of the two domains (ET and
TT). The average load on the processors is 60%. The scheduling
algorithm MxS3 (Section 3.5.3) has been used for all the experi-
ments presented in the rest of this section

Figure 4.9 shows the percentage of schedulable applications
obtained after the successive steps of our heuristic. By straight
forward configuration we mean the mapping, partitioning and
bus cycle generated at the start of step 1 (line 01 in Figure 4.4).
This is a configuration which, in principle, could be elaborated
by a careful designer without the aid of optimisation tools like
the one proposed in the thesis. Out of the total number of appli-
cations consisting of 60 tasks, for example, only 10% were sched-

Figure 4.9: Percentage of Schedulable Applications

With Straight-forward

Additional after Step 2

 No. Tasks

Pe
rc

en
t o

f

60 75

100%

50%
Additional after Step 1

Additional after Step 3

90

25%

75%

120

configuration

sc
he

du
la

bl
e

so
lu

tio
ns

CHAPTER 4

72

ulable with the straight-forward configuration and 90%
continued the optimisation process. 9% of the total number of
tasks have been found schedulable with the configuration gener-
ated by step 1. As expected, the mapping, partitioning and bus
cycle adjustment performed in step 2 are leading to a huge
improvement, adding 61% of the total number of applications to
the group of schedulable ones. An additional 4% of the total
number of applications is found schedulable after performing
the bus optimisation in step 3. A similar trend is followed in the
experiments with 75, 90 and 120 tasks. It is easy to observe that
by performing the proposed optimisations, huge improvements
over the straight-forward configuration has been produced.

An interesting question is to what extent the partitioning of
tasks into the ET and TT domains is contributing to the results
illustrated in Figure 4.9. Or, are these results mostly due to the
optimised mapping? The same question can also be put relative to
the bus cycle optimisation. In order to answer these questions, we
considered a second set of applications consisting of 60, 80 and
100 tasks grouped in 12, 15, 18, and 20 task graphs and mapped
on 4, and 6 nodes. We have run our heuristic for each of these
applications considering 4 cases. First, with a subset of tasks that
have to be partitioned but no tasks to be mapped (|ΨM| = 0). Sec-
ond, with the same subset of tasks open for mapping but not for
partitioning (|ΨP| = 0). The third case does not allow any bus
access optimisation, so we switched off the optimisations in lines
5 and 11 in Figure 4.4 (however, we kept the bus cycle adjust-
ment which is needed in Step 2, line 8 in Figure 4.6). The fourth
case represents the reference, the complete heuristic. The
results are presents in Figure 4.10, which shows the percentage
of schedulable applications (relative to the total number of appli-
cations) that have been produced by each optimisation step. For
example, after step 2, 45% additional applications were schedu-
lable if we only allow to perform re-mapping (|ΨP| = 0), as
opposed to 74% in the case when both optimisations are per-
formed. The same number is 40% if we only allow to perform re-

DESIGN OPTIMISATION OF HETEROGENEOUS TT/ET SYSTEMS

73

partitioning (|ΨM| = 0). The percentage of unschedulable tasks
after the three steps is 34% when |ΨP| = 0, 44% for |ΨM| = 0, and
24% when no bus optimisation was performed, as compared to
7% in the case of the complete heuristic. The conclusions which
we can draw are the following:

1. An efficient partitioning into the ET and TT domains con-
tributes essentially to the overall optimisation, to an extent
comparable to that of an efficient mapping.

2. When applied together, the three techniques provide much
better results than the ones obtained when any of the tech-
niques is eliminated.

Concerning the runtime needed for the optimisation process,
we have analysed each of the three steps separately. For the
examples in Figure 4.9, the average run time for step 1 was
11.7s (60 tasks), 40.1s (75 tasks), 73.2s (90 tasks), and 150s (120
tasks).

