Linkoping Electronic Articles in
Computer and Information Science
Vol. 4(1999): nr 20

SIGNAL-SIMULINK: Hybrid
System Co-simulation

Stéphane Tudoret

Linkoping University Electronic Press
Linkoping, Sweden

http: /www.ep.liu.se/ea/cis/1999/20/

Published on 21 February, 2000 by
Linképing University Electronic Press
581 83 Linkdping, Sweden

Linkoping Electronic Articles in
Computer and Information Science
ISSN 1401-9841

Series editor: Erik Sandewall

©1999 Stéphane Tudoret
Typeset by the author using BTEX
Formatted using étendu style

Recommended citation:
<Author>. < Title>. Linkdping Electronic Articles in
Computer and Information Science, Vol. 4(1999): nr 20.
http: /www.ep.liu.se/ea/cis/1999/20/. 21 February, 2000.

This URL will also contain a link to the author’s home page.

The publishers will keep this article on-line on the Internet
(or its possible replacement network in the future)
for a period of 25 years from the date of publication,
barring exceptional circumstances as described separately.

The on-line availability of the article implies
a permanent permission for anyone to read the article on-line,
to print out single copies of it, and to use it unchanged
for any non-commercial research and educational purpose,
including making copies for classroom use.
This permission can not be revoked by subsequent
transfers of copyright. All other uses of the article are
conditional on the consent of the copyright owner.

The publication of the article on the date stated above
included also the production of a limited number of copies
on paper, which were archived in Swedish university libraries
like all other written works published in Sweden.

The publisher has taken technical and administrative measures
to assure that the on-line version of the article will be
permanently accessible using the URL stated above,
unchanged, and permanently equal to the archived printed copies
at least until the expiration of the publication period.

For additional information about the Linképing University
Electronic Press and its procedures for publication and for
assurance of document integrity, please refer to
its WWW home page: http: Jwww.ep.liu.se/

or by conventional mail to the address stated above.

Abstract

This report presents an approach to simulating hybrid systems.
We show how a discrete controller that controls a continuous
environment can be co-simulated with the environment (plant)
using C-code generated automatically from mathematical mo-
dels. This approach uses SIGNAL with SIMULINK to model com-
plex hybrid systems. The choices are motivated by the fact that
SIGNAL is a powerful tool for modelling complex discrete be-
haviours and SIMULINK is well-suited to deal with continuous
dynamics. We present various alternatives for implementing the
communication between the plant and the controller, and how
the MATLAB code generation mechanism in Real-time Workshop
can be used for this purpose. Finally, we present interesting
scenarios in the co-simulation of a discrete controller with its en-
vironment: a non-trivial siphon pump proposed by the Swedish
engineer Christofer Polhem in 1697.

Acknowledgments

First of all I would like to thank my supervisor Simin Nadjm-
Tehrani who made me very welcome in her team. She helped me
when I needed and she introduced me to the good persons to help
me to solve my problems. I am very glad to have been given the
opportunity to work together with the persons in the Embedded
Systems Laboratory (ESLab) at Linképing University and with
the persons in the EP-ATR (Programming environment of real-
time applications) project at Rennes University.

At Linkdping, I would like to thank Peter Loborg (Real-Time
Systems Laboratory (RTSLAB)) for the long and fruitful dis-
cussions about SIMULINK modeling, as well as Valure Einarsson
(Division of Automatic Control) for his advice. I would like to
thank Jan-Erik Strémberg who provided the main case study of
this work and helped a lot. I would like also to thank all the
members of the ESLab for their kindness.

At Rennes, I would like to thank Albert Benveniste for pro-
viding this subject and also for sending me several stimulating
mails. T would like also to thank Sophie Pinchinat for introduc-
ing me to Simin allowing me to spent seven months in Sweden.
I would like to thank Hervé Marchand for his help concerning
SiaNAL. He patiently read the report as well as Simin, and gave
many useful comments which improved its content and appea-
rance. Finally, I would like also to thank all the members of the
project EP-ATR who help me somehow.

Contents

Introduction

I Background

1 Introduction to SIGNAL-V4
1.1 The SIGNAL language

1.1.1
1.1.2

1.2 Tools

1.2.1
1.2.2

The kernel of SIGNAL
Introductory Example

The SIGNAL-V4 graphical interface
SIGALI: a formal calculus software

1.3 Stand-alone code generation

1.3.1
1.3.2
1.3.3
1.3.4

Model specification
C code generation
Makefile creation
Stand-alone code compilation

2 Introduction to SIMULINK
2.1 SIMULINK libraries
2.2 Using SIMULINK . . « « « v v v vt i et e e e e

2.2.1
222
2.2.3
224

Buildinga model
C code generation
Makefile creation L.
Stand-alone code compilation

2.3 Using the Stand-alone program

II Modeling and co-simulation

3 Generic model for hybrid systems
3.1 A mathematical representation of hybrid systems . . .
3.2 A hybrid system architecture
3.3 Relatedworks,

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5

Hybrid automata
Hybrid STATECHARTS
Switched bond graphs
SHIFT o ottt e i e e
MODELICA

(9}

© o N

10
10
11
11
11
11
12
13

15
15
16
16
18
19
19
19

21

ii

3.4 Chapter summary 31

4 Co-simulation issues: SIMULINK procedure calls versus
global variable passing 33
4.1 Using SIMULINK procedure calls: a naive approach . . 33

4.1.1 The thermostat example 34
4.1.2 Discussion oo 35
4.2 Using global variable passing 36

5 Generic model for the global variable passing approach 39

5.1 Hybrid system with SIGNAL and SIMULINK represen-
tation oL 39
5.1.1 The mapping of the mathematical representation 39
5.1.2 Distribution of computations 41

5.2 Selector activations o000 42
5.2.1 Periodic synchronous selector activations . .. 42
5.2.2 Aperiodic synchronous selector activations . . . 43
5.2.3 Asynchronous selector activations 43

6 Implementing the co-simulation 45

6.1 synchronous selector activations 45
6.1.1 SIMULINK modeling 45
6.1.2 SIGNAL modeling 47
6.1.3 Periodic synchronous selector activations . . . 48
6.1.4 Aperiodic synchronous selector activations . . . 48

6.2 Asynchronous selector activations 50
6.2.1 SIMULINK modeling 50
6.2.2 SIGNAL modeling 50
6.2.3 Linking 51

IIT Summarizing application 53

7 The siphon pump machine 55
7.1 Historical background 56
7.2 Principles of operation 57

7.2.1 The pump description 57
7.2.2 Working principles 58

8 The pump modeling 61

8.1 The hybrid system architecture
ofthepump L 61

82 Theplant o o 62

8.3 The control strategy 65

9 The pump simulation 69
91 Overflow 69

9.2 Explosionof switches 70

iii

Conclusion 75

A Using SIMULINK procedure calls 79
A.1 The C main program of the SIGNAL controller of the

thermostat 0. 79

B Using global variable passing 81

B.1 The SIGNAL part 81

B.1.1 The Thermostat body.cfile 81

B.1.2 The Thermostat main.cfile 82

B.2 The grtmain.cfile 83

B.2.1 Periodic synchronous selector activations . .. 83

B.2.2 Aperiodic synchronous selector activations . . . 85

B.2.3 Asynchronous selector activations 86

C Specification of the Polhem’s pump 89

C.1 Mathematical pump model 89

C.2 Parameter Values 94

C.3 Control strategy 97

Bibliography 99

List of figures 105

Introduction

The class of reactive systems have been proposed by David Harel and
Amir Pnueli [HP85]. Reactive systems are characterized as comput-
ing systems which continuously interact with a given physical envi-
ronment. These systems differ from interactive systems by the very
fact that the physical environment is not synchronized logically with
the reactive system, e.g., the environment can not wait for the system.
Reactive systems can be such as real-time embedded system, control
and communication systems, and interactive software or hardware.
Generally, these systems share some important featuress HCRP91]:

e Parallelism: the system and its environment must run in paral-

lel.

e Time constraints: response times of the system should be in
accordance with requirements induced by the environment.

e Dependability: Most of these systems are highly critical ones,
e.g., nuclear plant control system or aircraft control system.
Hence, this domain of application requires very careful design
and verification methods such as formal methods.

The synchronous approach: In the middle of the eighties, the
new class of synchronous languages dawned. This class constitute
an answer for applying formal verification methods since these lan-
guages provide a precise semantic of time. The fundamental assump-
tion characterizing this computational model is the ideal synchronous
hypothesis [Ber89, Hal93]:

“Ideal systems produce their outputs synchronously with
their inputs.”

Hence all computation and communication is assumed null. Of course,
this assumption is just an approximation of the reality, however it
is still valid so long as it is possible to assure that the program
reacts faster than the environment. This assumption enables the
temporal ordering of events to be determined more easily. Many
synchronous languages have been efficiently implemented. The class
of synchronous languages is usually split in two: on the one hand
imperative and on the other hand dataflow synchronous languages.

e Imperative synchronous languages: These languages use
a sequential approach and have classical control structure like
iteration and condition. They include ESTEREL [BC85, BS91],
STATECHARTS [Har87] and ArRGOs [Mar90, MH96].

e Synchronous dataflow languages: Traditionally electrical

and control engineers model their systems by means of networks
of operators transforming data flows, and from a higher level, by
means of block-diagram structures and by means of systems of
dynamical equations which capture the behavior of the model.
The dataflow languages are functional languages.Hence they are
well adapted to formal verification. They have also parallelism,
reusability and modularity properties.
Synchronous dataflow languages are dataflow languages where
synchronization constraints between the different events of the
systems and of the environment are expressed. This class of
languages include S1GNAL [GBBG85, AGMRY5] and LUSTRE
[HCRPI1].

Hybrid systems: Real world engineering systems are characte-
rized by having both continuous and discrete elements. Thus an
extension in the direction of adding more realism to the formal mo-
deling of real life reactive systems is the consideration of hybrid sys-
tems. The hybrid systems can be seen as a means to code the reactive
systems. Synchronous languages and more generally transition sys-
tems provide a discrete approximation of models with discrete time,
whereas hybrid systems provide model considering the time as con-
tinuous, which Synchronous languages can not do. Hybrid systems
are systems consisting of a mixture of discrete components with con-
tinuous components which are traditionally described by continuous
formalisms such as differential equations. The motivation for such an
extension and some proposals for appropriately extended formalisms
are discussed in [KP91, NSY91]. Complex hybrid dynamic systems
are evident in myriad applications, such as manufacturing and pro-
duction systems, intelligent robots, avionics, automotive control sys-
tems, railway systems, energy systems, and transportation networks.

Motivations and aims: Designing controllers for hybrid systems
and verifying the resulting closed loop system is a difficult task. More-
over, the checking of each component of a hybrid system does not
prove the good behavior of the whole hybrid system, this fact is dis-
cussed in [LGS94]. In Krister Edstrém [Eds99]’s opinion, the problem
of formal analysis of hybrid systems is so difficult compared to, e.g.,
formal analysis of continuous systems, that the use of simulation is
very important to get intuition for, and detect properties of, the sys-
tems. Of course, simulation results can not be taken as proof that a
system works well in general but they can be taken as proof that it
works in specific cases, or, more importantly, that it doesn’t work in

others.

The goal of this work is to develop a hybrid system simulator with
the following architecture:

e a discrete controller specified with SIGNAL language intercon-
nected with

e several continuous time dynamical systems, specified using
SIMULINK.

As compared with SIMULINK/STATEFLOW, see chapter 4 of [Mat97b],
the idea is to explore an alternative route, namely:

e SIMULINK/STATEFLOW views STATEFLOW as continuous time
dynamical systems (with piecewise constant state trajectories),
thus the hybrid system is lifted to continuous time, and deli-
vered to the solver for its simulation.

o We view it differently. We want to keep the discrete controller
DISCRETE during the simulation. Thus we will introduce
"monitors” (A/D converters) linking the controller to the dif-
ferent continuous systems. We view the controller as SUPER-
VISING several Ordinary Differential Equation(ODE) solvers
in a (quasi) distributed way.

Clearly, this is an alternative route, more suitable to the simulation of
large systems composed of interconnected (smaller) continuous sys-
tems, and a discrete controller.

Organization of this report and contributions This report
contains three parts with nine chapters. The first part is the back-
ground includes brief introductions to SIGNAL and to SIMULINK (chap-
ter 1 and 2). The second part begins by a chapter showing generic
models for hybrid systems and a brief state of the art of hybrid sys-
tems. The contribution of the author for this part, is in three fol-
lowing chapters (4,5 and 6). The chapter 4 compare two different
approaches depend-ing on which is the master between SIGNAL and
SIMULINK/MATLAB stand-alone program. The second approach, i.e.,
SIMULINK/MATLAB stand-alone program as master, is kept in the
following chapters. The chapter 5 specifies the generic models for the
co-simulation with SIGNAL and SIMULINK. Finally chapter 6 gives
implementing methods which are based on the new generic model
of chapter 5. The third and last part deals with a non-trivial case
study. Chapter 7 presents the Polhem pump example. Then the
contribution of the author for this part, is in the two last chapters.
Chapter 8 deals with the modeling of the pump and chapter 9 shows
how co-simulation points out some deficiencies of the controller.

Part 1

Background

Chapter 1

Introduction to SIGNAL-V4

The aim of SIGNAL[AGMRY5, BBM97, Hou98] is to support the de-
sign of safety critical applications, especially those involving signal
processing and process control. The synchronous approach [Hal93]
guarantees the determinism of the specified systems, and supports
techniques for the detection of causality cycles and logical incohe-
rences. The design environment of SIGNAL features a block-diagram
graphical interface, a formal verification tool SIGALI, and a compiler
that computes a hierarchy of inclusion of logical clocks (represent-
ing the temporal characteristics of discrete events), checks for the
consistency of the inter-dependencies, and automatically generates
optimized executable code ready to be embedded in environments
for simulation, test, prototyping or the system itself!.

1.1 The SIGNAL language

SIGNAL is a programming language to Specify, verify and implement
real-time reactive systems. Just like LUSTRE [HCRPY1], it belongs to
the synchronous data flow languages. It manipulates signals, which
are unbounded series of typed values (logical, integer...), with an
associated clock denoting the set of instants when values are present.
Signals of a special kind called event are characterized only by their
clock i.e., their presence (when they occur, they give the boolean val-
ue true). Given a signal X, its clock is obtained by the language
expression event X, resulting in the event that is present simulta-
neously with X. To constrain signals X and Y to be synchronous
SIGNAL language provide the operation: synchroX,Y. The absence
of a signal is noted L .

The compiler performs the analysis of the consistency of the sys-
tem of equations, and determines whether the synchronization cons-
traints among the signals are verified or not. If the program is cons-
trained so as to compute a deterministic solution, then executable
code can be produced automatically in C. This code basically con-

!The SiaGNaL language is developed at TRISA in France, and it is sold by TNI
(Brest in France) within the Sildex environment.

sists of a cyclic call to a transfer function, which computes an output,
and updates state variables, according to the presence and value of
input signals. The stand-alone code generation is summarized in 1.3.

1.1.1 The kernel of SIGNAL

SIGNAL is built around a small kernel comprising five basic operators
(functions, delay, selection, deterministic merge, and parallel compo-
sition). These operators allow to specify in an equational style the
relations between signals, i.e., between their values and between their
clocks. Each equation from SIGNAL is like an elementary process.

Functions (e.g., addition, multiplication, conjunction, ...) are de-
fined on the type of the language. For example, the boolean negation
of a signal F is not E.

X = f(X1,X2,--- ,Xn)

The signals X,X1,X2,---,Xn must all be present at the same time,
so they are constrained to have the same clock.

Delay gives the previous value ZX of a signal X:
ZX =X 81

with initialization at the declaration of ZX: ZX init V0. Signals X
and ZX have the same clock. The array below shows a trace of use
of delay.

X : 5 2 3 20
ZX=X$%1 : V0O 5 2 3

Selection of a signal Y is possible according to a boolean condition
C:
X :=Y when C

The clock of signal X is the intersection of the clock of Y and the
clock of occurrences of C at the value true. When X is present, its
value is that of Y.

Y : 1L 1 2 3 4 1 5
cC : t 1 t f 1 t t
X =Y when C 1l 1 2 1 1 1L t

Deterministic merge defines the union of two signals of the same
type, with a priority on the first one if both are present simultaneous-
ly:

X =Y default Z

The clock of signal X is the union of that of Y and of that Z. The
value of X is the value of Y when Y is present, or else the value of
Z if Z is present and Y is not.

