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Abstract
Embedded and real-time software is often constrained by several
temporal requirements. Therefore, it is important to design embed-
ded software that meets the required performance goal. The incep-
tion of embedded graphics processing units (GPUs) brings fresh
hope in developing high-performance embedded software which
were previously not suitable for embedded platforms. Whereas
GPUs use massive parallelism to obtain high throughput, the over-
all performance of an application running on embedded GPUs is
often limited by memory performance. Therefore, a crucial prob-
lem lies in automatically detecting the inefficiency of such software
developed for embedded GPUs. In this paper, we propose GUPT,
a novel test generation framework that systematically explores and
detects poor memory performance of applications running on em-
bedded GPUs. In particular, we systematically combine static anal-
ysis with dynamic test generation to expose likely execution scenar-
ios with poor memory performance. Each test case in our generated
test suite reports a potential memory-performance issue, along with
the detailed information to reproduce the same. We have imple-
mented our test generation framework using GPGPU-Sim, a cycle-
accurate simulator and the LLVM compiler infrastructure. We have
evaluated our framework for several open-source programs. Our
experiments suggest the efficacy of our framework by exposing nu-
merous memory-performance issues in a reasonable time. We also
show the usage of our framework in improving the performance of
programs for embedded GPUs.

1. Introduction
Embedded and real-time software is often required to satisfy sev-
eral timing constraints. Therefore, validating the performance of
embedded software is a critically important problem. Performance
validation methodologies aim to automatically detect corner sce-
narios that capture poor performance behaviour of embedded soft-
ware. In the absence of such validation techniques, an embedded
software may suffer from serious performance failure at runtime.
As a result, performance validation methodologies are required
early during the design process of the software. In this way, the
reported performance issues can be fixed to avoid runtime failure.

Graphics processing units (GPUs) have gained popularity as a
flexible and efficient solution for parallel processing. During the
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last decade, researchers have shown significant performance gains
that could be achieved using mainstream GPUs. Consequently,
many embedded devices (e.g. smartphones) are now equipped with
programmable GPUs. A few examples of such embedded GPUs
include graphics processing cores designed by Vivante, ARM and
AMD. As primarily targeted for power-constrained devices, em-
bedded GPUs often have very restricted features compared to main-
stream GPUs. Such restrictions include small caches, limited or no
support of low-latency shared memory, among others. Therefore,
careful design choices are required to develop high-performance
embedded software on embedded GPUs [23].

One appealing feature of general-purpose GPU (GPGPU) pro-
gramming is the availability of powerful programming abstrac-
tions. For instance, to perform a certain computation by GPU, a
programmer writes the code for only one GPU thread and spec-
ifies the number of threads to execute. On one hand, such pro-
gramming abstractions provide developers tremendous flexibility
in writing parallel modules. On the other hand, due to such layer
of programming abstractions, the execution pattern of a GPGPU
application remains completely hidden from the developer. As a
result, it becomes potentially impossible for a developer to detect
and understand the hidden performance problems in an embedded
GPGPU application. As pointed out by existing literature, memory
subsystems may significantly limit the performance gain from par-
allelism offered by GPUs [17, 18]. Accessing the global-memory
(DRAM) in embedded GPUs is several magnitudes slower than ac-
cessing on-chip memories (e.g. caches). Although such slow mem-
ory accesses are partially overlapped by computations, an applica-
tion launched in the GPU may suffer from performance problems
due to the congestion in the memory controller or caches [18]. In
embedded GPUs, such performance problems might be critical due
to limited on-chip memories. Moreover, detecting such problems is
challenging due to the presence of a huge number of possible exe-
cution scenarios (e.g. different inputs and thread schedules) and it
is potentially infeasible to run an application for all such scenarios.
Therefore, it is highly desirable that such performance problems are
systematically detected and highlighted to the developer via auto-
mated software testing.

In this paper, we propose GUPT, an automated test generation
framework to systematically detect performance problems in em-
bedded GPGPU applications. In particular, our framework system-
atically explores execution scenarios which may create substantial
interferences from different threads in the memory subsystem (e.g.
memory controller and on-chip caches) and prolong the overall ex-
ecution time of the respective application. We generate a test suite
where each test case highlights a specific execution scenario (i.e.
inputs and thread schedules) that leads to such inefficiencies in
the GPGPU program. Systematically detecting such performance
issues is challenging for several reasons. First of all, application
code is, in general, not annotated with any extra-functional proper-
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ties (e.g. time). Besides, a GPGPU program has a potentially large
number of execution scenarios. As a result, any naive test genera-
tion strategy is either infeasible in practice (e.g. exhaustive testing)
or it may lead to an extremely low coverage of the potential per-
formance problems. In our framework, we solve these challenges
by first producing a summary of all GPU threads via static analy-
sis. Subsequently, this summary is used to guide the test generation
to produce memory-performance stressing test cases. Although tar-
geted for embedded GPGPU applications, we believe that such a
test generation strategy is also useful for other embedded software,
such as applications running on embedded multi-core processors.

To guide a test generation that stresses memory-performance,
it is critically important to identify the causes of memory perfor-
mance issues. In this work, we primarily focus on performance is-
sues that arise due to the interferences created by different threads.
We broadly classify such interferences into direct interferences and
indirect interferences. A direct interference can be described as a
scenario where a substantial number of threads access the DRAM,
creating memory congestion and affecting the overall execution
time. An indirect interference is caused when GPU threads replace
each others content in on-chip caches, resulting in substantial traf-
fic to the DRAM. To systematically explore such scenarios, it is
crucial to compute the potential locations of DRAM accesses and
on-chip cache states of different GPU threads. We accomplish this
by statically analyzing a GPGPU program. The static analyzer pro-
duces a summary of different GPU threads. Such a summary does
not take into account the possible interference among threads and
it is computed only once. Typical information in this summary in-
cludes potential locations of DRAM accesses and cache states in
GPU threads. Once this summary is computed, we invoke a guided
test generation. The general strategy behind this guidance is to gen-
erate appropriate interferences in the on-chip caches and DRAM
which may affect the overall execution time.

Our test generation revolves around systematically exploring
execution states using the summary generated by static analyzer.
We first execute the GPGPU program under test with a random in-
put and we compute a symbolic state for each GPU thread. Such a
symbolic state captures the set of all inputs that lead to the respec-
tive execution scenario of the thread. In GPUs, threads are often
scheduled in batches (e.g. warps in CUDA terminologies). In such
cases, we merge the symbolic states from different threads of the
same group (e.g. warp in CUDA) and produce a symbolic state for
each group. To generate a new execution scenario that is likely to
lead to a memory-performance issue, we employ several strategies.
We manipulate the symbolic state in such a fashion that the result-
ing input is likely to lead to substantial DRAM traffic. For instance,
we generate a new input that follows a control dependence edge
(in the control dependence graph of the GPGPU program) which
leads to potentially high DRAM accesses. Besides, while schedul-
ing threads (or groups of threads), we select threads (or groups of
threads) that may issue potentially high DRAM requests or create
substantial on-chip cache conflicts. We monitor each execution to
record the DRAM congestion or on-chip cache conflicts. We con-
tinue exploring different execution scenarios in a similar fashion,
as long as the time budget dedicated to testing permits or all execu-
tion states with potential DRAM accesses are visited. As we target
memory-performance, the quality of our generated test suite is pro-
vided via the coverage of potential DRAM access locations in each
thread.

