
Analysis and Optimisation of Real-Time
Systems with Stochastic Behaviour

Sorin Manolache
Linköping

ii

Abstract

Embedded systems have become indispensable in our life: house-
hold appliances, cars, airplanes, power plant control systems, medical
equipment, telecommunication systems, space technology, they all con-
tain digital computing systems with dedicated functionality. Most of
them, if not all, are real-time systems, i.e. their responses to stimuli
have timeliness constraints.

The timeliness requirement has to be met despite some unpre-
dictable, stochastic behaviour of the system. In this thesis, we address
two causes of such stochastic behaviour: the application and platform-
dependent stochastic task execution times, and the platform-dependent
occurrence of transient faults on network links in networks-on-chip.

We present three approaches to the analysis of the deadline miss
ratio of applications with stochastic task execution times. Each of the
three approaches fits best to a different context. The first approach
is an exact one and is efficiently applicable to monoprocessor systems.
The second approach is an approximate one, which allows for designer-
controlled trade-off between analysis accuracy and analysis speed. It is
efficiently applicable to multiprocessor systems. The third approach is
less accurate but sufficiently fast in order to be placed inside optimisa-
tion loops. Based on the last approach, we propose a heuristic for task
mapping and priority assignment for deadline miss ratio minimisation.

Our contribution is manifold in the area of buffer and time con-
strained communication along unreliable on-chip links. First, we in-
troduce the concept of communication supports, an intelligent combina-
tion between spatially and temporally redundant communication. We
provide a method for constructing a sufficiently varied pool of alterna-
tive communication supports for each message. Second, we propose a
heuristic for exploring the space of communication support candidates
such that the task response times are minimised. The resulting time
slack can be exploited by means of voltage and/or frequency scaling for
communication energy reduction. Third, we introduce an algorithm
for the worst-case analysis of the buffer space demand of applications
implemented on networks-on-chip. Last, we propose an algorithm for
communication mapping and packet timing for buffer space demand
minimisation.

All our contributions are supported by sets of experimental results
obtained from both synthetic and real-world applications of industrial
size.

This work has been supported by ARTES (A Network for Real-
Time Research and Graduate Education in Sweden) and STRINGENT

iii

iv

(Strategic Integrated Electronic Systems Research at Linköpings Uni-
versitet).

Acknowledgements

This work would not have been possible without the contribution of
many people, to whom I would now take the opportunity to thank.

Foremost, I thank Prof. Petru Eles, my considerate adviser. His
confidence in our work compelled me to persist, while his personality
commends my admiration. Prof. Zebo Peng has been the ideal research
group director during these years. I thank him for his soft and efficient
leading style.

The embedded systems laboratory, and in a bigger context the whole
department, provided an excellent environment for professional and
personal development. I thank all those who contributed to it, foremost
my colleagues in ESLAB for their friendship, spirit, and time.

Some of the work in this thesis stems from the period in which I vis-
ited the research department of Ericsson Radio Systems lead by Dr. Pe-
ter Olanders. I want to thank him, as well as Dr. Béatrice Philibert and
Erik Stoy for providing me that opportunity.

New interests and enthusiasm, professional but also cultural,
were awoken in me during my visit to the group led by Prof. Radu
Mărculescu at the Carnegie-Mellon University. I take this opportunity
to thank him for inviting me and to salute the people I met there.

Geographically more or less distant, some persons honoured me
with their friendship for already frighteningly many years. It means
very much to me.

I am grateful to my mother for the mindset and values she has
passed to me. In the same breath, I thank my father for the smile
and confidence he has always offered me.

Last, I thank Andrea for filling our lives with joy.

Sorin Manolache
Linköping, October 2005

v

vi

Contents

I Preliminaries 1

1 Introduction 3
1.1 Embedded System Design Flow . 3
1.2 Contribution . 5
1.3 Thesis Organisation . 6

II Stochastic Schedulability Analysis and Opti-
misation 9

2 Motivation and Related Work 11
2.1 Motivation . 11
2.2 Related Work . 13

3 System Modelling 17
3.1 Hardware Model . 17
3.2 Application Model . 17

3.2.1 Functionality . 17
3.2.2 Periodic Task Model . 19
3.2.3 Mapping . 20
3.2.4 Execution Times . 20
3.2.5 Real-Time Requirements . 21
3.2.6 Late Task Policy . 21
3.2.7 Scheduling Policy . 22

3.3 Illustrative Example . 23

4 Analysis of Monoprocessor Systems 27
4.1 Problem Formulation . 27

4.1.1 Input . 27
4.1.2 Output . 28
4.1.3 Limitations . 28

4.2 Analysis Algorithm . 28
4.2.1 The Underlying Stochastic Process 28
4.2.2 Memory Efficient Analysis Method 34
4.2.3 Multiple Simultaneously Active Instantiations of

the Same Task Graph . 35
4.2.4 Construction and Analysis Algorithm 38

4.3 Experimental Results . 41
4.3.1 Stochastic Process Size as a Function of the Num-

ber of Tasks . 42
4.3.2 Stochastic Process Size as a Function of the Appli-

cation Period . 44

vii

viii CONTENTS

4.3.3 Stochastic Process Size as a Function of the Task
Dependency Degree . 44

4.3.4 Stochastic Process Size as a Function of the Aver-
age Number of Concurrently Active Instantiations
of the Same Task Graph . 45

4.3.5 Rejection versus Discarding . 45
4.3.6 Encoding of a GSM Dedicated Signalling Channel 46

4.4 Limitations and Extensions . 51

5 Analysis of Multiprocessor Systems 53
5.1 Problem Formulation . 54

5.1.1 Input . 54
5.1.2 Output . 54
5.1.3 Limitations . 54

5.2 Approach Outline . 54
5.3 Intermediate Model Generation . 57

5.3.1 Modelling of Task Activation and Execution 57
5.3.2 Modelling of Periodic Task Arrivals 59
5.3.3 Modelling Deadline Misses . 59
5.3.4 Modelling of Task Graph Discarding 60
5.3.5 Scheduling Policies . 60

5.4 Generation of the Marking Process . 60
5.5 Coxian Approximation . 62
5.6 Approximating Markov Chain Construction 64
5.7 Extraction of Results . 70
5.8 Experimental Results . 71

5.8.1 Analysis Time as a Function of the Number of Tasks 71
5.8.2 Analysis Time as a Function of the Number of Pro-

cessors . 72
5.8.3 Memory Reduction as a Consequence of the On-

the-Fly Construction of the Markov Chain Under-
lying the System . 73

5.8.4 Stochastic Process Size as a Function of the Num-
ber of Stages of the Coxian Distributions 74

5.8.5 Accuracy of the Analysis as a Function of the
Number of Stages of the Coxian Distributions 75

5.8.6 Encoding of a GSM Dedicated Signalling Channel 75
5.9 Extensions . 77

5.9.1 Individual Task Periods . 77
5.9.2 Task Rejection vs. Discarding 81
5.9.3 Arbitrary Task Deadlines . 83

5.10 Conclusions . 84

6 Deadline Miss Ratio Minimisation 85
6.1 Problem Formulation . 85

6.1.1 Input . 85
6.1.2 Output . 86
6.1.3 Limitations . 86

6.2 Approach Outline . 86
6.3 The Inappropriateness of Fixed Execution Time Models . . 86
6.4 Mapping and Priority Assignment Heuristic 89

6.4.1 The Tabu Search Based Heuristic 89
6.4.2 Candidate Move Selection . 92

6.5 Analysis . 93

CONTENTS ix

6.5.1 Analysis Algorithm . 94
6.5.2 Approximations . 98

6.6 Experimental Results . 101
6.6.1 RNS and ENS: Quality of Results 102
6.6.2 RNS and ENS: Exploration Time 103
6.6.3 RNS and LO-AET: Quality of Results and Explo-

ration Time . 103
6.6.4 Real-Life Example: GSM Voice Decoding 104

III Communication Synthesis for Networks-on-
Chip 107

7 Motivation and Related Work 109
7.1 Motivation . 109
7.2 Related Work . 110
7.3 Highlights of Our Approach . 111

8 System Modelling 115
8.1 Hardware Model . 115
8.2 Application Model . 116
8.3 Communication Model . 116
8.4 Fault Model . 116
8.5 Message Communication Support . 117

9 Energy and Fault-Aware Time Constrained Communica-
tion Synthesis for NoC 121
9.1 Problem Formulation . 121

9.1.1 Input . 121
9.1.2 Output . 122
9.1.3 Constraints . 122

9.2 Approach Outline . 122
9.3 Communication Support Candidates 123
9.4 Response Time Calculation . 127
9.5 Selection of Communication Supports 128
9.6 Experimental Results . 129

9.6.1 Latency as a Function of the Number of Tasks 129
9.6.2 Latency as a Function of the Imposed Message Ar-

rival Probability . 129
9.6.3 Latency as a Function of the Size of the NoC and

Communication Load . 131
9.6.4 Optimisation Time . 132
9.6.5 Exploiting the Time Slack for Energy Reduction . . 132
9.6.6 Real-Life Example: An Audio/Video Encoder 133

9.7 Conclusions . 135

10 Buffer Space Aware Communication Synthesis for NoC 137
10.1 Problem Formulation . 137

10.1.1 Input . 137
10.1.2 Constraints . 138
10.1.3 Output . 138

10.2 Motivational Example . 138
10.3 Approach Outline . 141

10.3.1 Delimitation of the Design Space 142

x CONTENTS

10.3.2 Exploration Strategy . 142
10.3.3 System Analysis Procedure . 144

10.4 Experimental Results . 147
10.4.1 Evaluation of the Solution to the CSBSDM Problem148
10.4.2 Evaluation of the Solution to the CSPBS Problem . 149
10.4.3 Real-Life Example: An Audio/Video Encoder 149

10.5 Conclusions . 150

IV Conclusions 151

11 Conclusions 153
11.1 Applications with Stochastic Execution Times 153

11.1.1 An Exact Approach for Deadline Miss Ratio Analysis153
11.1.2 An Approximate Approach for Deadline Miss Ra-

tio Analysis . 154
11.1.3 Minimisation of Deadline Miss Ratios 154

11.2 Transient Faults of Network-on-Chip Links 154
11.2.1 Time-Constrained Energy-Efficient Communica-

tion Synthesis . 155
11.2.2 Communication Buffer Minimisation 155

A Abbreviations 157

Bibliography 159

Part I

Preliminaries

1

Chapter 1

Introduction

This chapter briefly presents the frame of this thesis, namely the
area of embedded real-time systems. It introduces the two aspects
of stochastic behaviour of real-time systems that we address in this
thesis, namely the application-specific and platform-specific stochas-
tic task execution times and the platform-specific transient faults of
hardware. The chapter summarises the contributions and draws the
outline of the thesis.

1.1 Embedded System Design Flow
Systems controlled by embedded computers become indispensable in
our lives and can be found in avionics, automotive industry, home ap-
pliances, medicine, telecommunication industry, mecatronics, space in-
dustry, etc. [Ern98].

Very often, these embedded systems are reactive, i.e. they are in
steady interaction with their environment, acting in a prescribed way
as response to stimuli received from the environment. In most cases,
this response has to arrive at a certain time moment or within a pre-
scribed time interval from the moment of the application of the stimu-
lus. Such systems, in which the correctness of their operation is defined
not only in terms of functionality but also in terms of timeliness, form
the class of real-time systems [But97, KS97, Kop97, BW94].

Timeliness requirements may be hard meaning that the violation
of any such requirement is not tolerated. In a hard real-time system, if
not all deadlines are guaranteed to be met, the system is said to be un-
schedulable. Typical hard real-time application domains are plant con-
trol, aircraft control, medical, and automotive applications. Systems
classified as soft real-time may occasionally break a real-time require-
ment provided that the service quality exceeds prescribed levels.

The nature of real-time embedded systems is typically heteroge-
neous along multiple dimensions. For example, an application may ex-
hibit data, control and protocol processing characteristics. It may also
consist of blocks exhibiting different categories of timeliness require-
ments, such as hard and soft. Another dimension of heterogeneity is
given by the environment the system operates in. For example, the
stimuli and responses may be of both discrete and continuous nature.

The heterogeneity in the nature of the application itself on one side
and, on the other side, constraints such as cost, performance, power dis-

3

4 CH. 1. INTRODUCTION

Informal specification,
constraints

Modelling

System model

Mapped and
scheduled model

Estimation

System
architecture

Architecture
selection

Prototype

Hardware model

Hardware synthesis

Hardware blocks

Software model

Software generation

Software blocks

Fabrication

not oknot ok

okok

ok

S
ys

te
m

 le
ve

l
Lo

w
er

 le
ve

ls

Formal
verification

Functional
simulation

Simulation

Simulation

Testingnot ok

Simulation

Formal
verification

Analysis

Mapping

Scheduling

Figure 1.1: Typical design flow

sipation, legacy designs and implementations, as well as requirements
such as reliability, availability, security, and safety, often lead to imple-
mentations consisting of heterogeneous multiprocessor platforms.

Designing such systems implies the deployment of different tech-
niques with roots in system engineering, software engineering, com-
puter architectures, specification languages, formal methods, real-time
scheduling, simulation, programming languages, compilation, hard-
ware synthesis, etc. Considering the huge complexity of such a design
task, there is an urgent need for automatic tools for design, estimation,
and synthesis in order to support and guide the designer. A rigorous,
disciplined, and systematic approach to real-time embedded system de-
sign is the only way the designer can cope with the complexity of cur-
rent and future designs in the context of high time-to-market pressure.
A simplified view of such a design flow is depicted in Figure 1.1 [Ele02].

The design process starts from a less formal specification together
with a set of constraints. This initial informal specification is then cap-
tured as a more rigorous model formulated in one or possibly several

1.2. CONTRIBUTION 5

modelling languages [JMEP00]. Next, a system architecture is cho-
sen as the hardware platform executing the application. This system
architecture typically consists of programmable processors of various
kinds (application specific instruction processors (ASIPs), general pur-
pose processors, digital signal processors (DSPs), protocol processors),
and dedicated hardware processors (application specific integrated
circuits (ASICs), field-programmable gate arrays (FPGAs)) intercon-
nected by means of shared buses, point-to-point links or networks of
various types. Once a system architecture is chosen, the functional-
ity, clustered in tasks or pieces of functionality of certain conceptual
unity, are mapped onto (or assigned to) the processors or circuits of
the system architecture. The communication is mapped on the buses,
links, or networks. Next, the tasks or messages that share the same
processing element or bus/link are scheduled. The resulting mapped
and scheduled system model is then estimated by means of analysis
or simulation or formal verification or combinations thereof. During
the system level design space exploration phase, different architec-
ture, mapping, and scheduling alternatives are assessed in order to
meet the design requirements and possibly optimise certain indicators.
Once a design is found that satisfies the functional and non-functional
requirements, the system is synthesized in the lower design phases.

At each design phase, the designers are confronted with various
levels of uncertainty. For example, the execution times of tasks are
unknown before the functionality is mapped to a system architecture.
Even after mapping, a degree of uncertainty persists regarding the
task execution times. For example, the state of the various levels of
the memory hierarchy, which affects the data access latency and exe-
cution time, depends on the task scheduling. After a task scheduling
has been decided upon, the task execution times heavily depend on the
input data of the application, which in turn may be unpredictable. The
task execution time is one of the components that induce a stochastic
behaviour on systems.

Transient failures of various hardware components also induce a
stochastic behaviour on the system. They may be caused by environ-
mental factors, such as over-heating of certain parts of the circuit, or
electro-magnetic interference, cross-talk between communication lines.
Communication time and energy, and even application correctness may
be affected by such phenomena.

We consider transient failures of on-chip communication links,
while we assume that failures of other system components are toler-
ated by techniques outside the scope of this thesis.

There exists a need for design tools that take into account the
stochastic behaviour of systems in order to support the designer. This
thesis aims at providing such a support. We mainly address two
sources that cause the system to have a stochastic behaviour: task
execution times and transient faults of the links of on-chip networks.

1.2 Contribution
The shaded blocks in Figure 1.1 denote the phases of the design pro-
cesses to which this thesis contributes.

With respect to the analysis of a mapped and scheduled model, we
propose the following approaches:

6 CH. 1. INTRODUCTION

1. Chapter 4 presents an approach that determines the exact dead-
line miss probability of tasks and task graphs of soft real-time
applications with stochastic task execution times. The approach
is efficient in the case of applications implemented on monopro-
cessor systems.

2. Chapter 5 presents an approach that determines an approxima-
tion of the deadline miss probability of systems under the same
assumptions as those presented in Chapter 4. The approach al-
lows a designer-controlled way to trade analysis speed for anal-
ysis accuracy and is efficient in the case of applications imple-
mented on multiprocessor systems.

3. Chapter 6 presents an approach to the fast approximation of
the deadline miss probability of soft real-time applications with
stochastic task execution times. The analysis is efficiently appli-
cable inside design optimisation loops.

4. Chapter 10 presents an approach to the analysis of the buffer
space demand of applications implemented on networks-on-chip.