The execution time for step 2 is presented in more detail in
Figure 4.11 and Figure 4.12. Figure 4.11 illustrates the time
needed for step 2 as a function of the total number of task graphs
to be partitioned (the characteristics of the applications and the
number of nodes are shown in the figure). The upper curve illus-
trates the average execution times for those applications which

|Ψ
p |=0

Figure 4.10: Partial Optimisations

With Straight-forward

Additional after Step 2

sc
he

du
la

bl
e

so
lu

tio
ns

100%

50%

Additional after Step 1

Additional after Step 3

25%

75%

configuration

|Ψ
M |=0

No B
us

Opt.

Com
ple

te

Pe
rc

en
t o

f

Opti
misa

tio
n

CHAPTER 4

74

are running through step 2 without reaching a system configu-
ration which makes them schedulable. This curve can be consid-
ered as an upper bound for the execution time in step 2. The
second curve in Figure 4.11 gives the average execution times of
those applications that have been found schedulable during step
2. In Figure 4.12 we show, in a similar way, the average execution
times as a function of the number of unmapped tasks. The execu-
tion times needed for the third optimisation step are given in
Figure 4.13. As this step is concentrating only on the communica-
tion aspect, the average execution time is given as a function of the
number of nodes.

Finally, we considered a real-life example from the automotive
area, implementing a vehicle cruise controller and a control
application related to the Anti Blocking System on an architec-
ture consisting of 5 nodes. The cruise controller consists of 42
tasks organised in 11 task graphs. One of these task graphs is
fixed into the TT domain, and the other 10 are unpartitioned. 10
out of the 42 tasks are unmapped. The ABS system consists of
35 tasks already mapped over the 5 nodes and assigned to the
ET domain. Running our optimisation heuristic, step 1 was able
to generate a correct static schedule for the TT domain, but

Step 2 succeeds
Step 2 fails

200

400
600
800

1000
1200
1400

1600

1800

5 10 15 20

T
im

e(
s)

120 tasks, 24 task graphs
6 nodes (60% avg. utilization)
10 unmapped tasks

No. of Unpartitioned Task Graphs

Figure 4.11: Runtime of Step 2 function of |ΨP|

DESIGN OPTIMISATION OF HETEROGENEOUS TT/ET SYSTEMS

75

without producing a globally schedulable system. Step 2 man-
ages to improve the degree of schedulability of the system (func-
tion DSch) by two orders of magnitude without, however,
producing a schedulable system. A correct implementation has
been produced after the bus optimisation in step 3. It is interest-
ing to mention that for the final schedulable solution, out of the
10 unpartitioned task graphs, 2 were assigned to the ET and 8 to
the TT partition. The run times for the three optimisation steps
were 5.3s, 708s and 164s respectively.

100

200

300

400

500

600

700

10 20 30 40 50

Step 2 fails
Step 2 succeeds60 tasks, 15 task graphs

6 nodes (60%avg.utilisation)
10 unpartitioned task graphs

T
im

e
(s

)

No. of Unmapped Tasks

Figure 4.12: Runtime of Step 2 function of |ΨM|

0

50

100

150

200

2 4 6 8

Step 3 succeeded
Step 3 failed

No. of Nodes

T
im

e(
s)

Figure 4.13: Runtime of Step 3

40 tasks
60%avg. processor utilization

CHAPTER 4

76

CONCLUSIONS AND FUTURE WORK

77

Chapter 5
Conclusions and

Future Work

5.1 Conclusions
In this thesis we have first defined and solved the problem of
scheduling heterogeneous ET/TT distributed embedded sys-
tems. We have proposed several alternative solutions for the
scheduling algorithm and we have run extensive experiments in
order to compare the efficiency of the alternatives.

Once we have solved the scheduling and schedulability analy-
sis problem, we addressed several design problems which we
identified as specific for the type of heterogeneous systems we
are studying: the partitioning of functionality into ET and TT
activities, and the synthesis of parameters of the mixed ST/DYN
communication protocol. These two aspects have been
approached in a larger design context, which also involved map-
ping and scheduling of the functionality. Our experiments have
shown the importance of each of the optimisation aspects taken
into consideration and the efficiency of the proposed optimisa-
tion heuristic.