Yy -1 1 2 3 1 4 5
Z : 1 10 20 L 30 L 50
X=YdefaultZ : 1 10 2 3 30 4 5

Parallel composition of processes is made by the associative and
commutative operator “|”, denoting the union of the equation sys-
tems. In SIGNAL, the parallel composition of P1 and P2 is writing:

(I PL[P2])

Extensions: The rest of the language is build upon the kernel.
Processes have been defined from the primitive operators, providing
programming comfort.

Repetition upon another clock: To memorize Y values and to
output them also when C' is true, the additional operator cell has
been introduced in SIGNAL:

X =Ycel C

C is a boolean signal. The X value is the Y value when Y is present,
or the last Y value when Y is absent and C is true, or an initializa-
tion value of X when C is true before the first value of Y. The clock
of signal X is the union of that of Y and of instant where C is true.

Yy - L 1 1 1 2 1 3 L 1
c : t L t £ L ¢t f f
X=YcllC(@mnit0) : 0 1 1 1L 2 2 3 1 3

The equivalent of X :=Y cell C is :

(| synchro { X, event Y default when C }
| X:=Y default X $1
(D)

Finally, note that the value to memorize can be a parameter given
once time at beginning of calculation.

1.1.2 Introductory Example

The following example is a process which mixes two input signals X1
and X2 in one output signal Y equal to X1 or X2, and delay X2
when X1 and X2 are simultaneous, so that, no input is lost.

process MIXER =
{ ? integer X1, X2

10

! integer Y % Y= X1 or X2, split X1 and X2 %
% 1if they are simultaneous %
}
(I B := not (event X1) when event X2
default event X1
default event X2
default true
% if X1 and X2 are simultaneous %
% then B = false, else B = true %
| ZB := B $1
| synchro {X1 default X2, when ZB }
| Y := X1 default (X2 cell (not ZB))
[)
where
logical B, ZB init true
end
end

In this example, we can obtain a clock of output signal (Y) upper?
than the union of inputs signals (X1 and X2) like in the trace bellow.
This oversampling results from the synchronization of X1 default X2
and of when ZB. This synchronization leads to: when the value of
Z B is false then we have a new tick of clock which does neither coin-
cide with the clock of signal X1 nor the clock of signal X2.

X1
X2

1 L
L
B : t
A 1
f
1

L

7B
not ZB
Y

QO o Hh R W
e T el

5
ui
t
t
f
5

~ Fh e Hh 00
@ =+ o |

9
L
t
t
f
9

DN e+ o DD
(= N =)

1.2 Tools

The different tools which make up the SIGNAL environment use all
only one tree-like representation of programs, thus we can go from
one tool to another without use an intermediate data structure. The
principal tools are the compiler which allows to translate SIGNAL
programs into C, the graphical interface and, for the classic temporal
logics specifications, the tool SIGALI.

1.2.1 The SIGNAL-V4 graphical interface

A SIGNAL program lends itself well to a graphical block-diagram
oriented user interface. It is the why, in order to ease programming,

2There is an ordering relation between clocks: a clock C; is upper, i.e, higher
up in the order relation, than a clock Cb if all C> instants are also C; instants
and C; is more frequent than Cs.

11

an editor [BGY7] is available in the SIGNAL environment. This one
allows to build SIGNAL programs with mixing texts and graphics.
The editor also allows a hierarchical conception (with a block within
another block) and modular implementation of algorithms (we can
build a model, save it and use it in several programs). A SIGNAL
program is built in two ways, either top down: we draw the higher
level blocks and then we define them, or bottom up: we define the
basic blocks and then we group them.

We can emphasize the supervisor of the graphical interface has
been written in SIGNAL; this supervisor manages the interaction bet-
ween the user and the window manager (X-Window), in the same
way it manages the chain of user actions.

1.2.2 SicALl: a formal calculus software

The SIGNAL environment contains a verification and controller syn-
thesis tool-box, named S1GALI[MBLLY98, LMRS96, BBM97]. This
tool allows us to prove the correctness of the dynamical behavior of
the system. The equational nature of the SIGNAL language leads
to the use of polynomial dynamical equation systems (PDS) over
Z/s7, as a formal model of program behavior. Polynomial functions
over Z/s7 provides us with efficient algorithms to represent these
functions and polynomial equations. Hence, instead of enumerating
the elements of sets and manipulating them explicitly, this approach
manipulates the polynomial functions characterizing their set. This
way, various properties can be efficiently proved on polynomial dy-
namical systems. The same formalism can also be efficiently used for
solving the supervisory control problem[ML98].

1.3 Stand-alone code generation

To generate a stand-alone program with SIGNAL is a four-step action:
specify a model, generate C code, generate makefile and generate
stand-alone program. The Figure 1.1 summarizes the architecture of
the stand-alone code generation with SIGNAL.

1.3.1 Model specification

With SIGNAL, it is possible to specify a model either by writing a
SIGNAL program (in <Model>.SIG file form) which can be directly
compiled or by using the SIGNAL Graphical User Interface (GUI) (see
[BGI7] for more details). In the last case it is necessary to convert
the graphical file of the model (<Model>.sig) to an ascii SIGNAL
program file (<Model>.SIG).

1.3.2 C code generation

Once the SIGNAL model is specified, C code programs can be obtained
by compiling from <Model>.SIG. By default, the SIGNAL compilater

12

SIGNAL-V4

1) Model building o)

model.sig

Y

2) C code generating SIGNAL Compiler BuildMakefile 3) Makefile creating

model_body.c

model_io.c §
. Makefile_model
model_main.c

Y

4) Stand-alone building Make

A

model

Download to target hardware

Figure 1.1: The stand-alone code generation with SIGNAL

gives mainly three C files : <Model> body.c, <Model> io.c
and <Model> main.c.

e <Model> body.c contains three functions:

— logical <Model>_initialize(void) to initialize
the SIGNAL model.

— logical <Model>_iterate(void) to update the SIGNAL
model, this function gets (resp. sets) those input (resp.
output) signals in files through the <Model>_io.c func-
tions.

— logical <Model>_iterate Black Box(inputs,outputs)
to update the SIGNAL model, this function gets (resp. sets)
those input (resp. output) signals by means of parameters.

e <Model>_io.c consists of input/output functions of the model.
Those input/output functions are made by reading and writing
in files.

e <Model> main.c consists of the C main function of the stand-
alone program. The main function calls the initialization func-
tion and loops calling the iterate function (the one that deals
with input/output files) at each logical step.

1.3.3 Makefile creation

In order to build an executable file from the generated code from
SIGNAL the make command is used. The makefile shows the compiler
how to link generated files and how to compile them.

With SIGNAL, this makefile is automatically made by the com-
mand:

13

BuildMakefile <Model>

that provides the following make file Makefile <Model>. If needed
(e.g. in order to change <Model>main.c to another main file), the
make file can be improved by adding C user’s source includes.

1.3.4 Stand-alone code compilation

In order to build the stand-alone program, the last thing to do, is to
run the make command with the makefile:

make -f <MakefileName>

After that one can start the stand-alone program as any stand-alone
program.

14

Chapter 2

Introduction to SIMULINK

This is a short introduction beginning by a quotation taken from
[Mat97d] where a complete description of SIMULINK, can be found.
The latter is too large to be completely included here.

“SIMULINK is a software package for modeling, simulating,
and analyzing dynamical systems. It supports linear and
nonlinear systems, modeled in continuous time, sampled
time, or a hybrid of the two. Systems can be also multi-
rate, i.e, have different parts that are sampled or update
at different rates.”

Since SIMULINK is a MATLAB [Mat98] component, all of the tools in
MATLAB are usable with it. So it is possible to take the SIMULINK si-
mulation results and analyze and visualize them with MATLAB tools.

2.1 SiMULINK libraries

SIMULINK use dataflow oriented block diagrams and provides a library
of six blocks by default:

e Sources are blocks with vector outputs and no vector inputs,
e.g, Constant, Signal generator, and so on.

e Sinks are blocks with vector inputs and no vector outputs, e.g,
Scope, Display, Stop, and so on.

e Discrete are blocks with discrete vector outputs and discrete or
continuous vector inputs.

e Linear components are blocks with both vector outputs and
inputs, where outputs are a linear function of inputs. Examples
are Sum, Integrator, Transfer Function , and so on.

e Nonlinear components are blocks with both vector outputs and
inputs, where outputs are a nonlinear function of inputs. Ex-
amples of these are Logical Operator, Product, Abs, and
SO on.

16

e Connections are some blocks which do not belong to the above
library, e.g, Mux, Demux, Enable, and so on.

As S1GNAL SIMULINK allows stand-alone generation, in four steps,
i.e, specify a model, generate C code, generate makefile and generate
stand-alone program. The Figure 2.1 summarizes the architecture of
the stand-alone code generation with SIMULINK.

1) Model building SIMULINK
model.mdl
Y
grt_unix tmf
RTW Build 3) Makefile creating
modeltw model.mk
Y
2) Ccode generating Targel Language
Compiler
modelc
madkelh
model.prm
model.eg
- Y
4) Stand-alone
grt_main.c Make -
model

Download to target hardware

Figure 2.1: The Real-Time Workshop’s architecture

2.2 Using SIMULINK

2.2.1 Building a model

It is possible to customize and create new blocks, and to collect to-
gether several blocks in order to build a new block, i.e, a Subsystem.
To create a model one simply performs the following steps:

1. Chose blocks in the suitable library.

2. Click and drag these blocks in the current SIMULINK model
window.

3. Link blocks together.
4. Save the model in a file <Model>.mdl.

The Figure 2.2 shows a simple model with four blocks. This
model is more exactly a submodel since it posseses an input block

17

(Inl1) and an outputs block (Outl) and thus it can be represented
as a SIMULINK Subsystem block itself.

—| edge detector] ==

File Edit Sirmulation Forrmat Tools

Relational Dutt
Operator

Mernaory

Figure 2.2: Block diagram of edge detector

This submodel is an edge detector and it will be used further in
the report. It works as follows: A binary piecewise constant signal is
in input, and at each tick of the clock this signal value is kept in the
SIMULINK Memory block and compared with the preceding signal
value thanks to the Relational Operator block. Thus, if the new
value is higher than the old value then the output signal is 1, other-
wise it is 0.

Before starting the simulation, it is necessary to take care to fix
correctly some parameters, especially for the solver options. SIMULINK
provides several solvers for the simulation of numeric integration of
sets of Ordinary Differential Equations(ODEs). Because of the diver-
sity of dynamic system behaviors, some solver may be more efficient
than others at solving a particular problem. It is also possible to
choose between two kind of solvers, the variable-step and the fixed-
step solvers. Since, at the moment, it is not possible to build stand-
alone program with variable-step solvers, only fixed-step solvers are
used in this work. Hence, the step size needs to be set accurately.

The Figure 2.3 shows a complete simple model which test the
above edge detector block. The Start command of the Simulation
menu starts the simulation and then a click on the Scope block
displays signals generated during the simulation in a new window,
see Figure 2.3.

=| 1]
S e s

= test_edge_detector)00 . R S
File Edit Simulaton Format Tools

Figure 2.3: The test environment of the edge detector with its traces

18

This simulation is not a stand alone-simulation since it runs on top
of SIMULINK. Since we need C code to link SIMULINK with SIGNAL
and later stand-alone simulation, these points are dealt with in the
next sections.

2.2.2 C code generation

It is the SIMULINK Real-Time Workshop (RTW) [Mat97a] which is
used to automatically generate C code from SIMULINK block dia-
grams.

By default!, the RTW gives mainly four C files :

<Model>.c, <Model>.h,

<Model>.prm and <Model>.reg.

Those files are briefly described below and described in detail in chap-
ter 5 of the Real-Time Workshop User’s Guide[Mat97a).

e <Model>.c contains the procedures that implement the algo-
rithm defined by the SIMULINK block diagram:

— void MdlStart(int_T tid) to initialize the model,

— void Md1lQOutput(int_T tid) to update the output of
blocks at appropriate times,

— void MdlUpdate(int_T tid) to update the discrete
states,

— void MdlDerivatives(void) contains derivatives provi-
ded by each block that has continuous states. The deriva-
tives are used by the solver to integrate the continuous
state to produce the next value.

— void MdlTerminate(void)

e <Model>.h contains the structure definitions of the block dia-
grams (i.e, the model),

e <Model>.p contains the structure declarations of the block dia-
grams,

e <Model>.reg contains the model registration function,
— void MdlInitialiseSizes(void) to set size of various

data structures in a SIMULINK structure named SimStruct,

— void MdlInitialiseSampleTimes(void) to set sample
times for the model in the SimStruct,

— void <Model>(void) to set up working areas in the
hboxSimStruct

1t is possible to customize the C code generated from any SIMULINK model
with the Target Language Compiler (TLC) [Mat97c]. The TLC is a tool that is
included in RTW.

19

— Figure No. 1 ||
File Window Help

1

0.3

-0.3

Figure 2.4: Matlab traces of the edge detector test

By default, the main C file is generic (cf grt_main.c) and does
not depend on the block diagrams defined in the first step. The main
C file contains the main function that performs the initialization, the
model execution and the program termination.

2.2.3 Makefile creation

With SIMULINK, the makefile is automatically made from a template
makefile (for example grt_unix.tmf is the generic real-time template
makefile for UNIX), see chapter 3 of the Real-Time Workshop User’s
Guide[Mat97a).

2.2.4 Stand-alone code compilation

Just like in section 1.3.4, the last thing to do is to run the make
command with the makefile:

make -f <MakefileName>

in order to build the stand-alone program. After that you can start
the stand-alone program as any stand-alone program.

2.3 Using the Stand-alone program

By default, the run of stand-alone program provides a MATLAB da-
ta file (<Model>.mat). Before the building of the stand-alone pro-
gram, it is possible to select which data we want in the MATLAB
file, see chapter 2 of the Real-Time Workshop User’s Guide[Mat97a].
Then, you can use MATLAB to plot the result. The Figure 2.4 shows
the traces of the edge detector test obtained by MATLAB from the
test_edge _detector.mat file.

20

Part 11

Modeling and
co-simulation

21

Chapter 3

Generic model for hybrid
systems

3.1 A mathematical representation of hybrid
systems

Hybrid systems can be mathematically represented as follows:

T; = fz(s Ljy Ug, ’L)a $i€]Rnia QEQ (31)
v = h; (Qa T,y uz) (32)
€ = SZ(a:cZaul?yZ) (33)
T, = l{el;éel } (34)
qd = T(g,7), 7= (r,i=1,...,1) (3.5)
Where:
(3.1): i =1,...,I indexes a collection of continuous time sub-systems,

q € @ is the discrete state, where @ is a finite alphabet,

€ R™ is the vector continuous state of the ith continuous
time sub-systems,
u; € R™i is the vector continuous control of the 7th continuous
time sub-systems,
d; € R’ is the vector continuous of disturbance of the ith con-
tinuous time sub-systems.

(3.2): y; € RPi is the vector continuous output of the ith continuous
time sub-systems,

(3.3): e; € B" where B is the boolean domain. Thus at each ins-
tant an r-tuple of predicates depending on the current values
of (g, z;,u;,y;) is evaluated.

Examples are a:f > 0 where superscript k refers to the kth
component of z;, if z; = (z',...,2™), or g(q, z;,u;,y;) > 0 for

g(q,.y.,.) : RMt™i*Pi 5 R and so on.

24

(3.4): e;_(t) denotes the left limit of e; at ¢, i.e., the limit of e;(s) for
s < t,s /t. Assume that ef (t) # eF(t) means that the kth
predicate changes its status at instant ¢; this generates an event
Tik. Those marked events Tik are collected into a vector event
7; (and those latter are collected into vector event 7). Thus
trajectories e; are piecewise constant.

(3.5): q,q" are the current and next discrete automaton state.

The thermostat example The thermostat example, which is ta-
ken from [NSY91, ACH"95, BS97], is simple but it will used all along
this report to illustrate several different formalisms. The temperature
is governed by differential equations. The thermostat is provided with
two parameters: m and M which determine the interval in which the
temperature of the room is supposed to remain. In order to satisfy
this requirement, the thermostat switches a heater OF F' and ON.
Thus the system has two locations:

e At the location OF F, the temperature decreases according to
the exponential function z(t) = 8eX?, where ¢ is the time, 0 is
the initial temperature, and K is a constant determined by the
room.

e At the location ON, the temperature increases according to the
function
z(t) = 0eX? + h(1 — eK?), where h is a constant that depends
on the power of the heater.