Our contribution to the functionality and communication mapping
problem is the following:

1. Chapter 6 presents an approach to the task and communication
mapping under constraints on deadline miss ratios.

2. Chapter 9 presents an approach to the communication mapping
for applications implemented on networks-on-chip with unreli-
able on-chip communication links under timeliness, energy, and
reliability constraints.

3. Chapter 10 presents an approach to the communication mapping
for applications implemented on networks-on-chip with unreli-
able on-chip communication links under timeliness, buffer space,
and reliability constraints.

Our contribution to the scheduling problem consists of an approach
to priority assignment for tasks with stochastic task execution times
under deadline miss ratio constraints. The approach is presented in
Chapter 6.

The work presented in Chapter 4 is published in [MEP01, MEP04b].
Chapter 5 is based on [MEP02, MEP], and the contributions of Chap-
ter 6 are published in [MEP04a]. The work presented in Chapter 9 is
published in [MEP05] while Chapter 10 is based on [MEP06].

1.3 Thesis Organisation
The thesis is organised as follows.

Part II of this thesis deals with the stochastic behaviour caused by
the non-deterministic nature of task execution. First, we present the
motivation of our work in this area and we survey the related work
(Chapter 2). Next, Chapter 3 introduces the notation and system model
to be used throughout Part II. Then, Chapter 4 and Chapter 5 present
two analytic performance estimation approaches, an exact one, effi-
ciently applicable to monoprocessor systems, and an approximate anal-
ysis approach, efficiently applicable to multiprocessor systems. Part II
concludes with an approach to the mapping of tasks on a multiproces-
sor platform and the priority assignment to tasks in order to optimise
the deadline miss ratios.

1.3. THESIS ORGANISATION 7

Part III deals with the stochastic behaviour generated by the non-
deterministic nature of transient faults occurring on links of on-chip
networks. Chapter 7 introduces the context of the problem and sur-
veys the related work. Chapter 8 describes the system model that we
use throughout Part III. Chapter 9 introduces an approach to com-
munication energy optimisation under timeliness and communication
reliability constraints, while Chapter 10 presents an approach to buffer
space demand minimisation of applications implemented on networks-
on-chip.

Part IV concludes the thesis.

8 CH. 1. INTRODUCTION

Part II

Stochastic
Schedulability Analysis

and Optimisation

9

Chapter 2

Motivation and Related
Work

This chapter first motivates the work in the area of performance anal-
ysis of systems with stochastic task execution times. Next, related ap-
proaches are surveyed.

2.1 Motivation
Historically, real-time system research emerged from the need to un-
derstand, design, predict, and analyse safety critical applications such
as plant control and aircraft control, to name a few. Therefore, the
community focused on hard real-time systems, where breaking timeli-
ness requirements is not tolerated. The analysis of such systems gives
a yes/no answer to the question if the system fulfils the timeliness re-
quirements. Hard real-time analysis relies on building worst-case sce-
narios. A scenario typically consists of a combination of task execution
times. It is worst-case with respect to a timeliness requirement if either
the requirement is broken in the given scenario or if the fact that the
requirement is not broken in the given scenario implies that the system
fulfils the requirement in all other possible scenarios. Hard real-time
analysis cannot afford but to assume that worst-case scenarios always
happen and to provision for these cases. This approach is the only one
applicable for the class of safety critical embedded systems, even if very
often leads to significant under-utilisation of resources.

For the class of soft real-time systems, however, such an approach
misses the opportunity to create much cheaper products with low or
no perceived service quality reduction. For example, multimedia appli-
cations like JPEG and MPEG encoding, sound encoding, etc. exhibit
this property. In these situations, the designer may trade cost for qual-
ity. Thus, it is no longer sufficient to build worst-case scenarios, but it
is more important to analyse the likelihood of each scenario. Instead
of answering whether a timeliness requirement is fulfilled or not, soft
real-time analysis answers questions such as what is the probability
that the requirement is fulfilled or how often is it broken during the
lifetime of the system. While in hard real-time analysis the tasks are
assumed to execute for the amount of time that leads to the worst-case
scenario, in soft real-time analysis task execution time probability dis-

11

12 CH. 2. MOTIVATION AND RELATED WORK

timet

deadlinepr
ob

ab
ili

ty
 d

en
si

ty

(a) Fast and expensive pro-
cessor

timet

deadline

WCET15%

pr
ob

ab
ili

ty
 d

en
si

ty

(b) Slower but inexpensive
processor

Figure 2.1: Execution time probability density functions

tributions are preferred in order to be able to determine execution time
combinations and their likelihoods.

The execution time of a task is a function of application dependent,
platform dependent, and environment dependent factors. The amount
of input data to be processed in each task instantiation as well as its
type (pattern, configuration) are application dependent factors. The
micro-architecture of the processing unit that executes a task is a plat-
form dependent factor influencing the task execution time. If the time
needed for communication with the environment (database lookups, for
example) is to be considered as a part of the task execution time, then
network load is an example of an environmental factor influencing the
task execution time.

Input data amount and type may vary, as for example is the case
for differently coded MPEG frames. Platform-dependent characteris-
tics, like cache memory behaviour, pipeline stalls, write buffer queues,
may also introduce a variation in the task execution time. Thus, obvi-
ously, all of the enumerated factors influencing the task execution time
may vary. Therefore, a model considering the variability of execution
times would be more realistic than the one considering just worst-case
execution times. In the most general model, task execution times with
arbitrary probability distribution functions are considered. These dis-
tributions can be extracted from performance models [van96] by means
of analytic methods or simulation and profiling [van03, Gv00, Gau98].
Obviously, the worst-case task execution time model is a particular case
of such a stochastic one.

Figure 2.1 shows two execution time probability density functions
of the same task. The first corresponds to the case in which the task is
mapped on a fast processor (Figure 2.1(a)). In this case, the worst-case
execution time of the task is equal to its deadline. An approach based
on a worst-case execution time model would implement the task on
such an expensive processor in order to guarantee the imposed deadline
for the worst-case situation. However, situations in which the task ex-
ecution time is close to the worst-case execution time occur with small
probability. If the nature of the application is such that a certain per-
centage of deadline misses is affordable, a cheaper system, which still

2.2. RELATED WORK 13

fulfils the imposed quality of service, can be designed. For example,
on such a system the execution time probability density function of the
same task could look as depicted in Figure 2.1(b). If it is acceptable for
the task to miss 15% of its deadlines, such a system would be a viable
and much cheaper alternative.

In the case of hard real-time systems, the question posed to the per-
formance analysis process is whether the system is schedulable, which
means if all deadlines are guaranteed to be met or not. In the case of
soft real-time systems however, the analysis provides fitness estimates,
such as measures of the degree to which a system is schedulable, rather
than binary classifications. One such measure is the expected deadline
miss ratio of each task or task graph and is the focus of this part of the
thesis.

Performance estimation tools can be classified in simulation and
analysis tools. Simulation tools are flexible, but there is always the
danger that unwanted and extremely rare glitches in behaviour, pos-
sibly bringing the system to undesired states, are never observed.
The probability of not observing such an existing behaviour can be
decreased at the expense of increasing the simulation time. Analysis
tools are more precise, but they usually rely on a mathematical formal-
isation, which is sometimes difficult to come up with or to understand
by the designer. A further drawback of analysis tools is their often
prohibitive running time due to the analysis complexity. A tool that
trades, in a designer-controlled way, analysis complexity (in terms of
analysis time and memory, for example) with analysis accuracy or the
degree of insight that it provides, could be a viable solution to the
performance estimation problem.

We aim at providing analytical support for the design of systems
with stochastic task execution times. Chapters 4 and 5 present two
approaches for the analysis of the deadline miss ratio of tasks, while
Chapter 6 presents an approach for the minimisation of deadline miss
ratios by means of task mapping and priority assignment.

2.2 Related Work
Before presenting our approach to the analysis and optimisation of sys-
tems with stochastic task execution times, we survey some of the re-
lated work in the area.

An impressive amount of work has been carried out in the area of
schedulability analysis of applications with worst-case task execution
times both for monoprocessor platforms [LL73, BBB01, LW82, LSD89,
ABD+91, Bla76, ABRW93, SGL97, SS94, GKL91] and multiprocessor
platforms [SL95, Sun97, Aud91, ABR+93, TC94, PG98] under fairly
general assumptions.

Much fewer publications address the analysis of applications with
stochastic task execution times. Moreover, most of them consider rel-
atively restricted application classes, limiting their focus on monopro-
cessor systems, or on exponential task execution time probability dis-
tribution functions. Some approaches address specific scheduling poli-
cies or assume high-load systems.

Burns et al. [BPSW99] address the problem of a system breaking
its timeliness requirements due to transient faults. In their case, the
execution time variability stems from task re-executions. The short-

14 CH. 2. MOTIVATION AND RELATED WORK

est interval between two fault occurrences such that no task exceeds
its deadline is determined by sensitivity analysis. The probability that
the system exceeds its deadline is given by the probability that faults
occur at a faster rate than the tolerated one. Broster et al. [BBRN02]
propose a different approach to the same problem. They determine the
response time of a task given that it re-executes k ∈ N times due to
faults. Then, in order to obtain the probability distribution of the re-
sponse time, they compute the probability of the event that k faults
occur. The fault occurrence process is assumed to be a Poisson pro-
cess in both of the cited works. Burns et al. [BBB03] extend Broster’s
approach in order to take into account statistical dependencies among
execution times. While their approaches are applicable to systems with
sporadic tasks, they are unsuited for the determination of task deadline
miss probabilities of tasks with generalised execution time probability
distributions. Also their approaches are confined to sets of independent
tasks implemented on monoprocessor systems.

Bernat et al. [BCP02] address a different problem. They determine
the frequency with which a single task executes for a particular amount
of time, called execution time profile. This is performed based on the
execution time profiles of the basic blocks of the task. The strength
of this approach is that they consider statistical dependencies among
the execution time profiles of the basic blocks. However, their approach
would be difficult to extend to the deadline miss ratio analysis of multi-
task systems because of the complex interleaving that characterises
the task executions in such environments. This would be even more
difficult in the case of multiprocessor systems.

Atlas and Bestavros [AB98] extend the classical rate monotonic
scheduling policy [LL73] with an admittance controller in order to
handle tasks with stochastic execution times. They analyse the quality
of service of the resulting schedule and its dependence on the admit-
tance controller parameters. The approach is limited to monoprocessor
systems, rate monotonic analysis and assumes the presence of an ad-
mission controller at run-time.

Abeni and Buttazzo’s work [AB99] addresses both scheduling and
performance analysis of tasks with stochastic parameters. Their focus
is on how to schedule both hard and soft real-time tasks on the same
processor, in such a way that the hard ones are not disturbed by ill-
behaved soft tasks. The performance analysis method is used to assess
their proposed scheduling policy (constant bandwidth server), and is
restricted to the scope of their assumptions.

Tia et al. [TDS+95] assume a task model composed of independent
tasks. Two methods for performance analysis are given. One of them
is just an estimate and is demonstrated to be overly optimistic. In the
second method, a soft task is transformed into a deterministic task and
a sporadic one. The latter is executed only when the former exceeds the
promised execution time. The sporadic tasks are handled by a server
policy. The analysis is carried out on this particular model.

Gardner et al. [Gar99, GL99], in their stochastic time demand anal-
ysis, introduce worst-case scenarios with respect to task release times
in order to compute a lower bound for the probability that a job meets
its deadline. Their approach however does not consider data dependen-
cies among tasks and applications implemented on multiprocessors.

Zhou et al. [ZHS99] and Hu et al. [HZS01] root their work in
Tia’s. However, they do not intend to give per-task guarantees, but

2.2. RELATED WORK 15

characterise the fitness of the entire task set. Because they consider
all possible combinations of execution times of all requests up to a time
moment, the analysis can be applied only to small task sets due to com-
plexity reasons.

De Veciana et al. [dJG00] address a different type of problem. Hav-
ing a task graph and an imposed deadline, their goal is to determine
the path that has the highest probability to violate the deadline. In
this case, the problem is reduced to a non-linear optimisation problem
by using an approximation of the convolution of the probability densi-
ties.

A different school of thought [Leh96, Leh97] addresses the prob-
lem under special assumptions, such that the system exhibits “heavy
traffic”, i.e. the processor loads are close to 1. The system is mod-
elled as a continuous state Markov model, in which the state com-
prises the task laxities, i.e. the time until their deadlines. Under
heavy traffic, such a stochastic process converges to a Brownian motion
with drift and provides a simple solution. The theory was further ex-
tended by Harrison and Nguyen [HN93], Williams [Wil98] and others
[PKH01, DLS01, DW93], by modelling the application as a multi-class
queueing network and analysing it in heavy traffic.

As far as we are aware, there are two limitations that restrict the
applicability of heavy traffic theory to real-time systems. Firstly, heavy
traffic theory assumes Poisson task arrival processes and execution
times with exponentially distributed probabilities. Secondly, as heavy
traffic leads to very long (infinite) queues of ready-to-run tasks, the
probability for a job to meet its deadline is almost 0 unless the dead-
line is very large. Designing a system such that it exhibits heavy traffic
is thus undesirable.

Other researchers, such as Kleinberg et al. [KRT00] and Goel
and Indyk [GI99], apply approximate solutions to problems exhibiting
stochastic behaviour but in the context of load balancing, bin packing
and knapsack problems. Moreover, the probability distributions they
consider are limited to a few very particular cases.

Dı́az et al. [DGK+02] derive the expected deadline miss ratio from
the probability distribution function of the response time of a task. The
response time is computed based on the system-level backlog at the
beginning of each hyperperiod, i.e. the residual execution times of the
jobs at those time moments. The stochastic process of the system-level
backlog is Markovian and its stationary solution can be computed. Dı́az
et al. consider only sets of independent tasks and the task execution
times may assume values only over discrete sets. In their approach,
complexity is mastered by trimming the transition probability matrix
of the underlying Markov chain or by deploying iterative methods, both
at the expense of result accuracy. According to the published results,
the method is exercised only on extremely small task sets.

Kalavade and Moghé [KM98] consider task graphs where the task
execution times are arbitrarily distributed over discrete sets. Their
analysis is based on Markovian stochastic processes too. Each state in
the process is characterised by the executed time and lead-time. The
analysis is performed by solving a system of linear equations. Because
the execution time is allowed to take only a finite (most likely small)
number of values, such a set of equations is small.

Kim and Shin [KS96] consider applications that are implemented
on multiprocessors and modelled them as queueing networks. They

16 CH. 2. MOTIVATION AND RELATED WORK

restricted the task execution times to exponentially distributed ones,
which reduces the complexity of the analysis. The tasks were consid-
ered to be scheduled according to a particular policy, namely first-come-
first-served (FCFS). The underlying mathematical model is then the
appealing continuous time Markov chain.

In the context of multiprocessor systems, our work significantly ex-
tends the one by Kim and Shin [KS96]. Thus, we consider arbitrary
execution time probability density functions (Kim and Shin consider
only exponential ones) and we address a much larger class of schedul-
ing policies (as opposed to FCFS considered by them, or fixed priority
scheduling considered by most of the previous work). Moreover, our ap-
proach is applicable in the case of arbitrary processor loads as opposed
to the heavy traffic school of thought.

Our work is mostly related to the ones of Zhou et al. [ZHS99], Hu et
al. [HZS01], Kalavade and Moghé [KM98] and Dı́az et al. [DGK+02]. It
differs from the others mostly by considering less restricted application
classes. As opposed to Kalavade and Moghé’s work and to Dı́az et al.’s
work, we consider continuous ETPDFs. In addition to Dı́az et al.’s ap-
proach, we consider task sets with dependencies among tasks. Also, we
accept a much larger class of scheduling policies than the fixed priority
ones considered by Zhou and Hu. Moreover, our original way of concur-
rently constructing and analysing the underlying stochastic process,
while keeping only the needed stochastic process states in memory, al-
lows us to consider larger applications.

Chapter 3

System Modelling

This chapter introduces the notations and application model used
throughout the thesis. The hardware model presented in this chapter
is used throughout Part II.

3.1 Hardware Model
The hardware model consists of a set of processing elements. These can
be programmable processors of any kind (general purpose, controllers,
DSPs, ASIPs, etc.). Let PE = {PE1, PE2, . . . , PEp} denote the set
of processing elements. A bus may connect two or more processing
elements in the set PE. Let B = {B1, B2, . . . , Bl} denote the set of
buses. Data sent along a bus by a processing element connected to that
bus may be read by all processing elements connected to that bus.

Unless explicitly stated, the two types of hardware resources, pro-
cessing elements and buses, will not be differently treated in the scope
of this part of the thesis, and therefore they will be denoted with the
general term of processors. Let M = p + l denote the number of proces-
sors and let P = PE ∪ B = {P1, P2, . . . , PM} be the set of processors.

Figure 3.1 depicts a hardware platform consisting of three process-
ing elements and two buses. Bus B1 connects all processing elements,
while bus B2 is a point-to-point link connecting processing element PE1

and processing element PE2.