Contribution In summary, we have proposed and developed a test
generation framework to expose memory-performance bottlenecks
in embedded GPGPU applications. Due to the limited availability
of on-chip memories in embedded GPUs, such performance bot-
tlenecks should be addressed in order to develop high performance
embedded software. Our proposed framework uses the power of
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Figure 1. An abstract view of the GPU targeted by our framework

both static analysis and dynamic test generation to expose as many
performance issues as possible for a given time budget. Each test
case in our generated test report highlights a memory performance
issue and the respective execution scenario (i.e. raw inputs and
thread schedules) that leads to the same. The primary use of our
framework is to help developer write efficient embedded applica-
tions by reporting the existing performance issues. Besides, our
generated test-suite can be run on a specific embedded GPU and
the replicated problems can be investigated by existing GPU-based
profilers. We have implemented our entire framework on top of
GPGPU-Sim [8], LLVM compiler infrastructure [4] and GKLEE
symbolic virtual machine [22]. Specifically, GPGPU-Sim is used
to implement the static analyzer and monitor the execution of
a GPGPU program. The LLVM compiler and GKLEE are used
to compute the symbolic state for a specific execution scenario.
Our evaluation with several CUDA SDK kernels [2] reveals that
our framework uncovers memory performance issues early during
the test generation. In particular, some of our evaluations reveal
that algorithmically more efficient (low computational complexity)
GPU implementation may lead to poor performance compared to a
naive GPU implementation of the same functionality. This happens
due to the inherent memory interferences at the micro-architecture
level. Finally, we show the usage of our framework to improve the
performance of some GPGPU programs.

2. System Architecture
Figure 1 shows the relevant portions of a GPU architecture targeted
by our test generation framework. The GPU contains a number of
streaming multiprocessors (SM). Each SM contains several cores to
execute batches of GPU threads. Besides, each SM contains an on-
chip L1 cache and it may also contain an on-chip shared-memory.
In this work, we do not consider the presence of an L2 cache.
Therefore, the global-memory (DRAM) needs to be accessed for
an L1 cache miss. The architecture shown in Figure 1 captures
an abstract view of typical embedded GPUs. For instance, the
embedded GPU designed by Vivante [6] has a similar architecture,
except the presence of an on-chip shared memory.

The input to our test generation framework is the implemen-
tation of a GPU kernel using CUDA1 [3]. Each SM in the GPU
fetches and schedules a batch of GPU threads (called warp in
CUDA terminologies). At any instant, one or more warps might be
active on the same SM. Finally, we assume that the warp scheduler
is invoked only if a running warp is blocked (e.g. due to DRAM
transaction or synchronization barrier). The warp scheduler selects
a warp from a pool of all warps ready for execution and issues the
warp into an SM. It is worthwhile to note that the exact selection
strategy of such a warp scheduler is typically unknown and it may

1 Our framework is equally applicable for OpenCL kernels. However, our
implementation currently supports only CUDA kernels.
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also vary depending on the specific execution platform. Moreover,
even for a specific execution platform, the warp scheduler may
expose non-deterministic behaviour, as discussed in [19]. There-
fore, without loss of generality, we shall only consider the non-
deterministic behaviour in warp selection strategy.
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Figure 2. (a) DRAM congestion, (b) inter-warp cache conflict, (c)
congestion overhead does not affect the overall execution time

In this work, we specifically detect memory-performance issues
due to inter-warp interferences. This might appear due to (i) DRAM
congestion, or (ii) additional cache misses due to inter-warp con-
flicts. As pointed out by recent literature [18], this is a critical is-
sue which often limits the potential performance gain from GPU.
Therefore, during the test generation process, we have overhead in
the following two scenarios:

• A warp waits for a global-memory transaction due to other
warps accessing the global-memory. We call this scenario a
direct interference.

• A warp faces additional L1 cache misses due to the on-chip
cache conflicts generated by other warps. We call this scenario
an indirect interference.

Figure 2(a) and Figure 2(b) show examples of a direct inter-
ference and an indirect interference, respectively, assuming that
DRAM can service only one memory transaction at a time. Fig-
ure 2(c) captures a scenario where the overall execution time is
not affected even in the presence of inter-warp interferences. Our
framework does not report such scenarios, as the overall execution
time is unaffected by the memory interference.

3. Overview
In this section, we shall illustrate our test generation framework
via an example. For the sake of simplicity in this example, we shall
generically describe a thread as the scheduling unit in a GPU. How-
ever, our methodology is equally applicable where the scheduling
unit is a group of threads and our current implementation considers
a warp (in CUDA terminologies) as the scheduling unit.

Figures 3(a)-(c) show the control flow graphs (CFGs) of three
different GPU threads T1, T2 and T3 from a GPU kernel. It is
worthwhile to note that different GPU threads in a GPU kernel
have the same CFG, which captures the static control flow of the
GPGPU code. However, these threads may access different data.
Figures 3(a)-(c) show three such GPU threads which access differ-
ent memory blocks via their identities T1, T2 and T3. These thread
identifiers are captured via tid . For the sake of illustration, we shall
assume a direct-mapped cache, a single-bank DRAM and the fol-
lowing cache-mapping pattern: {m1,m4} 7→ S1, m2 7→ S2,
{m3,m5} 7→ S3, {m6,m8,m9} 7→ S4, m7 7→ S5. There-
fore, memory blocks m1 and m4 (and similarly, memory blocks
m3,m5 and m6,m8,m9) can evict each other from the cache.

To generate memory-performance stressing test cases, we first
perform a static analysis of the GPGPU code and extract a summary
of each thread. This static analysis is light-weight in the sense that
it analyzes each thread in isolation and therefore, it does not take
into account any interference between threads. The interference be-
tween threads is later considered during the test generation process.
The primary purpose of the static analyzer is to extract relevant in-
formation that can guide the test generation process. Specifically,
the summary computed by the static analyzer contains three differ-
ent information: (i) a set of locations in each thread where DRAM
might be accessed, (ii) possible reuse of cache contents at differ-
ent program locations, and (iii) cache conflicts generated by each
thread. This summary is utilized to generate execution scenarios
that may potentially exhibit direct and indirect memory interfer-
ences (cf. Section 2). According to [25], we classify memory ref-
erences as AH (always in the cache when accessed), AM (never in
the cache when accessed) or PS (never evicted from the cache). If
a memory reference cannot be classified as AH, AM or PS, it is
categorized as non-classified (NC). Figures 3(a)-(b) show this cat-
egorization beside each memory reference. It is important to note
that AM and NC categorized memory references are the potential
locations for frequent DRAM requests. The reuse of cache contents
and cache conflicts can be computed via backward data flow analy-
sis. For instance, consider the exit point of basic block B5. Thread
T1 can reuse only {m1,m2,m3} from the cache, as m4 is always
evicted bym1 before being reused from the cache (cf. Figure 3(a)).
However, for thread T3, all the memory blocks {m1,m2,m5}
might be reused (cf. Figure 3(b)). This is due to the absence of
any intra-thread cache conflicts in T3.

We start our test generation process by executing the GPU ker-
nel for a random input. Let us assume that we start with a ran-
dom input 〈a[T1 . . . T3] = 0, b[T1 . . . T3] = 0〉. Once the kernel
finishes execution, we extract the symbolic state for each thread
to capture the respective execution scenario. For instance, the fol-
lowing three conditions capture the initial execution scenarios of
T1, T2 and T3: (i) ΦT1 : a[T1] ≤ 0 ∧ b[T1] ≤ 2, (ii) ΦT2 :
a[T2] ≤ 0 ∧ b[T2] ≤ 2 and (iii) ΦT3 : a[T3] ≤ 0 ∧ b[T3] ≤ 2.