CHAPTER 5

78

5.2 Future Work
Several developments are possible in order to generalise the pre-
sented approach. First, the communication model can be further
generalised such that TT tasks can communicate through DYN
messages and ET tasks through ST messages. Then, the interac-
tion mechanism for interaction between TT and ET activities
can be refined, in the context of hard-real-time communication.

Based on such a generalised model, we intend to study the
problem of priority assignment for ET tasks and DYN messages
in the context of mixed TT/ET systems.

The generalised model will also allow us to relax the con-
straints imposed on the partitioning problem, which in the cur-
rent version assumes that entire task graphs are moved to the
TT or ET domain.

79

References

[ARI629] ARINC, “Multi-Transmitter Data Bus, Part 1, Tech-
nical Description”, ARINC Document 629P1-4, Aero-
nautical Radio, Inc., Annapolis, MD, USA, 1995.

[Abd99] T. F. Abdelhazer, K. G. Shin, “Combined Task and
Message Scheduling in Distributed Real-Time Sys-
tems”, IEEE Transactions on Parallel and Distrib-
uted Systems, 10(11), pages 1179-1191, 1999.

[Agr94] G. Agrawal, B. Chen, W. Zhao, S. Davari, “Guaran-
teeing Synchronous Message Deadlines with the
Timed Token medium Access Control Protocol”,
IEEE Transactions on Computers, 43(3), pages 327-
339, 1994.

[Alm99] L. Almeida, “Flexibility and Timeliness in Fieldbus-
based Real-Time Systems“, Ph. D. Thesis, University
of Aveiro, Portugal, 1999.

[Alm02] L. Almeida, P. Pedreiras, J. A. G. Fonseca, “The FTT-
CAN Protocol: Why and How”, IEEE Transactions on
Industrial Electronics, 49(6), pages 1189-1201, 2002.

[Aud93] N. Audsley, K. Tindell, A. et. al., “The End of Line for
Static Cyclic Scheduling?”, 5th Euromicro Workshop

80

on Real-Time Systems, 1993.

[Aud95] N. Audsley, A. Burns, et. al., “Fixed Priority Preemp-
tive Scheduling: An Historical Perspective”, Real-
Time Systems, 8(2/3), 1995.

[Bal97] F. Balarin, editor, Hardware-Software Co-Design of
Embedded Systems: The Polis Approach, Kluwer
Academic Publishers, 1997.

[Bal98] F. Balarin, L. Lavagno, et. al., “Scheduling for
Embedded Real-Time Systems”, IEEE Design and
Test of Computers, January-March,1998.

[Bec98] J. E. Beck, D. P. Siewiorek, “Automatic Configuration
of Embedded Multicomputer Systems”, IEEE Trans-
actions on CAD, 17(2), pages 84-95, 1998.

[Ber03] J. Berwanger, M. Peller, R. Griessbach, “A New High-
Performance Data Bus System for Safety Related
Applications”, http://www.byteflight.com, 2003.

[Bin01] Enrico Bini, Giorgio Butazzo, Giuseppe Butazzo, “A
Hyperbolic Bound for the Rate Monotonic Algo-
rithm”, Proceedings of the 13th Euromicro Confer-
ence on Real-Time Systems, pages 59-66, 2001.

[Bli98] T. Blicke, J. Teich, L. Thiele, “System-Level Synthe-
sis using Evolutionary Algorithms”, Design Automa-
tion for Embedded Systems, 4(1), pages 23-58, 1998.

[Bos91] R. Bosch GmbH, “CAN Specification Version 2.0”,
1991.

[But97] Giorgio C. Butazzo, “Hard Real-Time Computing
Systems - Predictable Scheduling Algorithms and
Applications”, Kluwer Academic Publishers, 1997.

[Coff72] E.G. Coffman Jr., R.L. Graham, “Optimal Scheduling
for two Processor Systems”, Acta Informatica, 1,
1972.

81

[Dav99] B. P. Dave, G. Lakshminarayana, N. K. Jha,
“COSYN: Hardware-Software Co-Synthesis of Heter-
ogeneous Distributed Embedded Systems”, IEEE
Transactions on VLSI Systems, pages 92-104, 1999.