3.2 Application Model
3.2.1 Functionality
The functionality of an application is modelled as a set of processing
tasks, denoted with t1, t2, . . . , tn. A processing task is a piece of work

PE1 PE3
���������
���������
�������
�������

PE2

B2

B1

Figure 3.1: Hardware model

17

18 CH. 3. SYSTEM MODELLING

PE1

PE2

PE3

������

������

������

������

χ1

χ2

χ3

χ4

1 2

3

4 5

7 8

6

9

10

t t t

tt

t t t

t t

Figure 3.2: Application model

that has a conceptual unity and is assigned to a processing element.
Examples of processing tasks are performing a discrete cosine trans-
form on a stream of data in a video decoding application or the en-
cryption of a stream of data in the baseband processing of a mobile
communication application. Let PT denote the set of processing tasks.
Processing tasks are graphically represented as large circles, as shown
in Figure 3.2.

Processing tasks may pass messages to each other. The passing of a
message is modelled as a communication task, denoted with χ. Let CT
denote the set of communication tasks. They are graphically depicted
as small circles, as shown in Figure 3.2.

Unless explicitly stated, the processing and the communication
tasks will not be differently treated in the scope of Part II of the thesis,
and therefore they will be denoted with the general term of tasks. Let
N be the number of tasks and T = PT ∪ CT = {τ1, τ2, . . . , τN} denote
the set of tasks.

The passing of a message between tasks τi and τj enforces data de-
pendencies between the two tasks. Data dependencies are graphically
depicted as arrows from the sender task to the receiver task, as shown
in Figure 3.2.

The task that sends the message is the predecessor of the receiving
task, while the receiving task is the successor of the sender. The set of
predecessors of task τ is denoted with ◦τ , while the set of successors
of task τ with τ◦. A communication task has exactly one predeces-
sor and one successor and both are processing tasks. For illustration
(Figure 3.2), task t3 has two predecessors, namely the processing task
t1 and the communication task χ1, and it has two successors, namely
tasks t4 and χ2.

Tasks with no predecessors are called root tasks, while tasks with
no successors are called leaf tasks. In Figure 3.2 tasks t1, t2, t6, and t10
are root tasks, while tasks t4, t5, t8, t9, and t10 are leaf tasks.

Let us consider a sequence of tasks (τ1, τ2, . . . , τk), k > 1. If there
exists a data dependency between tasks τi and τi+1, ∀1 ≤ i < k, then
the sequence (τ1, τ2, . . . , τk) forms a computation path of length k. We
say that the computation path leads from task τ1 to task τk. Task τi is
an ancestor task of task τj if there exists a computation path from task
τi to task τj . Complementarily, we say that task τi is a descendant task
of task τj if there exists a computation path from task τj to task τi. We
do not allow circular dependencies, i.e. no task can be both the ancestor

3.2. APPLICATION MODEL 19

and the descendant of another task. In Figure 3.2, (t2, χ1, t3, χ2, t5) is an
example of a computation path of length 5, and task χ1 is an ancestor
of tasks t3, t4, t5, and χ2.

We define the relation γ ⊂ T × T as follows:

• (τ, τ) ∈ γ, ∀τ ∈ T ,
• (τi, τj) ∈ γ, ∀τi, τj ∈ T, τi 6= τj iff

– they have at least one common ancestor, or
– they have at least one common successor, or
– they are in a predecessor-successor relationship.

As γ is a reflexive, symmetric, and transitive relation, it is an equiv-
alence relation. Hence, it partitions the set of tasks T into g subsets,
denoted with Vi, 1 ≤ i ≤ g (∪g

i=1Vi = T ∧ Vi ∩ Vj = ∅, ∀1 ≤ i, j ≤ g, i 6= j).
Thus, an application consists of a set Γ = {Γ1, Γ2, . . . , Γg} of g task
graphs, Γi = (Vi, Ei ⊂ Vi × Vi), 1 ≤ i ≤ g. A directed edge (τa, τb) ∈ Ei,
τa, τb ∈ Vi, represents the data dependency between tasks τa and τb,
denoted τa → τb.

The application example in Figure 3.2 consists of three task graphs:
Γ1 = ({t1, t2, t3, t4, t5, χ1, χ2}, {(t1, t3), (t2, χ1), (χ1, t3), (t3, t4), (t3, χ2),
(χ2, t5)}), Γ2 = ({t6, t7, t8, t9, χ3, χ4}, {(t6, t7), (t7, χ4), (χ4, t9), (t6, χ3),
(χ3, t8)}), and Γ3 = ({t10}, ∅).

3.2.2 Periodic Task Model
Task instantiations (also known as jobs) arrive periodically. The ith job
of task τ is denoted (τ, i), i ∈ N.

Let ΠT = {πi ∈ N : τi ∈ T} denote the set of task periods, or job inter-
arrival times, where πi is the period of task τi. Instantiation u ∈ N of
task τi demands execution (the job is released or the job arrives) at time
moment u · πi. The period πi of any task τi is assumed to be a common
multiple of all periods of its predecessor tasks (πj divides πi, where
τj ∈ ◦τi). Let kij denote πi

πj
, τj ∈ ◦τi. Instantiation u ∈ N of task τi may

start executing only if instantiations u · kij , u · kij + 1, . . . , u · kij + kij − 1
of tasks τj , ∀τj ∈ ◦τi, have completed their execution.

Let ΠΓ = {πΓ1
, πΓ2

, . . . , πΓg
} denote the set of task graph periods

where πΓj
denotes the period of the task graph Γj . πΓj

is equal to the
least common multiple of all πi, where πi is the period of τi and τi ∈ Vj .
Task τi ∈ Vj is instantiated Ji =

πΓj

πi
times during one instantiation of

task graph Γj . The kth instantiation of task graph Γj , k ≥ 0, denoted
(Γj , k), is composed of the jobs (τi, u), where τi ∈ Vj and u ∈ {k · Ji, k ·
Ji + 1, . . . , k · Ji + Ji − 1}. In this case, we say that task instantiation
(τi, u) belongs to task graph instantiation (Γj , k) and we denote it with
(τi, u) ∈ (Γj , k).

The model, where task periods are integer multiples of the periods
of predecessor tasks, is more general than the model assuming equal
task periods for tasks in the same task graph. This is appropriate, for
instance, when modelling protocol stacks. For example, let us consider
a part of baseband processing on the GSM radio interface [MP92]. A
data frame is assembled out of 4 radio bursts. One task implements the
decoding of radio bursts. Each time a burst is decoded, the result is sent
to the frame assembling task. Once the frame assembling task gets all
the needed data, that is every 4 invocations of the burst decoding task,
the frame assembling task is invoked. This way of modelling is more

20 CH. 3. SYSTEM MODELLING

modular and natural than a model assuming equal task periods, which
would have crammed the four invocations of the radio burst decoding
task in one task. We think that more relaxed models than ours, with
regard to relations between task periods, are not necessary, as such
applications would be more costly to implement and are unlikely to
appear in common engineering practice.

3.2.3 Mapping
Processing tasks are mapped on processing elements and communica-
tion tasks are mapped on buses. All instances of a processing task are
executed by the same processing element on which the processing task
is mapped. Analogously, all instances of a message are conveyed by the
bus on which the corresponding communication task is mapped.

Let MapP : PT → PE be a surjective function that maps pro-
cessing tasks on the processing elements. MapP (ti) = Pj indicates
that processing task ti is executed on the processing element Pj . Let
MapC : CT → B be a surjective function that maps communication
tasks on buses. MapC(χi) = Bj indicates that the communication task
χi is performed on the bus Bj . For notation simplicity, Map : T → P is
defined, where Map(τi) = MapP (τi) if τi ∈ PT and Map(τi) = MapC(τi)
if τi ∈ CT . Conversely, let Tp = {τ ∈ T : Map(τ) = p ∈ P} denote the
set of tasks that are mapped on processor p. Let Tτ be a shorthand
notation for TMap(τ).

The mapping is graphically indicated by the shading of the task. In
Figure 3.2, tasks t1, t3, t4, and t9 are mapped on processing element
PE1, tasks t2, t6, and t7 on processing element PE2, and tasks t5, t9,
and t10 on processing element PE3. Communication task χ1 is mapped
on bus B2 and communication tasks χ2, χ3, and χ4 on bus B1. The
corresponding system architecture is shown in Figure 3.1.

3.2.4 Execution Times
For a processing task ti, ∀1 ≤ i ≤ n, let Exti

denote its execution time
on processing element MapP (ti). Let εti

be the probability density of
Exti

.
First, we discuss the modelling of the communication time between

two processing tasks that are mapped on the same processing element.
Let ti and tj be any two processing tasks such that task ti is a prede-
cessor of task tj (ti ∈ ◦tj) and tasks ti and tj are mapped on the same
processing element (MapP (ti) = MapP (tj)). In this case, the time of
the communication between task ti and tj is considered to be part of
the execution time of task ti. Thus, the execution time probability den-
sity εti

accounts for this intra-processor communication time.
Next, we discuss the modelling of the communication time between

two processing tasks that are mapped on different processing elements.
Let ti and tj be two processing tasks, let χ be a communication task, let
PEa and PEb be two distinct processing elements and let B be a bus
such that all of the following statements are true:

• Processing tasks ti and tj are mapped on processing elements
PEa and PEb respectively (MapP (ti) = PEa and MapP (tj) =
PEb).

• Communication task χ is mapped on bus B (MapC(χ) = B).

3.2. APPLICATION MODEL 21

• Bus B connects processing elements PEa and PEb.
• Task χ is a successor of task ti and a predecessor of task tj (χ ∈

t◦i ∧ χ ∈ ◦tj).

The transmission time of the message that is passed between tasks
ti and tj on the bus B is modelled by the execution time Exχ of the
communication task χ. Let εχ denote the probability density of Exχ.

Without making any distinction between processing and communi-
cation tasks, we let Exi denote an execution (communication) time of
an instantiation of task τi ∈ T and we let ET = {ε1, ε2, . . . , εN} denote
the set of N execution time probability density functions (ETPDFs).

3.2.5 Real-Time Requirements
The real-time requirements are expressed in terms of deadlines. Let
∆T = {δi ∈ N : τi ∈ T} denote the set of task deadlines. δi is the
deadline of task τi. If job (τi, u) has not completed its execution at time
u · πi + δi, then the job is said to have missed its deadline.

Let ∆Γ = {δΓj
∈ N : 1 ≤ j ≤ g} denote the set of task graph dead-

lines, where δΓj
is the deadline of task graph Γj . If there exists at

least one task instantiation (τi, u) ∈ (Γj , k), such that (τi, u) has not
completed its execution at time moment k · πΓj

+ δΓj
, we say that task

graph instantiation (Γj , k) has missed its deadline.
If Di(t) denotes the number of jobs of task τi that have missed their

deadline over a time span t and Ai(t) = b t
πi
c denotes the total number

of jobs of task τi over the same time span, then limt→∞
Di(t)
Ai(t)

denotes the
expected deadline miss ratio of task τi. Similarly, we define the expected
deadline miss ratio of task graph Γj as the long-term ratio between
the number of instantiations of task graph Γj that have missed their
deadlines and the total number of instantiations of task graph Γj .

Let MissedT = {mτ1
, mτ2

, . . . , mτN
} be the set of expected deadline

miss ratios per task. Similarly, the set MissedΓ = {mΓ1
, mΓ2

, . . . , mΓg
}

is defined as the set of expected deadline miss ratios per task graph.
The designer may specify upper bounds for tolerated deadline miss

ratios, both for tasks and for task graphs. Let ΘT = {θτ1
, θτ2

, . . . , θτN
}

be the set of deadline miss thresholds for tasks and let ΘΓ = {θΓ1
, θΓ2

,
. . . , θΓg

} be the set of deadline miss thresholds for task graphs.
Some tasks or task graphs may be designated as being critical by

the designer, which means that deadline miss thresholds are not al-
lowed to be violated. The deadline miss deviation of task τ , denoted
devτ , is defined as

devτ =











∞ mτ > θτ , τ critical
mτ − θτ mτ > θτ , τ not critical
0 mτ ≤ θτ .

(3.1)

Analogously, we define the deadline miss deviation of a task graph.

3.2.6 Late Task Policy
We say that a task graph instantiation (Γ, k), k ≥ 0, is active in the
system at time t if there exists at least one task instantiation (τ, u) ∈
(Γ, k) such that job (τ, u) has not completed its execution at time t. Let

22 CH. 3. SYSTEM MODELLING

Insti(t) denote the number of active instantiations of task graph Γi,
1 ≤ i ≤ g, at time t.

For each task graph Γi, ∀1 ≤ i ≤ g, we let the designer specify bi ∈
N

+, the maximum number of simultaneously active instantiations of
task graph Γi. Let Bounds = {bi ∈ N

+ : 1 ≤ i ≤ g} be their set.
We consider two different policies for ensuring that no more than bi

instantiations of task graph Γi, ∀1 ≤ i ≤ g, are active in the system at
the same time. We call these policies the discarding and the rejection
policy.

We assume that a system applies the same policy (either discarding
or rejection) to all task graphs, although our work can be easily ex-
tended in order to accommodate task graph specific late task policies.

The Discarding Policy

The discarding policy specifies that whenever a new instantiation of
task graph Γi, ∀1 ≤ i ≤ g, arrives and bi instantiations are already
active in the system at the time of the arrival of the new instantiation,
the oldest active instantiation of task graph Γi is discarded. We mean
by “oldest” instantiation the instantiation whose arrival time is the
minimum among the arrival times of the active instantiations of the
same task graph. “Discarding” a task graph implies:

• The running jobs belonging to the task graph to be discarded are
immediately removed from the processors they run onto. These
jobs are eliminated from the system, i.e. their execution is never
resumed and all resources that they occupy (locks, memory, pro-
cess control blocks, file control blocks, etc.) are freed.

• The ready-to-run and blocked-on-I/O jobs belonging to the task
graph to be discarded are immediately removed from the ready-
to-run and waiting-on-I/O queues of the scheduler. They are also
eliminated from the system.

The Rejection Policy

The rejection policy specifies that whenever a new instantiation of task
graph Γi, ∀1 ≤ i ≤ g, arrives and bi instantiations are active in the
system at the time of the arrival of the new instantiation, the new in-
stantiation is not accepted in the system. Thus, all execution requests
by jobs belonging to the new instantiation are ignored by the system.

3.2.7 Scheduling Policy
In the common case of more than one task mapped on the same proces-
sor, the designer has to decide on a scheduling policy. Such a schedul-
ing policy has to be able to unambiguously determine the running task
at any time on that processor. The selection of the next task to run is
made by a run-time scheduler based on the priority associated to the
task. Priorities may be static (the priority of a task does not change in
time) or dynamic (the priority of a task changes in time).

We limit the set of accepted scheduling policies to those where the
sorting of tasks according to their priority is unique during those time
intervals in which the queue of ready tasks is unmodified. For practi-
cal purposes, this is not a limitation, as all practically used priority-
based scheduling policies [LL73, But97, Fid98, ABD+95], both with

3.3. ILLUSTRATIVE EXAMPLE 23

static priority assignment (rate monotonic, deadline monotonic) and
with dynamic assignment (earlier deadline first (EDF)), fulfil this re-
quirement.

The scheduling policy is nevertheless restricted to non-preemptive
scheduling. This limitation is briefly discussed in Section 4.2.1.

Each processing element or bus may have a different scheduling
policy associated to it.

Based on these assumptions, and considering the communication
tasks, we are able to model any priority based bus arbitration protocol
as, for instance, CAN [Bos91]. 1

3.3 Illustrative Example
This section illustrates the behaviour of the application shown in Fig-
ure 3.2 by means of a Gantt diagram. Tasks are mapped as indicated
in Section 3.2.3.

Tasks t1, t2, t3, t5, χ1, and χ2 have a period of 6 and task t4 has
a period of 12. Consequently, task graph Γ1 has a period πΓ1

= 12.
Tasks t6, t7, t8, χ3, and χ4 have a period of 4 and task τ9 has a period
of 8. Thus, πΓ2

= 8. Task t10 has a period of 3. For all tasks and task
graphs of this example, their deadline is equal to their period (δi = πi,
1 ≤ i ≤ 14 and δΓi

= πΓi
, 1 ≤ i ≤ 3).

The late task policy for this example is the discarding policy. The
set of bounds on the number of simultaneously active instantiations of
the same task graph is Bounds = {1, 1, 2}.

The deployed scheduling policy is fixed priority for this example.
As the task priorities do not change, this policy obviously satisfies the
restriction that the sorting of tasks according to their priorities must
be invariable during the intervals in which the queue of ready tasks
does not change. Task t7 has a higher priority than task t6, which in
turn has a higher priority than task t2. Task t10 has a higher priority
than task t8, which in turn has a higher priority than task t5. Task
t9 has a higher priority than any of the tasks t1, t3, and t4. Message
χ4 has a higher priority than message χ3, which in turn has a higher
priority than message χ2.