Let us now assume that we want to stress memory-performance
via indirect interferences (cf. Figure 2(b)). For each thread, we
first choose an appropriate symbolic state that is likely to generate
on-chip cache conflicts. To accomplish this, we manipulate the
symbolic states from previous execution scenarios. For instance,
consider thread T1. We observe that memory block m3 creates
cache conflicts to thread T3 and access to m3 is control dependent
on the branch condition b[T1] > 2 (cf. Figure 3(d)). Therefore, we
negate the branch condition b[T1] ≤ 2 from the previous execution
to generate the symbolic state Φ′T1 ≡ a[T1] ≤ 0 ∧ ¬(b[T1] ≤ 2)
for thread T1. In a similar fashion, in T3, since memory block
m5 creates cache conflicts to m3 and access to m5 is control
dependent on the branch condition b[T3] ≤ 2 (cf. Figure 3(d)),
we use the symbolic state ΦT3 ≡ a[T3] ≤ 0 ∧ b[T3] ≤ 2 from
the initial execution. In general, we use the control dependence
graph (CDG) to find a symbolic state that leads to the maximum
inter-thread conflicts. For instance in T3 (cf. Figure 3(d)), only the
control dependence edge 〈B4(m2), B6(m5)〉 leads to inter-thread
conflicts, due to the memory reference m5. As a result, for T3,
we choose a symbolic state that satisfies the condition to execute
〈B4(m2), B6(m5)〉 (i.e. b[tid] ≤ 2). Thread T2 does not create
any inter-thread conflicts. Therefore, we choose a symbolic state
that may potentially generate more memory traffic. Note that m8
and m9 are classified as AM. Since access to m8 and m9 are
control dependent on the conditional a[T2] ≤ 0 and b[T2] ≤ 2 (cf.
Figure 3(d)), respectively, we choose the symbolic state ΦT2 for
thread T2. Finally, to execute the kernel, we generate a concrete
input satisfying the formula Φ′T1 ∧ ΦT2 ∧ ΦT3.
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Figure 3. Control flow graphs (CFGs) of thread (a) T1, (b) T2 and (c) T3. (d) Control dependence graph (CDG) of the GPU kernel. Variable
tid captures thread identity. The annotation Bx(mx) captures the basic block identity as Bx and the memory block mx accessed therein.

In the preceding paragraph, we have outlined the technique to
generate new test inputs for stressing the memory-performance.
Apart from generating new test inputs, it is also important to sys-
tematically schedule threads, so that it is likely to lead to memory-
performance problems. For instance, let us consider an execution
scenario for a test input θ ∈ Φ′T1 ∧ΦT2 ∧ΦT3 and the time where
thread T1 is blocked to fetch m3 from DRAM. At this point, we
schedule a thread which creates maximum cache conflicts to the
reused cache content. Note that T1 may reuse {m1,m2,m3} from
the cache (cf. Figure 3(a)) after it becomes ready for execution.
Thread T2 does not create any conflict to the reused cache content
{m1,m2,m3}, whereas accessing memory block m5 in T3 cre-
ates conflict to m3. As a result, if both T2 and T3 are ready for
execution, we schedule T3 when T1 is blocked to fetch m3 from
DRAM. In a similar fashion, we schedule T1 when T3 is blocked
to fetch m5 from DRAM. Continuing in this way, for a test input
θ ∈ Φ′T1 ∧ ΦT2 ∧ ΦT3, threads T1 and T3 keep replacing cache
contents and generate potentially high DRAM traffic. We continue
to generate new test inputs and thread schedules in this fashion as
long as the time budget dedicated to testing permits.

The overall intuition behind the generation of direct memory
interferences is similar to the technique outlined in the preced-
ing paragraphs. In this case, the cache access categorization (i.e.
AH-AM-PS-NC categorization) guides the test generation process.
Specifically, the symbolic states and thread schedules are generated
in such a fashion that it leads to a substantial number of NC or AM
classified memory references. For instance, we select the symbolic
states a[tid] ≤ 0∧ b[tid] ≤ 2 for both T1 and T2. This is because,
memory references m4, m8 and m9 are categorized as AM and
access to m4,m8,m9 are control dependent on the branch con-
ditional a[tid] ≤ 0 and b[tid] ≤ 2 (cf. Figure 3(d)). Besides, if
both T1 (or T2) and T3 are simultaneously ready for execution,
we schedule T1 (or T2) to generate more DRAM traffic.

It is worthwhile to note that even for this simple example, it
is non-trivial to systematically generate test inputs that expose
memory-performance problems. For instance, consider any input
that satisfies the symbolic condition

∧
t∈{T1,T2,T3} a[t] > 0 ∧

b[t] > 2. Such inputs do not generate any memory-performance
problems. This is due to the absence of any inter-thread cache con-
flicts and DRAM congestion. As a result, any ad-hoc test gener-
ation strategy may lead to a poor coverage of the existing per-
formance problems. In a similar fashion, consider any test input
θ ∈ ∧

t∈{T1,T2}(a[t] ≤ 0∧ b[t] > 2)∧a[T3] ≤ 0∧ b[T3] ≤ 2. If
we interleave the execution of T1 and T2 (instead of T1 and T3),
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Test suite
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Program path 

Schedule

explorer

Thread−level summaries

monitor
Execution 

Potential memory bottleneck

(Memory congestion/on−chip cache conflicts

affecting execution time)

Dynamic test generation

Figure 4. Overall test generation framework

the resulting schedule may not generate substantial cache conflicts
to uncover a potential memory-performance issue. This is because
T2 does not generate any cache conflict to T1. In our proposed
framework, the summary computed by the static analyzer systemat-
ically guides the test generation process and computes appropriate
test inputs, along with pathological thread schedules.

Figure 4 captures our overall framework. Broadly, our frame-
work contains the following components.

• Static analysis is used to compute a summary of each GPU
thread. Specifically, the static analyzer computes the cache
hit/miss classification of memory references, the information
about cache reuse and the information about cache conflict.
This will be discussed in Section 4.1.

• Test generation component (as shown by “Dynamic test genera-
tion” in Figure 4) uses thread-level summaries computed by the
static analyzer and identifies appropriate program paths (Pro-
gram path explorer) and thread schedules (Schedule explorer)
to expose potential memory-performance bottlenecks. This will
be discussed in Section 4.2.2.

• Execution monitor is used within a cycle-accurate simulator to
detect potential memory-performance bottlenecks. This will be
discussed in Section 4.3.

The test generation process continues in an iterative fashion until
the time budget for testing expires or all execution scenarios with
possible DRAM accesses have been explored.

4. Detailed Methodology
In this Section, we shall provide a more detailed description of our
framework. For the sake of simplicity in the following discussion,
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we shall generically use the term memory block for both instruction
memory blocks and data memory blocks.

4.1 Static analysis
In this section, we describe the static analyzer in our framework. It
works on the CFG of a GPU kernel. This CFG is extracted from the
kernel binary (in our implementation, we use CUDA binaries) and
investigates different threads in isolation. However, since all the
threads share the same code, the static analysis can be performed si-
multaneously for all the threads. Nevertheless, we maintain thread-
level information to distinguish the data and control flow in differ-
ent threads. Since all the threads are analyzed in an exactly same
fashion, in the following, we describe the static analyzer only for a
single thread.

4.1.1 Cache hit/miss classification
We use abstract interpretation (AI) based cache analyses [12, 25] to
classify each memory reference as all-hit (AH), all-miss (AM), per-
sistence (PS) or unclassified (NC). A memory reference is classi-
fied as AH (AM), if the respective memory block is always (never)
in the cache when accessed. A memory reference is categorized
as PS, if the accessed memory block cannot be evicted from the
cache. A PS-categorized memory reference can further be decom-
posed into NC (for its first occurrence) and AH (for all next oc-
currences). We already perform this decomposition in our frame-
work by virtually unrolling each loop only once. Therefore, in the
following discussion, we shall only talk about AH, AM and NC
categorized memory references. Cache hit/miss classifications are
used primarily to locate a potential global-memory access. Note
that AM or NC categorized memory references exhibit potential
global-memory accesses by a thread. For further details on cache
analyses, readers are referred to [12, 25].