So, the thermostat can be mathematically represented with the fol-
lowing equations.

Q = {ON,OFF} (3.6)

For the continuous subsystem ON:

ton = fon(g;Ton), zon ER,q€Q (3.7)
fon(OFF,zoy) = 0 (3.9)
YON = TON (3.10)

eon = son(g,Ton) (3.11)

SON(ON, -TON) = zon>M (3.12)
son(OFF,zon) = 0 (3.13)
Ton = eliepnrteon) (3.14)

25

For the continuous subsystem OFF:

torr = forr(¢,z0rF), zorr €ER (3.15)
forr(ON,zorr) = 0 (3.16)
forr(OFF,zorr) = —Kzorr (3.17)
YOFF = ZIOFF (3.18)
eorr = 50FF(4,TOFF) (3.19)
SOFF(ON, -’EOFF) =0 (320)
sorr(OFF, zopr) = zopr > M (3.21)
TOFF = €l{c,prteorr.) (3.22)

For the discrete automaton:
¢ =0OFF & q¢=ONA7oy=1 (3.23)
¢ =0ON & q=OFFA1orr=1 (3.24)

Note the continuous temperature z can be obtained by adding x_ON
and x_OFF.

3.2 A hybrid system architecture

Simin Nadjm-Tehrani et.al. proposed to organized a hybrid system
as in Figure 3.1 and as described below[SNT94]:

e The Plant (P) is the physical environment under control. The
inputs u, the outputs y and the disturbances d all have conti-
nuous domains.

e The Characterizer (C) is the interface between the continuous
plant and the discrete selector in terms of, e.g., discrete sensors.

e The Selector (S) is the purely discrete part of the controller.
The inputs as the outputs have discrete domains.

e The Effector (E) is the interface between the discrete selector
commands and the continuous physical variables in terms of,
e.g., continuous controllers.

The Controller (K) contains the characterizer, the selector and
the effector. The composition of the controller and the plant forms
the closed loop system.

26

Plant P P
4 | y
S s ey N | S
1| Effector E Characterizer C |1
| |
| f : o |
I c i :
! Selector S |
| |

Controller K

Figure 3.1: General hybrid system architecture. Solid arrows repre-
sent continuous and dashed discrete variable

The hybrid system architecture presented above, is a good start-
ing point for hybrid system modeling. It remains just to answer to
the following questions:

e How the mathematical representation of section 3.1 can be
mapped on the architecture of the section 3.27

e Which parts should be done in SIGNAL and which ones in
SIMULINK?

e How the SIGNAL part should be activated?

The next section presents a brief collection of hybrid system works.
Then, the chapter 4 shows two different approach for modeling hy-
brid systems, and finally, answers the above questions using the best
approach.

3.3 Related works

Hybrid system can be seen as dynamical systems consisting of in-
teracting and continuous components. They are traditionally used to
specify the combined behavior of several embedded real-time systems
as well as their physical environment.

The first extensions of the methodology in the formal specifi-
cation and analysis of reactive systems to deal with real time and
continuously varying elements date from the beginning of nineties,
Automata (resp. STATECHARTS) have been extended to timed au-
tomata (resp. timed STATECHARTS) and hybrid automata (resp. hy-
brid STATECHARTS). Bond graph gave switched bond graph in order
to take account of abrupt changes in the dynamic behavior of physi-
cal systems which are ubiquitous in engineering applications.

There are also some new languages which do not extend but use older
concept, e.g, SHIFT is a high level language which models networks
of hybrid automata.

27

3.3.1 Hybrid automata

Hybrid automata have been introduced by Xavier Nicollin, Joseph
Sifakis and Sergio Yovine in [NSY91] and an analysis of linear hybrid
automata are described in [ACH"95]. They modeled a hybrid sys-
tem as a finite automaton that is expended with a set of real valued
variables. These variables can be tested and modified at transitions.
At a automaton location @) the values of the variables change con-
tinuously with time according to evolution laws which are associated
with). The transition relations are specified by guarded commands;
the activities, by differential equations; and the location invariants,
by logical formulas.

Figure 3.2 illustrates a hybrid automaton of the thermostat pre-
sented in section 3.1.

Figure 3.2: Hybrid automaton of the thermostat

Initially the heater is ON and the temperature of the room is m.

3.3.2 Hybrid STATECHARTS

If we consider particular STATECHARTS semantics like that imple-
mented by STATEMATE [HN96], STATECHARTS belong to the class
of the imperative synchronous languages. STATECHARTS have been
used for the specification of complex reactive systems. The visual
formalism of STATECHARTS has been proposed by David Harel in
[Har87].

“Our diagrams, which we call statecharts extend conven-
tional state-transition diagrams with essentially three ele-
ments, dealing, respectively, with the notions of hierarchy,
concurrency and communication.”

Kesten and Pnueli have extended STATECHARTS, first adding the
element of metric time (Timed STATECHARTS) and secondly adding a
notion that allows to annotate a basic state by a differential equation
(Hybrid STATECHARTS)[KP91].

Thus, the activity associated with the differential equation is active
precisely when the state it labels is active.

28

3.3.3 Switched bond graphs

A methodology for physical modeling of systems in three steps, i.e,
reticulation, equations generation and composition has been proposed
by Lennart Ljung and Torkel Glad in [Pay61, LG94].

e Reticulation phase consists in repeatedly dividing the system
into sub-systems, until sub-systems can be described by equa-
tions without too much effort.

e Equations generation consists in finding the equations that des-
cribe the sub-systems and that describe the sub-systems con-
nection.

e Composition phase consists in sorting the equations in the right
order and combining them.

L. Ljung shows also that the composition in bond graphs can be au-
tomatized.

Bond graphs

Bond graphs were created in 1959 by Henry M. Paynter [Pay61] to
support physical modeling of systems. A bond graph is a graphical
model of the system. It is based on energy conservation and it des-
cribes the energy flow through the modeled system. The energy flow
is described by two quantities, i.e., effort e and flow f.

One of the main aspects is that different domains, like mechanical,
hydraulic and electrical ones, are modeled in the same way. Because
energy behaves in the same way regardless of the domain. Actually,
energy can be fed into, stored or transformed in, or dissipated from
the system. Thus all models are built by a small number of ideal
elements, each describing a certain aspect of the behavior of energy.

Other advantages are:

e bond graphs allow some analysis of the models, e.g., causality
analysis, mathematical model generation,

e bond graphs can be the user’s interface in a modeling and si-
mulation environment,

e equations associated with bond graph elements can be auto-
matically converted into simulation code.

Bond graph switch element

The bond graph language is originally designed to support the deriva-
tion of continuous models. However, many practical engineering sys-
tems incorporate fast switching devices such as relays, thyristors,
mechanical clutches, hydraulic valves and so on. These systems are

29

referred to as “mode switching systems” [Str94]. One extension, a-
mong several bond graph extensions proposed to allow modeling of
discrete phenomena, is to add to bond graph a new element called
ideal switch or by “misnomer” switch. The switch has two states,
zero effort and zero flow. In the zero effort state the switch behaves
like an effort source and in the zero flow state the switch behaves
like an flow source. Thus switched bond graphs capture these hybrid
models, where the discrete part is simple and the continuous part is
arbitrary complex.

Stromberg and Edstrom extended the analysis of bond graphs to

switched bond graphs [Eds99, Str94]. Causality analysis now depends
on the state of the switch. The algorithm for extracting mathematical
representation of the model has also been modified.
The specific use of switched bond graphs in formal verification of
embedded systems is dealt with in [SNTT96]. The modeling, the
analysis and the design of hybrid systems in automatic control with
bond graphs are also resumed in [LGGT96].

3.3.4 SHIFT

A. Deshpande, A. Golli and L. Semenzato present SHIFT in [DGS98]
as following;:

“ SHIFT is a programming language for describing and
simulating dynamic networks of hybrid automata. Such
systems consist of components which can be created, in-
terconnected and destroyed as the system evolves. Com-
ponents exhibit hybrid behavior, consisting of continuous-
time phases separated by discrete-event transitions. Com-
ponents may evolve independently, or they may interact
through selected state variables and events. The interac-
tion network itself may evolve.”

The SHIFT language is used as a system description, integration and
simulation environment in the Automated Highway Systems project
of the National AHS Consortium.

A compiler to translate SHIFT programs into C and a run-time system
for SHIFT have been implemented by the PATH project (Partners for
Advanced Transit and Highways) at Berkeley in California.

SHIFT is resolutely simple and small. It has only one number type,
no functions (however it can use external C functions) and it has a
garbage collector in its implementation. SHIFT has high-level sys-
tem abstractions which include differential equations, state transi-
tions and synchronous compositions. Thus it can be used to describe
models with differential equations which can be stopped or replaced
with other differential equations.

30

General principle

In the SHIFT model, the world W consists of a set of hybrid compo-
nents:

W = {h1,... ,hy}. Each components h is in a configuration C},
(discrete state). The world evolves in a sequence of phases. Dur-
ing each phase, time flows continuously while the configuration of
the world Cyw = {Ch,,... ,Ch,} remains fixed. In the transition
between phases, time stops and the set of components in the world
and their configurations are allowed to change. Thus, components
obey continuous-time dynamics within each phase and discrete-event
dynamics in phase transitions.

Example of SHIFT program

A component prototype is defined by the SHIFT type declaration.
The structure of a component is partly given by its inputs, out-
puts, and states. State variables are not visible outside the com-
ponent. The value of an input variable of a component may only
be specified by another component. The discrete clause defines the
possible values for the type’s discrete state variable and associates a
set of differential equations and algebraic definitions to each discrete
state. Groups of common flow equations are given a name through
the flow clause. Transitions between states are defined in the tran-
sition clause. Transitions are labeled by a (possibly empty) set of
event labels. These labels allow transitions to synchronize with each
other.

SHIFT contains other facilities, however the above sub-set of SHIFT
is enough to specify and understand the following program of the
thermostat example of the section 3.1.

Program 1 The SHIFT specification of the thermostat
type Thermostat {
output continuous number x;
discrete
ON {heating},
OFF {cooling};
flow heatingq{
x’ =K * (h - x);

}

flow cooling{
x’ = - K * x;

}

transition
ON -> OFF {} when x = M,
OFF -> ON {} when x

m;

31

Complex SHIFT program examples and more information about
SHIFT can be found at
http:/ /www.path.berkeley.edu/shift /.

To conclude this section, it seems SHIFT has good properties since
it is data-flow and object oriented. With regard to the verification,
note that projects were underway to interface SHIFT to KRONOS!.
However, there seems to be fewer works related to SHIFT in recent
years after the end of the original PATH project.

3.3.5 MODELICA

In September 1997, the first version of MoDELICA [EOS97, OEM99]
was finished, its goal effort is to unify the concepts and design a new
uniform language for hybrid model representation. The central pro-
perty of MODELICA is the usage of synchronous differential, algebraic
and discrete equations, see [OEM99].

MODELICA is an object-oriented modeling language, hence, it allows
hierarchical modeling, encapsulation, and inheritance. In order to
increase re-usability of model components, the MODELICA model-
ing is based on equations instead of statements as in traditional in-
put/output block abstractions, i.e, instead of functions (methods in
traditional object-oriented languages) MODELICA uses equations to
specify behavior.

Note that MODELICA has possibilities to describe hierarchical bond
graph models thanks to a MODELICA bond graph library defined in
[Bro97].

3.4 Chapter summary

This chapter gives a brief survey of some related works and of course
it is not exhaustive for lack of space and of time. There are many
other tools for modeling and making simulation of dynamical systems
with both continuous and discrete sub-systems, as Scicos (Scilab
Connected Object Simulator) [NS98]. Other tools for hybrid systems
verification are emerging as, e.g., the deductive checker The Stanford
Temporal Prover (STeP) [MS98] or the symbolic model checker for
linear hybrid automata HyTech [HHWT97].

Though the hybrid community is young, i.e., about ten years old,
it is widely spread through out the world. Moreover, this community
seems to have been divided in two, on the one hand the computer
scientists and on the other hand automatic control engineers. Krister
Edstrom wrote in [Eds99] the following quotation.

'Kronos [DOTY96] is a model checker based on the model of timed-automata
for verifying temporal properties on the behavior of the system, such as reacha-
bility, invariance and bounded response.

32

Computer scientists have focused on systems with com-
plex discrete dynamics and simpler continuous dynamics
and looked at properties like reachability, safety, etc. ...
In the area of Automatic control, the focus has been on
systems with complex continuous dynamics, with simpler
discrete dynamics. Issues are for example stability and
control.

Indeed, hybrid automata, STATECHARTS and SHIFT seem to be more
suitable for dealing with complex discrete dynamics and simpler con-
tinuous dynamics whereas bond graphs seem to be geared to deal with
complex continuous dynamics and simpler discrete dynamics. How-
ever, new languages like MODELICA aims to merge the two directions
in order to enable analysis of systems with both complex continuous
and complex discrete dynamics. Development in this area is still in
very preminary stages.

Using SIGNAL with SIMULINK to model complex hybrid systems
seems a good idea since SIGNAL is very efficient to model complex
discrete behaviors and SIMULINK is well-suited to deal with complex
continuous dynamics, this is the direction explored in this report.
The underlying mathematical model presented at the begining of this
chapter serves this purpose.

Chapter 4

Co-simulation issues:
SIMULINK procedure calls
versus global variable
passing

This chapter shows two approaches allowing the simulation of hybrid
systems. In the first approach, the discrete part modeled with SIGNAL
is the master and controls the changes in the continuous part by using
SIMULINK procedure calls. In the second approach, the stand alone
program provided by SIMULINK/MATLAB is the master, the links
between the discrete part and the continuous part is done by means
of global variables. The rest of the report gives up the first approach
and explores in detail the second approach.

4.1 Using SIMULINK procedure calls: a naive
approach

Since the SIGNAL program should be the controller of the system, the
first idea is to embed SIMULINK update functions into the SIGNAL
stand-alone program. It is possible since SIGNAL allows to directly
use external functions with SIGNAL code. In order to simplify the
complete system, the SIMULINK model consists of several SIMULINK
sub-models (i.e. several <SubmodelSimulink>.mdl files should be
specified).

The triggering of a sub-model is made by calling of the main function
of the sub-model. To do that the main function should be renamed
(for example, to <Sub-model> main). Theses sub-models behave like
following;:

function(<Sub-model>_main){
—- initialize
while true{
-- resolve sub-model equations

34

if event{ /* for example a threshold reached */
exit of the loop
}
}

-- terminate

where the exit is done by means of SIMULINK Stop block.

The working scheme of the system is very simple, at each iteration
step of the discrete SIGNAL automaton,

e the automaton checks its states and in particular if a (SIMULINK)
sub-system has just finished its run,

e with above information the automaton solves the transition sys-
tem and (if needed) triggers a different (SIMULINK) sub-system,

e to trigger a sub-system, the automaton calls a function which
sets a boolean variable,
e.g., <Sub-model>_stop, to false before it calls the sub-system
main function,

e to check if a sub-system has just finished its run, the automaton
calls a function which returns the value of the <Sub-model>_stop
variable and sets this variable to true.

Since all <SubmodelSimulink>.c generated by the RT'W contains
common function and variable identifiers (like for example Md1Start,
Md1lOutput and so on) it is necessary to rename them. The Target
Language Compiler (TLC) [Mat97c] allows to make a new target
for RTW where the common identifiers are replaced by new identi-
fiers. Thus new identifiers can consist of sub-model names plus old
identifiers. For compiling from SIMULINK block diagram to C code,
the Real-Time Workshop (RTW) [Mat97a] used “target files”, which
specify particular code for each block. It is the TLC which is used to
write these “target files” (*.tlc).

4.1.1 The thermostat example

The thermostat of the section 3.1 has two discrete state ON and OF F
within the temperature moves continuously. It is easy to model these
two modes with two SIMULINK block diagrams ON and OFF as in
the Figure 4.1. Here, in order to simplify the example, m and M are
constants, but it is also possible to pass them in parameter.

35

i >
T
W Scop
Cooling > :
:
25 >
Dm Rslational Stop Simulation3

Oparator

W is the initial tsmparature.
The temparaturs, denotsd by the variabe x,
dacreasss accarding o ths Coaling function umtil x<=m)
m s the final temparaturs.