A Gantt diagram illustrating a possible task execution over a span
of 20 time units is depicted in Figure 3.3. The Ox axes corresponds to
time, while each processor, shown on the Oy axis, has an associated
Ox axis. The job executions are depicted as rectangles stretching from
the point on the Ox axis that corresponds to the start time of the job
execution to the point on the Ox axis that corresponds to its finishing
time. The different task graphs are depicted in different shades in
this figure. Vertical lines of different line patterns are used for better
readability.

Job 2 of task t10 arrives at time 6 and is ready to run. However,
processing element PE3 is busy executing task t8. Therefore, job (t10, 2)

1Time division multiple access bus protocols, such as the TTP [TTT99], could be mod-
elled using dynamic priorities. For example, all communication tasks that are not al-
lowed to transmit on a bus at a certain moment of time have priority −∞. However, in
this case, the sorting of tasks according to their priorities is not any more unique between
two consecutive events that change the set of ready tasks. The reason is that between
two such events, a time slot may arrive when a certain communication is allowed and,
thus, the priorities of communication tasks are changed. Therefore, time-triggered com-
munication protocols are not supported by our analysis method.

24
C

H
.3

.S
Y

ST
E

M
M

O
D

E
L

L
IN

G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t1 t1 t1

t2 t2t2

t3 t3 t3

t5 t5

t6 t6 t6 t6 t6t7t7t7t7

t8 t8 t8 t8t10 t10 t10 t10 t10

t9t9

χ1

χ2χ3 χ4 χ3 χ4

χ1

χ4χ3 χ2 χ3 χ4

χ1

PE1

PE2

PE3

B1

B2

t10

t1

t2 t6

χ1

χ3

t10
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t8

t3 t4

χ4

t7
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 3.3: Gantt diagram

3.3. ILLUSTRATIVE EXAMPLE 25

starts its execution later, at time7.5. The execution of the job finishes
at time 9.5. At time 9, job 3 of task t10 arrives and is ready to run.
Thus, we observe that between times 9 and 9.5 two instantiations of
task graph Γ3 are active. This is allowed as b2 = 2.

Instantiation 0 of task graph Γ1 illustrates a discarding situation.
Job 1 of task t3, which arrived at time 6, starts its execution at time
8.875, when communication task χ1 has finished, and finishes at time
11. At this time, the message between jobs (t3, 1) and (t5, 1) is ready to
be sent on bus B1 (an instance of communication task χ2 is “ready-to-
run”). Nevertheless, the message cannot be sent at time 11 as the bus
is occupied by an instance of communication task χ4. Message χ4 is
still being sent at the time 12, when a new instantiation of task graph
Γ1 arrives. At time 12, the following jobs belonging to instantiation 0 of
task graph Γ1 have not yet completed their execution: (t4, 0), (t5, 1), and
(χ2, 1). They are in the states “running”, “waiting on I/O”, and “ready-
to-run” respectively. Because at most one instantiation of task graph
Γ1 is allowed to be active at any time, instantiation 0 must be discarded
at time 12. Hence, job (t4, 0) is removed from processing element PE1,
job (t5, 1) is removed from the waiting-on-I/O queue of the processing
element PE2, and job (χ2, 1) is removed from the ready-to-run queue of
bus B1.

The deadline miss ratio of Γ3 over the interval [0, 18) is 1/6, be-
cause there are 6 instantiations of task graph Γ3 in this interval and
one of them, instantiation 2, which arrived at time 6, missed its dead-
line. When analysing this system, the expected deadline miss ratio of
Γ3 (the ratio of the number instantiations that missed their deadline
and the total number of instantiations over an infinite time interval)
is 0.08. The expected deadline miss ratios of Γ1 and Γ2 are 0.4 and 0.15
respectively.

26 CH. 3. SYSTEM MODELLING

Chapter 4

Analysis of
Monoprocessor Systems

This chapter presents an exact approach for analytically determining
the expected deadline miss ratios of task graphs with stochastic task
execution times in the case of monoprocessor systems.

First, we give the problem formulation (Section 4.1). Second, we
present the analysis procedure based on an example before we give the
precise algorithm (Section 4.2). Third, we evaluate the efficiency of the
analysis procedure by means of experiments (Section 4.3). Section 4.4
presents some extensions of the assumptions. Last, we discuss the lim-
itations of the approach presented in this chapter and we hint on the
possible ways to overcome them.

4.1 Problem Formulation
The formulation of the problem to be solved in this chapter is the fol-
lowing:

4.1.1 Input
The input of the analysis problem to be solved in this chapter is given
as follows:

• The set of task graphs Γ,
• The set of task periods ΠT and the set of task graph periods ΠΓ,
• The set of task deadlines ∆T and the set of task graph deadlines

∆Γ,
• The set of execution time probability density functions ET ,
• The late task policy is the discarding policy,
• The set Bounds = {bi ∈ N\{0} : 1 ≤ i ≤ g}, where bi is the max-

imum numbers of simultaneously active instantiations of task
graph Γi, and

• The scheduling policy.

27

28 CH. 4. MONOPROCESSOR SYSTEMS

4.1.2 Output
The result of the analysis is the set MissedT of expected deadline miss
ratios for each task and the set MissedΓ of expected deadline miss ra-
tios for each task graph.

4.1.3 Limitations
We assume the discarding late task policy. A discussion on discarding
versus rejection policy is presented in Section 4.3.5.

4.2 Analysis Algorithm
The goal of the analysis is to obtain the expected deadline miss ratios
of the tasks and task graphs. These can be derived from the behaviour
of the system. The behaviour is defined as the evolution of the system
through a state space in time. A state of the system is given by the
values of a set of variables that characterise the system. Such variables
may be the currently running task, the set of ready tasks, the current
time and the start time of the current task..

Due to the considered periodic task model, the task arrival times
are deterministically known. However, because of the stochastic task
execution times, the completion times and implicitly the running task
at an arbitrary time instant or the state of the system at that instant
cannot be deterministically predicted. The mathematical abstraction
best suited to describe and analyse such a system with random charac-
ter is the stochastic process.

In this section, we first sketch the stochastic process construction
and analysis procedure based on a simplified example. Then the mem-
ory efficient construction of the stochastic process underlying the ap-
plication is detailed. Third, the algorithm is refined in order to handle
multiple concurrently active instantiations of the same task graph. Fi-
nally, the complete algorithm is presented.

4.2.1 The Underlying Stochastic Process
Let us define LCM as the least common multiple of the task periods.
For simplicity of the exposition, we first assume that at most one in-
stantiation of each task graph is tolerated in the system at the same
time (bi = 1, ∀1 ≤ i ≤ g). In this case, the set of time moments when
all late tasks are discarded include the sequence LCM, 2 · LCM, . . . , k ·
LCM, . . . because at these moments new instantiations of all tasks ar-
rive. The system behaves at these time moments as if it has just been
started. The time moments k · LCM , k ∈ N are called regeneration
points. Regardless of the chosen definition of the state space of the
system, the system states at the renewal points are equivalent to the
initial state, which is unique and deterministically known. Thus, the
behaviour of the system over the intervals [k · LCM, (k + 1) · LCM),
k ∈ N, is statistically equivalent to the behaviour over the time in-
terval [0, LCM). Therefore, in the case when bi = 1, 1 ≤ i ≤ g, it is
sufficient to analyse the system solely over the time interval [0, LCM).

One could choose the following state space definition: S = {(τ, W, t) :
τ ∈ T, W ∈ set of all multisets of T, t ∈ R}, where τ represents the

4.2. ANALYSIS ALGORITHM 29

30 1 2 4
time

0.66
pr

ob
ab

ili
ty

(a) ε1

30 1 2 4
time

5 6

0.66

pr
ob

ab
ili

ty

(b) ε2

Figure 4.1: ETPDFs of tasks τ1 (ε1) and τ2 (ε2)

currently running task, W stands for the multiset1 of ready tasks at
the start time of the running task, and t represents the start time of
the currently running task. A state change occurs at the time moments
when the scheduler has to decide on the next task to run. This happens

• when a task completes its execution, or
• when a task arrives and the processor is idle, or
• when the running task graph has to be discarded.

The point we would like to make is that, by choosing this state
space, the information provided by a state si = (τi, Wi, ti), together
with the current time, is sufficient to determine the next system state
sj = (τj , Wj , tj). The time moment when the system entered state si,
namely ti, is included in si. Because of the deterministic arrival times
of tasks, based on the time moments tj and on ti, we can derive the mul-
tiset of tasks that arrived in the interval (ti, tj]. The multiset of ready
tasks at time moment ti, namely Wi, is also known. We also know that
τi is not preempted between ti and tj . Therefore, the multiset of ready
tasks at time moment tj , prior to choosing the new task to run, is the
union of Wi and the tasks arrived during the interval (ti, tj]. Based on
this multiset and on the time tj , the scheduler is able to predictably
choose the new task to run. Hence, in general, knowing a current state
s and the time moment t when a transition out of state s occurs, the
next state s′ is unambiguously determined.

The following example is used throughout this subsection in or-
der to discuss the construction of the stochastic process. The sys-
tem consists of one processor and the following application: Γ =
{({τ1}, ∅), ({τ2}, ∅)}, Π = {3, 5}, i.e. a set of two independent tasks
with corresponding periods 3 and 5. The tasks are scheduled according
to a non-preemptive EDF scheduling policy [LL73]. LCM , the least
common multiple of the task periods is 15. For simplicity, in this exam-
ple it is assumed that the relative deadlines equal the corresponding
periods (δi = πi). The ETPDFs of the two tasks are depicted in Fig-
ure 4.1. Note that ε1 contains execution times larger than the deadline
δ1.

Let us assume a state representation like the one introduced above:
each process state contains the identity of the currently running task,
its start time and the multiset of ready task at the start time of the
currently running one. For our application example, the initial state is
(τ1, {τ2}, 0), i.e. task τ1 is running, it has started to run at time moment

1If bi = 1,∀1 ≤ i ≤ g, then W is a set.

30 CH. 4. MONOPROCESSOR SYSTEMS

τ1, {τ2}, 0

τ2, Ø, t1 tk+1 tqτ2, {τ1}, τ2, Ø, t τ2, Ø, t τ2, {τ12 k },

(a) Individual task completion times

τ1, {τ2}, pmi1

τ2, Ø, pmi1 τ2, {τ1}, pmi2

(b) Intervals containing task completion times

Figure 4.2: State encoding

pmi3pmi1 pmi2 pmi4 pmi5 pmi6 pmi7τ1

τ2

0 3 5 6 9 10 12 15

Figure 4.3: Priority monotonicity intervals

0 and task τ2 is ready to run, as shown in Figure 4.2(a). t1, t2, . . . , tq
in the figure are possible finishing times for the task τ1 and, implic-
itly, possible starting times of the waiting instantiation of task τ2. The
number of next states equals the number of possible execution times of
the running task in the current state. In general, because the ETPDFs
are continuous, the set of state transition moments form a dense set in
R leading to an underlying stochastic process theoretically of uncount-
able state space. In practice, the stochastic process is extremely large,
depending on the discretisation resolution of the ETPDFs. Even in the
case when the task execution time probabilities are distributed over
a discrete set, the resulting underlying process becomes prohibitively
large and practically impossible to solve.

In order to avoid the explosion of the underlying stochastic pro-
cess, in our approach, we have grouped time moments into equivalence
classes and, by doing so, we limited the process size explosion. Thus,
practically, a set of equivalent states is represented as a single state in
the stochastic process.

As a first step to the analysis, the interval [0, LCM) is partitioned in
disjunct intervals, the so-called priority monotonicity intervals (PMI).
The concept of PMI (called in their paper “state”) was introduced by
Zhou et al. [ZHS99] in a different context, unrelated to the construction
of a stochastic process. A PMI is delimited by task arrival times and
task execution deadlines. Figure 4.3 depicts the PMIs for the example
above. The only restriction imposed on the scheduling policies accepted

4.2. ANALYSIS ALGORITHM 31

by our approach is that inside a PMI the ordering of tasks according to
their priorities is not allowed to change. This allows the scheduler to
predictably choose the next task to run, regardless of the completion
time within a PMI of the previously running task. As mentioned in
Section 3.2.7, all the widely used scheduling policies we are aware of
(rate monotonic (RM), EDF, first come first served (FCFS), LLF, etc.)
exhibit this property, as mentioned before.

Consider a state s characterised by (τi, W, t): τi is the currently run-
ning task, it has been started at time t, and W is the multiset of ready
tasks. Let us consider two next states derived from s: s1 characterised
by (τj , W1, t1) and s2 by (τk, W2, t2). Let t1 and t2 belong to the same
PMI. This means that no task instantiation has arrived or been dis-
carded in the time interval between t1 and t2, and the relative prior-
ities of the tasks inside the set W have not changed between t1 and
t2. Thus, τj = τk = the highest priority task in the multiset W , and
W1 = W2 = W\{τj}. It follows that all states derived from state s
that have their time t belonging to the same PMI have an identical
currently running task and identical sets of ready tasks. Therefore, in-
stead of considering individual times we consider time intervals, and
we group together those states that have their associated start time
inside the same PMI. With such a representation, the number of next
states of a state s equals the number of PMIs the possible execution
time of the task that runs in state s is spanning over.

We propose a representation in which a stochastic process state is
a triplet (τ, W, pmi), where τ is the running task, W the multiset of
ready tasks at the start time of task τ , and pmi is the PMI containing
the start time of the running task. In our example, the execution time
of task τ1 (which is in the interval [2, 3.5], as shown in Figure 4.1(a))
is spanning over the PMIs pmi1— [0, 3)—and pmi2—[3, 5). Thus, there
are only two possible states emerging from the initial state, as shown
in Figure 4.2(b).

Figure 4.4 depicts a part of the stochastic process constructed for
our example. The initial state is s1 : (τ1, {τ2}, pmi1). The first field indi-
cates that an instantiation of task τ1 is running. The second field indi-
cates that an instantiation of task τ2 is ready to execute. The third field
shows the current PMI (pmi1—[0, 3)). If the instantiation of task τ1 does
not complete until time moment 3, then it will be discarded. The state
s1 has two possible next states. The first one is state s2 : (τ2, ∅, pmi1)
and corresponds to the case when the τ1 completes before time moment
3. The second one is state s3 : (τ2, {τ1}, pmi2) and corresponds to the
case when τ1 was discarded at time moment 3. State s2 indicates that
an instantiation of task τ2 is running (it is the instance that was wait-
ing in state s1), that the PMI is pmi1—[0, 3)—and that no task is wait-
ing. Consider state s2 to be the new current state. Then the next states
could be state s4 : (−, ∅, pmi1) (task τ2 completes before time moment
3 and the processor is idle), state s5 : (τ1, ∅, pmi2) (task τ2 completes at
a time moment sometime between 3 and 5), or state s6 : (τ1, {τ2}, pmi3)
(the execution of task τ2 reaches over time moment 5 and, hence, it is
discarded at time moment 5). The construction procedure continues
until all possible states corresponding to the time interval [0, LCM),
i.e. [0, 15), have been visited.

Let Pi denote the set of predecessor states of a state si, i.e. the set
of all states that have si as a next state. The set of successor states
of a state si consists of those states that can directly be reached from

32
C

H
.4

.M
O

N
O

P
R

O
C

E
SS

O
R

SY
ST

E
M

S

3 4 5 6 time

pr
ob

ab
ili

ty

5 643 time

pr
ob

ab
ili

ty

τ1 , {τ2 }, pmi1

−, Ø, pmi1 τ1 , {τ2 }, pmi3

τ2 , {τ1 }, pmi2τ2 , Ø, pmi1

τ1 , Ø, pmi2

s1

s2

s4 s5 s6

s3

z3

z5 z6

1 2 3 4 time
pr

ob
ab

ili
ty

z2

1 2 3 4 time

pr
ob

ab
ili

ty

z4

time

pr
ob

ab
ili

ty

1 2 3 4

Figure 4.4: Stochastic process example

4.2. ANALYSIS ALGORITHM 33

state si. Let Zi denote the time when state si is entered. State si can
be reached from any of its predecessor states sj ∈ Pi. Therefore, the
probability P(Zi ≤ t) that state si is entered before time t is a weighted
sum over j of probabilities that the transitions sj → si, sj ∈ Pi, occur
before time t. The weights are equal to the probability P(sj) that the
system is in state sj prior to the transition. Formally, P(Zi ≤ t) =
∑

j∈Pi
P(Zji ≤ t|sj) · P(sj), where Zji is the time of transition sj → si.

Let us focus on Zji, the time of transition sj → si. If the state transition
occurs because the processor is idle and a new task arrives or because
the running task graph has to be discarded, the time of the transition
is deterministically known as task arrivals and deadlines have fixed
times. If, however, the cause of the state transition is a task completion,
the time Zji is equal to to Zj + Exτ , where task τ is the task that
runs in state sj and whose completion triggers the state transition.
Because Zji is a sum involving the random variable Exτ , Zji too is a
random variable. Its probability density function, is computed as the
convolution zj ∗ ετ =

∫∞

0 zj(t − x) · ετ (x)dx of the probability density
functions of the terms.