4.1.2 Cache reuse information
We compute the reuse information of caches to create appropriate
inter-thread cache conflicts during the test generation. The reuse
statistics of caches can be computed via a backward flow analysis
on the CFG. During cache hit/miss classification, we compute
abstract cache states at each location. Such an abstract cache state
captures the set of memory blocks which might be cached (defined
as may-cache-state in [25]). We use abstract interpretation (AI) to
compute the information about cache reuse. The abstract domain D
is all possible subsets of the set of accessed memory blocks M.

The transfer function τb of this AI-based analysis traverses
each instruction through a backward control flow and updates the
abstract state D ∈ D. Let us assume that Cp ∈ D denotes the set
of memory blocks which might be cached immediately before the
program location p. This was computed during the cache hit/miss
classification. We can now formally define τb as follows:

τb : 2M × P→ 2M

τb(D, p) = (D ∪Mgen) \ (Mp \Mgen) (1)
where P denotes the set of all program points, Mp captures the set
of memory blocks accessed (by the thread under analysis) at p ∈ P
and Mgen = {m | m ∈ Mp ∧ m ∈ Cp} (i.e. the set of possibly
reused memory blocks from the cache at p).

The abstract join operation is employed at a control flow merge
point. Specifically, the join operation Jb is used to compute the
abstract state at the exit of a basic block by combining all the
abstract states at the entry of its successors. For this analysis, Jb
is primarily a set union operation that merges all the abstract states.
We aim to generate cache conflicts that might evict the set of reused
memory blocks during the test generation.

We start our analysis with an empty set. Since CFGs usually
contain loops, a fixed-point computation is applied to stabilize the

abstract state at each program location. For instance, in Figure 3(a),
the analysis reaches a fixed-point on {m1,m2,m3} at the exit of
basic block B5 . This is because, memory blockm4 is evicted along
all paths reaching the basic block B5 .

4.1.3 Cache conflict information
This component of the static analyzer is used to estimate the num-
ber of cache conflicts generated by a thread between two consecu-
tive blocking points. A thread might be blocked for several reasons,
such as due to accessing DRAM or waiting at a synchronization
barrier. From a given program location, we compute an estimate on
the set of memory blocks that could be accessed by a thread till it
goes into the waiting state. This information can also be computed
via an AI-based backward flow analysis. The abstract domain of the
analysis captures all possible subsets of the set of accessed mem-
ory blocks M. The transfer function τ ′b collects the set of accessed
memory blocks in setM via a backward control flow and τ ′b can
formally be defined as follows.

τ ′b : 2M × P→ 2M

τ ′b(M, p) =

{
M∪Mp, if p /∈Waiting ;
φ, otherwise.

(2)

where P denotes the set of all program points, Mp captures the set
of memory blocks accessed by the thread at program point p and
Waiting ∈ P captures the set of potential locations in the thread
where it might go into the waiting state. In our analysis, we consider
such waiting locations to be either global-memory references (i.e.
AM or NC classified memory accesses) or synchronization barriers.
The join operation simply performs a set union at control flow
merge points. We start the analysis with the initial state φ and obtain
a fixed-point solution at each program location by employing the
transfer (i.e. τ ′b) and join operation. For instance, in Figure 3(a), the
analysis computes a fixed point on {m3} at the exit of basic block
B5. This is due to the reason that {m3} is accessed at B7 and
all paths starting from B7 has to access a potential global-memory
reference (i.e. accessing NC-classified m1 at B1 ) next.

4.2 Test generation
Algorithm 1 shows an outline of our test generation and test execu-
tion process (cf. components “Dynamic test generation” and “Exe-
cution monitor” in Figure 4). The basic idea behind this process is
as follows. We first generate a random input and execute the GPU
kernel under test. Once the kernel finishes execution, we construct
a symbolic state φt for each thread t to capture its execution. In
particular, such a symbolic state φt captures the set of all inputs
for which thread t will follow the respective execution path (com-
monly known in literature as path condition [15]). Note that the
unit of scheduling in CUDA is a warp. Therefore, we compute a
warp-level symbolic state Ψw by merging the symbolic states of
different threads that are contained in the respective warp (line 16 in
Algorithm 1). This is accomplished via Merge procedure (refer to
Section 4.2.1 for details). We manipulate the warp-level symbolic
states from previous executions to produce unexplored symbolic
states in a list unex [w]. More importantly, we prioritize the un-
explored symbolic states via procedure InsertWithPriority
(line 24 in Algorithm 1) using the information computed during
static analysis (refer to Section 4.2.2 for details). Lines 9-27 in Al-
gorithm 1 show the methodology to generate unexplored symbolic
states and subsequently, prioritizing them after a specific execution
of the GPU kernel. To execute the kernel with a new test input, we
use the prioritized list of unexplored symbolic states and generate
a concrete input from a symbolic state which is more likely to ex-
pose memory-performance problem (lines 31-41 in Algorithm 1).
Moreover, when the kernel executes with this test input, warps are
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Algorithm 1 Performance-stressing test generation for a GPU-
kernel

1: Input:
2: P : The GPU-kernel under test
3: Chmc : Cache hit/miss classification (cf. Section 4.1.1)
4: Reuse : Cache reuse information (cf. Section 4.1.2)
5: Conflict : Cache conflict information (cf. Section 4.1.3)
6: Output:
7: T : A set of test cases. Each test case is of the form 〈Ω,SH, ξ〉,

where Ω is the symbolic input-condition, SH captures the
warp-schedule and ξ is the set of inter-warp interferences.

8: Execute the kernel P on a random input τ
9: Let symbolic state φt is the path condition ([15]) for thread t

10: /* Compute warp-level symbolic state */
11: LetW is the set of all warps
12: for each warp w ∈ W do
13: unex [w] = all [w] = empty
14: Let {t1, t2, . . . , tn} is the set of threads in w
15: /* Merge thread-level symbolic states */
16: Ψw = Merge(φt1 , φt2 , . . . , φtn)
17: unex [w]

⋃
= {Ψw}; all [w]

⋃
= {Ψw}

18: Let Ψw = ψ1 ∧ ψ2 ∧ . . . ∧ ψk
19: for i ∈ [1, k] do
20: Ψi

w = ψ1 ∧ ψ2 ∧ . . . ∧ ψi−1 ∧ ¬ψi
21: /* prioritize symbolic states for effective testing */
22: if Ψi

w is satisfiable and Ψi
w /∈ all [w] then

23: all [w]
⋃

= {Ψi
w}

24: InsertWithPriority(unex [w],Ψi
w)

25: end if
26: end for
27: end for
28: /* iterative test generation */
29: repeat
30: /* Construct feasible symbolic state for testing */
31: Ω = true
32: for each warp w ∈ W s.t. unex [w] 6= empty do
33: Let unex [w] := {Ψ1

w,Ψ
2
w, . . . ,Ψ

n−1
w ,Ψn

w}
34: Let Ψi

w has priority over Ψi+1
w for all i ∈ [1, n− 1]

35: Find Ψk
w ∈ unex [w] s.t. Ω ∧Ψk

w is satisfiable and
36: for all j ∈ [1, k), Ω ∧Ψj

w is unsatisfiable
37: if (Ψk

w exists) then
38: Ω = Ω ∧Ψk

w; unex [w] = unex [w] \ {Ψk
w}

39: end if
40: end for
41: Let τ be a concrete input satisfying Ω
42: /* Execute P by pathologically scheduling warps
43: and update unexplored symbolic states */
44: ExecuteAndMonitor(P, τ,Ω, T )
45: until for all w ∈ W, unex [w] = empty or timeout
46: Report T for further investigation

scheduled on-the-fly in a fashion which is likely to lead to sub-
stantial DRAM congestion or on-chip cache conflicts (refer to Sec-
tion 4.2.2 for details). Each such execution of the GPU kernel is
also monitored to record DRAM congestion overhead and on-chip
cache conflicts (cf. line 44 in Algorithm 1). This is accomplished
via procedure ExecuteAndMonitor (refer to Section 4.3 for de-
tails). The recorded report is produced for the developer for further
investigation. Once the kernel finishes execution, we construct un-
explored symbolic states in a similar fashion by manipulating the
symbolic state of the last execution. The process of test generation
and test execution of a GPU kernel continues as long as the time
budget for testing permits or all unexplored symbolic states are vis-

Algorithm 2 Computing warp-level symbolic state
1: procedure MERGE(φ1, φ2, . . . , φn)
2: Let φi = ψi,1 ∧ ψi,2 ∧ . . . ∧ ψi,ρ(i)
3: Let B is the set of all control branches
4: k = 1
5: repeat
6: ∀b ∈ B. α[b, k] = true
7: for j ← 1, n do
8: if k ≤ ρ(j) then
9: Let bj is the control branch respective to ψj,k

10: α[bj , k]
∧

=ψj,k
11: end if
12: end for
13: k = k + 1
14: until ∀x ∈ [1, n]. k > ρ(x)
15: /* set warp-level symbolic state */
16: Ψw =

∧
i,j α[i, j]

17: end procedure

ited. In the following, we shall describe some critical components
of our framework.