Figure 4.1: Block diagram of OFF

Figure 4.2 illustrates the SIGNAL controller. This SIGNAL pro-

gram contains four external function calls. These functions are writ-
ten in C, see appendix A.1 which describes their functioning and their
code.
When the event x_eq_inf is emitted, the sub-system OFF is stopped
because its variable = has reached its low bound m. So, if the event
x_eq-inf is emitted the automata (the biggest processus of the Fi-
gure 4.2) is able to change its state and then provides the starting of
the sub-system ON.

aull_ okl w o

Figure 4.2: SIGNAL thermostat using SIMULINK calls

4.1.2 Discussion

In all cases, the above system is very restricted because its execution
is purely sequential. This means that :

e two sub-systems can not run at the same time
e when a sub-system runs the controller is frozen,

e when the controller runs no sub-system can be executed.

36

Thus this system is not suitable to simulate hybrid systems.

One way to resolve those problems is to use threads. If it is pos-
sible to encapsulate main C subs-system functions and the automaton
into threads then it is possible to run in a concurrent way several sub-
systems and the automaton. The multi-threading will be seen later.
Another way to avoid the purely sequential running is shown in the
next section (4.2).

4.2 Using global variable passing

Another way to link SIGNAL model with SIMULINK model(s) is based
on the facilities provided by RTW. Actually, it is possible with
SIMULINK and RTW to build a system with several sub-systems which
seem to be executed at the same time!. Thus, the SIMULINK main file
(e.g., grt main.c?) is a judicious starting point to build the stand-
alone hybrid system simulator since the pseudo-parallelism of the
sub-systems is already taken in to account. In this way, instead of
several SIMULINK sub-model <SubmodelSimulink>.mdls, only one
model <ModelSimulink>.md1 is specified. The continuous sub-model
are described in the main model by means of SIMULINK Subsystem
blocks. The Subsystem blocks are enable by means of SIMULINK Trig-
ger blocks and SIMULINK Enable blocks. Thus the system simulator
consists on the one hand of the SIGNAL controller model, and on the
other hand of a big SIMULINK model (i.e. the main SIMULINK model).
The big SIMULINK model contains input ports allowing SIMULINK
Subsystem blocks to be enabled and disabled, and output ports al-
lowing sub-systems to emit events to the controller. The SIGNAL
controller model is simpler than in section (4.1) since input signals
are replaced by external C functions checking termination and output
trigger signals are replaced by external trigger C functions.

In this way, SIGNAL inputs are connected to some SIMULINK out-
puts and vice versa SIMULINK inputs are connected to SIMULINK
outputs. This connection can be made by means of global variable
passing.

The SIMULINK input variables can be accessed through External-
Inputs rtU and the SIMULINK output variables can be accessed
through ExternalOutputs rtY.

The ExternalInputs and ExternalOutputs structure types are au-
tomatically defined in the <ModelSimulink>.h file. The rtU and rtY
variables are automatically defined in the <ModelSimulink>.prm.

'RTW provides two basic environments: a singletasking operating system and
a multitasking real-time operating system(e.g., Tornado) refer to chapter 7 of the
Real-Time Workshop User’s Guide[Mat97al).

2grt main.c is a generic singletasking target main file.

37

The SIGNAL input variables can be passed by value to the SIGNAL
iterate function (i.e., <ModelSignal>_iterate Black Box(inputs,
outputs)). Thus it is possible to pass directly the SIMULINK output
variables to SIGNAL iterate function. The SIGNAL output variables
should be passed by reference to SIGNAL iterate function.

Now, the question is how the SIGNAL automaton can be embedded
in the main C file of the big SIMULINK system. The two next chapters
deal with some answers to the above question in details by showing
several ways to implement hybrid system simulators.

38

Chapter 5

Generic model for the
global variable passing
approach

This chapter gives the generic model for the global variable passing
approach and provides three protocols for activation of the SIGNAL
part. The generic model is based on the mathematical representation
and the architecture of hybrid systems presented in chapter 3.

5.1 Hybrid system with SIGNAL and SIMULINK
representation

5.1.1 The mapping of the mathematical representation

The plant is made of a collection of finite Continuous Time Sub-
Systems (CT'SS). As in the mathematical representation of the
chapter 3, let I be the cardinality of the collection and let ¢ index
over I (the ith CT'SS noted CTSS;). Such CTSS; contains a vec-
tor z; € R™ of n; continuous state and also n; differential equations
(3.1). This last equation can be rewritten as follows:

I'} le(q7 "EzlauZadZ)

I
Hence, the system contains an differential equations for each gq.

k=1
However, the implementation needs to extract the discrete parameter
I

g € Q of these differential equations. Thus we have J = |Q| an
k=1

40

differential equations in the continuous system DE!. At any time
t, one or several equations among this collection forms the basis for
computation. Let j be a new index for indexing the DE equations
as follows:

Fl(x%auladl) = fll(Q1,.’L‘%,U1,d1)

Fy(zi,ui,di) = fi(ge, 21, u1,d1)
Fo(z1,u1,d1) = fl(qq)=1,u1,d1) (5.2)
Foii(a,u,di) = fi(qu, 23, u1,dr)

Fg ozt ur,di) = [(ge,], u1,dy)

Thus, we get a new function F; for the jth equation in the old list of
equation DE. That is, by substituting, duplicating and renaming it
is possible to find a new indexing system so that only the j subscript
remains. Now we can write each differential equation as follows:

&j = Fj(zj,uj,d;) (5.3)

which allows to calculate the vector continuous state z and the vector
continuous output y thanks to equation

y = h(z,u) (5.4)

which is a rewriting of equation (3.2). Then y feeds the characterizer
and the equation

e = s(y) (5.5)

allows the detection of event e.

In comparison with Figure 3.1, a new component has been added in
the controller, it is the Fdge detector which corresponds to equation
(3.4). The discrete state g is defined only in the selector which is the
only purely discrete part. So, the selector contains the equation (3.5)
and the new equation below:

c=g(q) (5-6)

where ¢ € R’ is the vector discrete control of the effector.
The effector deduces from its input ¢ two continuous vectors u € R’
and enabl € B’ thanks to:

(uj, enabl;) = k(cj) (5.7)

enabl; is used by the plant to enable or disable the jth differential
equation and u; is the vector continuous control of the jth differential

!DE is used as the name for set of Differential Equations and J is used as
cardinality of DE

41

equation.

Now that the loop is closed, we can put the above equations (eqn.
(5.3) to eqn. (5.7) plus eqn. (3.4) and eqn. (3.5)) together as follow.

if (enabl; = 1) then z; = f;(zj,u;,d;) (5.8)
y = h(z,u) (5.9)

e = s(y) (5.10)

Tj = elfe. e} (5.11)

{ = T (5.12)

PR (5.13)

(uj,enably) = k(c;) (5.14)

Since the discrete controller (the automaton) is in one state at
any one computation point, it follows that the change in continuous
state is well-defined, i.e. although several equations are enabled in
parallel, only one equation at a time is chosen for each continuous
state variable.

5.1.2 Distribution of computations

It is obvious that the plant should be specified by SIMULINK and the
selector by S1IGNAL. But for the other components of the system it is
not so clear.

There are several possibilities and the Figure 5.1 shows one of them in
which the effector, the characterizer and the edge detector are speci-
fied by SIMULINK.

Later, we will see that it can be indispensable to specify the edge de-
tector by SIGNAL instead of SIMULINK according to how the selector
is activated.

42

d
Y
Plant (physical environment)
if (enabl; = 1) then &; = f;(z;,u;,d;)
A
Y enabl y wn
¥y z
Effector Characterizer E
(u, enabl) = k(c) e=3(y) %
T |
[|
| | €
! Y
: Edge detector
|
cl 17
F-4------ i e —_ --,
1] y 1
! Selector (purely discrete part) Lo
! ¢ =T(g,7) 5
! c=g(q") 12
1 1
1 \\ex 1 ?
: Contr? :
1 1
:_ 1

Figure 5.1: Hybrid system representation

5.2 Selector activations

The selector, i.e., the union of equations (5.12) and (5.13) is assumed
to work in discrete time, meaning that continuous time ¢ is sampled
with period At. During each sampling period, the (e;(%), e;(t + At))
trajectory is recorded, and it is hoped that each component of e;
changes at most once during the sampling period. If e; changes during
the sampling period then the event 7; is emitted. Then, there are
several possibilities of checking the event 7; for the selector. These
possibilities depend of how the selector is activated. Three activation
methods are discussed here, i.e., periodic, aperiodic and asynchronous
selector activations.

5.2.1 Periodic synchronous selector activations

Synchronous means here that the selector activation coincides with a
tick of the clock of the sampled continuous system.

Protocol 1 At each sampling period At, the selector senses the final
value of vector 7;, and applies its transition according to (5.12).

43

This protocol is simple, but assumes that sampling period At is
small enough to avoid missing events. This may typically lead to
taking a At much smaller than really needed, i.e., to activate the
automaton for nothing most of the time.

5.2.2 Aperiodic synchronous selector activations

Protocol 2 Here the continuous time system (equations (5.8-5.11))
is the master, driven by continuous real time t. Each time some T;
occurs in equation (5.11), a “wake_up” event is generated by the jth
continuous time system in which 7; was generated. Then selector
(equation (5.12)) awaits for wake_up, so wake_up is the activation
clock of the selector. When activated, the automaton checks which
event 7; is received, and moves accordingly, following equation (5.12).

Within this protocol, the master is the continuous time system,
and the selector reacts to the events output by the continuous time
system. More precisely, the continuous time system outputs wake_up
(in addition to 7;), which in turn activates the selector.

5.2.3 Asynchronous selector activations

Here, continuous subsystems and the selector have independent
SIMULINK threads, that means above all the selector has its own
thread and its activation clock.

Protocol 3 At each round, the selector senses whether there is some
event 7, if it is the case then the selector moves accordingly, following
equation (5.12) and finally, it outputs the state changes to the effector
following equation (5.13).

It is important to note that with the Protocol 3 the 7 generation
should be done in the SIGNAL part instead of in the SIMULINK part
as in the Figure 5.1.

Indeed, if the 7 is provided by SIMULINK, there is a risk that the
selector will miss some 7 because no assumption can be made about
when the selector will check its input channels. In the best case some
7 are recognized with a delay of one tick in the selector

In order to illustrate this problem, Figure 5.2 shows both methods,
i.e, 7 provided by SIMULINK and 7 provided by SIGNAL.

In the two cases,

e the horizontal arrows coincide with the ticks of the selector
activations;

e ¢j, Tj, ejr, and 7j are boolean signals;
e ¢;, and 7; have same sample period At;;

e ¢;, and 7;; have same sample period At;.

44

In Figure 5.2(a), where 7 is provided by SIMULINK, there are the
following features:

e if ¢; equals 0 at time ¢; and 1 at time ¢; + 1 (i.e the following
sample) then 7; equals 0 at time ¢; and 1 between t; + 1 and
t; +2

e if 7; equals 1 at time ¢; then at time ¢; + 1, 7; equals 0.
e ¢j and 7j» behave as e; and 7;

So, 7; is not synchronized with the selector but only with the sample
rate of e;. Hence in the Figure 7; and 7 are lost.

On the other hand, in Figure 5.2(b), where 7 is provided by
SIGNAL, there are the following features:

e if e; equals 0 at round & of the selector and 1 at following round
k + 1 then 7; equals 0 at round k and 1 at round k£ + 1

e if 7; equals 1 at round & then at round & + 1, 7; equals 0.
e ¢j and 7j behave as e; and 7;

e 7; and 7, are not defined between two rounds.

So, 7j and T are synchronized with the selector clock. Hence it is
impossible for the selector to know which of the two events e; and e;
has occurred first. However, if it needs, it is possible to time-stamp
7; and 7 with an absolute date and then the selector can manage
with the time stamp 7. This holds only if e; and e; are generated
in the same subsystem. In practice, one needs complex clock syn-
chronization routines to ensure that time-stamped events generated
in different sub-systems are meaningful.

Though it is still possible for the selector to miss some event

(e.g., if e; moves from 0 to 1 and then to 0 between two rounds of the
selector), this protocol has the advantage of being fully distributed.

(a) in the SIMULINK part (b) in the SIGNAL part

Figure 5.2: 7 detection

Chapter 6

Implementing the
co-simulation

In order to show how the hybrid system representation of the Figure
5.1 can be implemented with SIGNAL and SIMULINK this section uses
the simple example of the thermostat already presented before. The
implementation in the synchronous case is dealt with in section 6.1,
while the asynchronous case is dealt with in the following section 6.2.

6.1 synchronous selector activations

6.1.1 SIMULINK modeling

Erable_OFF &_OFF —b-
Enable_OFF e —— tau_OFF
! ob
- T e
Enabls_ON g detector? tau_ON
Flant Characterizar
»(3)

Figure 6.1: SIMULINK part of the thermostat

Figure 6.1 shows the main SIMULINK block diagrams of the thermos-
tat. This block diagram contains a plant block, a characterizer block
and two edge detector blocks. It does not contains the effector block
because this example is very simple and the effector is not needed
here.

The Plant

The plant of the thermostat (Figure 6.2) contains the following fea-
tures.

46

e Two input variables, i.e., Enable. OF F and Enable_.ON.

e Two continuous time sub-systems, i.e., OFF and ON. These
subsystems are activated according to the Enable. OFF and
Enable_ON values as in the equation 5.8 and thanks to the
enabling ports at the top of the sub-systems OFF and ON.
A block diagram having such an enabling port, executes while
the input received at the enabling port is greater than zero.
For more information about SIMULINK enabled subsystems, see
Chapter 7 on Using SIMULINK [Mat97d]. Thus, if the input
signal enable_OFF is 1 then OFF is running.

e An output variable z, i.e., the temperature. At time ¢, the
output variable x equals the output variable of the activated
sub-system as following:

z = (z_OFF x Enable.OFF) + (z_ON x Enable_.ON) (6.1)

So, the selector prevents OFF and ON from being activated
at the same time or else z will get a wrong value.

]

o
Enabls_OFF L
Py
n

Product2
x_OFF

vy
3

Sumi

=D,
Enable_ON

Sl
|T*+_
i

B

X_ON

anN

Figure 6.2: The Plant of the thermostat

The continuous sub-systems

2l y
I_,

Enable

h Sum2
*x
Hed [
:
000005 3 1 f 21 gy m Intagratar

A Froduct I—b s « OFF E}
Dze Gain Integrator it
xnit winit i the intial femparaturs,
xint i tha intial tempe rature K=l),
x==K% h iza constant that depends on the power pf the heater,
K isa constant determined by the room. K 1= a constant dstarmined by the raom.
(a) The sub-system OFF (b) The sub-system ON

Figure 6.3: The sub-systems

47

Figure 6.3 shows the block diagram of sub-systems OFF and ON.
Each sub-system calculates a differential equation, see the end of
chapter 3 of Using SIMULINK [Mat97d] where the modeling of dif-
ferential equations is explained. Note that each sub-system ON and
OFF has an enabling port at the left top.

The Characterizer

Figure 6.4 shows the block diagrams of characterizer of the thermos-
tat. Its input is the temperature z and it has two output ports to
be able to broadcast the event e OF F if the temperature reaches the
lower threshold m and the event e_.ON if the temperature reaches the
upper threshold M.

L

F

Fslational = OFF
Opaatort
o—
x
—_—

2a= » D)

M Ralational 80N
Qpaator2

Figure 6.4: The Characterizer of the thermostat

The edge detectors

The modeling of edge detectors is described in the section 2.2.1.

6.1.2 SIGNAL modeling

The SIGNAL part contains just the selector since the edge detector
part is implemented in the SIMULINK part. Figure 6.5 shows the
SIGNAL model is build of a synchronizer process (the left-hand block)
and of an automaton process, i.e., the selector, (the right-hand block)
which is described in detail in Figure 6.6.

[=a0rr

LCnante 0T
Sk |
penavie Uk
a1 _(FF

e k-

- F = wen B_lau

. o o

1

Aau CH e O) ernostazHrtenanon

D bew g} 1 FET R

H

Enablc_0H
pEnable OH
B_ta OH | HE LEnazle_0n

Figure 6.5: SIGNAL part of the thermostat

48

The synchronizer block is necessary because the inputs of the se-
lector are just boolean C variables without well defined clock. Thus,
B_tau_OFF means the tau_OFF with boolean type and tau_OFF
means the event tau_OFF.