Let us illustrate the above, based on the example depicted in Fig-
ure 4.4. z2, z3, z4, z5, and z6 are the probability density functions of Z2,
Z3, Z4, Z5, and Z6 respectively. They are shown in Figure 4.4 to the left
of their corresponding states s2, s3, . . . , s6. The transition from state s4

to state s5 occurs at a precisely known time instant, time 3, at which a
new instantiation of task τ1 arrives. Therefore, z5 will contain a scaled
Dirac impulse at the beginning of the corresponding PMI. The scaling
coefficient equals the probability of being in state s4 (the integral of z4,
i.e. the shaded surface below the z4 curve). The probability density
function z5 results from the superposition of z2 ∗ ε2 (because task τ2

runs in state s2) with z3 ∗ ε2 (because task τ2 runs in state s3 too) and
with the aforementioned scaled Dirac impulse over pmi2, i.e. over the
time interval [3, 5).

The probability of a task missing its deadline is easily computed
from the transition probabilities of those transitions that correspond to
a deadline miss of a task instantiation (the thick arrows in Figure 4.4,
in our case). The probabilities of the transitions out of a state si are
computed exclusively from the information stored in that state si. For
example, let us consider the transition s2 → s6. The system enters
state s2 at a time whose probability density is given by z2. The sys-
tem takes the transition s2 → s6 when the attempted completion time
of τ2 (running in s2) exceeds 5. The completion time is the sum of the
starting time of τ2 (whose probability density is given by z2) and the
execution time of τ2 (whose probability density is given by ε2). Hence,
the probability density of the completion time of τ2 is given by the con-
volution z2 ∗ ε2 of the above mentioned densities. Once this density is
computed, the probability of the completion time being larger than 5
is easily computed by integrating the result of the convolution over the
interval (5,∞). If τ2 in s2 completes its execution at some time t ∈ [3, 5),
then the state transition s2 → s5 occurs (see Figure 4.4). The probabil-
ity of this transition is computed by integrating z2 ∗ ε2 over the interval
[3, 5).

As can be seen, by using the PMI approach, some process states
have more than one incident arc, thus keeping the graph “narrow”.
This is because, as mentioned, one process state in our representation

34 CH. 4. MONOPROCESSOR SYSTEMS

1

2

3

4

5 6

Figure 4.5: State selection order

captures several possible states of a representation considering indi-
vidual times (see Figure 4.2(a)).

The non-preemption limitation could, in principle, be overcome if we
extended the information stored in the state of the underlying stochas-
tic process. Namely, the residual run time probability distribution func-
tion of a task instantiation, i.e. the PDF of the time a preempted in-
stantiation still has to run, has to be stored in the stochastic process
state. This would several times multiply the memory requirements of
the analysis. Additionally, preemption would increase the possible be-
haviour of the system and, consequently, the number of states of its
underlying stochastic process.

Because the number of states grows rapidly even with our state re-
duction approach and each state has to store its probability density
function, the memory space required to store the whole process can be-
come prohibitively large. Our solution to master memory complexity is
to perform the stochastic process construction and analysis simultane-
ously. As each arrow updates the time probability density z of the state
it leads to, the process has to be constructed in topological order. The
result of this procedure is that the process is never stored entirely in
memory but rather that a sliding window of states is used for analysis.
For the example in Figure 4.4, the construction starts with state s1.
After its next states (s2 and s3) are created, their corresponding tran-
sition probabilities determined and the possible deadline miss proba-
bilities accounted for, state s1 can be removed from memory. Next, one
of the states s2 and s3 is taken as current state, let us consider state
s2. The procedure is repeated, states s4, s5 and s6 are created and state
s2 removed. At this moment, one would think that any of the states
s3, s4, s5, and s6 can be selected for continuation of the analysis. How-
ever, this is not the case, as not all the information needed in order to
handle states s5 and s6 are computed. More exactly, the arcs emerging
from states s3 and s4 have not yet been created. Thus, only states s3

and s4 are possible alternatives for the continuation of the analysis in
topological order. The next section discusses the criteria for selection
of the correct state to continue with.

4.2.2 Memory Efficient Analysis Method
As shown in the example in Section 4.2.1, only a sliding window of
states is simultaneously kept in memory. All states belonging to the

4.2. ANALYSIS ALGORITHM 35

sliding window are stored in a priority queue. Once a state is extracted
from this queue and its information processed, it is eliminated from the
memory. The key to the process construction in topological order lies
in the order in which the states are extracted from this queue. First,
observe that it is impossible for an arc to lead from a state with a PMI
number u to a state with a PMI number v such that v < u (there are
no arcs back in time). Hence, a first criterion for selecting a state from
the queue is to select the one with the smallest PMI number. A second
criterion determines which state has to be selected out of those with the
same PMI number. Note that inside a PMI no new task instantiation
can arrive, and that the task ordering according to their priorities is
unchanged. Thus, it is impossible that the next state sk of a current
state sj would be one that contains waiting tasks of higher priority
than those waiting in sj . Hence, the second criterion reads: among
states with the same PMI, one should choose the one with the waiting
task of highest priority. Figure 4.5 illustrates the algorithm on the
example given in Section 4.2.1 (Figure 4.4). The shades of the states
denote their PMI number. The lighter the shade, the smaller the PMI
number. The numbers near the states denote the sequence in which
the states are extracted from the queue and processed.

4.2.3 Multiple Simultaneously Active Instantiations
of the Same Task Graph

The examples considered so far dealt with applications where at most
one active instance of each task graph is allowed at any moment of time
(bi = 1, 1 ≤ i ≤ g).

In order to illustrate the construction of the stochastic process in the
case bi > 1, when several instantiations of a task graph Γi may exist at
the same time in the system, let us consider an application consisting
of two independent tasks, τ1 and τ2, with periods 2 and 4 respectively.
LCM = 4 in this case. The tasks are scheduled according to a rate
monotonic (RM) policy [LL73]. At most one active instantiation of τ1

is tolerated in the system at a certain time (b1 = 1) and at most two
concurrently active instantiations of τ2 are tolerated in the system (b2 =
2).

Figure 4.6 depicts a part of the stochastic process underlying
this example. It is constructed using the procedure sketched in Sec-
tions 4.2.1 and 4.2.2. The state indexes show the order in which the
states were analysed (extracted from the priority queue mentioned in
Section 4.2.2).

Let us consider state s6 = (τ2, ∅, [2, 4)), i.e. the instantiation of τ2

that arrives at time moment 0 has been started at a moment inside the
PMI [2, 4) and there have not been any ready tasks at the start time of
τ2. Let us assume that the finishing time of τ2 lies past the LCM = 4.
At time moment 4, a new instantiation of τ2 arrives and the running
instantiation is not discarded, as b2 = 2. On one hand, if the finish-
ing time of the running instantiation belongs to the interval [6, 8), the
system performs the transition s6 → s14 (Figure 4.6). If, on the other
hand, the running instantiation attempts to run past the time moment
8, then at this time moment a third instantiation of τ2 would require
service from the system and, therefore, the running task (the oldest in-
stantiation of τ2) is eliminated from the system. The transition s6 → s19

36 CH. 4. MONOPROCESSOR SYSTEMS

τ1,{τ2},[0,2)

τ1,{τ2},[2,4)

τ2,Ø ,[0,2)

τ1,Ø ,[2,4)

τ2,Ø ,[2,4)−, Ø ,[2,4)

−, Ø ,[0,2)

τ2,

τ1,

τ2,

τ1,{τ2},[8,10) τ1,{τ2,τ2},[8,10)

s1

s3

s10

s12

s17

s18

s30

20s

τ1,{τ2},[10,12)
s25

τ1,{τ2,τ2},[4,6)τ1,{τ2

Ø

Ø−, Ø τ1,{τ2

τ2,{τ2 τ1,{τ2,τ2

τ2,{τ2

−, Ø Ø

},[4,6)

,[4,6) },[4,6) },[6,8)

,[4,6) ,[6,8) },[6,8) },[6,8)

,[6,8) ,[6,8)

τ1,{τ2,τ2},[12,14)

s2

s5

s4

s6

s7

s8
s9

s11
s13

s14 s15
s16

s19

Figure 4.6: Part of the stochastic process underlying the example ap-
plication

4.2. ANALYSIS ALGORITHM 37

in the stochastic process in Figure 4.6 corresponds to this latter case.
We observe that when a task execution spans beyond the time moment
LCM , the resulting state is not unique. The system does not behave as
if it has just been restarted at time moment LCM , and, therefore, the
intervals [k · LCM, (k + 1) · LCM), k ∈ N, are not statistically equiva-
lent to the interval [0, LCM). Hence, it is not sufficient to analyse the
system over the interval [0, LCM) but rather over several consecutive
intervals of length LCM .

Let an interval of the form [k · LCM, (k + 1) · LCM) be called the
hyperperiod k and denoted Hk. Hk′ is a lower hyperperiod than Hk

(Hk′ < Hk) if k′ < k. Consequently, Hk is a higher hyperperiod than
Hk′ (Hk > Hk′) if k > k′.

For brevity, we say that a state s belongs to a hyperperiod k (denoted
s ∈ Hk) if its PMI field is a subinterval of the hyperperiod k. In our
example, three hyperperiods are considered, H0 = [0, 4), H1 = [4, 8),
and H2 = [8, 12). In the stochastic process in Figure 4.6, s1, s2, . . . , s7 ∈
H0, s8, s9, . . . , s18 ∈ H1, and s19, s20, s25 ∈ H2 (note that not all states
have been depicted in Figure 4.6).

In general, let us consider a state s and let Ps be the set of its prede-
cessor states. Let k denote the order of the state s defined as the lowest
hyperperiod of the states in Ps (k = min{j : s′ ∈ Hj , s

′ ∈ Ps}). If s ∈ Hk

and s is of order k′ and k′ < k, then s is a back state. In our example,
s8, s9, s14, and s19 are back states of order 0, while s20, s25 and s30 are
back states of order 1.

Obviously, there cannot be any transition from a state belonging
to a hyperperiod H to a state belonging to a lower hyperperiod than
H (s → s′, s ∈ Hk, s′ ∈ Hk′ ⇒ Hk ≤ Hk′). Consequently, the set S
of all states belonging to hyperperiods greater or equal to Hk can be
constructed from the back states of an order smaller than k. We say
that S is generated by the aforementioned back states. For example,
the set of all states s8, s9, . . . , s18 ∈ H1 can be derived from the back
states s8, s9, and s14 of order 0. The intuition behind this is that back
states inherit all the needed information across the border between
hyperperiods.

Before continuing our discussion, we have to introduce the notion of
similarity between states. We say that two states si and sj are similar
(si ∼ sj) if all the following conditions are satisfied:

1. The task that is running in si and the one in sj are the same,
2. The multiset of ready tasks in si and the one in sj are the same,
3. The PMIs in the two states differ only by a multiple of LCM , and
4. zi = zj (zi is the probability density function of the times when

the system takes a transition to si).

Let us consider the construction and analysis of the stochastic pro-
cess, as described in Sections 4.2.1 and 4.2.2. Let us consider the mo-
ment x, when the last state belonging to a certain hyperperiod Hk has
been eliminated from the sliding window. Rk is the set of back states
stored in the sliding window at the moment x. Let the analysis proceed
with the states of the hyperperiod Hk+1 and let us consider the moment
y when the last state belonging to Hk+1 has been eliminated from the
sliding window. Let Rk+1 be the set of back states stored in the sliding
window at moment y.

If the sets Rk and Rk+1 contain pairwise similar states, then it is
guaranteed that Rk and Rk+1 generate identical stochastic processes

38 CH. 4. MONOPROCESSOR SYSTEMS

during the rest of the analysis procedure (as stated, at a certain mo-
ment the set of back states unambiguously determines the rest of the
stochastic process). In our example, R0 = {s8, s9, s14, s19} and R1 =
{s19, s20, s25, s30}. If s8 ∼ s19, s9 ∼ s20, s14 ∼ s25, and s19 ∼ s30 then the
analysis process may stop as it reached convergence.

Consequently, the analysis proceeds by considering states of consec-
utive hyperperiods until the information captured by the back states in
the sliding window does not change any more. Whenever the underly-
ing stochastic process has a steady state, this steady state is guaran-
teed to be found.

4.2.4 Construction and Analysis Algorithm
The analysis is performed in two phases:

1. Divide the interval [0, LCM) in PMIs,
2. Construct the stochastic process in topological order and analyse

it.

Let A denote the set of task arrivals in the interval [0, LCM], i.e.
A = {x|0 ≤ x ≤ LCM, ∃1 ≤ i ≤ N, ∃k ∈ N : x = kπi}. Let D denote
the set of deadlines in the interval [0, LCM], i.e. D = {x|0 ≤ x ≤
LCM, ∃1 ≤ i ≤ N, ∃k ∈ N : x = kπi + δi}. The set of PMIs of [0, LCM)
is {[a, b)|a, b ∈ A ∪ D∧ 6 ∃x ∈ (A ∪ D) ∩ (a, b)}. If PMIs of a higher
hyperperiod Hk, k > 0, are needed during the analysis, they are of the
form [a + k · LCM, b + k · LCM), where [a, b) is a PMI of [0, LCM).

The algorithm proceeds as discussed in Sections 4.2.1, 4.2.2 and
4.2.3. An essential point is the construction of the process in topological
order, which requires only parts of the states to be stored in memory
at any moment. The algorithm for the stochastic process construction
and analysis is depicted in Figure 4.7.

A global priority queue stores the states in the sliding window. The
state priorities are assigned as shown in Section 4.2.2. The initial state
of the stochastic process is put in the queue. The explanation of the al-
gorithm is focused on the construct and analyse procedure (lines
9–27). Each invocation of this procedure constructs and analyses the
part of the underlying stochastic process that corresponds to one hy-
perperiod Hk. It starts with hyperperiod H0 (k = 0). The procedure
extracts one state at a time from the queue. Let sj = (τi, Wi, pmii)
be such a state. The probability density of the time when a transition
occurs to sj is given by the function zj . The priority scheme of the prior-
ity queue ensures that sj is extracted from the queue only after all the
possible transitions to sj have been considered, and thus zj contains
accurate information. In order to obtain the probability density of the
time when task τi completes its execution, the probability density of its
starting time (zj) and the ETPDF of τi (εi) have to be convoluted. Let ξ
be the probability density resulting from the convolution.

Figure 4.8 presents an algorithmic description of the procedure
next state. Based on ξ, the finishing time PDF of task τi if task τi is
never discarded, we compute the maximum execution time of task τi,
max exec time. max time is the minimum between max exec time and
the time at which task τi would be discarded. PMI will then denote the
set of all PMIs included in the interval between the start of the PMI in
which task τi started to run and max time. Task τi could, in principle,
complete its execution during any of these PMIs. We consider each
PMI as being the one in which task τi finishes its execution. A new

4.2. ANALYSIS ALGORITHM 39

(1) divide [0, LCM) in PMIs;
(2) put first state in the

priority queue pqueue;
(3) Rold = ∅; // Rold is the set of densities z

of the back states after itera-
tion k

(4) (Rnew , Missed) =
= construct and analyse(); // Missed is the set of expected

deadline miss ratios
(5) do
(6) Rold = Rnew ;
(7) (Rnew , Missed) =

= construct and analyse();
(8) while Rnew 6= Rold;

construct and analyse:
(9) while ∃s ∈ pqueue such that

s.pmi ≤ pmi no do
(10) sj = extract state from pqueue;
(11) τi = sj .running; // first field of the state
(12) ξ = convolute(εi, zj);
(13) nextstatelist = next states(sj); // consider task dependencies!
(14) for each su ∈ nextstatelist do
(15) compute the probability

of the transition from
sj to su using ξ;

(16) update deadline miss
probabilities Missed;

(17) update zu;
(18) if su 6∈ pqueue then
(19) put su in the pqueue;
(20) end if;
(21) if su is a back state

and su 6∈ Rnew then
(22) Rnew = Rnew ∪ {su};
(23) end if;
(24) end for;
(25) delete state sj ;
(26) end while;
(27) return (Rnew, Missed);

Figure 4.7: Construction and analysis algorithm

40 CH. 4. MONOPROCESSOR SYSTEMS

next states(sj = (τi, Wi, ti)):
(1) nextstates = ∅;
(2) max exec time = sup{t : ξ(t) > 0}; // the largest finishing time

of τi

(3) max time = min{max exec time,

discarding timei} // the minimum between fin-
ishing time and discarding
time of τi

(4) PMI = {[lop, hip) ∈ PMIs :
lop ≥ ti∧ hip ≤ max time} // the set of PMIs included in

the interval [ti, max time]
(5) for each [lop, hip) ∈ PMI do
(6) Arriv = {τ ∈ T : τ arrived in the

interval [ti, hip)};
(7) Discarded = {τ ∈ Wi : τ was

discarded in the
interval [ti, hip)};

(8) Enabled = {τ ∈ T : τ becomes
ready to execute as an effect
of τi’s completion};

(9) W = (Wi\Discarded) ∪ Enabled∪
{τ ∈ Arriv : ◦τ = ∅}; // add the newly arrived

tasks with no predecessors,
as they are ready to execute,
and the newly enabled ones

(10) select the new running task τu

from W based on the
scheduling policy

(11) Wu = W\{τu};
(12) add (τu, Wu, [lop, hip)) to

nextstatelist;
(13) end for;
(14) return nextstates;

Figure 4.8: next states procedure

4.3. EXPERIMENTAL RESULTS 41

underlying stochastic process state corresponds to each of these pos-
sible finishing PMIs. For each PMI, we determine the multiset Arriv
of newly arrived tasks while task τi is executing. Also, we determine
the multiset Discarded of those tasks that are ready to execute when
task τi starts, but are discarded in the mean time, as the execution
of task τi spans beyond their deadlines. Once task τi completes its
execution, some of its successor tasks may become ready to execute.
The successor tasks, which become ready to execute as a result of task
τi’s completion, form the set Enabled. The new multiset of ready tasks,
W , is the union of the old multiset of ready tasks except the ones that
are discarded during the execution of task τi, Wi\Discarded, and the
set Enabled and those newly arrived tasks that have no predecessor
and therefore are immediately ready to run. Once the new set of ready
tasks is determined, the new running task τu is selected from multiset
W based on the scheduling policy of the application. A new stochastic
process state (τu, W\{τu}, [lop, hip)) is constructed and added to the list
of next states.