4.2.1 Merging symbolic states
In Algorithm 1, procedure Merge is used (cf. line 16 in Algorithm
1) to compute the symbolic state of a warp from the symbolic
states of its constituent threads. By computing a symbolic state
for the entire warp, we can substantially reduce the number of
symbolic states to explore. Algorithm 2 outlines the procedure
Merge. The general intuition is to align the control branches in
the traces of different threads. If a branch can be aligned for a
set of threads, the respective branch conditions are merged and
treated as a single condition during the generation of test inputs. For
instance, consider the set of threads in Figures 3(a)-(c) constitute a
warp. If the threads execute for a[T1 . . . T3] = b[T1 . . . T3] = 0,
we compute a warp-level symbolic state Ψ ≡ Ψ1 ∧ Ψ2, where
Ψ1 ≡ a[T1] ≤ 0 ∧ a[T2] ≤ 0 ∧ a[T3] ≤ 0 and Ψ2 ≡ b[T1] ≤
2 ∧ b[T2] ≤ 2 ∧ b[T3] ≤ 2. As a result, we manipulate Ψ by
negating either Ψ1 or Ψ2 to compute unexplored symbolic states.

4.2.2 Prioritizing symbolic states and warps
In Algorithm 1, the procedure InsertWithPriority is used
to create an ordered list of symbolic states (cf. the component
“Program path explorer” in Figure 4). This ordering is guided by
the static analyzer and it aims to expose as many performance
issues as possible in a given time budget for testing.

To formalize the concept, let us assume two unexplored sym-
bolic states Ψ ≡ ψ1∧ψ2∧ . . .∧ψm and Ψ′ ≡ ψ′1∧ψ′2∧ . . .∧ψ′n
for warp w. The set of threads in warp w is captured by Tw. We
write Ψ 4d Ψ′ (Ψ 4i Ψ′) if Ψ′ has priority over Ψ in terms
of generating global-memory interferences directly (indirectly). Fi-
nally assume that bΨ (bΨ′ ) is the control dependence edge in the
CDG (cf. Figure 3(d)) capturing the symbolic condition ψm (ψ′n).

To expose DRAM-interferences directly, we choose a symbolic
state which is likely to lead to the maximum number of unexplored
DRAM requests. Therefore, we prioritize Ψ and Ψ′ as follows.

Ψ 4d Ψ′ ⇔
∑
t∈Tw

|Rmem(bΨ, t)| ≤
∑
t∈Tw

|Rmem(bΨ′ , t)| (3)

Rmem(e, t) = {m ∈ Rt | e m ∧ Chmc(m, t) 6= AH}
where Rt is the set of all memory references by thread t and
Chmc(m, t) is the AH/AM/NC categorization of m in thread t
(cf. Section 4.1.1). The notation e  m captures that memory
reference m is reachable from CDG edge e.
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To systematically generate cache conflicts, we choose a sym-
bolic state for warp w that may potentially lead to the maximum
and unexplored cache conflicts to other warps. In particular, we
prioritize Ψ and Ψ′ as follows.

Ψ 4i Ψ′ ⇔ |Cmem(bΨ, w)| ≤ |Cmem(bΨ′ , w)| (4)

Cmem(e, w) = {m ∈ Rw | e m ∧ Intf (m,W \ {w})}
where W is the set of all warps, Rw is the set of all memory
references by warp w and Intf (m,W ) captures whether m may
conflict with any memory block accessed in the set of warps W .
Once the symbolic states in individual warps are prioritized, we
walk through the prioritized list unex [w] for each warp w. As an
outcome, we create a feasible symbolic expression Ω and generate
a concrete input τ satisfying Ω to execute the entire GPGPU kernel.

To systematically select schedules, we prioritize warps during
the execution (cf. the component “Schedule explorer” in Figure 4).
In particular, when a warp is blocked during the execution (e.g. due
to DRAM transaction or barrier synchronization), we issue a ready
warp that is likely to lead to memory-performance issue. Such
a priority function is guided both by the information computed
during static analysis and the information available at runtime.

Let us consider two warps wx and wy which are ready to
execute from program location px and py , respectively. We say
px 4d py (px 4i py), if warp wy is given priority over warp
wx to generate DRAM interferences directly (indirectly). If we
want to generate DRAM congestion, we attempt to create as many
DRAM bank conflicts as possible. We assume thatB1, B2, . . . , Bs
are the different DRAM banks of global-memory. Besides, we
use the notation Req(Bi), which dynamically captures the set of
outstanding requests in memory bankBi. To create global-memory
bank conflicts, we try to maximize the potential DRAM accesses
to the busy banks (i.e. DRAM banks with outstanding requests).
In particular, if a warp w executes from program location p, we
compute the potential conflicts GBi(p, w) to memory bank Bi
before w is blocked. Assuming µ(m) captures the global-memory
bank wherem is mapped, GBi(p, w) is formally defined as follows:

GBi(p, w) = { m /∈ Req(Bi) | µ(m) = Bi ∧ |Req(Bi)| 6= 0

∧ ∃t ∈ Tw. m ∈ Conflict(p, t)

∧ Chmc(m, t) 6= AH} (5)

where Conflict(p, t) denotes the cache-conflict-analysis fixed-
point at p for thread t (cf. Section 4.1.3). The priority function 4d
attempts to maximize the bank conflicts by issuing global-memory
requests to the busy banks and it is formally defined as follows.

px 4d py ⇔
s∑
i=1

|GBi(px, wx)| ≤
s∑
i=1

|GBi(py, wy)| (6)

Finally, let us consider prioritizing warps to create cache pol-
lution. We assume that S1,S2, . . . ,Sq are the different cache sets
and C(Si) dynamically captures the content of cache set Si. We
use the notation m 7→ Si, if memory block m is mapped to cache
set Si. If a warp w executes from program location p, we compute
the potential cache conflict HSi(p, w) to cache set Si before w is
blocked.HSi(p, w) is formally defined as follows.

HSi(p, w) = { m /∈ C(Si) | Reuse(Si, w) ∩ C(Si) 6= φ

∧ ∃t ∈ Tw. m ∈ Conflict(p, t)

∧ m 7→ Si} (7)

Reuse(Si, w) captures the potentially reused cache content from
set Si by warps other than w. Note that Reuse(Si, w) can be com-
puted from the cache reuse information (cf. Section 4.1.2). Intu-
itively, we attempt to create cache pollution by replacing the reused
cache content of waiting warps as much as possible. Therefore, we

can now formally define the priority function 4i as follows.

px 4i py ⇔
q∑
i=1

|HSi(px, wx)| ≤
q∑
i=1

|HSi(py, wy)| (8)

In our evaluation, we observed that the partial order 4i is more
effective in exposing memory-performance problems compared to
the partial order 4d. This is primarily due to the small cache sizes
configured for embedded GPUs. Therefore, in our framework, the
partial order 4i is given priority over the partial order 4d.