=t bl =_OFF

a0
¢l B - 3Bt il el o lFhae F

ls™ R A TR}
cn tnot 261y detml Groz Cwhen dauCHD dben 300 dofault 20

Srable OH

Figure 6.6: ThermostatAutomaton

Note that the inputs of the selector are identical (except for the
type) to the outputs of the characterizer and the outputs of the selec-
tor suit well to the inputs of the plant. Nevertheless, after modeling
there is still a need to link the selector and the SIMULINK part to-
gether. Such a work depends on how the selector is activated.

6.1.3 Periodic synchronous selector activations

In order to execute a model, the main function of the SIMULINK main
file, i.e., grt main.c, runs an infinite loop such as :

while true{
OneStep_Simulink_model;

}

So, to implement protocol 1, it is just needed to add the iteration
function of the SIGNAL part of the controller in the loop as below:

while trueq{
OneStep_Simulink_model;
OneStep_Signal_controller;

}

The main function of the grt_main. c file of the thermostat appli-
cation modified according to Protocol 1 is showen in appendix B.2.1.
6.1.4 Aperiodic synchronous selector activations

For the aperiodic synchronous selector activations, the main loop
becomes:

49

while true{
OneStep_Simulink_model;

if "wake_up" { OneStep_Signal_controller;}
}

The “wake_up” should be produced only if any 7; occures. So,
such “wake_up” can be expressed by means of tests upon the 7; as
follow:

if (3r; | 7,=1) OneStep_Signal_controller;

The main function of the grt main. c file of the thermostat appli-
cation modified according to Protocol 2 is showed in appendix B.2.2.

After compiling and running the model defined above, it is pos-
sible to see the traces. In this way, Figure 6.7 shows the temperature
z moving between the values 25 and 26. The vertical lines indicate
when the signals tau_OF F' and tau-ON equal 1, but in order to dif-
ferentiate at the time of displaying, tau_ OF F has been multiplyed
by 20 and tau-ON by 25.

L L L L L L
a 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 6.7: Temperature traces

The result is the same with the two protocols 1 and 2. Since the
selector is assumed to have a negligible time of computation, it makes
no difference which protocol among the protocols 1 and 2 is used in
the application. However, considering the real time of computation,
protocol 2 seems more accurate.

50

6.2 Asynchronous selector activations

6.2.1 SIMULINK modeling

The main changes resulting from the asynchronous model are in the
SIMULINK modeling. Indeed, one needs to create a multi-rate mo-
del in order to use multi-threading or pseudo multi-threading with
SIMULINK, because threads are associated with sub-systems with the
same sampling rate, see Chapter 7 of Real-Time Workshop User’s
Guide[Mat97a).

The idea for simulating the wanted multi-threading, i.e., a thread for
the SIGNAL part and others for the continuous sub-systems parts, is
the folowing:

e set an activation clock for the SIGNAL part thanks to a tick ge-
nerator whose its sampled rate is arbitrary fixed, as illustrated
in Figure 6.8.

e fix sampled rate for the characterizer as illustrated in Figure
6.9

Memory1
[f——r " e}
Constant Ralatianal Unit Del
Zaro-Ordar Opsratort il Relational Tek
Hokl[Ts=131) . Oparatar?

Meman2

Figure 6.8: SIMULINK generator of the clock of the selector

Erabie OFF = oFF —>

Enabls_OFF & _OFF

» | > (Te=5)
Zawo-Ordsr
Erabie_ON Hol(T=5) [7] S—
Enabls_ON e 0N
Unit Delay2
(T=5)
Plant Characterizer
4 &D)]
x
3

Sebctor clock
(Te=50)

Figure 6.9: SIMULINK part of the thermostat for Protocol 3

6.2.2 SIGNAL modeling

Section 5.2.3 explains why the edge detectors have to be in the
SIGNAL part when the selector activations are asynchronous with the

ol

events from the characterizer. Figure 6.10 shows the SIGNAL model
of the thermostat with the two edge detector process (Figure 6.11)
and the automaton (selector) process. This automaton is exactly the
same as in section 6.1. Moreover, note that an external input H, i.e.,
a clock activation, takes place of the synchronizer process of Figure
6.6.

(PR

\Enazle_0F
Ay 0FF |

D Lwcbar

Deon

2 M b rgrnnstah manatrn

- I
Seqedmteckse) e
*

il fenaaie e

nnnnnnnnn

Figure 6.10: SIGNAL selector for Protocol 3

Figure 6.11: SIGNAL edge detector

6.2.3 Linking

To link the two models above, it is enough to implement the following
loop :

while true{

OneStep_Simulink_model;

if Tick { OneStep_Signal_controller;}
}

Of course, here the selector is not really embedded in a thread (or
pseudo-thread) since only the tick generator is embedded in a thread
(or pseudo-thread). However, it is not a problem if the selector com-
putes in negligible time.

After compiling and running the model defined above, it is pos-
sible to see the traces. Figure 6.12 shows the temperature x, which
should move between the values 25 and 26, moves over these bounds.
The vertical lines going up the value 5 indicate the Ticks of the se-
lector. The vertical rectangles indicate when the signals e OF F and

52

e-ON equal 1, but in order to differentiate at the time of displaying,
e_OF'F has been multiplied by 20 and e_.ON by 25. Furthermore, the
left edge of these rectangles indicates the moment where the signals
e-OFF and e_.ON are emitted for the first time. The very moment
of the discrete transition is on the Tick taking place between the left
and the right edges of these rectangles.The delay between the edges
and the Ticks are due to the difference of the frequencies of the selec-
tor and of the characterizer. So the larger the rectangle is the longer
the delay between the event and the discrete transition is and the
more the temperature moves over the bounds.

This protocol seems worse than protocol 1 or 2, however it remains
interesting to study because it is like distributed simulation.

]

L

[3} 200 400 800 8m 1000 1200 1400 1600 1800 2000

Figure 6.12: Temperature traces with the Protocol 3

It should be possible to find other means to implement each of
the three protocols. Especially for the third, it should be interesting
to implement it on top of a real-time kernel which deals with true
multi-threading and really embedded the selector in a thread. A
good thing will be to build a real-time multi-threaded SIGNAL system
which allows to simulate hybrid systems with SIMULINK or other tools
dealing with differential equations.

Part 111

Summarizing application

53

Chapter 7

The siphon pump machine

There are two kinds of discrete dynamic change in a plant. On the
one hand there are those which are the consequence of discrete con-
trollers interacting explicitly via binary actuators such as hydraulic
shunt valves, or mechanical clutches, electrical relays; see e.g. the
thermostat example. On the other hand there are discrete dynamic
changes which are due to internally controlled discrete devices such
as diodes, free wheeling devices or hydraulic check valves. So it is
interesting to see how it is possible to simulate with the methods
proposed in chapter 6 a system having both explicit control and in-
ternal mode change. The case study presented here provides to such
a system. Indeed the siphon pump machine contains hydraulic shunt
valves and hydraulic check valves. This example is modeled carefully
in order to obtain a simulation as realistic as possible.

56

7.1 Historical background

Figure 7.1: Gabriel
Polhem’s model of
the siphon pump ma-
chine, copied from
[Lin51, Str94]

The siphon pump machine was proposed
in 1697 by the Swedish engineer Christofer
Polhem (1661-1751). The pre- and post—
history of the pump machine is covered in
[Lin51] in Swedish. More recently, Jan-
Erik Stromberg has used the Polhem’s si-
phon pump machine to illustrate his thesis
[Str94] and several parts of papers [SNT94,
SST94, SNTT96] which I use in this section
verbatim.

The siphon machine was designed to re-
place the contemporary, quite complex
mechanical devices for draining the copper
mines in Falun (Sweden). The main fea-
ture was that it contained almost no mov-
able parts and especially it did not contain
the normally indispensable water-wheel.
Hence, the maintenance cost was so con-
siderably reduced that Christofer Polhem
offered Bergskollegium'® to personally take
care of all the maintenance at a ’modest’
yearly cost.

However, Polhem’s proposal was rejected
by the Bergskollegium because his pump
seems too good to be true and he refused to
reveal any of the details before he was con-
tracted for the project. There is maybe an-
other reason, it seems also that Christofer
Polhem was “quite greedy” and his “mo-
dest” payment, he had in mind for the main-
tenance, just happened to slightly exceed
the cost of maintaining the old pumps.
Near 1727, the idea of Polhem’s pump even-
tually reached the prospectors of the Harz
mines in

Klausthal (Germany). After some negotia-

tion with Christofer Polhem, it was finally decided that a small-scale
model (Figure 7.1 taken from [Lin51]) of the siphon machine was to
be built. This model was in fact finished by Polhem’s son Gabriel and
delivered to prospectors of the Harz in 1747. In Jan-Erik Stromberg’s
opinion, it is not likely that a full scale version of Polhem’s invention
was ever built, though a machine based on similar principles was later

used in Klausthal.

!The Bergskollegium is the Board of Mining and Metallurgical Industries

o7

7.2 Principles of operation

7.2.1 The pump description

The informal abstraction of the pump of the Figure 7.2 shows the
pump machine consists of a hydraulic system and a separate pneu-
matic supply system.

Hydranlic systems Elevated lake
...................... {pressure source)

Ground level sump ‘

| Preumatic system

| — Closed vessel

Open container

Secton 1 {mine level swmnp)

Figure 7.2: An informal model of the siphon pump machine copied
from [Str94]

The hydraulic system

The hydraulic system consists of a mounted cascade of elementary
sections where a section consists of one open container connected
on its top with a closed container by a check valve. Actually closed
container is pressure vessel, such vessel is also connected on its top by
a check valve with the open containers of the next section. The check
valves are directed in such a way that the water will flow upward only.
Figure 7.2 shows only two such sections. The bottom open container
is an abstraction of the sump at the bottom of the mine and the top
open container is an abstraction of the drained ground level sump.

o8

The pneumatic supply system

The pneumatic supply system is depicted to the right and to the top
of the hydraulic part of the diagram and consists of

e an air-compressing vessel,
e a three-way valve (i.e., discrete shunt valve),

e an elevated lake supplying near constant over-pressure.

7.2.2 Working principles

The purpose of the pump is to lift the water flowing into the sump
at the bottom of the mine to the drained ground level sump. This
pump works in a two-phase (pull and push) manner as follows.

The pull phase

In the pull phase, the pressure vessels are de-pressurized by opening
the shunt valve to drain the air-compressing vessel at the ground
level. Now the water will be lifted from all the open containers to the
pressure vessels next above. Hence, as a result of this first phase, all
the pressure vessels will be water filled.

The push phase

In the pull phase, the pressure vessels are pressurized by opening the
shunt valve to fill the air-compressing vessel from the elevated lake.
Now all the pressure vessels will be emptied via the connections to the
open containers next above. Hence, as a result of this second phase,
all the open containers will again be filled with water. However, the
water has now been shifted up-wards half a section.

By repeating these two phases the water is sequentially lifted to
the ground level.

Figure 7.3 depicts a fraction of the siphon pump machine. The
water entering the bottom container (flow ¢p) is lifted to the top
container by lowering and raising the pneumatic pressure p. in the
closed vessel. Due to the check valves, the water is forced to move
upwards only. The reason why more than three containers and vessels
are needed in practice, is that the vertical distance between any pair
of vessel and container is strictly less than 10 meters since water can
be lifted no higher than =~ 10 meters by means of the atmospheric
pressure (= 1 bar).

99

Pneumatic
,,,,,,,,,,,,, pipe
@I?, P+
&
{% ﬂ\ q23

..... AN

Check Discrete
valve — —— QV ¢ q2 P~ shunt
q

valve

Hydraulic
pipe

Figure 7.3: A fraction of the siphon pump machine copied from
[Str94]

60

Chapter 8

The pump modeling

In order to provide as genuine parameter values as possible, and for
the sake of validation, the model of the pump described in this chap-
ter is a ”scaled pump”, i.e. a model of the real pump down-sized a
factor ten or so. The size of this suggested pump almost coincides
with the size of the model built in 1727 by Gabriel Polhem (son of
Christofer). Naturally the model built by Gabriel was not a mathe-
matical model but a three dimensional physical model built in wood,
steel and copper, see Figure 7.1.

The first step, in order to build a simulator with SIGNAL and
SIMULINK of a system, is to build a mathematical model of this sys-
tem and to gather the parameter values. Then it should be already
possible to model the plant with SIMULINK. The second step is to
choose a strategy for controlling the system and then build the con-
troller according to the strategy chosen and also according to the
protocol of selector activation wanted. Concerning the pump, the
mathematical model, the setting of the parameter values as well as
a naive controller have been given by Jan-Erik Stromberg and this
work is reported in Appendix C.

This chapter 8 shows the architecture of a simulator built from
Jan-Erik Stromberg’s mathematical specification of the pump. Note
that only a fraction of the pump (which is illustrated in Figure 7.3)
is modeled here and not the whole pump with the pneumatic sys-
tem. Moreover, the model presented here has been made by means
of protocol 2 provided in chapter 5.

8.1 The hybrid system architecture
of the pump

After having the mathematical specification of the pump, it is possible
to represent the simulator by means of the architecture presented in
section 5.1.1. Then the architecture obtained in this way is such as
the diagram of the Figure 8.1.

62

At the highest level, the pump has the external flow q; [m?/s]
entering container 1 as input and the external flow g3 leaving the
container 3 as output.

The flow g; entering container 1 is determined by the environment
(ground water entering the mine cannot be controlled but is defined
by mother nature). Hence ¢y is a disturbance signal.

At a lower level, the pump is modeled with a plant, an effector, a
characterizer and a selector. Obviously, the selector acts on the pneu-
matic pressure in container 2, i.e, p. [Pa]. Then the effector provides
from p, and from the gravity induced hydraulic pressure due to accu-
mulated water in containers (pl, p2 and p3) the net driving pressure
of the vertical pipes (p12 and po3). Hence, in addition to ¢, the plant
uses p12 and pog to calculate the output flow gs.

In order to stimulate the selector, the characterizer “watches” con-
tinuously the water level depth of the container (z1, z2 and z3) and
sends event 7 to the characterizer when it is necessary.

P

Plant (physical environment)

A
p12 | P23 p1 | P2 |P3 T T2 T3
r~ 1" 1" Yy Y " ~"~—° YO Y Y " "7
| |
! Effector Characterizer| |
| |
: A I I I :
I | Pe | KR R K I
| | Y Vv v |
| . |
| Selector (purely discrete part) |
| |
| |
| |
| |
| |

Controller

Figure 8.1: General hybrid system architecture of the pump

8.2 The plant

The plant, i.e. the physical environment is depicted in Figure 8.2. It
contains mainly two check valve systems. Each check valve system is a
hybrid system. Indeed, the water flow through a check valve behaves
differently according to the mode of the latter. In the checked mode
the water flow is null and in the cracked mode the water flow follows
a differential equation.

Hence, the check valve can be also modeled using both SIMULINK and

63

Check valve system

P12

Checked

G23 =0

I
|
P23 | [
I
I
I
I
I

q12 q23

q3

a Rest of the plant

P11 |P2 |P3 z1 |T2 |T3

Figure 8.2: The architecture of the plant

SIGNAL. The discrete mode selector is modeled in SIGNAL and the
rest in SIMULINK.

The check valve

2
Enabls_m1_cracked

Pl

Product q"

e_m_cracked|

e

(D,

Py

s_mi_crached

mi_crached

3
Enable_m1_checksd l

n

Lalal &_m_checked| —p@
&_m1_checked

mi_chachsd

Figure 8.3: SIMULINK block diagram of the check valve m1

The principle of the check valve m is similar to the thermostat ex-
ample since they have both two discrete states. However, though it
is possible to separate the characterizer part from the “plant” part
of the check valve, in Figure 8.3 the characterizer is embedded in the
sub-system (m1_cracked and m2_cracked).

64

Concerning the SIGNAL part, the Figure 8.4 shows that the selec-
tor of the check valve is the same as the selector of the thermostat
example, only the identifiers change.

bz cheded

Figure 8.4: SIGNAL selector of a check valve

The SIMULINK block diagram of the plant

Once the check valve part is done, the plant can be completely mo-
deled such as in the SIMULINK block diagram of the plant (Figure
8.5). Note that all inputs and outputs which were present in Figure
8.2 are also present in the SIMULINK block diagram. Moreover, this
last has also some inputs and outputs in order to allow the mode
switching of the check valves by the external SIGNAL check valve se-
lector. The SIMULINK block diagram of the plant has also ¢72 and
g23 as outputs in order to display their trajectories after running the
simulation.