The probability densities zu of the times a transition to su ∈
nextstatelist is taken are updated based on ξ. The state su is then
added to the priority queue and sj removed from memory. This pro-
cedure is repeated until there is no task instantiation that starts its
execution in hyperperiod Hk (until no more states in the queue have
their PMI field in the range k ·pmi no, . . . , (k+1) ·pmi no, where pmi no
is the number of PMIs between 0 and LCM). Once such a situation
is reached, partial results, corresponding to the hyperperiod Hk are
available and the construct and analyse procedure returns. The
construct and analyse procedure is repeated until the set of back
states R does not change any more.

4.3 Experimental Results
The most computation intensive part of the analysis is the computation
of the convolutions zi ∗ εj . In our implementation we used the FFTW
library [FJ98] for performing convolutions based on the Fast Fourier
Transform. The number of convolutions to be performed equals the
number of states of the stochastic process. The memory required for
analysis is determined by the maximum number of states in the sliding
window. The main factors on which the size of the stochastic process
depends are LCM (the least common multiple of the task periods), the
number of PMIs, the number of tasks N , the task dependencies, and
the maximum allowed number of concurrently active instantiations of
the same task graph.

As the selection of the next running task is unique, given the pend-
ing tasks and the time moment, the particular scheduling policy has a
reduced impact on the process size. Hence, we use the non-preemptive
EDF scheduling policy in the experiments below. On the other hand,
the task dependencies play a significant role, as they strongly influence
the set of ready tasks and, by this, the process size.

The ETPDFs are randomly generated. An interval [Emin, Emax]
is divided into smaller intervals. For each of the smaller intervals,
the ETPDF has a constant value, different from the value over other
intervals. The curve shape has of course an influence on the final result
of the analysis, but it has little or no influence on the analysis time and

42 CH. 4. MONOPROCESSOR SYSTEMS

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

10 11 12 13 14 15 16 17 18 19

S
to

ch
as

tic
 p

ro
ce

ss
 s

iz
e

[n
um

be
r

of
 s

ta
te

s]

Number of tasks

a=15.0
a=8.8

a=10.9
a=4.8

Figure 4.9: Stochastic process size vs. number of tasks

memory consumed by the analysis itself. The interval length Emax −
Emin influences the analysis time and memory, but only marginally.

The periods are randomly picked from a pool of periods with the
restriction that the period of task τ has to be an integer multiple of the
periods of the predecessors of task τ . The pool comprises periods in the
range 2, 3, . . . , 24. Large prime numbers have a lower probability to be
picked, but it occurs nevertheless.

In the following, we report on six sets of experiments. The first four
investigate the impact of the enumerated factors (LCM , the number
N of tasks, the task dependencies, the maximum allowed number of
concurrently active instantiations of the same task graph) on the anal-
ysis complexity. The fifth set of experiments considers the rejection
late task policy and investigates its impact on the analysis complexity.
The sixth experiment is based on a real-life example from the area of
telecommunication systems.

The aspects of interest were the stochastic process size, as it deter-
mines the analysis execution time, and the maximum size of the sliding
window, as it determines the memory space required for the analysis.
Both the stochastic process size and the maximum size of the sliding
window are expressed in number of states. All experiments were per-
formed on an UltraSPARC 10 at 450 MHz.

4.3.1 Stochastic Process Size as a Function of the
Number of Tasks

In the first set of experiments we analysed the impact of the number
of tasks on the process size. We considered task sets of 10 to 19 inde-
pendent tasks. LCM , the least common multiple of the task periods,
was 360 for all task sets. We repeated the experiment four times for
average values of the task periods a = 15.0, 10.9, 8.8, and 4.8 (keeping
LCM = 360). The results are shown in Figure 4.9. Figure 4.10 depicts
the maximum size of the sliding window for the same task sets. As it
can be seen from the diagram, the increase, both of the process size and

4.3. EXPERIMENTAL RESULTS 43

0

2000

4000

6000

8000

10000

12000

10 11 12 13 14 15 16 17 18 19

S
lid

in
g

w
in

do
w

 s
iz

e
[n

um
be

r
of

 s
ta

te
s]

Number of tasks

a=15.0
a=8.8

a=10.9
a=4.8

Figure 4.10: Size of the sliding window of states vs. number of tasks

0

200000

400000

600000

800000

1e+06

1.2e+06

1.4e+06

1.6e+06

1.8e+06

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

S
to

ch
as

tic
 p

ro
ce

ss
 s

iz
e

[n
um

be
r

of
 s

ta
te

s]

Least common multiple of task periods

Figure 4.11: Stochastic process size vs. application period LCM

of the sliding window, is linear. The steepness of the curves depends on
the task periods (which influence the number of PMIs). It is important
to notice the big difference between the process size and the maximum
number of states in the sliding window. In the case of 9 tasks, for exam-
ple, the process size is between 64356 and 198356 while the dimension
of the sliding window varies between 373 and 11883 (16 to 172 times
smaller). The reduction factor of the sliding window compared to the
process size was between 15 and 1914, considering all our experiments.

44 CH. 4. MONOPROCESSOR SYSTEMS

1000

10000

100000

1e+06

0 1 2 3 4 5 6 7 8 9

S
to

ch
as

tic
 p

ro
ce

ss
 s

iz
e

[n
um

be
r

of
 s

ta
te

s]

Dependency degree (0 - independent tasks, 9 - highest dependency degree)

Figure 4.12: Stochastic process size vs. task dependency degree

4.3.2 Stochastic Process Size as a Function of the
Application Period

In the second set of experiments we analysed the impact of the appli-
cation period LCM (the least common multiple of the task periods) on
the process size. We considered 784 sets, each of 20 independent tasks.
The task periods were chosen such that LCM takes values in the in-
terval [1, 5040]. Figure 4.11 shows the variation of the average process
size with the application period.

4.3.3 Stochastic Process Size as a Function of the
Task Dependency Degree

With the third set of experiments we analysed the impact of task de-
pendencies on the process size. A task set of 200 tasks with strong
dependencies (28000 arcs) among the tasks was initially created. The
application period LCM was 360. Then 9 new task graphs were succes-
sively derived from the first one by uniformly removing dependencies
between the tasks until we finally got a set of 200 independent tasks.
The results are depicted in Figure 4.12 with a logarithmic scale for the
y axis. The x axis represents the degree of dependencies among the
tasks (0 for independent tasks, 9 for the initial task set with the high-
est amount of dependencies).

As mentioned, the execution time for the analysis algorithm strictly
depends on the process size. Therefore, we showed all the results in
terms of this parameter. For the set of 200 independent tasks used in
this experiment (process size 1126517) the analysis time was 745 sec-
onds. In the case of the same 200 tasks with strong dependencies (pro-
cess size 2178) the analysis took 1.4 seconds.

4.3. EXPERIMENTAL RESULTS 45

1000

10000

100000

1e+06

1e+07

1 1.5 2 2.5 3

S
to

ch
as

tic
 p

ro
ce

ss
 s

iz
e

[n
um

be
r

of
 s

ta
te

s]

Average of maximum number of concurrently active instantiations of the same task graph

12 tasks
15 tasks
18 tasks
21 tasks
24 tasks
27 tasks

Figure 4.13: Stochastic process size vs. average number of concurrently
active instantiations of the same task graph

4.3.4 Stochastic Process Size as a Function of the
Average Number of Concurrently Active In-
stantiations of the Same Task Graph

In the fourth set of experiments, the impact of the average number
of concurrently active instantiations of the same task graph on the
stochastic process size was analysed. 18 sets of task graphs contain-
ing between 12 and 27 tasks grouped in 2 to 9 task graphs were ran-
domly generated. Each task set was analysed between 9 and 16 times
considering different upper bounds for the maximum allowed number
of concurrently active task graph instantiations. These upper bounds
ranged from 1 to 3. The results were averaged for the same number of
tasks. The dependency of the underlying stochastic process size as a
function of the average of the maximum allowed number of instantia-
tions of the same task graph that are concurrently active is plotted in
Figure 4.13. Note that the y-axis is logarithmic. Different curves corre-
spond to different sizes of the considered task sets. It can be observed
that the stochastic process size is approximately linear in the average
of the maximum allowed number of concurrently active instantiations
of the same task graph.

4.3.5 Rejection versus Discarding
As formulated in Section 3.2.6, the discarding policy specifies that the
oldest instantiation of task graph Γi is eliminated from the system
when there are bi concurrently active instantiations of Γi in the sys-
tem, and a new instantiation of Γi demands service. Sometimes, such a
strategy is not desired, as the oldest instantiation might have been very
close to finishing, and by discarding it, the invested resources (time,
memory, bandwidth, etc.) are wasted.

Therefore, our problem formulation has been extended to support a
late task policy in which, instead of discarding the oldest instantiation

46 CH. 4. MONOPROCESSOR SYSTEMS

of Γi, the newly arrived instantiation is denied service (rejected) by the
system.

In principle, the rejection policy is easily supported by only chang-
ing the next states procedure in the algorithm presented in Sec-
tion 4.2.4. However, this has a strong impact on the analysis com-
plexity as shown in Table 4.1. The significant increase in the stochastic
process size (up to two orders of magnitude) can be explained consider-
ing the following example. Let s be the stochastic process state under
analysis, let τj belonging to task graph Γi be the task running in s and
let us consider that there are bi concurrently active instantiations of Γi

in the system. The execution time of τj may be very large, spanning
over many PMIs. In the case of discarding, it was guaranteed that τj

will stop running after at most bi · πΓi
time units, because at that time

moment it would be eliminated from the system. Therefore, when con-
sidering the discarding policy, the number of next states of a state s is
upper bounded. When considering the rejection policy, this is not the
case any more.

Moreover, let us assume that bi instantiations of the task graph Γi

are active in the system at a certain time. In the case of discarding, cap-
turing this information in the system state is sufficient to unambigu-
ously identify those bi instantiations: they are the last bi that arrived,
because always the oldest one is discarded. For example, the two ready
instantiations of τ2 in the state s13 = (τ1, {τ2, τ2}, [6, 8)) in Figure 4.6
are the ones that arrived at the time moments 0 and 4. However, when
the rejection policy is deployed, just specifying that bi instantiations
are in the system is not sufficient for identifying them. We will illus-
trate this by means of the following example. Let bi = 2, and let the
current time be kπΓi

. In a first scenario, the oldest instantiation of Γi,
which is still active, arrived at time moment (k−5)πΓi

and it still runs.
Therefore, the second oldest instantiation of Γi is the one that arrived
at time moment (k − 4)πΓi

and all the subsequent instantiations were
rejected. In a second scenario, the instantiation that arrived at time
moment (k − 5)πΓi

completes its execution shortly before time moment
(k − 1)πΓi

. In this case, the instantiations arriving at (k − 3)πΓi
and

(k − 2)πΓi
were rejected but the one arriving at (k − 1)πΓi

was not. In
both scenarios, the instantiation arriving at kπΓi

is rejected, as there
are two concurrently active instantiations of Γi in the system, but these
two instantiations cannot be determined without extending the defini-
tion of the stochastic process state space. Extending this space with
the task graph arrival times is partly responsible for the increase in
number of states of the underlying stochastic process.

The fifth set of experiments reports on the analysis complexity when
the rejection policy is deployed. 101 task sets of 12 to 27 tasks grouped
in 2 to 9 task graphs were randomly generated. For each task set two
analyses were performed, one considering the discarding policy and
the other considering the rejection policy. The results were averaged
for task sets with the same cardinality and shown in Table 4.1.

4.3.6 Encoding of a GSM Dedicated Signalling
Channel

Finally, we present an example from industry, in particular the mobile
communication area.

4.3. EXPERIMENTAL RESULTS 47

Average stochastic process size
[number of states] Relative

Tasks Discarding Rejection increase
12 2223.52 95780.23 42.07
15 7541.00 924548.19 121.60
18 4864.60 364146.60 73.85
21 18425.43 1855073.00 99.68
24 14876.16 1207253.83 80.15
27 55609.54 5340827.45 95.04

Table 4.1: Discarding compared to rejection

Mobile terminals access telecommunication networks via a radio in-
terface. An interface is composed of several channels. As the electro-
magnetic signals on the radio interface are vulnerable to distortion due
to interference, fading, reflexion, etc., sophisticated schemes for error
detection and correction are deployed in order to increase the reliability
of the channels of the radio interface.

On the network side, the device responsible with radio transmission
and reception and also with all signal processing specific to the radio
interface is the base transceiver station (BTS). The chosen demonstra-
tor application is the baseband processing of the stand-alone dedicated
control channel (SDCCH) of the Global System for Mobile Communi-
cation [ETS]. It represents a rather complex case, making use of all of
the stages of baseband processing.

The task graphs that model the downlink part (BTS to mobile sta-
tion) of the GSM SDCCH are shown in Figure 4.14. Every four frame
periods, i.e. every 240/13ms ≈ 18.46ms, a block of 184 bits, specified
in GSM 05.03, requires transmission. This block is denoted block1 in
Figure 4.14. The block is processed by a so-called FIRE encoder that
adds 40 parity bits to block1. The FIRE encoder and its polynomial are
specified in GSM 05.03, section 4.1.2. The result of the FIRE encod-
ing is block2, a 224 bits block. Four zero bits are appended to block2
by the tailer as specified in the aforementioned GSM document. The
result is block3, a 228 bits block. The 228 bits of block3 are processed
by a convolutional encoder specified in GSM 05.03, section 4.1.3, where
the generating polynomials are given. The result of the convolutional
encoding is block4, a 456 bit block. Block51, 52, 53, and 54, each 114 bits
long, result from the interleaving of block4 as specified by GSM 05.03,
section 4.1.4. Depending on how the establishment of the channel was
negotiated between the mobile station and the network, the communi-
cation may or may not be encrypted. In case of encryption, blocks 61 to
64 result from blocks 51 to 54 respectively, as specified in GSM 03.20,
annex 3, sections A3.1.2 and A3.1.3. Block61, 62, 63, and 64 are then
assembled as specified by GSM 05.03, section 4.1.5 and GSM 05.02,
section 5.2.3. The assembling is done using a training sequence TS. TS
is a 26 bit array and is one of the 8 training sequences of GSM, specified
in GSM 05.02, section 5.2.3. The assembling of blocks 61 to 64 results
in bursts 61 to 64, each of these bursts being 148 bits long. Bursts 71 to
74 result from the modulation of bursts 61 to 64 respectively. Bursts 81

to 84 are radio bursts modulated on frequencies freq1 to freq4 respec-
tively. Freq1, freq2, freq3, and freq4 are integers, maximum 6 bit long
in GSM900, that indicate the frequency to be used for sending a burst.

48
C

H
.4

.M
O

N
O

P
R

O
C

E
SS

O
R

SY
ST

E
M

S

A5

Ciphering Assembler Modulator
block61 burst7 1

Oversampl. +

freq. transl.
ramping +

burst8 1

Modulator

Assembler Modulator
Oversampl. +

freq. transl.
ramping +

Assembler Modulator
Oversampl. +

freq. transl.
ramping +

Assembler

burst6 1

Oversampl. +

freq. transl.
ramping +

burst6 2 burst7 2 burst8 2

burst6 3 burst7 3 burst8 3

burst6 4 burst7 4 burst8 4

block62

block63

block64

Interleaver

block51

block53

block52

block54

freq 4

Hopping

Hopping

freq 1

Hopping

MAIO
RNTABLE

HSN

COUNT2

Hopping

freq 2freq 3

Conv. enc.

Tailer

FIRE enc.