4.3 Monitoring the execution of a GPU kernel
In Algorithm 1, procedure ExecuteAndMonitor (cf. line 44 in
Algorithm 1) monitors the execution of a GPU kernel, records the
overhead due to DRAM congestion or on-chip cache conflicts and
computes unexplored symbolic states for subsequent executions. In
Figure 4, this component is shown via the label “Execution mon-
itor”. It is important to note that for each warp w, the unexplored
symbolic states are generated and prioritized in the list unex [w]
using the exactly same methodology as shown in lines 9-27 of Al-
gorithm 1. Therefore, in the following, we shall only discuss the
monitoring process to record overhead in a specific execution. If
Rw captures the set of all dynamic memory references by warp w
and Tw denotes the set of all threads contained in w, we compute
the total overhead Ow as follows.

Ow =
∑

m∈Rw

{
Tm − LAThit, if ∀t ∈ Tw. Chmc(m, t) = AH ;
max(0, Tm − Tround), otherwise;

(9)

In Equation 9, Tm is the time taken to complete the memory
request, Tround captures the total round-trip time to DRAM in
the absence of DRAM congestion or DRAM bank conflicts and
LAThit is the cache hit latency. Two cases in Equation 9 capture
the scenarios in Figure 2(b) and Figure 2(a), respectively.

Handling synchronization points and program exit In a GPGPU
program, different threads within the same thread block may syn-
chronize via barriers. Besides, we consider the exit location of the
GPU kernel to be an implicit barrier. Since a thread block may con-
tain many warps, a specific warp might be delayed by other warps
at the synchronization barrier. Since we specifically aim to detect
memory-performance issues, our computed overhead (i.e. Ow for
warp w) requires adjustment at these synchronization barriers. Fig-
ures 5(a)-(b) show two different scenarios when warps w1 and w2
suffer additional delay due to inter-warp interferences and synchro-
nize at a barrier. Specifically, the adjustment depends on the timing
behaviours of warps in the absence of inter-warp interferences.

To formalize, let us consider n warps {w1, w2, . . . , wn} that
need to synchronize at a barrier location. Besides, assume that
warp wi takes time Twi to reach the barrier location and Owi

is the additional overhead (cf. Equation 9) suffered by wi before
reaching the barrier location. Finally, consider two warps wm and
wm′ satisfying the following constraints.

Twm ≥ max
i=1...n

Twi ; Twm′ ≥ max
i=1...n

(Twi −Owi) (10)

Therefore, wm (wm′ ) is the final warp to reach the barrier location
in the presence (absence) of inter-warp interferences. The adjust-
ment of the overhead can now be formally defined as follows.

Owi =


Owm′ + Twm − Twm′ ,

if max
j=1...n

(Twj −Owj ) > Twm −Owm ;

Owm , otherwise.

(11)

The first case in Equation 11 captures the scenario in Figure 5(a),
whereas the second case captures the scenario in Figure 5(b).

Test suite property Upon the termination of Algorithm 1, we
produce a set of test cases (the component “Test suite” in Fig-
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Figure 5. Adjusting overhead at a barrier whenw2 is the final warp
to execute the barrier and in the absence of inter-warp interferences
(a) w1 executes longer, (b) w2 executes longer

ure 4) ranked by the magnitude of detected memory overhead (i.e.
Ow in Equation 9). Each test case captures a potential memory-
performance problem and it is a triplet of the form 〈Ω,SH, ξ〉. In
a test case, Ω is a symbolic formula that captures the set of inputs
that lead to a memory-performance problem, SH is a graph that
captures the exact schedule during the respective execution and ξ
is the set of memory interferences (i.e. DRAM congestion or on-
chip cache conflicts) observed during the respective execution. A
concrete input θ can be obtained by solving the formula Ω. The
performance problem can be replicated by executing the program
with θ and strictly enforcing the schedule SH.

Since we aim to uncover memory-performance bottlenecks, the
coverage of our test suite is provided via the set of explored mem-
ory references in each thread. However, we exclude memory ref-
erences which are categorized AH during the static analysis and
do not face any inter-thread cache conflict. This is because, such
memory references do not generate any DRAM transaction. Addi-
tionally, our generated test suite satisfies the following property.

PROPERTY 4.1. Consider two test cases 〈Ψw1 ∧ Ψw2 ∧ . . . ∧
Ψwn ,SH, ξ〉 and 〈Ψ′w1

∧ Ψ′w2
∧ . . . ∧ Ψ′wn

,SH′, ξ′〉 ∈ T . For
any i ∈ [1, n], we have Ψwi 6= Ψ′wi

.

Intuitively, Property 4.1 states that in each warp, any symbolic state
is explored at most once during the test generation process.

5. Experimental evaluation
Experimental setup Our implementation is based on the GPGPU-
Sim simulator [8] and the GKLEE symbolic virtual machine [22].
We use the nvcc compiler to compile GPU kernels into CUDA-
compliant binaries. GPGPU-Sim is used to extract PTX-level2 con-
trol flow graphs (CFG) from CUDA binaries. These CFGs are
fed as inputs to our static analyzer. We execute each kernel us-
ing GPGPU-Sim, while systematically generating warp schedules
on-the-fly (cf. Section 4.2.2). To compute the symbolic state for
each execution, we replay the respective traces using GKLEE. To
generate concrete inputs from a symbolic formula, we use the STP
constraint solver [5]. Our implementation is completely automated
and it does not require any manual interventions. In our evaluation,
we have used GPU kernels from CUDA SDK [2] (cf. Table 1).
As our aim is to uncover memory-performance issues, we choose
kernels which have substantial data accesses. Table 1 reports the
salient features of all the evaluated CUDA kernels and the cover-
age of potential DRAM access locations obtained by GUPT. Fi-
nally, since embedded GPUs are primarily designed for low power
consumption, they have small caches. Therefore, we configure the
GPU platform (cf. Table 2) with 2-way, 4 KB instruction and data
caches (cache sizes are similar to the configuration of the Vivante
GC2000 embedded GPU [23]).

2 Parallel Thread Execution (PTX) is a target-independent intermediate
language used in CUDA programming environment

Program Lines Input Threads Coverage
of code size / block

bitonic sort 145 1 KB 256 100%
convolution 191 32 KB 128 100%

column
convolution row 188 32 KB 64 100%

histogram 248 64 KB 64 100%
3840 bytes +

matmult 151 3840 bytes 64 100%
scan b 225 4 KB 1024 100%
scan w 177 4 KB 1024 100%

scan naive 158 4 KB 1024 100%
transpose 144 16 KB 256 100%

transpose naive 145 16 KB 256 100%
scalar product 141 4 KB + 4 KB 256 100%

nodes = 4096
BFS 218 edges = 28675 256 98%

Fast-Walsh 234 8 KB 512 100%
Clock 71 2 KB 256 100%

Table 1. Evaluated CUDA SDK kernels and obtained coverage
SIMD cores Four cores, SIMD width = 8

Size of register file/SIMD core 2 KB
Instruction cache/SIMD core 2-way, 4 KB. Replacement policy = LRU

line size = 64 bytes
Data cache/SIMD core 2-way, 4 KB. Replacement policy = LRU

line size = 64 bytes
Texture cache/SIMD core Not present

Constant cache/SIMD core Not present
Shared memory/SIMD core Not present
Minimum DRAM latency 100 compute core cycles

1 memory controller, bank size = 8 KB,
DRAM model total DRAM banks = 4,

scheduling policy = first-in-first-out (FIFO)