(&) qi2
qi
92 H[= heighl of contaners 1 :m
mz qtz, —»(a)
u E
P2 Ly H H
" iy
o » I 2
3 B o “ J
= NG
P23)
P2 a
N J
Eraibie_m_cmched s - x3 > @‘
Ersable_rml _cracked a1 P
* Valume=TaDepte > = { 22)]
[=
VoluTes calcuus > NGD)
b a
Enahle_m1_checked Erable_rmi_chacked o = I%
.
L &)
i calouus
»{ 8
Emtke_mz_cracked o_m2_cracked) a3
Enabie_m@_pracked
>
&, » i _cracked
Ensble_rmd_checked Erable_me_checked o »)
e_mi_checked
Check alves
{11
&_mi_pracked
» (72
e _checked

Figure 8.5: SIMULINK block diagram of the plant of the pump

65

8.3 The control strategy

Finding a safe and optimal controller is far from easy. One of the more
important requirements is the following. It is important to minimize
the number of switches of the value of p.. Changing p. from +50kPa
to —50kPa and vice versa results in a significant amount of energy
loss. One solution is to maintain p. constant over as long periods as
possible.

Another important requirement is to maximize the output flow g3
without risking that z; will end up outside the safe interval defined.
Especially under all possible disturbances (g1).

The naive controller proposed by Jan-Erik Stromberg in appendix
C.3 can be depicted by the automaton of Figure 8.6. Note Jan-Erik
Stromberg was aware of this is not a robust controller.

(22 cross his max bound)

(21 cross his max bound) OR (21 cross his min bound)
/T\ /T\

Push

P. =50 kPa

es
(23 cross his max bound)

OR (22 cross his min bound)

Figure 8.6: Automaton of the control strategy of the selector

The principle of this controller can be informally described as
follows.

1. First of all, the first discrete state, i.e., the Idle state, is the
initialization state. At the beginning the tree containers are
empty. So it is necessary first to let the bottom containers fill.
This is what is done in the Idle state.

2. When the first container is full enough, an event is broadcast
by a level sensor (which is simulated by the characterizer) and
the pump moves from the Idle state to the Pull state.

3. In the Pull state, container 2, i.e., the pressure vessel, is de-
pressurized. Hence container 2 fills from the container 1. Note
that container 1 is continuously filled by the input flow ¢; which
is uncontrollable. So the water level of container 1 moves ac-
cording to the input flow ¢; and the flow ¢12 in the pipe between
the two containers 1 and 2. When both are possible the level
of container 1 either rises or falls.

66

4. If the water level of container 1 moves down until a given mi-

nimum threshold (detected by a sensor) or if the water level of
container 2 is high enough then the pump moves from the Pull
state to the Push state.

. In the Push state, container 2 is pressurized. Hence container 2

stops filling from container 1 and fills container 3. So, container
1 continues to fill according to the flow g; and container 3 fills
according to the flow go3 (in the pipe between the two containers
2 and 3) and the output flow g3. And of course container 2 is
emptied.

. Finally, if the water level of container 2 reaches its minimum

threshold or if the water level of container 3 is high enough then
the pump comes back from the Push state to the Pull state.
Thus, the loop is closed.

The above automaton gives which events lead to discrete state

transitions of the selector and how these events are deduced. Hence
it is easy to model a characterizer which watches the different wa-
ter levels and provides the suitable events. Such a characterizer is
depicted in Figure 8.7.

il

51:! 7| g
F
Y
A
G

X nt (1)
Chl

@ -
=2 +
[: LD—» ->)
%3 [hs Oparator [D; > =
b Sur
2 > ‘:] @
_Lb a Sumi e
g 3
=2
Cogical —»
& Operatar! >
Product! Sumz e
Threshoke 2 ssmcioe?
i shouk ba maintained in tha interval [a,b] far all cantainer |5 —-
i zerociossixi-b) then s1= 1sks s1=0 >
the
Sum3

i zrocrossfa-x1)ar zerocross(x2-b) then e2= 1sks 2= 0
i zeracrossia-x2) or zmrocross(xa-b) thens3= 1sk=ad=0 P

whera

2srercss(x) = (=0 and x>0) 'D_> D)

H = haight of ihe containers G e
®3 Sum4

a=ka'H and b= kb"H p—

F
g
H

H

£

bl
g
o

(a) The characterizer (b) The SIMULINK block
diagram which simulates
the sensors

Figure 8.7: SIMULINK block diagram of the characterizer of the pump

In the same way the effector is depicted in Figure 8.8.

67

pl
B
>
> D
L piz
Sum
G 10000
pe
P2 P
B
>
> 2
> =
Sum1

c = controlled pneumatic pressurs incontainer 2 [Pa];
pi ({1,231 = gravity inducsd hydraulic prassurs dus o accumuiated water in continer i [Pa]
p= gravily induced hydraulic pressurs dus to water in vertical pips, p= 10kPa;

P12 = net driving pressurs of veriical pipe 1-2 [Pa], p12= p1-p2-p-pc;

[23 = net diiving precsurs of vertcal pipe 5.3 Pal 523 = p3_p3 ppc:

Figure 8.8: SIMULINK block diagram of the effector of the pump

Once the plant, the characterizer and the selector are built, all
these components should be linked together such as in the Figure 8.9.

(€D
e
>
gl
[Qutt 1
> e @b
edge detector! tan
L] outt g
(D—Lb Enable_rmi_sracked x =dge detector2 e
Enable_m1_crackse - =
pH = D
" edge dekctors mus
@—L} Enable_m1_rhached Chamcterzer
Erable_m1_checked D)
nable_m1_c " T
g3
|
a_m P hi autt @
Enable_m2_sracked ecke detectord tau_ml _cracked
Enable_m2_cracked et shackad - o
2 detectors taw_mi _checked
- st ———pfo a5
Enable_m2_cheched adge detectons tau_me_cracked
e — ™
‘adge detector? tau_mz_checked
] w00
a1 23
Uniizrm Random m q12
q P qz

Figure 8.9: SIMULINK block diagram of the whole pump

The last thing to do to conclude modeling of the pump, is to
implement the controller automaton with SIGNAL, see Figure 8.10.
Instead of having an automaton with two states as the selector of the
check valves, here there is three states. Moreover the output of the
selector is now the pressure p. which is an integer. There is also a
second output (event_pc) which is a SIGNAL event emitted when a
discrete transition occurs. This variable is used by the main function
of the grt_main.c to update the input pc of the Effector only when

68

discrete state of the selector changes.

ul = Leul tvoax

41 inik 0.8

\3 uhea taul whea EEE.00 detollT G0 den
UL RGN LESELIUN QE-ELIT LLLW Jren TEUZ ACeh

ulizt IEELE0 defal | C-TODEED A oen G-
2 d=fault (SO woen (O=2,000
e

B leui} .
<l 5 "= la
e
Fe) laul a- den 3laul |
sz |, Eotauz |, | au2 i= den I tau2
d | tauZ a- dben 2tauz

O +aud | B_tacl "= B_tal Tz E_ta?

........ S .
| cuet_p
|as 5, %

Oob=ud

Figure 8.10: SIGNAL selector of the pump

Fuent_pr

d

b

Once the model of the pump is built, it remains just to experiment
with it. This part of the work is dealt with in the next chapter.

Chapter 9

The pump simulation

It was a priori known that the naive controller is not robust. This
chapter illustrates this fact by simulations of the pump with different
constant values for the input flow ¢;. Indeed, simulations of the pump
show two kinds of behavior. If the flow ¢; is too large then container
1 overflows. If the flow g; is too weak then the switches of the value
of p. happens faster and faster.

9.1 Overflow

Figure 9.1 shows traces of the input flow g1, the flows in the pipes
q12 and ¢o3, and the output flow g3 while a simulation where ¢; is
constant and equals 2.10 ¢ m3/s. These flow traces do not show a
bad behavior. Indeed they show at the first step (the Idle state) the
flow g12 in the pipe between containers 1 and 2 and the flow in the
pipe g23 between containers 2 and 3 are null. Then after a while, the
system moves from the Idle state to the Pull state and ¢ is positive
and ¢o3 is still null until the system moves from the Pull state to the
Push state. In the Push state ¢o3 is positive and g3 becomes null
and the output flow g3 becomes also positive since container 3 is fil-
ling. In the step following, the system moves from the Push state to
the Pull state. Then ¢;2 becomes positive and g23 becomes null so g3
decreases because container 3 empties. Then the switching between
Push state and Pull state goes on.

Such behavior of the pump seems correct, however the observation
of only the flows in the different pipes is not sufficient to say this
pump behaves well. Indeed it needs also to watch the water levels in
each container to check whether there is overflow. Figure 9.2 shows
such traces. The water level of the ith container is denoted by z;.
The height H of the containers is equal to 0.1 m. The upper sensors
are situated at 0.075m from the bottom of the container. The lower
sensors are situated at 0.005m from the bottom of the container.
At the beginning of the simulation, i.e., at time ¢ = 0, the water
level in container 1 is 0.02m and all the other containers are empty.

70

Flow /]
&

o 100 200 200 500 800 700 00

400
Time [s]

Figure 9.1: Water flows of the system with ¢; = 2.10 % m?/s

Note the fact that container 1 being not empty changes nothing at the
simulation since in the Idle state) container 1 fills. What is important
in these traces is that around ¢ = 350 s container 1 overflows since
z1 reaches the value of H. Because water was not lifted fast enough
against the input water flow ¢;. The controller is not to blame, since
overflow is due to g; which is uncontrollable. Moreover, overflow is
easily detectable. So it should be interesting to find in witch domain
of ¢, the pump can work without problems. However, the next
section shows that even if there is no overflow, the controller has a
bad behavior.

e

s o e
5 B B

)
8

Water level [m]
. o
&

o
2

-
e

L . L i L i
] 100 200 300 400 =00 600 700 a00
Tims [s]

Figure 9.2: Water levels of the system with ¢; = 2.107%m?3/s

9.2 Explosion of switches

A new simulation has been done with ¢g; constant and equal to

1.10 *m3/s. Figure 9.3 shows that the output flow g3 after a while
tends towards the ¢; value. That sounds good. However if we examine
the other flows in Figure 9.4 or the water levels in Figure 9.5 it appears
obviously that the switches between Pull state and Push state are

Figure 9.4:

in

Flow [m*/s]

1
[
| \|\
I|||\I|
I\I‘I“u'h
Il !
|

|hﬁ"'\

200

f

1000

1200

L
200

600
Time []

Water flows of the system with ¢; = 1.1076m3/s

faster and faster. Recall that one of the important requirements was

8.3).

to minimize the number of switches of the value of p., (see the section

The intention of this study was not to find an optimal controller.
The first goal was to show that it is possible to build a realistic
simulator of a fairly complicated physical model with the method
proposed in the preceding chapters. The second goal was to show
that hybrid system behavior is not easy to understand and to foresee.
So the simulation of such systems is very good to show and analyze

their behaviors.

71

72

008

0.07

Q.08

o o
2]

Watsr level [m]

o
&

Lls-)

Figure 9.5: Water levels of the system with ¢ = 1.107%m3/s

60
Time [g]

74

Conclusion

Report summary: Thisreport has presented hybrid systems which
are systems consisting of a mixture of discrete and continuous com-
ponents, such as a discrete controller that controls a physical envi-
ronment. It showed how such systems can be mathematically repre-
sented, modeled and simulated. Mainly, it dealt with the co-modeling
and the co-simulation with SIGNAL and SIMULINK. Several methods
have been proposed and examined, namely:

e embed SIMULINK update functions into the SIGNAL generated
stand-alone program.

e embed SIGNAL update functions into the SIMULINK generated
stand-alone program.

The second method has been kept because the MATLAB stand-alone
program easily deals with concurrent components.

In order to ease the building of a hybrid system simulator, a
simulator architecture was proposed where the SIMULINK part and
the SIGNAL part are well defined. In this architecture the continuous
environment is called the Plant and the purely discrete component is
called the Selector. Then three protocols for the selector activation
have been proposed, namely:

1. Periodic synchronous selector activations. The selector clock
corresponds to the sample rate of the SIMULINK part. Hence
the selector is activated for nothing most of the time.

2. Aperiodic synchronous selector activations. It is an improve-
ment of the first one since the selector is activated only if it is
necessary.

3. Asynchronous selector activations. The activation clock of the
selector is asynchronous with any of the continuous components
of the plant.

For each protocol an implementation method was proposed and illus-
trated with a simple example.

Finally, the non-trivial modeling example of the pump provided
by “the father of Swedish engineers”, Christofer Polhem, illustrated

76

our modeling method with protocol 2 (i.e., aperiodic synchronous se-
lector activations). Here, we have added a naive controller and shown
how co-simulation points out some deficiencies of the controller.

Although this report provides already a continuous environment
for SIGNAL controller simulation, this is only a beginning for the
hybrid system co-simulation with SIGNAL and SIMULINK. There re-
mains a lot of ways to explore and works to do.

Future work: The example of the pump showed that the model-
ing of a hybrid system is a hard work. The sources of mistakes are
numerous. They can occur:

e in the physical specification,

e in the SIMULINK modeling,

e in the SIGNAL modeling,

e in the interaction between the SIMULINK and SIGNAL parts.

So it should be useful to have some tools to minimize the risk of
mistakes. For example such tool could support the building of the
SIMULINK and SIGNAL models, as well as the link.

Though an implementation method for protocol 3 exists, this way
has not been explored fully. For example, protocol 3 should lead to a
real multi-tasking implementation instead of a pseudo multi-tasking.
Moreover, it should be interesting to see how the Polhem’s pump
modeled with this protocol behaves. It is likely that the switching
explosion would be avoided if since the switches can not be faster
than the selector activation clock. Hence, one can wonder how the
selector activation clock affects the whole hybrid system.

Using SIGNAL with SIMULINK to model complex hybrid systems
seems a good idea since SIGNAL is very efficient to model complex
discrete behaviors and SIMULINK is well-suited to deal with complex
continuous dynamics, this is the direction explored in this report.
However, the methods presented here do not yet fully exploit the
power of SIGNAL; since the selectors were very simple, even in the
non-trivial example of the pump. Indeed, when an event is reco-
gnized by the selector, the selector runs only one step. Whereas a
complex selector would run several discrete steps until a steady state
is reached.

In [LMNT99], a reactive rule-based system is defined as system
that reacts to the changes of its environment continuously. Such sys-
tem is composed of three entities called state, rules and inference
engine. When a stimulus comes from the environment (such a mo-
ment is called an asynchronous computational point (ACP)) one or
more rules are triggered, producing new changes in the states, which

7

in turn trigger other rules, and so on. This is continued until no
changes are possible, i.e, a steady state is reached. Then the system
starts “resting” in its new equilibrium period, awaiting new stimuli.
The inference engine is in charge of the computations at the ACPs.
So, a possible future work is to allow the simulation of complex hy-
brid systems by extending the proposed methods to take account of
the inference engine defined above.

Appendix A

Using SIMULINK procedure
calls

A.1 The C main program of the SIGNAL con-
troller of the thermostat

The thermostat. c file is the main file of the thermostat application,
it has been written to replace

thermostat main.c which is automatically generated by the pro-
gram SIGNAL (figure 4.2). The thermostat. c file contains four new
functions:

e call OFF is used to call the SIMULINK model OFF, actually it
calls the function sim OFF provided by compiling the SIMULINK
model OFF. Just after sim OFF ends its running, the global
variable stop_OFF take the value 1, then call OFF finishes.

e call ON is used like call_OFF but for the SIMULINK model ON.

e stop_event_OFF is used to check if the global variable stop_OFF
has moved to 1 since the last call of stop_event OFF. If yes,
an event x_eq-inf is broadcast from the box containing the
stop_event_OFF.

e stop_event 0N is used like stop_event _OFF but for the SIMULINK
model ON.