Kc

count

COUNT1

COUNT2

subTS COUNT

synch

COUNT4

COUNT3

ciphering stream

COUNT2

COUNT3

COUNT4

MAIO
RNTABLE

HSN

COUNT4

MAIO
RNTABLE

HSN

COUNT3

MAIO
RNTABLE

HSN

COUNT1

COUNT1

block1

block2

block3

block4

TS

Figure 4.14: Encoding of a GSM dedicated signalling channel

4.3. EXPERIMENTAL RESULTS 49

They are computed as specified by GSM 05.02, section 6.2.3. Their com-
putation makes use of the 6 bit integers MAIO (mobile allocation index
offset) and HSN (hopping sequence number), and of RNTABLE, a vec-
tor of 114 integers of 7 bits each, specified by GSM 05.02, section 6.2.3.
COUNT is the current frame number while COUNT1 to 4 are numbers
of the frames in which the four bursts will be sent on the radio inter-
face. COUNT1 to 4 are obtained by task “count” from the subtimeslot
number of the SDC channel (subTS), from a clock tick synch, and from
the current frame number COUNT .

The graph in Figure 4.14 contains many functional units of fine
granularity, which could induce high communication overhead. In or-
der to reduce the overhead, some replicated units could be collapsed,
other could be merged together. The modified graph is depicted in Fig-
ure 4.15. In this case, the A5, ciphering, assembling, modulating, hop-
ping, and oversampling units iterate four times in each activation of the
graph. Merging the interleaver and the assembler leads to the modifi-
cation of the algorithms of the interleaver and the ciphering unit. The
ciphering unit does not receive 114 bits from the interleaver, but 148
bits, structured in the form 3 + 57 + 1 + 26 + 1 + 57 + 3. The cipher-
ing unit performs then a XOR between the 114 bits ciphering stream
and the two 57-bit fields of the received block, leaving the remaining
3 + 1 + 26 + 1 + 3 bits untouched.

The whole application runs on a single DSP processor and the tasks
are scheduled according to fixed priority scheduling. The FIRE encod-
ing task has a period of 240/13 ≈ 18.46ms.2 FIRE encoding, convolu-
tional encoding and interleaving are activated once every task graph
instantiation, while the ciphering, A5, modulator, hopping, and over-
sampling tasks are activated four times every task graph instantia-
tion. The end-to-end deadline of the task graph is equal to its period,
i.e. 240/13ms.

In this example, there are two sources of variation in execution
times. The modulating task has both data and control intensive be-
haviour, which can cause pipeline hazards on the deeply pipelined DSP
it runs on. Its execution time probability density is derived from the
input data streams and measurements. Another task will implement
a ciphering unit. Due to the lack of knowledge about the deciphering
algorithm A5 (its specification is not publicly available), the ciphering
task execution time is considered to be uniformly distributed between
an upper and a lower bound.

When two channels are scheduled on the DSP, the ratio of missed
deadlines is 0 (all deadlines are met). Considering three channels as-
signed to the same processor, the analysis produced a ratio of missed
deadlines, which was below the one enforced by the required QoS. It is
important to note that using a hard real-time model with WCET, the
system with three channels would result as unschedulable on the se-
lected DSP. The underlying stochastic process for the three channels
had 130 nodes and its analysis took 0.01 seconds. The small number
of nodes is caused by the strong harmony among the task periods, im-
posed by the GSM standard.

2We use a time quanta of 1/13ms in this application such that all task periods may be
specified as integers.

50
C

H
.4

.M
O

N
O

P
R

O
C

E
SS

O
R

SY
ST

E
M

S

Oversampl. +

freq. transl.
ramping +

Hopping

burst8 1,2,3,4burst7 1,2,3,4Modulator
burst6 1,2,3,4block51,2,3,4Interleaver +

assembler

count

COUNT1

COUNT2

subTS COUNT

synch

COUNT4

COUNT3
A5

Ciphering

Kc
Conv. enc.

FIRE enc. +
tailer

freq 1,2,3,4

MAIO
RNTABLE

HSN

ciphering stream

COUNT1,2,3,4

COUNT1,2,3,4

block4

block3

block1

Figure 4.15: Encoding of a GSM dedicated signalling channel, reduced architecture

4.4. LIMITATIONS AND EXTENSIONS 51

τ1 τ2

τ3

τ4

1 2

3

1

Figure 4.16: Example of multiprocessor application

τ1
t1

P2

P1 τ2 τ3
t’

τ4

(a) Scenario 1

τ1

τ4τ2

t1

P2

P1

t’’

τ3

(b) Scenario 2

Figure 4.17: Two execution scenarios

4.4 Limitations and Extensions
Although our proposed method is, as shown, efficiently applicable to
the analysis of applications implemented on monoprocessor systems,
it can handle only small scale multiprocessor applications. This sec-
tion identifies the causes of this limitation and sketches an alternative
approach to handle multiprocessor applications.

When analysing multiprocessor applications, one approach could be
to decompose the analysis problem into several subproblems, each of
them analysing the tasks mapped on one of the processors. We could
attempt to apply the present approach in order to solve each of the sub-
problems. Unfortunately, in the case of multiprocessors and with the
assumption of data dependencies among tasks, this approach cannot be
applied. The reason is that the set of ready tasks cannot be determined
based solely on the information regarding the tasks mapped on the pro-
cessor under consideration. To illustrate this, let us consider the exam-
ple in Figure 4.16. Tasks τ2, τ3, and τ4 are mapped on processor P1 and
task τ1 is mapped on processor P2. The numbers near the tasks indicate
the task priorities. For simplicity, let us assume that all tasks have the
same period π, and hence there is only one priority monotonicity inter-
val [0, π). Let us examine two possible scenarios. The corresponding
Gantt diagrams are depicted in Figure 4.17. At time moment 0 task τ1

starts running on processor P2 and task τ2 starts running on processor
P1. Task τ1 completes its execution at time moment t1 ∈ [0, π). In the
first scenario, task τ2 completes its execution at time moment t′ > t1
and task τ3 starts executing on the processor P1 at time moment t′ be-
cause it has the highest priority among the two ready tasks τ3 and τ4

at that time. In the second scenario, task τ2 completes its execution
at time moment t′′ < t1. Therefore, at time moment t′′, only task τ4 is
ready to run and it will start its execution on the processor P1 at that
time. Thus, the choice of the next task to run is not independent of the
time when the running task completes its execution inside a PMI. This

52 CH. 4. MONOPROCESSOR SYSTEMS

makes the concept of PMIs unusable when looking at the processors in
isolation.

An alternative approach would be to consider all the tasks and to
construct the global state space of the underlying stochastic process
accordingly. In principle, the approach presented in the previous sec-
tions could be applied in this case. However, the number of possible
execution traces, and implicitly the stochastic process, explodes due
to the parallelism provided by the application platform. As shown,
the analysis has to store the probability distributions zi for each pro-
cess state in the sliding window of states, leading to large amounts of
needed memory and limiting the appropriateness of this approach to
very small multiprocessor applications. Moreover, the number of con-
volutions zi ∗ εj , being equal to the number of states, would also ex-
plode, leading to prohibitive analysis times. The next chapter presents
an approach that overcomes these problems. However, as opposed to
the method presented in this chapter, which produces exact values for
the expected deadline miss ratios, the alternative approach generates
approximations of the real ratios.

Chapter 5

Analysis of
Multiprocessor Systems

The challenge taken in this chapter is to analyse an application run-
ning on a multiprocessor system with acceptable accuracy, without the
need to explicitly store and compute the memory consuming distribu-
tions of the residual execution times of each task in the states of the
underlying stochastic process. Also, we would like to avoid the calcula-
tion of the computation-intensive convolutions.

We address this problem by using an approximation approach for
the task execution time probability distribution functions. Approxi-
mating the generalised ETPDFs with weighted sums of convoluted ex-
ponential functions leads to approximating the underlying generalised
semi-Markov process with a continuous time Markov chain. By doing
so, we avoid both the computation of convolutions and the storage of
the zi functions. However, as opposed to the method presented in the
previous chapter, which produces exact values for the expected dead-
line miss ratios, the alternative approach generates approximations of
the real ratios.

The approximation of the generalised task execution time probabil-
ity distributions by weighted sums of convoluted exponential distribu-
tions leads to a large continuous time Markov chain. Such a Markov
chain is much larger than the stochastic process underlying the system
with the real, non-approximated execution times, but, as the state hold-
ing times probability distributions are exponential, there is no need to
explicitly store their distributions, leading to a much more efficient use
of the analysis memory. Moreover, by construction, the Markov chain
exhibits regularities in its structure. These regularities are exploited
during the analysis such that the infinitesimal generator of the chain
is constructed on-the-fly, saving additional amounts of memory. In ad-
dition, the solution of the continuous time Markov chain does not imply
any computation of convolutions. As a result, multiprocessor applica-
tions of realistic size may be analysed with sufficient accuracy. More-
over, by controlling the precision of the approximation of the ETPDFs,
the designer may trade analysis resources for accuracy.

53

54 CH. 5. MULTIPROCESSOR SYSTEMS

5.1 Problem Formulation
The multiprocessor system analysis problem that we solve in this chap-
ter is formulated as follows.

5.1.1 Input
The input of the problem consists of:

• The set of task graphs Γ,
• The set of processors P ,
• The mapping Map,
• The set of task periods ΠT and the set of task graph periods ΠΓ,
• The set of task deadlines ∆T and the set of task graph deadlines

∆Γ,
• The set of execution time probability density functions ET ,
• The late task policy is the discarding policy,
• The set Bounds = {bi ∈ N\{0} : 1 ≤ i ≤ g}, where bi is the max-

imum numbers of simultaneously active instantiations of task
graph Γi, and

• The scheduling policies on the processing elements and buses.

5.1.2 Output
The results of the analysis are the sets MissedT and MissedΓ of ex-
pected deadline miss ratios for each task and task graph respectively.

5.1.3 Limitations
For now, we restrict our assumptions on the system to the following:

• All tasks belonging to the same task graph have the same period
(πa = πb, ∀τa, τb ∈ Vi ⊂ T , where Γi = (Vi, Ei) is a task graph),

• The task deadlines (task graph deadlines) are equal to the corre-
sponding task periods (task graph periods) (πi = δi, ∀1 ≤ i ≤ N ,
and πΓi

= δΓi
, ∀1 ≤ i ≤ g), and

• The late task policy is the discarding policy.

These restrictions are relaxed in Section 5.9 where we discuss their
impact on the analysis complexity.

5.2 Approach Outline
In order to extract the desired performance metrics, the underlying
stochastic process corresponding to the application has to be con-
structed and analysed. Events, such as the arrival of a deadline,
represent state transitions in the stochastic process. In order to obtain
the long-time average rate of such events, the stationary state proba-
bilities have to be calculated for the stochastic process underlying the
system.

The underlying stochastic process is regenerative, i.e. the system
behaves probabilistically equivalent in the time intervals between
consecutive visits to a regenerative state [Ros70]. Thus, it would

5.2. APPROACH OUTLINE 55

be sufficient to analyse the system in the interval between two con-
secutive regenerations. However, the subordinated stochastic pro-
cess (the process between two regeneration points) is a continuous-
state time-homogeneous generalised semi-Markov process (GSMP)
[She93, Gly89]. Hence, its stationary analysis implies the numeri-
cal solution of a system of partial differential equations with compli-
cated boundary conditions [GL94]. This makes the applicability of the
GSMP-based analysis limited to extremely small systems.

Because the limitations of the GSMP-based approach, we proceed
along a different path, namely the exact analysis of an approximat-
ing system. We approximate the generalised probability distributions
of task execution times with Coxian probability distributions [Cox55].
The stochastic process that underlies a system with only Coxian proba-
bility distributions is a continuous time Markov chain (CTMC) [Lin98],
whose steady state analysis implies the solution of a system of lin-
ear equations. Albeit theoretically simple, the applicability of this ap-
proach, if used directly, is limited by the enormous increase of the
number of states of the CTMC relative to the number of states of the
stochastic process underlying the application. In order to cope with this
increase, we exploit the specific structure of the infinitesimal generator
of the CTMC such that we reduce the needed analysis memory by more
than one order of magnitude.

The outline of our approach is depicted in Figure 5.1. At step 1, we
generate a model of the application as a Concurrent Generalised Petri
Net (CGPN) [PST98] (Section 5.3).

At step 2, we construct the tangible reachability graph (TRG) of the
CGPN. The TRG is also the marking process, i.e. the stochastic pro-
cess in which the states represent the tangible markings of the CGPN.
The marking process of a CGPN is a generalised semi-Markov process
(GSMP) [Lin98] (Section 5.4).

The third step implies the approximation of the arbitrary real-world
ETPDFs with Coxian distributions, i.e. weighted sums of convoluted
exponential distributions. Some details regarding Coxian distributions
and the approximation process follow in Section 5.5.

Directly analysing the GSMP obtained at step 2 is practically im-
possible (because of time and memory complexity) for even small toy
examples, if they are implemented on multiprocessor systems. There-
fore, at step 4, the states of this process are substituted by sets of states
based on the approximations obtained in the third step. The transi-
tions of the GSMP are substituted by transitions with exponentially
distributed firing interval probabilities from the Coxian distributions.
What results is a continuous time Markov chain (CTMC), much larger
than the GSMP, however easier to analyse. The explanation of this
rather counter-intuitive fact is twofold:

• By exploiting regularities in the structure of the CTMC, the ele-
ments of its generator matrix can be constructed on-the-fly during
the analysis, leading to memory savings.

• Computationally expensive convolutions of probability density
functions are avoided by using exponentially distributed ET-
PDFs.

The construction procedure of the CTMC is detailed in Section 5.6.
As the last step, the obtained CTMC is solved and the performance

metrics extracted (Section 5.7).

56 CH. 5. MULTIPROCESSOR SYSTEMS

Application
(set of graphs of tasks
with arbitrary ETPDFs)

Approximation of the
arbitrary ETPDFs with
Coxian distributions

Coxian distributions
corresponding to
arbitrary ETPDFs

generation
CGPN model

CGPN model

CTMC construction

CTMC

Analysis of the CTMC

Results
(percentage of missed

deadlines)

construction
TRG/GSMP

step 1

step 2

step 3

step 4

step 5

TRG/GSMP

Figure 5.1: Approach outline

5.3. INTERMEDIATE MODEL GENERATION 57

τ1

τ2

τ3

τ4

Γ1 Γ2

Figure 5.2: Task graphs

5.3 Intermediate Model Generation
As the first step, starting from the task graph model given by the de-
signer, an intermediate model based on Concurrent Generalised Petri
Nets (CGPN) [PST98] is generated. Such a model allows an efficient
and elegant capturing of the characteristics of the application and of
the scheduling policy. It constitutes also an appropriate starting point
for the generation of the CTMC, to be discussed in the following sec-
tions.

The rest of this section details on the modelling of applications with
CGPN. Note that the generation of a CGPN model from the input data
of our problem is automatic and its complexity is linear in the number
of tasks, and hence negligible relative to the solving of the marking
process underlying the system.

5.3.1 Modelling of Task Activation and Execution
We illustrate the construction of the CGPN based on an example. Let
us consider the task graphs in Figure 5.2. Tasks τ1, τ2 and τ3 form
graph Γ1 while Γ2 consists of task τ4. τ1 and τ2 are mapped on processor
P1 and τ3 and τ4 on processor P2. The task priorities are 1, 2, 2, and 1
respectively. The task graph Γ1 has period πΓ1

and Γ2 has period πΓ2
.

For simplicity, in this example, we ignore the communication tasks.
The CGPN corresponding to the example is depicted in Figure 5.3.

Concurrent Generalised Petri Nets are extensions of Generalised
Stochastic Petri Nets (GSPN) introduced by Balbo et al. [BCFR87].
CGPNs have two types of transitions, timed (denoted as solid rect-
angles in Figure 5.3) and immediate (denoted as thin lines). Timed
transitions have an associated firing delay, which can be deterministic
or stochastic with a given generalised probability distribution function.
The firing policy that we consider is race with enabling policy, i.e. the
elapsed time is kept if the transition stays enabled. Immediate transi-
tions have zero firing delay, i.e. they fire as soon as they are enabled.
Immediate transitions have associated priorities, shown as the posi-
tive integers that annotate the transitions in the figure. The priorities
are used to determine the immediate transition that fires among a set
of competitively enabled immediate transitions. Arcs have associated
multiplicities, shown as the positive integers that annotate the arcs. A
necessary condition for a transition to fire is that the number of tokens
in each input place of the transition is equal to or greater than the
multiplicity of the arc that connects the corresponding input place to
the transition.

58
C

H
.5

.M
U

LT
IP

R
O

C
E

SS
O

R
SY

ST
E

M
S

dsc1
dsc2

Bnd 1

a01
a13

e1 e2

Proc1 Proc2
r3 r4

f2f1

12

6

5

6

5

4 4 3

3

6

5

4

3
5

6
3

4

3

Tick

3 3

v1 v2

w1
34 3 4 w2

Bnd 2 b2b1

a12

a23 a04

1j1 2j2 j3 j4

e3 e4

c1 c2

c3

c4

d3 d4d1 d2

r1 r2

3

1 1

Clock

Figure 5.3: CGPN example

5.3. INTERMEDIATE MODEL GENERATION 59

The execution of task τi, 1 ≤ i ≤ 4, is modelled by the place ri and
timed transition ei. If a timed transition ei is enabled, it means that an
instantiation of the task τi is running. The probability distribution of
the firing delay of transition ei is equal to the ETPDF of task τi. As soon
as ei fires, it means that the instantiation of τi completed execution and
leaves the system. The task priorities are modelled by prioritising the
immediate transitions ji.