[Dem01] T. Demmeler, P. Giusto, “A Universal Communication
Model for an Automotive System Integration Plat-
form”, Design, Automation and Test in Europe
(DATE’01) Conference, Munich, pages 47-54, 2001.

[Dob01a] R. Dobrin, G. Fohler, “Implementing Off-Line Mes-
sage Scheduling on Controller Area Network (CAN)”,
Proceedings of the 8th IEEE International Confer-
ence on Emerging Technologies and Factory Automa-
tion, 1, 2001.

[Dob01b] R. Dobrin, G. Fohler, P. Puschner, “Translating Off-
line Schedules into Task Attributes for Fixed Priority
Scheduling”, Proceedings of Real-Time Systems
Symposium, 2001.

[Eke00] C. Ekelin, J. Jonsson, “Solving Embedded System
Scheduling Problems using Constraint Program-
ming”, Chalmers University of Technology, Sweden,
Report number TR 00-12, 2000.

[Ele00a] P. Eles, A. Doboli, P. Pop, Z. Peng, “Scheduling with
Bus Access Optimization for Distributed Embedded
Systems”, IEEE Transactions on VLSI Systems, 8(5),
pages 472-491, 2000.

[Ele02] P. Eles, Lecture Notes for System Design and Meth-
odology, http://www.ida.liu.se/~TDTS30, 2002.

[Erm97] H. Ermedahl, H. Hansson, M. Sjödin, “Response
Time Guarantees in ATM Networks”, Proceedings of
Real-Time Systems Symposium, 1997.

[Ern97] R. Ernst, W. Ye, “Embedded Program Timing Analy-
sis Based on Path Clustering and Architecture Clas-

82

sification”, Proceedings of International Conference
on CAD, pages 598-604, 1997.

[Ern98] R. Ernst, “Codesign of Embedded Systems: Status and
Trends”, IEEE Design&Test of Comp., April-June,
1998.

[Edw97] S. Edwards, L. Lavagno, E. A. Lee, A. Sangiovanni-
Vincentelli, “Design of Embedded Systems: Formal
Models, Validation and Synthesis”, Proceedings of
the IEEE, 85(3), pages 366-390, 1997.

[Edw00] S. Edwards, “Languages for Digital Embedded Sys-
tems”, Kluwer Academic Publishers, 2000.

[Fle03] FlexRay homepage: http://www.flexray-group.com/,
2003.

[Fuh00] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R.
Hugel, M. Walther, Robert Bosch GmbH, “Time-Trig-
gered Communication on CAN (Time-Triggered
CAN- TTCAN)”, Proceedings of International CAN
Conference, Amsterdam, The Netherlands, 2000.

[Gon91] M. González Harbour, M. H. Klein, J. P. Lehoczky,
“Fixed Priority Scheduling of Periodic Tasks with
Varying Execution Priority, Proceedings of 12th
IEEE Real-Time Systems Symposium, pages 116 -
128, 1991.

[Gut95] J. J. Gutiérrez García, M. González Harbour, “Opti-
mized Priority Assignment for Tasks and Messages
in Distributed Hard Real-Time Systems”, Proceed-
ings of the 3rd Workshop on Parallel and Distributed
Real-Time Systems, Santa Barbara, pages 124-132,
1995.

[Han97] H. Hansson, M. Sjödin, K. Tindell, “Guaranteeing
Real-Time Traffic Through an ATM Network”, Pro-
ceedings of the 30th Hawaii International Confer-

83

ence on System Sciences, 5, 1997.

[IEEE83] EEE Standards Board, “Token Passing Bus Access
Method and Physical Layer Considerations“, IEEE
Standard 802.4, 1983.7, 1983.

[IEEE98] IEEE Standards Board, “Carrier Sense Multiple
Access with Collision Detection (CSMA/CD) Access
Method and Physical Layer Specifications (1998 Edi-
tion)“, IEEE Standard 802.3, 1998.

[Jon97] J. Jonsson, K. J. Shin, “A Parametrized Branch-and-
Bound Strategy for Scheduling Precedence-Con-
strained Tasks on a Multiprocessor System“, Pro-
ceedings of the International Conference on Parallel
Processing (ICPP), pages 158-165, 1997.