This is the thermostat.c file:

#include "thermostat_types.h"
#include "thermostat_externals.h"
#include "thermostat_body.h"
extern void thermostat_OpenIO0();
extern void thermostat_CloseI0();

logical stop_OFF = 1; /* initialisation */
logical stop_ON = O;

80

extern void call_OFF(logical start){
int i;
i=sim_OFF(); /* call the simulink model OFF%*/
stop_OFF = 1;

}

logical stop_event_0FF(logical H){
logical stop=stop_OFF;

stop_OFF = 0;

return stop;

}

extern void call_ON(logical start){
int i;
i=sim_ON(); /* call the simulink model ONx*/
stop_ON = 1;

}

logical stop_event_0ON(logical H){
logical stop=stop_ON;

stop_ON = 0;

return stop;

}

extern int main()
{ int i;
logical code;
code = thermostat_initialize();
/* to run 10 steps of SIGNALx*/
for (i=1; i<10; i+=1) thermostat_iterate_Black_Box(1);

Appendix B

Using global variable
passing

B.1 The SIGNAL part

To link C code obtained from the SIGNAL model with the C code from
the RTW, it is necessary after compiling the model SIGNAL with the
compiler to do the following actions.

e inhibit the <ModelSignal>_iterate() function
from the <ModelSignal> body.c file since it is
the <ModelSignal>_iterate Black Box() which will be use in-
stead.

e inhibit the call to <ModelSignal>_iterate() function from the
<ModelSignal> main.c file.

e use the command make -f <Makefile> in order to build the
<ModelSignal> body.o which will be linked latter to
the SIMULINK grt_main.c file.

B.1.1 The Thermostat_body.c file

#include "Thermostat_types.h"
#include "Thermostat_externals.h"
static logical H_15_H;

/* ==> parameters and indexes */

/* ==> input signals */

static logical B_tau_OFF, B_tau_ON;
/* ==> output signals */

static logical Enable_OFF, Enable_ON;
/* ==> local signals */

static logical S, ZS;

static logical XZX_40;

static logical XZX_60, XZX_66, BCLOCK_XZX, XZX_72, XZX_88;

EXTERN logical Thermostat_initialize()

82

{
ZS = FALSE;
XZX_40 = TRUE;
H_15_H = TRUE;
return TRUE;

}

EXTERN void Thermostat_iterate_Black_Box(
logical _B_tau_OFF_, logical _B_tau_ON_,
logical *_Enable OFF_, logical *_Enable_0ON_)

{
B_tau_0FF = _B_tau_0FF_;
B_tau_ON = _B_tau_ON_;
XZX_60 = !'ZS;
XZX_66 = B_tau_OFF && XZX_60;
BCLOCK_XZX = B_tau_ON && ZS;
XZX_72 = BCLOCK_XZX || XZX_66;
XZX_88 = 'XZX_72;
if (XZX_66)
S = TRUE;
else if (BCLOCK_XZX)
S = FALSE;
else
S = ZS;
Enable_OFF = !S;
Enable_ON = S;
*_Enable_OFF_ = Enable_0FF;
*_Enable_ON_ = Enable_0N;
ZS = S;
}

B.1.2 The Thermostat_main.c file

#include "Thermostat_types.h"
#include "Thermostat_externals.h"
#include "Thermostat_body.h"
extern void Thermostat_0penI0();
extern void Thermostat_CloseI0();

extern int main()
{
logical code;
Thermostat_0penI0();
code = Thermostat_initialize();
/* while(code)code = Thermostat_iterate() ;*/
Thermostat_CloseI0();

83

B.2 The grtmain.c file

To implement the hybrid system simulator with SIGNAL and SIMULINK
see section 4.2, the SIMULINK main file, i.e., grt_main.c file, can be
used as a starting point.

Next, the following elements have to be added at the appropriate
places:

e include SIGNAL header files

e include <ModelSimulink>.h to allow the use of the rtU and
rtY types

e extern logical <ModelSignal>_initialize();
e extern void <ModelSignal> iterate Black Box(...);

e extern ExternalQutputs rtY; to allow the use of the rtY
variable

e extern ExternalInputs rtU; to allow the use of the rtU vari-
able

One needs to initialize the SIGNAL automaton in the main func-
tion before the Md1Start () call. The SIGNAL automaton initializa-
tion is made in two steps:
<ModelSignal>_initialize() is called in the first step and
the <ModelSignal>_iterate Black Box(...) iscalled with required
inputs in the second step.

After that, the use of the <ModelSignal>_ iterate Black Box(...)
function depends on whether automaton activations are periodic, ape-
riodic or asynchronous.

B.2.1 Periodic synchronous selector activations

This is the main function of the grt_main. c file modified according to
the Protocol 1: This file has been renamed therm protl_grt main.c.

int_T main(int_T argc, char_T *argv[])

{
SimStruct *S;
const char *status;

char_T str2[2];

real_T finaltime = 0.0;

int_T port = 17725;

double tmpDouble;

logical code; /*1 1%/
logical enable_OFF; YEIRETS

logical enable_ON; YEIREYS

84

/3K k sk sk ook ko o o ok ok o
* Parse arguments *
sk o koo ok o s sk ok ko o ko ok /

/************************

* Initialize the model *
************************/

rt_InitInfAndNaN(sizeof (real_T));

/* Initialize the Thermostat automaton */
code = Thermostat_initialize();
Thermostat_iterate_Black_Box(1,0,

&enable_0OFF,&enable_0ON) ;
if (enable_OFF == || enable_ON == 1){
rtU.root_Enable OFF = (real_T)enable_OFF;
rtU.root_Enable_ON = (real_T)enable_ON;
}

MdlStart () ;

START(S) ;

if (ssGetErrorStatus(S) !'= NULL) {
GBLbuf .stopExecutionFlag = 1;

}

/3% 3k ok e sk ok ok ok s ok ok ok sk Kk ok ok sk Kk ok 3k s ok ok ok ok o ok ok ok
* Execute the model. *
sk ok ke ok ke ok e ok sk ok ok ok ok 3 oK 3ok sk ok sk 3 ok ok ok ok ok ke ok ok ok ok o ok s ok /

while (!GBLbuf.stopExecutionFlag &&
(ssGetTFinal(S) == 0.0 ||
ssGetTFinal (S)-ssGetT(S) >
ssGetT(S)*DBL_EPSILON)) {
rt_0OneStep(S);
if (ssGetStopRequested(S)) break;

/* thermostat automaton iteration */
Thermostat_iterate_Black_Box(
(logical)rtY.root_tau_OFF,
(logical)rtY.root_tau_ON,
&enable_OFF,&enable_0ON) ;
if (enable_OFF == 1 ||
enable_ON == 1){
rtU.root_Enable_Q0FF =
(int_T)enable_OFF;
rtU.root_Enable_ON =
(int_T)enable_ON;

/%!
/%!
/%!
/¥
/%!
/*!
/%!

/%!
/%!
/*!
/%!
/*!
/*!
/%!
/%!
/%!
/*!
/%!

%/
tx/
%/
Vx/
%/
1%/
%/

tx/
%/
Vx/
%/
1%/
1x/
%/
tx/
%/
Vx/
%/

};

VEIRETS

if (!GBLbuf.stopExecutionFlag &&
!ssGetStopRequested(S)) {
/* Execute model last time step */
rt_OneStep(S);

}

/********************

* Cleanup and exit *
sk kb s o sk ok ok ok sk sk ook ok o ke ok ok sk ok /

} /* end main */

B.2.2 Aperiodic synchronous selector activations

85

This is the main function of the grt_main. c file modified according to
the Protocol 2. This file has been renamed therm prot2_grt main.c

and differs from therm prot2_grt_main.c only in the main loop.

int_T main(int_T argc, char_T *argv[])

{

while (!GBLbuf.stopExecutionFlag &&
(ssGetTFinal(S) == 0.0 ||

ssGetTFinal (S)-ssGetT(S) >
ssGetT(S)*DBL_EPSILON)) {

rt_0OneStep(S);
if (ssGetStopRequested(S)) break;

/* if ‘‘wake_up’’ */
if ((logical)rtY.root_tau_OFF ==

| (logical)rtY.root_tau_ON == 1){

/* then thermostat automaton iteration */
Thermostat_iterate_Black_Box(

}

(logical)rtY.root_tau_OFF,
(logical)rtY.root_tau_ON,
&enable_OFF,&enable_0ON) ;

if (enable_OFF == || enable_ON == 1){

};

rtU.root_Enable_OFF =
(int_T)enable_0OFF;

rtU.root_Enable_O0ON =
(int_T)enable_ON;

/%!
/%!
/%!
/*!
/%!
/*!
/%!
/*!
/%!
/*!
/%!
/*!
/%!
/%!

1x/
%/
%/
1%/
%/
1%/
%/
1x/
%/
V*/
%/
%/
%/
%/

86

} /* end main */

B.2.3 Asynchronous selector activations

This is the main function of the grt_main. c file modified according to
the Protocol 3: This file has been renamed therm_prot3_grt main.c.

int_T main(int_T argc, char_T *argv[])

{

SimStruct *S;
const char *status;

char_T str2[2];

real_T finaltime = 0.0;
int_T port = 17725;
double tmpDouble;

logical code;
logical enable_OFF;
logical enable_ON;

/*******************

* Parse arguments *
sk ok o o o ok ok sk ok ok ok ok o sk okok /

/************************

* Initialize the model *
ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok sk ok sk ok ok ok sk ok ok /

rt_InitInfAndNaN(sizeof (real_T));

/* Initialize the Thermostat automaton */
code = Thermostat_initialize();
Thermostat_iterate_Black_Box(1,0,

1,/* The H */
&enable_OFF,
&enable_ON) ;
if (enable_OFF == || enable_ON == 1){
rtU.root_Enable_OFF = (real_T)enable_OFF;
rtU.root_Enable_ON = (real_T)enable_ON;

MdlStart();
START(S) ;
if (ssGetErrorStatus(S) !'= NULL) {

/%!
/*!
/%!

/%!
/*!
/%!
/*!
/%!
/%!
/%!
/%!
/%!

%/
1/
%/

%/
1%/
%/
1%/
%/
t*/
%/
%/
%/

87

GBLbuf . stopExecutionFlag = 1;
b

/*********************************

* Execute the model. *
*********************************/

while (!GBLbuf.stopExecutionFlag &&
(ssGetTFinal(S) == 0.0 ||
ssGetTFinal (S)-ssGetT(S) >
ssGetT(S)*DBL_EPSILON)) {
rt_OneStep(S);
if (ssGetStopRequested(S)) break;

/* test if there is a tick for the selector */ /*!!x/

if ((logical)rtY.root_Tick == 1){ VAIRE TS
/* thermostat automaton iteration */ /*1 1%/
Thermostat_iterate_Black_Box(/*11x/
(logical)rtY.root_e_OFF, /*1 1%/
(logical)rtY.root_e_ON, [V x/
1, /* =>H =1 %/ VAIRE YA
&enable_OFF,&enable_0ON) ; VAIRE Y
if (enable_OFF == || enable_ON == 1){ /*!!%x/
rtU.root_Enable_OFF = /*1 1%/
(int_T)enable_OFF; VAIREY)
rtU.root_Enable ON = /*1 1%/
(int_T)enable_0ON; VAIREY)
}; /%1 1%/
fprintf (stderr,"Selector step "); /x11x/

}

}

if (!GBLbuf.stopExecutionFlag &&
!ssGetStopRequested(S)) {
/* Execute model last time step */
rt_OneStep(S);

}

/********************

* Cleanup and exit *
sk sk ok sk e sk ok ok ok sksk sk sk sk ke sk ok kok /

} /* end main */

88

Appendix C

Specification of the
Polhem’s pump

C.1 Mathematical pump model

There are five (5) continuous dynamic state variables:
e v; = water volume accumulated in container 1 [m3]
e vy = water volume accumulated in container 2 [m3]
e v3 = water volume accumulated in container 3 [m?]
e g12 = volumetric flow from container 1 to 2 [m3/s]
e g3 = volumetric flow from container 2 to 3 [m?/s]

In addition there are two (2) discrete dynamic state variables:

e m; = mode of check valve in vertical pipe 1-2
e m9 = mode of check valve in vertical pipe 2-3

where
m; € {checked, cracked},i = 1,2;

These are the only ”true” states in the sense that the ”new” values
of the states can be computed based on external inputs and current
values of the states.

In order to define properly the external interface we need one or
two assumptions. These are our first assumptions (hopefully to be
relaxed in near future):

1. The external flow q;[m3/s] entering container 1 is determined
by the environment (ground water entering the mine cannot be
controlled but is defined by mother nature).

90

2. We have a fast pneumatic pressure controller capable of control-
ling the pneumatic pressure p.[Pa] at our will (within reasonable
bounds). Among others, the time constant of the pneumatic
controller is assumed to be a magnitude shorter than the shor-
test time constant of the hydraulic system (this assumption is
the weakest and most questionable of all assumptions made and
I do want to relax it in near future).

3. The check valves are fitted in the lower end of the vertical con-
necting tubes. The distance between the input port of the check
valve and the bottom of the container is assumed to be approx-
imately 0 m (neglected).

4. The water 34 = g3[m?/s] flowing out of container 3 is assumed
to come from a drilled draining hole in the bottom of the con-
tainer. This is assumingly a good model of what Polhem had
in mind.

5. The cracking pressure (opening pressure) and the leakage flow
of the check valves are assumed to be negligible.

6. The vertical pipes are assumed to be truly vertical and not bent
(parallel to straight lines).

7. All containers have the same physical dimensions (same cross
section area and same height).

8. All vertical pipes and check valves are of the same quality, type
and size (identical behavior).

9. The fluid levels x of the containers must never exceed the height
of the container (z > H), nor become completely empty (z < 0);
all tubes are assumed to be filled at all times.

These assumptions leads to the following observations:
1. There are only two external inputs: g1 and p..

2. Flow ¢; is best characterized as a disturbance since we have no
influence on it.

3. Pressure p,. is best characterized as our control signal since we
have full control of it.

4. Since maximized water throughput is the fundamental purpose
of the system, g3(= g34) is an appropriate external output.

Now we come to the actual computations. These can be derived
by sorting the following constitutive relations properly:

U1 = q1— q12; (C.1)
V2 = Q12 — §23; (C.2)

V3 = (o3 — q3; (C.3)

91

case my
cracked: ¢ = % (P12 — Apn)s
when <1 (—g¢i2) then my := checked;
checked: g2 = 0;
when < (p12 — Ap,,) then m; := cracked;
end case;
case mo
cracked: ¢o3 = % (P23 — Apys)s
when > (—go3) then mgy := checked;
checked: go3 = 0;
when >4 (p23 — A,,;) then my := cracked;
end case;
where

e g = external input flow to container 1 [m3/s] (external input)

e g3 = flow to the environment from container 3 [m3/s] (external
output)

e [= hydraulic inductance of vertical pipe [kg/m*] (parameter)

e p19 = net driving pressure of vertical pipe 1-2 [Pa] (derived
quantity)

e po3 = net driving pressure of vertical pipe 2-3 [Pa] (derived
quantity)

e A,, = net pressure drop due to dissipation in vertical pipe 1-2
(derived quantity)

e A,,, = net pressure drop due to dissipation in vertical pipe 2-3
(derived quantity)

e < (a) = (@ >0 and a > 0);

For all pressures introduced here and in the sequel we assume pres-
sures referred to atmospheric pressure pg[Pa]. By doing this ”trick”
we avoid adding py everywhere.

For the derived quantities we have the following;:

P12 = Pp1—P2—P — Pc;
P23 = P2 —pP3—pP+DPc;

—~ ~~
a a
(AR
~— ~—

where

e p. = controlled pneumatic pressure in container 2 [Pa] (external
input)

e p; = gravity induced hydraulic pressure due to accumulated
water in container 1 [Pa] (derived quantity)

92

e py = gravity induced hydraulic pressure due to accumulated
water in container 2 [Pa] (derived quantity)

e p3 = gravity induced hydraulic pressure due to accumulated
water in container 3 [Pa] (derived quantity)

e p = gravity induced hydraulic pressure due to water in vertical
pipe (1-2, 2-3) [Pa] (derived quantity)

For the newly introduced derived quantities we have:

P = pgT1; (C.6)
P2 = pgT; (C.7)
P3 = pg Ts3; (C.8)
p = pgl; (C.9)

where

e p = density of water [kg/m3] (parameter)

e g = acceleration of gravity [m/s?] (parameter)

e z; = water level depth of container 1 [m] (derived quantity)
e 19 = water level depth of container 2 [m] (derived quantity)
e 13 = water level depth of container 3 [m] (derived quantity)

e L = length of vertical pipe (1-2 or 2-3) [m] (parameter)

Again we can derive the new quantities:

z1 = max(min(v;/A, H),0); (C.10)
zz = max(min(ve/A, H),0); (C.11)
ze = max(min(vs/A, H),0); (C.12)

where

e A = cross section area of the containers [m?] (parameter)
e H = height of containers [m] (parameter)

e min(a,b) = a if a < b else b;

e max(a,b) = a if a > b else b;

Now we only have two remaining quantities to deal with:

Ap12 = TQ q12 |QI2|; (013)
A1123 = 7’ q23 |Q23|; (C.14)

where

93

e r = sum of hydraulic resistance in vertical pipe (1-2 or 2-3)
[V/Ns/m*] (parameter)

o |a| =aifa >0 else —a;

As for the external output we finally have:

1
q3 = — *%/ps; (C.15)

T3
where
e 73 = hydraulic resistance in draining hole in container 3 [v/Ns/m*]
(parameter)

o /a = ,/aif a >0 else —/—aq;

94

C.2 Parameter Values

And now finally for some real numbers. All physical dimensions to
follow are based on a check valve Jan-Erik Stromberg has found some
data for, namely the following:

Check valve data:

Manufacturer: The LEE Company

Type code: TKLA9501130D (125/156 MINSTAC)

Cracking pressure: 1.0k Pa (i.e. approximately negligible)

Leakage flow: 1.0 - 1078 m3/min @ 7.0 kPa (definitely
negligible)

Hydraulic resistance: 1.97 - 107 v/Ns / m?