Table 2. Micro-architectural configuration of the GPU platform

Key result We demonstrate the key results from our test gen-
eration framework via Figure 6. Figure 6 shows the number of
memory-performance issues detected in bitonic sort with re-
spect to time. The kernel bitonic sort has an exponential num-
ber of input-dependent paths. As a result, it is potentially infeasible
to test the application for all possible execution paths and schedul-
ing decisions. To evaluate the efficacy of our test generation frame-
work, we compare with two different strategies, namely pure ran-
dom testing and symbolic random testing. In pure random testing,
we randomly generate inputs to execute the kernel. Moreover, when
a warp is blocked, we randomly schedule a ready warp for exe-
cution. Symbolic random testing is similar to our test generation
framework, except that we do not use any guidance from our static
analyzer. Therefore, we randomly choose an unexplored symbolic
state and we randomly schedule ready warps for execution. But,
as opposed to pure random testing, symbolic random testing guar-
antees to execute different program paths for each generated test
input. In Figure 6, we limit the maximum time budget for testing
to 10 minutes. We make the following crucial observations from
Figure 6. Since test inputs and schedules are generated randomly
in pure random testing, the generated execution scenarios may not
provide a good coverage of the potential performance problems.
As a result, pure random testing reports relatively low number of
performance issues. In symbolic random testing, program inputs
are generated systematically by manipulating the symbolic states
(cf. Algorithm 1). However, in the presence of a huge number of
symbolic states and scheduling decisions, it is important to gener-
ate relevant execution scenarios as early as possible. We accom-
plish this by guiding the test generation via a static analyzer. As
observed from Figure 6, we detect memory-performance problems
early during the test generation, compared to symbolic random test-
ing. When run long enough, the efficacy of symbolic random test-
ing is slowly growing.
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Test suite property Upon the termination of Algorithm 1, we
produce a test suite (the component “Test suite” in Figure 4). Each
test case in this test suite captures a potential memory-performance
problem and it is a triplet of the form 〈Ω,SH, ξ〉. In a test case,
Ω is a symbolic formula that captures the set of inputs that lead
to a memory-performance problem, SH is a graph that captures
the exact schedule during the respective execution and ξ is the set
of memory interferences (i.e. DRAM congestion or on-chip cache
conflicts) observed during the respective execution. A concrete
input θ can be obtained by solving the formula Ω. The performance
problem can be replicated by running the program with test input θ
and driving the respective execution that conforms to the schedule
SH. Additionally, our test suite ranks the test cases in decreasing
order of detected memory overhead (i.e. Ow in Equation 11).

Since we aim to uncover memory-performance bottlenecks, the
coverage of our test suite is provided via the set of explored mem-
ory references in each thread. However, we exclude memory ref-
erences which are categorized AH during the static analysis and
do not face any inter-thread cache conflict. This is because, such
memory references do not generate any DRAM transaction. Addi-
tionally, our generated test suite satisfies the following property.

PROPERTY 4.1. Consider two test cases 〈Ψw1 ∧ Ψw2 ∧ . . . ∧
Ψwn ,SH, ξ〉 and 〈Ψ′

w1
∧ Ψ′

w2
∧ . . . ∧ Ψ′

wn
,SH′, ξ′〉 ∈ T . For

any i ∈ [1, n], we have Ψwi 6= Ψ′
wi

.

Intuitively, Property 4.1 states that in each warp, any symbolic state
is explored at most once during the test generation process.

5. Experimental evaluation

Experimental setup Our implementation is based on the GPGPU-
Sim simulator [8] and the GKLEE symbolic virtual machine [22].
We use the nvcc compiler to compile GPU kernels into CUDA-

compliant binaries. GPGPU-Sim is used to extract PTX-level3 con-
trol flow graphs (CFG) from CUDA binaries. These CFGs are
fed as inputs to our static analyzer. We execute each kernel us-
ing GPGPU-Sim, while systematically generating warp schedules
on-the-fly (cf. Section 4.2.2). To compute the symbolic state for
each execution, we replay the respective traces using GKLEE. To
generate concrete inputs from a symbolic formula, we use the STP
constraint solver [5]. Our implementation is completely automated
and it does not require any manual interventions. In our evaluation,
we have used GPU kernels from CUDA SDK [2] (cf. Figure 7).
As our aim is to uncover memory-performance issues, we choose
kernels which have substantial data accesses. Finally, since em-
bedded GPUs are primarily designed for low power consumption,
they have small caches. Therefore, we configure the GPU platform
with 2-way, 4 KB instruction and data caches (cache sizes are sim-
ilar to the configuration of the Vivante GC2000 embedded GPU
[23]). Cache replacement policy is set to least recently used (LRU).

Finally, we set the minimum DRAM latency to 100 cycles 4.

Key result We demonstrate the key results from our test gen-
eration framework via Figure 6. Figure 6 shows the number of
memory-performance issues detected in bitonic sort with re-
spect to time. The kernel bitonic sort has an exponential num-
ber of input-dependent paths. As a result, it is potentially infeasible
to test the application for all possible execution paths and schedul-
ing decisions. To evaluate the efficacy of our test generation frame-
work, we compare with two different strategies, namely pure ran-
dom testing and symbolic random testing. In pure random testing,

3 Parallel Thread Execution (PTX) is a target-independent intermediate
language used in CUDA programming environment
4A comprehensive summary of the micro-architectural configuration and
characteristics of the evaluated CUDA kernels appear in the Appendix
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Figure 7. Evaluation with CUDA SDK kernels

we randomly generate inputs to execute the kernel. Moreover, when
a warp is blocked, we randomly schedule a ready warp for exe-
cution. Symbolic random testing is similar to our test generation
framework, except that we do not use any guidance from our static
analyzer. Therefore, we randomly choose an unexplored symbolic
state and we randomly schedule ready warps for execution. But, as
opposed to pure random testing, symbolic random testing guaran-
tees to execute different program paths for each generated test in-
put. In Figure 6, we limit the maximum time budget for testing to 10
minutes. We make the following crucial observations from Figure
6. Pure random testing is not suitable for detecting the memory-
performance issues. This is expected, as the inputs are generated
randomly, the generated inputs may not provide a good coverage
of the program paths. Besides, randomly scheduling warps may fail
to uncover scenarios that lead to memory-performance issues. As a
result, pure random testing reports relatively low number of perfor-
mance issues. In symbolic random testing, program inputs are gen-
erated systematically by manipulating the symbolic states (similar
to [15]). However, in the presence of a huge number of symbolic
states and scheduling decisions, it is important to generate relevant
test inputs as early as possible. We accomplish this by guiding the
test generation via a static analyzer. As observed from Figure 6, we
detect memory-performance problems early during the test genera-
tion, compared to symbolic random testing. When run long enough,
the efficacy of symbolic random testing is slowly growing.

Evaluation Figure 7 outlines the results of our experiments. For
our experiments, we limit the time budget for testing as ten min-
utes. Recall that our framework records an overhead O (cf. Equa-
tion 11) to capture the amount of DRAM congestion or on-chip
cache conflicts in a particular execution. To evaluate the magni-

tude of this overhead, we use the ratio O
E , where E is the total

execution time. However, note that we execute a kernel for differ-
ent test inputs. Therefore, the final overhead is computed by tak-

ing a geometric mean of the ratio O
E over all tested inputs that de-

tect nonzero overhead. This final overhead is captured via the label
“Average memory overhead” in Figure 7. We also use the average
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Figure 6. No. of detected memory-performance issues w.r.t. time
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Figure 7. Evaluation with CUDA SDK kernels

Evaluation Figure 7 outlines the results of our experiments. For
our experiments, we limit the time budget for testing as ten minutes.
Recall that our framework records an overhead O (cf. Equation 9)
to capture the amount of DRAM congestion or on-chip cache con-
flicts in a particular execution. GivenO > 0, we capture the magni-
tude of this overhead using the ratio OE , where E is the total execu-
tion time and report the geometric mean of this ratio (cf. “Average
memory overhead” in Figure 7) over different executions. We also
use the average memory overhead to compare different test gener-
ation methodologies. This is because a high ratio indicates a sub-
stantial amount of DRAM congestion or on-chip cache conflicts
and such memory-performance issues should be fixed in order to
efficiently execute a kernel. As shown in Figure 7, GUPT signifi-
cantly outperforms pure random testing. This is expected, as pure
random testing does not have any knowledge about program paths
and micro-architectural states (e.g. caches). Symbolic random test-
ing overall performs better than pure random testing, except for
GPGPU programs that have very few input-dependent paths (e.g.
matmult). However, since symbolic random testing does not uti-
lize any knowledge about micro-architectural states (as computed
by our static analyzer), the detected overhead is smaller compared
to the same detected by GUPT. Besides, we observed that most of
the performance problems are detected early during our test gener-
ation (e.g. in Figure 6). Therefore, we believe that the combination
of static analysis and symbolic testing provides a promising direc-
tion for performance testing GPU kernels.