[Jor97] P. B. Jorgensen, J. Madsen, “Critical Path Driven
Cosynthesis for Heterogeneous Target Architec-
tures”, Proceedings of the 5th International Work-
shop on Hardware-Software Co-design, pages 15-19,
1997.

[Keu00] K. Keutzer, S. Malik, A. R. Newton, “System-Level
Design: Orthogonalization of Concerns and Platform-
Based Design”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
19(12), 2000.

[Koo02] P. Koopman, “Critical Embedded Automotive Net-
works”, IEEE Micro, 22(4), pages 14-18, 2002.

[Kop92] H. Kopetz, G. Fohler, G. Grünsteidl, H. Kantz, G.
Pospischil, P. Puschner, J. Reisinger, R. Schlatter-
beck, W. Schütz, A. Vrchoticky, R. Zainlinger, “The
Programmer’s View of MARS”, Proceedings of 13th
IEEE Real-Time Systems Symposium, pages 223-
226, 1992.

[Kop97] H. Kopetz, “Real-Time Systems - Design Principles

84

for Distributed Embedded Applications”, Kluwer
Academic Publisher, 1997.

[Kuc97] K. Kuchcinski, “Embedded System Synthesis by
Timing Constraint Solving”, Proceedings of the
International Symposium on System Synthesis,
pages 50-57, 1997.

[Lav99] L. Lavagno, A. Sangiovanni-Vincentelli, E. Sentov-
ich, “Models of Computation for Embedded System
Design”, A. A. Jerraya and J. Mermet eds: System
Level Synthesis, Kluwer, 1999.

[Lee99] C. Lee, M. Potkonjak, W. Wolf, “Synthesis of Hard
Real-Time Application Specific Systems”, Design
Automation for Embedded Systems, 4(4), pages 215-
241, 1999.

[Leh89] J. Lehoczky, L. Sha, Y. Ding, “The Rate Monotonic
Scheduling Algorithm: Exact Characterization and
Average Case Behaviour”, Proceedings of 11th Real-
Time Systems Symposium, pages 166-171, 1989.

[Leh90] J. P. Lehoczky, “Fixed Priority Scheduling of Periodic
Task Sets with Arbitrary Deadlines”, Proceedings of
11th IEEE Real-Time Systems Symposium, pages
201 -209, 1990.

[Leu82] J. Y. T. Leung, J. Whitehead, “On the Complexity of
Fixed Priority Scheduling of Periodic, Real-Time
Tasks”, Performance Evaluation, 2(4), pages 237-
250, 1989.

[Liu73] C. L. Liu, J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environ-
ment”, Journal of the ACM, 20(1), pages 46-61, 1973.

[LIN00] Local Interconnect Network, “LIN Specification
Package”, Revision 1.2, http://www.lin-subbus.org/,
2000.

85

[Lön99] H. Lönn, J. Axelsson, “A Comparison of Fixed-Prior-
ity and Static Cyclic Scheduling for Distributed
Automotive Control Applications”, Proceedings of the
11th Euromicro Conference on Real-Time Systems,
pages 142-149, 1999.

[Loc92] C. Douglas Locke, “Software Architecture for Hard-
Real Time Applications: Cyclic Executives vs. Fixed
Priority Executives”, Journal of Real-Time Systems,
4, pages 37-53, 1992.

[Mar00] G. Martin, “The Future of High-Level Modelling and
System Level Design: Some Possible Methodology
Scenarios”, 9th IEEE/DATC Electronic Design Pro-
cesses Workshop, 2000.

[Mil99] D. Millinger, P. Gansterer, “The Time-Triggered
Operating System Technical Manual”, http://
www.vmars.tuwien.ac.at/~fstue/manuals/ttos/
doku.html, March, 2003.

[Mic97] G. de Micheli, R. K. Gupta, “Hardware/Software Co-
Design”, Proceedings of the IEEE, 85(3), pages 349-
365, 1997.