Pipe data (1m long):

Manufacturer: The LEE Company
Type code:

Inner diameter: 2.4mm (0.095:n)
Outer diameter: 3.96 mm (0.156%n)

Hydraulic resistance: 7.12- 107 v/Ns/m*
From these parameters and an assumed pneumatic control pressure

pe € {p—,p+}; (C.16)
where

p+ = 050kPa; (C.17)

p. = —50kPa; (C.18)

a number of reasonable geometric container dimensions can be deter-
mined.

The approximate peak flow between the containers (gi2 etc.) now
become something in the order of 180 ml/min. Let us assume cylin-
drical containers. Then we have

A =nD?/4; (C.19)
where

e D = container inner diameter [m] (parameter)

Reasonable dimensions of the containers may then be

D = T5mm; (C.20)
H = 100mm; (C.21)

95

The maximal volume stored is
V =4.42-10*m® = 442 mi; (C.22)
Let us assume a vertical distance between containers of 1 m. We
then have

We are now able to compute a set of derived parameters:

_4Lp

l=— C.24
7rdz2 ()
where
e d; = pipe inner diameter [m] (parameter)
Hence
d; = 24mm; (C.25)
I = 221108 kg/m*; (C.26)
p = 10kPaq; (C.27)

For the vertical pipes we have

o= Jritr (C.28)

where
e 7, = check valve hydraulic resistance [v/Ns/m*] (parameter)

e r, = pipe hydraulic resistance [v/Ns/m*] (parameter)

Hence
ry = 1.97-10"VNs/m% (C.29)
rp = 7.12-10"VNs/m* (C.30)
r = 7.39-10"VNs/m? (C.31)

Further we may assume a draining hole in container 3 of 2.5 mm
diameter. We then have

r3 = 6.32 - 105 VNs/m*; (C.32)

Since the approximate flow between containers is 180 ml/min an
input flow can be assume such as

q1 € [50ml/min, 300 ml/min] = [8.3-107" m>/s,5.0 - 107 m3/s];
(C.33)

96

For the purpose of experimentation one may for instance assume
that ¢; is constant. But try other inputs for fun to see how the overall
behavior changes. It is likely that it will have significant influence
depending on the control strategy.

As for the global parameters the following approximations can be
used:

p = 1-10°kg/m?; (C.34)
g = 10m/s% (C.35)

97

C.3 Control strategy

And now for the pump controller.

Again, there is no obvious control law. Feel free to play around
with different versions. The goal of the system is quite obvious as
well as the qualitative behavior. One extremely simple, though in-
adequately robust (in fact, no robustness at all) control law is to os-
cillate the pressure p. between +50kPa and —50 kPa on fixed time
schedule. Try for instance a simple square wave of 0.01 Hz and 50
duty cycle. Ie. let p. = +50kPa for 50 seconds and then switch
to p. = —50kPa for 50 seconds. Repeat the cycle and see what
happens. Especially if you increase the input flow ¢;.

An important assumption made in the model is that no container
must ever be completely empty (z <= 0), nor be overfilled (z >= H).
This is not really a restriction, since there are more practical reasons
for maintaining z; in the interval [a, b] for all containers 7 and all time
points ¢t. For secure performance, the parameters a and b should be
something like

— 0.05H; (C.36)
b = 0.75 H;(at least container 2) (C.37)

These requirements should provide an interesting verification task
as well as an interesting control synthesis task. Especially if we as-
sume that we have no sensors for x; for all containers 7. What do we
do then?

For the time being, it is assumed that the pump has expensive
level sensors for ;. In this half-realistic case we may introduce a
control law like the following;:

case m,
idle: p. := 0;
when < (z; — b) then m, := pull;
pull: p. := —50 kPa;
when < (@ — z7) or X (zg — b) then m, := push;
push: p. := +50 kPa;
when <1 (@ — z2) or X (z3 — b) then m, := pull;

end case;

98

Bibliography

[ACH*95]

[AGMRY5]

[BBMY7]

[BC8S5]

[Ber89)]

[BGY7]

[Bro97]

[BS91]

[BS97]

R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Hen-
zinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and
S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3-34, 6 February
1995.

T. P. Amagbegnon, P. Le Guernic, Herve Marchand, and
Eric Rutten. The SIGNAL data flow methodology applied
to a production cell. Technical Report RR-2522, Inri-
a, Institut National de Recherche en Informatique et en
Automatique, March 1995.

P. Bournai, M. Le Borgne, and H. Marchand. Environ-
nement de conception d’automatismes discrets basé sur
le langage Signal. Technical Report 1124, Inria, Institut
National de Recherche en Informatique et en Automa-
tique, September 1997. In French.

D. Berry and L. Cosserat. The Esterel synchronous pro-
gramming language and its mathematical semantics. Lec-
ture Notes in Computer Science, 197:389-448, February
1985.

G. Berry. Real time programming: Special purpose or
genral purpose languages. In IFIP World Computer
Congress, San Francisco, 1989.

P. Bournai and P. Le Guernic. L’éditeur graphique de
SIGNAL-V4. Technical report, Inria, Institut National
de Recherche en Informatique et en Automatique, June
1997. In French.

J. F. Broenink. Bond-graph modeling in MODELICA. In
Proceedings of the 9th European Simulation Symposium,
pages 137-141, Passau, Germany, October 1997.

F. Boussinot and R. De Simone. The ESTEREL lan-
guage. Proc. IEEE, 79(9):1293-1304, September 1991.

S. Bornot and J. Sifakis. Relating time progress and
deadlines in hybrid systems. Lecture Notes in Computer
Science, 1201:286-303, 1997.

99

100

[DGS98]

[DOTY96]

[Eds99]

[EOS97]

[GBBGSS5]

[Hal93]

[Har87]

[HCRPY1]

[HHWT97]

[HN96]

[Hou98]

[HPS5]

Akash Deshpande, Aleks Gollii, and Luigi Semenzato.
The SHIFT programming language for dynamic networks
of hybrid automata. IFEE transactions on automatic
control, 43(4), April 1998.

C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool
KRONOS. Lecture Notes in Computer Science, 1066:208—
220, 1996.

Krister Edstrom. Switched Bond Graphs Simulation and
Analysis. PhD thesis, Linkoping Studies in Science and
Technology. Thesis No 586, June 1999.

H. Elmgqvist, M. Otter, and C. Schlegel. Physical model-
ing with MODELICA and DYMOLA and real-time simula-
tion with simulink and real time workshop. In Proceed-
ings of MATLAB conferences in San Jose, October 6-8
and Stockholm, October 27-28, 1997.

P. Le Guernic, A. Beneviste, P. Bournal, and T. Gan-
thier. SIGNAL: a data flow oriented language for signal
processing. Report 246, TRISA, Rennes, France, 1985.

N. Halbwachs. Synchronous programming of reactive sys-
tems. Kluwer, 1993.

D Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8:231-274,
1987.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The
synchronous data flow programming language LUSTRE.
Proceedings of the IEEE, 79(9):1305-1320, September
1991.

T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH:
A model checker for hybrid systems. Lecture Notes in
Computer Science, 1254:460-472, 1997.

D. Harel and A. Naamad. The STATEMATE semantics
of STATECHARTS. ACM Transactions on Software Engi-
neering and Methodology, 5(4):293-333, 1996.

Bernard Houssais. Cours de programmation en langage
temps-réel SIGNAL. Irisa, Institut de Recherche en Infor-
matique et en Systémes Aléatoires, in French, November
1998.

D. Harel and A. Pnueli. On the development of reactive
systems. In K. R. Apt, editor, Logics and Models of
Concurrent Systems, volume 13 of NATO, ASI Series,
pages 447-498. Springer-Verlag, New York, 1985.

[KP91]

[LGY4]

[LGGT96]

[LGS94]

[Lin51]

[LMNTY9]

[LMRS96]

[Mar90]

[Mat97a]

[Mat97b]
[Mat97c]

[Mat97d]

101

Y. Kesten and A. Pnueli. Timed and hybrid statecharts
and their textual representation. In Jan Vyptopil, edi-
tor, Proceedings of Formal Techniques in Real-Time and
Fault-Tolerant Systems, volume 571 of LNCS, pages 591—
620, Berlin, Germany, January 1991. Springer-Verlag.

Lennart Ljung and Torkel Glad. Modeling of Dynamic
Systems. Prentice-Hall, Upper Saddle River, NJ 07458,
USA, 1994.

Lennart Ljung, Roger Germundsson, Johan Gunnarsson,
Inger Klein, Jonas Plantin, and Jan-Erik Stromberg. Hy-
brid and discrete systems in automatic control - some
new (linképing) approaches. Technical Report LiTH-
ISY-R-1843, Dept of EE. Linképing University, S-581 83
Linkoping, Sweden, May 1996.

J. Lygeros, D. N. Godbole, and S. Sastry. Simulation
as a tool for hybrid control. In Proceedings of the Fith
IEEE conference on Al Simulation and Planning in
High-Autonomy Systems, Gainesville, Florida, USA, De-
cember 1994.

Sten Lindroth. Christoffer Polhem och Stora Kopparber-
get. Stora Kopparberget Bergslags AB, Uppsala, Sweden,
1951. In Swedish with abstract in German.

M. Lin, J. Malec, and S. Nadjm-Tehrani. On semantics
and correctness of reactive rule-based systems. In Pro-
ceedings of Andrei Ershov Third International Confer-
ence ”Perspectives of System Informatics”, Novosibrisk

(Russia), July 1999. Springer-Verlag, LNCS.

M. Le Borgne, H. Marchand, E. Rutten, and M. Samaan.
Formal verification of SIGNAL programs: Application to
a power transformer station controller. In Proceedings of
AMAST’96, LNCS 1101, pages 271-285, Munich, Ger-
many, July 1996. Springer-Verlag.

F. Maraninchi. ARGOS, a Graphical Language for the
Design, Description and Validation of Reactive Systems.
Université J. Fourier, Grenoble, France, 1990. in French.

The MathWorks, Inc. Real-Time Workshop User’s
Guide, May 1997.

The MathWorks, Inc. Stateflow User’s Guide, May 1997.

The MathWorks, Inc. Target Language Compiler Refer-
ence Guide, May 1997.

The MathWorks, Inc. Using Simulink, January 1997.

102

[Mat98]

[MBLL9S]

[MH96]

[ML98]

[MS98]

[NS98]

[NSY91]

[OEM99]

[Pay61]

[SNT94]

[SNTT96]

The MathWorks, Inc. Using Matlab, January 1998.

H. Marchand, P. Bournai, M. Le Borgne, and P. Le Guer-
nic. A design environment for discrete-event controllers
based on the SIGNAL language. In 1998 IEEE Interna-
tional Conf. On Systems, Man, And Cybernetics, pages
770-775, San Diego, California, USA, October 1998.

F. Maraninchi and N. Halbwachs. Compiling ARGOS in-
to boolean equations. In Formal Techniques for Real-
Time and Fault-Tolerance (FTRTFT), Uppsala (Swe-
den), September 1996. Springer-Verlag, LNCS.

H. Marchand and M. Le Borgne. Partial order control
of discrete event systems modeled as polynomial dynam-
ical systems. In 1998 IEEFE International Conference On
Control Applications, Trieste, Italia, September 1998.

Z. Manna and H. B. Sipma. Deductive verification of
hybrid systems using STeP. Lecture Notes in Computer
Science, 1386:305-319, 1998.

R. Nikoukhah and S. Steer. Scicos - A dynamic system
builder and simulator user’s guide, 1998. http://www-
rocq.inria.fr/scilab/doc/scicos /scicos.html.

X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed
graphs and hybrid systems. In J. W. de Bakker, C. Huiz-
ing, W. P. de Roever, and G. Rozenberg, editors, Pro-
ceedings of Real-Time: Theory in Practice, volume 600
of LNCS, pages 549-572, Berlin, Germany, June 1991.
Springer-Verlag.

M. Otter, H. Elmqvist, and S.E. Mattson. Hybrid
modeling in MODELICA based on the synchronous data
flow principle. In Proceedings of the IEEE International

Symposium on Computer-Aided Control System Design,
CACSD’99, Hawaii, USA, August 1999.

Henry M. Paynter. Analysis and Design of Engineering
Systems. MIT Press, Cambridge, Mass, 1961.

J.-E. Stromberg and S. Nadjm-Tehrani. On discrete and
hybrid representation of hybrid systems. In Proceedings
of the SCS International Conference on Modeling and Si-
mulation (ESM’94), pages 1085-1089, Barcelona, Spain,
1994.

J.-E. Stromberg, S. Nadjm-Tehrani, and J. Top.
Switched Bond Graphs as Front-end to Formal Verifi-
cation of Hybrid Systems. In R. Alur, T. A. Henzinger,

[SST94]

[Str94]

103

and E. D. Sontag, editors, Proceedings of the third inter-
national conference on hybrid systems, Hybrid Systems
IIT, LNCS 1106, pages 282-293, NJ, USA, 1996. Springer
Verlag.

Jan-Erik Stromberg, Ulf Séderman, and Jan Top. Con-
ceptual modelling of hybrid systems. Technical Report
LiTH-ISY-R-1625, Dept of EE. Linkoping University,
S-581 83 Linkoping. Sweden, 1994.

J.-E. Stromberg. A mode switching modelling philoso-
phy. PhD thesis, Linkoping University, Linkoping, 1994.
Dissertation no. 353.

104

List of Figures

1.1

21
2.2
2.3
24

3.1
3.2

4.1
4.2

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

7.1
7.2
7.3

8.1
8.2
8.3
8.4
8.5
8.6

The stand-alone code generation with SIGNAL 12
The Real-Time Workshop’s architecture 16
Block diagram of edge detector 17
The test environment of the edge detector with its traces 17
Matlab traces of the edge detector test 19
General hybrid system architecture 26
Hybrid automaton of the thermostat 27
Block diagram of OFF, 35
SIGNAL thermostat using SIMULINK calls 35
Hybrid system representation 42
Tdetection Lo L oL 44
SIMULINK part of the thermostat 45
The Plant of the thermostat 46
The sub-systems, 46
The Characterizer of the thermostat 47
SIGNAL part of the thermostat 47
ThermostatAutomaton 48
Temperature traces 49
SIMULINK generator of the clock of the selector 50
SIMULINK part of the thermostat for Protocol 3 50
SIGNAL selector for Protocol 3 ol
SIGNAL edge detector 51
Temperature traces with the Protocol 3 52
Gabriel Polhem’s model of the siphon pump machine . 56
An informal model of the siphon pump machine 57
A fraction of the siphon pump machine copied from

[Str94] 59
General hybrid system architecture of the pump . .. 62
The architecture of the plant 63
SIMULINK block diagram of the check valve m1 63
SIGNAL selector of a check valve 64
SIMULINK block diagram of the plant of the pump . . 64
Automaton of the control strategy of the selector . . . 65

105

106

8.7

8.8
8.9
8.10

9.1
9.2
9.3
9.4
9.5

SIMULINK block diagram of the characterizer of the
PUIID « .t v v v vt it e e e e e e e e e e
SIMULINK block diagram of the effector of the pump .
SIMULINK block diagram of the whole pump
SIGNAL selector of the pump

Water flows of the system with ¢; = 2.1075m3/s . . .
Water levels of the system with ¢; = 2.107¢m3/s . . .
Water flows g3 of the system with g1 = 1.10 ®m?/s . .
Water flows of the system with ¢; = 1.107m3/s . . .
Water levels of the system with ¢ = 1.1076m3/s . . .

67
67
68

70
70
71
71
72