Usage of the framework to compare different implementations
We can use our test generation framework to compare different
implementations of the same algorithm. For instance, we eval-
uate different implementations of the parallel prefix sum algo-
rithm (scan naive, scan w and scan b in Table 1) from
CUDA SDK. scan naive is algorithmically inefficient, using
O(n · logn) add operations, whereas the other two kernels (i.e.
scan w and scan b) use only O(n) add operations. However,
by systematically generating execution scenarios, we observed
that both scan w and scan b may execute longer compared to
scan naive for certain scenarios. From the generated test re-

Execution cycle
Program Original Refactored Refactoring method

Fast-Walsh 795007 494474 cache locking
transpose naive 3810 3251 changing cache layout

scan w 16457 15175 changing cache layout
matmult 25652 10686 changing cache layout

+ cache locking
BFS 7827 7204 changing DRAM layout

Table 3. Refactoring GPGPU programs based on test results

port, we found that both scan b and scan w face around 20%
more memory-overhead compared to scan naive and this over-
head affects the overall execution time. Therefore, we conclude
that an algorithmically more efficient code is insufficient to ac-
complish better performance in complex GPU architecture. This
is primarily due to the reason that such corner-scenarios are hid-
den via the programming layer and therefore, such scenarios are
potentially impossible for the developer to detect manually. These
performance problems can be highlighted to the developer via our
proposed methodology.

Usage of the framework to optimize GPGPU programs Finally,
we show the usage of our framework to generate efficient GPGPU
code. Table 3 summarizes our evaluation.

The kernel Fast-Walsh operates on input data from shared
memory. As embedded GPUs are targeted for power-constrained
mobile devices, the availability of an on-chip shared memory is of-
ten restricted or such an on-chip memory is unavailable altogether
in embedded GPUs [1, 6]. As a result, our framework identified
a number of scenarios generating substantial DRAM traffic and it
highlighted the accesses to the input data facing inter-warp cache
conflicts. To reduce these cache conflicts, we locked the portion of
input data that can fit into the L1 data cache (4 KB). This leads
all other data accesses to cache misses. However, since the input
data was reused substantially compared to any other variable, we
observed around 30% reduction in overall execution time.

We studied the naive implementation of matrix-transpose (i.e.
transpose naive) and the kernel scan w to improve their
memory-performance. For these kernels, our framework generates
execution scenarios that highlight inter-warp cache conflicts be-
tween two variables (idata,odata for transpose naive and
ai,bi for scan w). To reduce such cache conflicts, we manu-
ally change the layout of idata and odata (ai and bi, respec-
tively) so that they map to contiguous locations in the data cache.
These changes improve the overall execution time by 14.6% (7.8%)
for transpose naive (scan w). However, it is worthwhile to
point that the kernel transpose naive also suffers from unco-
alesced memory accesses, which we ignore in our framework.

In matmult, we observed the efficacy of both cache locking
and layout changing. Our framework highlighted inter-warp cache
conflicts between matrix blocksAs andBs. We changed the mem-
ory layout of As and Bs to map them into contiguous locations in
the L1 data cache. This modification did marginal improvements
to the execution time, as our framework highlighted execution sce-
narios where As and Bs conflict with other data variables in the
kernel. To resolve this, we locked the contents of As and Bs be-
fore they are reused and unlocked them at the exit of each GPU
thread. These changes reduce the overall execution time by 58.3%.

In our experiments with the BFS kernel, our framework high-
lighted a substantial DRAM bank conflicts between two variables
g graph nodes and g cost. We change the DRAM addressing
layout of these two variables to avoid DRAM bank conflicts. We
obtained an improvement of around 8% via this modification.

In summary, preceding examples motivate that our framework
can be used by a developer to improve the overall performance of
a GPGPU program, manually or automatically via a compiler.
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6. Related work
To understand the performance behaviour of a program, a signif-
icant research has been performed on program profiling over the
last few decades [9, 13, 20, 21, 26]. Such techniques require in-
puts to run a program. Additionally, the works in [13, 26] extend
traditional profiling techniques to compute a performance pattern
over different inputs via empirical models. Our work complements
program profiling by systematically finding performance-stressing
test inputs. Besides, our work does not suffer from approximations
incurred in empirical models and we also provide a coverage of
memory-access locations to qualitatively evaluate our test suite.
The performance characteristics of mainstream GPUs have recently
been studied via analytical models [7, 16]. Our goal is orthogonal
in the sense that we automatically generate test cases to uncover
poor memory-performance. Therefore, our work has a significant
testing flavour compared to the approaches proposed in [7, 16]. Be-
sides, our framework does not rely on analytical models and detect
memory-performance issues by monitoring program executions.

Existing works on concolic testing have mostly concentrated on
sequential applications to detect functionality bugs [11, 15] and
more recently, to detect poor cache performance [10]. Effective
testing of parallel software has also emerged to be a critical prob-
lem. For parallel applications, an additional challenge is to system-
atically detect thread scheduling patterns that may lead to software
bugs [14, 24]. The choice of such scheduling patterns has primarily
focused on functionality bugs. In contrast, we aim to detect per-
formance problems. Finally, the work in [22] has investigated the
detection of functionality bugs and a few performance bugs (e.g.
shared memory bank conflicts and uncoalesced memory accesses)
for GPGPU applications. All such bugs can be detected by examin-
ing a specific schedule, as called canonical schedule in [22]. Since
different thread scheduling patterns may generate different mem-
ory traffic, memory performance problems might not be exposed
via the canonical schedule. To detect such performance problems,
it is critical to select appropriate thread schedule and test inputs.
We accomplish this by a test generation strategy which is guided
via static analysis. Besides, we only report memory-performance
issues that affect the overall execution time.

In summary, our work extends the formal foundation of soft-
ware testing via a test generation framework that systematically
generates test inputs and thread schedules to detect memory-
performance issues in embedded GPGPU applications, and in gen-
eral, for embedded parallel applications.

7. Conclusion
In this paper, we have proposed GUPT, a fully automated software-
testing framework to uncover memory-performance issues in em-
bedded GPUs. We leverage on dynamic test generation and sys-
tematically guide the test generation process via a static analyzer.
Our experiments with several GPGPU programs suggest that we
can uncover a number of memory-performance issues early during
the test generation. We show the usage of our framework in com-
paring different implementations of the same functionality and in
improving the performance of applications for embedded GPUs.

Since our approach is based on dynamic test generation, we
do not generate false alarms, but we might miss some memory-
performance issues. Besides, our test generation primarily focuses
on exposing DRAM and cache interferences and ignores other
performance problems due to warp interferences, such as long
waiting-time at synchronization barriers.

In the future, we plan to extend our framework to automati-
cally localize the root cause (i.e. performance debugging) of per-
formance issues. Subsequently, we plan to automatically suggest
refactoring techniques to resolve such performance issues.
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