[Pal98] J. C. Palencia, M. González Harbour, “Schedulability
Analysis for Tasks with Static and Dynamic Offsets”,
Proceedings of the 19th IEEE Real-Time Systems
Symposium, pages 26-37, 1998.

[Pal99] J. C. Palencia, M. González Harbour, “Exploiting Pre-
cedence Relations in the Schedulability Analysis of
Distributed Real-Time Systems”, Proceedings of the
20th IEEE Real-Time Systems Symposium, 1999.

[Ple92] P. Pleinevaux, “An Improved Hard Real-Time Sched-
uling for IEEE 802.5”, Journal of Real-Time Sys-
tems, 4(2), 1992.

[Pop00] P. Pop, P. Eles, Z. Peng, “Bus Access Optimization for

86

Distributed Embedded Systems based on Schedula-
bility Analysis”, Design, Automation and Test in
Europe (DATE’00), pages 567-574, 2000.

[Pop01a] P. Pop, P. Eles, T. Pop, Z. Peng, “An Approach to
Incremental Design of Distributed Embedded Sys-
tems”, Proceedings of the 38th Design Automation
Conference (DAC), Las Vegas, USA, pages 450-455,
2001.

[Pop01b] P. Pop, P. Eles, T. Pop, Z. Peng, “Minimizing System
Modification in an Incremental Design Approach”,
Proceedings of the 9th International Workshop on
Hardware/Software Codesign (CODES 2001), Copen-
hagen, Denmark, pages 183-188, 2001.

[Pop03a] P. Pop, P. Eles, Z. Peng, “Schedulability-Driven Com-
munication Synthesis for Time-Triggered Embedded
Systems”, Real-Time Systems Journal (accepted for
publication).

[Pop03b] Paul Pop, Petru Eles, Zebo Peng, “Schedulability
Analysis and Optimization for the Synthesis of
Multi-Cluster Distributed Embedded Systems”,
Design, Automation and Test in Europe (DATE’03)
Conference, Munich, Germany, pages 184-189, 2003.

[PopT02] Traian Pop, Petru Eles, Zebo Peng, “Holistic Sched-
uling and Analysis of Mixed Time/Event-Triggered
Distributed Embedded Systems”, Proceedings of the
10th International Symposium on Hardware/Soft-
ware Codesign (CODES 2002), Estes Park, Colorado,
USA, pages 187-192, 2002.

[PopT03a] Traian Pop, Petru Eles, Zebo Peng, “Schedulability
Analysis for Distributed Heterogeneous Time/Event-
Triggered Real-Time Systems”, to be published in
the Proceedings of the 15th Euromicro Conference on

87

Real-Time Systems (ECRTS 2003), Porto, Portugal,
July 2-4, 2003.

[PopT03b] Traian Pop. Petru Eles, Zebo Peng, “Design Optimi-
zation of Mixed Time/Event Triggered Distributed
Embedded Systems”, submitted for publication.

[Pra92] S. Prakash, A. Parker, “SOS: Synthesis of Applica-
tion Specific Heterogeneous Multiprocessor Sys-
tems”, Journal of Parallel and Distributed
Computers, 16, pages 338-351, 1992.

[Raj93] P. Raja, G. Noubir, “Static and Dynamic Polling
Mechanisms for Fieldbus Networks”, ACM Operating
Systems Review, 27(3), 1993.

[Ric02] K. Richter, R. Ernst, “Event Model Interfaces for
Heterogeneous System Analysis”, Proceedings of
Design, Automation and Test in Europe Conference
(DATE’02), Paris, France, 2002.

[Ric03] K. Richter, M. Jersak, R. Ernst, “A Formal Approach
to MpSoC Performance Verification”, IEEE Compu-
ter, 36(4), pages 60-67, 2003.

[Sch94] M. Schwehm, T. Walter, “Mapping and Scheduling by
Genetic Algorithms“, Conference on Algorithms and
Hardware for Parallel Processing, pages 832-841,
1994.

[Sha90] L. Sha, R. Rajkumar, J. P. Lehoczky, “Priority Inher-
itance Protocols: An Approach to Real Time Synchro-
nization”, IEEE Transactions on Computers, 39(9),
pages 1175 -1185, 1990.

[Sta94] J. A. Stankovic, M. Spuri, M. di Natale, and G. C.
Butazzo, “Implications of Classical Scheduling
Results for Real-Time Systems”, Technical Report
UM-CS-94-089, Computer Science Department, Uni-
versity of Massachusetts, 1994.

88

[Str89] J. K. Strosneider, T. E. Marchok, “Responsive, deter-
ministic IEEE 802.5 Token Ring Scheduling”, Jour-
nal of Real-Time Systems, 1(2), 1989.

[Tab00] B. Tabbara, A. Tabbara, A. Sangiovanni-Vincentelli,
“Function/Architecture Optimization and Co-Design
of Embedded Systems”, Kluwer Academic Publish-
ers, 2000.

[Tin92] K. Tindell, A. Burns, A.J. Wellings, “Allocating Hard
Real-Time Tasks (An NP-Hard Problem Made
Easy)”, Journal of Real-Time Systems, 4(2), pages
145-165, 1992.

[Tin94a] K. Tindell, J. Clark, “Holistic Schedulability Analysis
for Distributed Hard Real-Time Systems”, Micro-
processing & Microprogramming, Vol. 50, No. 2-3,
1994.

[Tin94b] K. Tindell, H. Hansson, A. J. Wellings, “Analysing
Real-Time Communications: Controller Area Net-
work (CAN)”, Proceedings of Real-Time Systems
Symposium, 1994.

[Tin94c] K. Tindell, “Adding Time-Offsets to Schedulability
Analysis”, Department of Computer Science, Univer-
sity of York, Report Number YCS-94-221, 1994.

[TTP01A] TTP/A Specification, WebSite of Time-Triggered
Technology, http://www.tttech.com/, 2001.

[TTP01C] TTP/C Specification, WebSite of Time-Triggered
Technology, http://www.tttech.com/, 2001.

[Tur99] J. Turley, “Embedded Processors by the Numbers”,
Embedded Systems Programming, 1999.

[Ull75] D. Ullman, “NP-Complete Scheduling Problems”,
Journal of Computer Systems Science, 10(3), pages
384-393, 1975.

89

[Wor03] World FIP fieldbus, http://www.worldfip.org/, April
2003.

[Wol94] W. Wolf, “Hardware-Software Co-Design of Embed-
ded Systems”, Proceedings of the IEEE, V82, N7,
1994.

[Wol97] W. Wolf, “An Architectural Co-Synthesis Algorithm
for Distributed Embedded Computing Systems”,
IEEE Transactions on VLSI Systems, pages 218-229,
1997.

[Wol03] W. Wolf, “A Decade of Hardware/Software Codesign”,
IEEE Computer, 36(4), pages 38-43, 2003.

[Xu93] J. Xu, D.L. Parnas, “On satisfying timing constraints
in hard-real-time systems”, IEEE Transactions on
Software Engineering, 19(1), 1993.

[Yen97] T. Y. Yen, W. Wolf, “Hardware-Software Co-Synthesis
of Distributed Embedded Systems”, Kluwer Aca-
demic Publishers, 1997.

90

REFERENCES

91

APPENDIX A
List of Notations

Notation Description

Γi Task-graph i

τij Activity j belonging to task-graph Γi

Tij Period of activity τij

Cij Worst-case execution time of activity τij

Dij Deadline for activity τij

Φij Offset for activity τij

Jij Jitter for activity τij

Rb
ij Best-case response time for activity τij

Rij Worst-case response time for activity τij

Prioij Priority for activity τij

Nodeij The node on which task τij is mapped

Tss LCM of the periods of all the task-graphs in the applica-
tion

Hij(wij) ET demand associated with the busy period of length wij
of activity τij

Aij(wij) ET availability associated with the busy period of length
wij of activity τij

CHAPTER 5

92

ΨP The set of task-graps which can be repartitioned between
time-triggered and event-triggered domains

ΨM The set of tasks which can be remapped

Notation Description