In our example, the mutual exclusion of the execution of tasks
mapped on the same processor is modelled by means of the places
Proc1 and Proc2, which correspond to processors P1 and P2 respec-
tively. The data dependencies among the tasks are modelled by the
arcs e2 → a23, e1 → a13 and e1 → a12.

5.3.2 Modelling of Periodic Task Arrivals
The periodic arrival of graph instantiations is modelled by means of
the transition Clock with the deterministic delay T ick, as illustrated in
Figure 5.3. Clock fires every T ick time units, where T ick is the great-
est common divisor of the graph periods. As soon as Clock has fired
πΓi

/T ick times, the transition vi fires and a new instantiation of task
graph Γi demands execution. (In our example, for the simplicity of the
illustration, we considered πΓ1

/T ick = 1 and πΓ2
/T ick = 1. This is mod-

elled by specifying an arc multiplicity of 1 and 1 for the arcs f1 → v1

and f2 → v2 respectively.)

5.3.3 Modelling Deadline Misses
In the general case of arbitrary deadlines, the event of an instantiation
of a task τi (task graph Γj) missing its deadline is modelled by the firing
of a certain transition (modelling the deadline arrival) in a marking
with a certain property (modelling the fact that the considered task
(task graph) instantiation has not yet completed).

In the particular case of the task deadline being equal to the task
period and to the corresponding task graph period (δτi

= πτi
= πΓj

if
τi ∈ Vj), the arrival of the deadline of any task τi ∈ Vj is modelled by
the firing of vj , i.e. the arrival of a new instantiation of a task graph
Γj . The fact that an instantiation of task τi has not yet completed its
execution is modelled by a marking in which at least one of the places
aki (ready-to-run) or ri (running) is marked. Hence, the event of an
instantiation of τi missing its deadline is modelled by the firing of vj in
any of the markings with the above mentioned property.

As explained in Section 3.2.5, the event of an instantiation of task
graph Γj missing its deadline is equal to the earliest event of a task
instantiation of task τi ∈ Vj missing its deadline δτi

. In order to avoid
the implied bookkeeping of events, in the case when δτi

= πτi
= πΓj

,
τi ∈ Vj , task graph deadline misses have been modelled in the following
equivalent but simpler form.

The place Bndj is initially marked with bj tokens, meaning that
at most bj concurrent instantiations of Γj are allowed in the system.
Whenever a new instantiation of task graph Γj is accepted in the sys-
tem (transition wj fires), a token is removed from place Bndj . Once a
task graph instantiation leaves the system (all places di are marked,
where τi ∈ Vj), a token is added to Bndj . Having less than bj tokens in
place Bndj indicates that at least one instantiation of task graph Γj is

60 CH. 5. MULTIPROCESSOR SYSTEMS

active in the system. Hence, an instantiation of task graph Γj misses
its deadline if and only if transition vj fires (denoting the arrival of the
deadlines of any task τi ∈ Vj , in the above mentioned particular case)
in a CGPN marking with the property that place Bndj contains less
than bj tokens.

The modelling of task and task graph deadline misses in the more
general cases of δτi

= πτi
6= πΓj

, and δτi
≤ πτi

if τi ∈ Vj is discussed in
Section 5.9.1 and Section 5.9.3.

5.3.4 Modelling of Task Graph Discarding
If Bndj contains no tokens at all when vj fires, then the maximum
number of instantiations of Γj are already present in the system and,
therefore, the oldest one will be discarded. This is modelled by firing
the immediate transition dscj and marking the places ci, where one
such place ci corresponds to each task in Γj . The token in ci will at-
tempt to remove from the system an already completed task (a token
from di), or a running task (a token from ri), or a ready task (a to-
ken from aki), in this order. The transitions wj have a higher priority
than the transitions dscj , in order to ensure that an instantiation of Γj

is discarded only when Bndj contains no tokens (there already are bj

concurrently active instantiations of Γj in the system). The structure of
the CGPN is such that a newly arrived instantiation is always accepted
in the system.

5.3.5 Scheduling Policies
The scheduling policy determines which of the enabled transitions ji

fires. In the case of static priorities, this is easily modelled by assign-
ing the task priorities to the corresponding immediate transitions ji

as is the case of the example in Figure 5.3. In the case of dynamic
task priorities, the choice is made based on the global time, which can
be deduced from the global marking of the Petri Net. In general, the
time left until the deadline of Γj is computed by subtracting from the
multiplicity of the outgoing arc of fj (how many T ick units separate
consecutive arrivals of Γi) the number of tokens of fj (how many T ick
units passed since the last arrival of Γj).

In the case of dynamic priorities of tasks, the marking process con-
struction algorithm has to be instructed to choose which transition to
fire based on the net marking and not on the transition priorities de-
picted in the model.

5.4 Generation of the Marking Process
This section discusses step 2 of our approach (Figure 5.1), the genera-
tion of the marking process of the Petri Net that models an application.

A tangible marking of a CGPN is a marking in which no immedi-
ate transitions are enabled. Such a marking can be directly reached
from another tangible marking by firing exactly one timed transition
followed by a possibly empty sequence of immediate transition firings,
until no more immediate transitions are enabled. The tangible reach-
ability graph (TRG) contains the tangible markings of the Petri net.

5.4. GENERATION OF THE MARKING PROCESS 61

s 1

s 2

s 3

s 4

s 5

s 6

s 7

e1

e4

e3

e2

e4

e4

e1
e2

Clock
Clock

Cloc
kC

lo
ck

C
lo

ck
C

lo
ck

C
lock

Figure 5.4: Marking process of CGPN in Figure 5.3

Each marking in the TRG corresponds to a state in the underlying
stochastic process, also known as the marking process.

Balbo et al. [BCFR87] gave an algorithm for the generation of
the tangible reachability graph (TRG) for Generalised Stochastic Petri
Nets (GSPN). Even if the Petri Net formalism that we use is an exten-
sion to GSPN, the algorithm is applicable nevertheless. In the worst
case, the number of nodes in the TRG is exponential in the number of
places and number of transitions of the Petri Net.

The tangible reachability graph of the Petri Net in Figure 5.3 is
shown in Figure 5.4. The graph in Figure 5.4 is also a graphical rep-
resentation of the stochastic process of the marking of the net. An
edge in the TRG is labelled with the timed transition that triggers the
marking change. The thicker arcs correspond to transition firings that
model task deadline misses. If we compute the steady-state rates of
the firings along the thick arcs, we will be able to obtain the expected
deadline miss rates for each task and task graph.

If all timed transitions had exponentially distributed firing delay
probabilities, the marking process would be a continuous time Markov
chain (CTMC). The computation of its stationary state probability vec-
tor would imply the solution of a system of linear equations. As we
assume that tasks may have execution times with generalised proba-
bility distributions, the marking process is not a CTMC.

Observing that our systems are regenerative1, a possible solution
would be the one proposed by Choi et al. [CKT94]. They introduced
Markov Regenerative Stochastic Petri Nets (MRSPN), which allow
timed transitions to have firing delays with generalised probability
distributions. However, MRSPN have the limitation that at most one
transition whose firing delay probability has a generalised distribution
is enabled in every marking. In this case, the underlying stochastic
process is a Markov regenerative process (MRGP). Choi et al. [CKT94]
present a method for the transient analysis of the MRGP corresponding
to their marking graph.

One important observation we can make from Figure 5.4 is that in
all states, except state s5, there are more than one simultaneously en-
abled transitions whose firing delay probabilities have generalised dis-

1Let LCM denote the least common multiple of all task periods. The process regen-
erates itself when both of the following conditions are true: The time becomes k · LCM ,
k ∈ N (every LCM/Tick firings of transition Clock), and all processors were idle just
before this time. In Figure 5.4, such a situation happens every time state s1 is entered.

62 CH. 5. MULTIPROCESSOR SYSTEMS

tributions. This situation occurs because there are several tasks with
non-exponential execution time probability distribution functions that
execute concurrently on different processors. Therefore, the process is
not a Markov regenerative process with at most one non-exponentially
distributed event in each state. Hence, the analysis method of Choi et
al. [CKT94] does not apply in our case.

The Concurrent Generalised Petri Net model (CGPN), introduced
by Puliafito et al. [PST98], softens the restriction of MRSPNs. Puli-
afito et al. address the analysis of the marking processes of CGPN with
an arbitrary finite number of simultaneously enabled events with gen-
eralised probability distribution. Nevertheless, they restrict the sys-
tem such that all simultaneously enabled transitions get enabled at
the same instant. Under this assumption, the marking process is still
a MRGP. However, we cannot assume that all tasks that are concur-
rently executed on a multiprocessor platform start their execution at
the same time. Therefore, we remove this restriction placed on CGPN
and we will use the term CGPN in a wider sense in the sequel. The
marking process of such a CGPN in the wide sense is not necessarily a
MRGP.

In order to keep the Markovian property, we could expand the state
of the marking process to contain the residual firing times of enabled
transitions. In this case, the subordinated process, i.e. the process
between two regeneration times, is a time-homogeneous generalised
semi-Markov process (GSMP) [She93, Gly89]. Hence, its stationary
analysis implies the numerical solution of a system of partial differ-
ential equations with complicated boundary conditions [GL94]. This
makes the applicability of the GSMP-based analysis limited to ex-
tremely small systems.

All this leads us to a different approach for solving the marking
process. We approximate the generalised probability distribution func-
tions with Coxian distributions [Cox55], i.e. weighted sums of convo-
luted exponential distribution functions. The resulting process con-
tains transitions with exponentially distributed firing delay probabili-
ties. Hence, it is a continuous time Markov chain (CTMC) that approx-
imates the non-Markovian marking process. The steady-state analysis
of the CTMC implies the solving of a system of linear equations. If ap-
plied directly, the approach is severely limited by the immense number
of states of the approximating CTMC. A key to the efficient analysis
of such huge Markov chains is the fact that we observe and exploit a
particular structure of the chain, such that its infinitesimal generator
may be generated on-the-fly during the analysis and does not need to
be stored in memory.

Section 5.5 discusses the approximation of generalised probability
distribution functions with Coxian distribution functions. Section 5.6
details on the aforementioned structural properties of the CTMC that
allow for its efficient solving.

5.5 Coxian Approximation
Coxian distributions were introduced by Cox [Cox55] in the context
of queueing theory. A Coxian distribution of r stages is a weighted
sum of convoluted exponential distributions. The Laplace transform of
the probability density of a Coxian distribution with r stages is given

5.5. COXIAN APPROXIMATION 63

(a) A tran-
sition with
arbitrarily
distributed
firing delay
probability

1)µ1(1−α

α2µ2α1µ1

2(1−α2)µ

α3µ3

(b) Subnet modelling a transition whose firing delay probability has a Cox-
ian distribution

Figure 5.5: Coxian approximation with three stages

below:

X(s) =

r
∑

i=1

αi ·

i−1
∏

k=1

(1 − αk) ·

i
∏

k=1

µk

s + µk

X(s) is a strictly proper rational transform, implying that the Cox-
ian distribution may approximate a fairly large class of arbitrary dis-
tributions with an arbitrary accuracy, provided a sufficiently large r.

Figure 5.5 illustrates the way we use Coxian distributions in our
approach. Let us consider the timed transition with a certain probabil-
ity distribution of its firing delay in Figure 5.5(a). This transition can
be replaced by the Petri Net in Figure 5.5(b), where hollow rectangles
represent timed transitions with exponential firing delay probability
distribution. The annotations near those transitions indicate their av-
erage firing rate. In this example, three stages have been used for
approximation.

Practically, the approximation problem can be formulated as fol-
lows: given an arbitrary probability distribution and a certain number
of stages r, find µi, 1 ≤ i ≤ r, and αi, 1 ≤ i ≤ r − 1 (αr = 1), such that
the quality of approximation of the given distribution by the Coxian
distribution with r stages is maximised.

Malhotra and Reibman [MR93] describe a method for parameter
fitting that combines moment-matching with least squares fitting for
phase approximations, of which Coxians are a subclass. In our ap-
proach, because the analytic expression of a Coxian distribution is
quite complicated in the time domain, we perform the least squares
fitting in the frequency domain. Hence, we minimise the distance be-
tween the Fourier transform X(jω) of the Coxian distribution and the
computed Fourier transform of the distribution to be approximated.
The minimisation is a typical interpolation problem and can be solved
by various numerical methods [PTVF92]. We use a simulated an-
nealing approach that minimises the difference of only a few most

64 CH. 5. MULTIPROCESSOR SYSTEMS

significant harmonics of the Fourier transforms, which is very fast
if provided with a good initial solution. We choose the initial solu-
tion in such way that the first moment of the real and approximated
distribution coincide.

By replacing all transitions whose firing delays have generalised
probability distributions (as shown in Figure 5.5(a)) with subnets of
the type depicted in Figure 5.5(b) we obtain a CTMC that approximates
the non-Markovian marking process of the CGPN. It is obvious that the
introduced additional places trigger a potentially huge increase in the
size of the TRG and implicitly in the size of the resulted CTMC. The
next section details how to efficiently handle such an increase in the
dimensions of the underlying stochastic process.

5.6 Approximating Markov Chain Con-
struction

The marking process of a Petri Net that models an application under
the assumptions stated in Section 5.1, such as the one depicted in Fig-
ure 5.3, is a generalised semi-Markov process. If we replace the tran-
sitions that have generally distributed firing delay probabilities with
Coxian distributions, the resulting Petri Net has a marking process
that is a continuous time Markov chain that approximates the gener-
alised semi-Markov process. In this section we show how to express
the infinitesimal generator of the CTMC by means of generalised ten-
sor sums and products.

Plateau and Fourneau [PF91] have shown that the infinitesimal
generator of a CTMC underlying a parallel system can be expressed
as a generalised tensor sum [Dav81] of the local infinitesimal genera-
tors, i.e. the local generators of the parallel subsystems. Haddad et al.
[HMC97] analysed marking processes of Generalised Stochastic Petri
Nets with Coxian and phase-type distributions. They classify the tran-
sitions of the net in local and non-local transitions and use the results
of Plateau and Fourneau. However, they place certain restrictions on
the usage of immediate transitions. Moreover, because under our as-
sumptions the firing of the Clock transition (see Figure 5.3) may dis-
able all the other timed transitions, there exists no partition of the set
of places such that the results of Plateau and Fourneau, and Haddad
might apply.

In our case, the infinitesimal generator is not a sum of tensor prod-
ucts and sums. Rather, the infinitesimal generator matrix is parti-
tioned into submatrices, each of them being a sum of tensor expres-
sions.

Let S be the set of states of the GSMP underlying the Petri Net
before the replacement outlined in the previous section. This GSMP
corresponds to the TRG of the Petri Net model. Let M = [mij] be a
square matrix of size |S| × |S| where mij = 1 if there exists a transition
from the state si to the state sj in the GSMP and mij = 0 otherwise. We
first partition the set of states S in clusters such that states in the same
cluster have outgoing edges labelled with the same set of transitions.
A cluster is identified by a binary combination that indicates the set of
transitions that are enabled in the particular cluster (which, implicitly,
also indicates the set of tasks that are running in the states belonging

5.6. MARKOV CHAIN CONSTRUCTION 65

M
U,V

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

111

110

101

100

011

010

001

000
1 0 0

0 1 0 0

0

Figure 5.6: The matrix corresponding to a GSMP

to that particular cluster). The clusters are sorted according to their
corresponding binary combination and the states in the same cluster
are consecutively numbered.

Consider an application with three independent tasks, each of them
mapped on a different processor. In this case, 8 clusters can be formed,
each corresponding to a possible combination of simultaneously run-
ning tasks. Note that if the tasks were not independent, the number of
combinations of simultaneously running tasks, and implicitly of clus-
ters, would be smaller. The cluster labelled with 101, for example, con-
tains states in which the tasks τ1 and τ3 are running.

Figure 5.6 depicts the matrix M corresponding to the GSMP of the
application described above. The rows and columns in the figure do not
correspond to individual rows and columns in M. Each row and column
in Figure 5.6 corresponds to one cluster of states. The row labelled with
100, for example, as well as the column labelled with the same binary
number, indicate that the task τ1 is running in the states belonging to
the cluster labelled with 100, while tasks τ2 and τ3 are not running in
the states belonging to this cluster. Each cell in the figure does not
correspond to a matrix element but to a submatrix Mli,lj , where Mli,lj

is the incidence matrix corresponding to the clusters labelled with li
and lj (an element of Mli,lj is 1 if there is a transition from the state
corresponding to its row to the state corresponding to its column, and
it is 0 otherwise). The submatrix MU,V at the intersection of the row
labelled with U = 100 and the column labelled with V = 011 is detailed
in the figure. The cluster labelled with U = 100 contains 2 states (cor-
responding to the two rows of the magnified cell in Figure 5.6), while
the cluster labelled with V = 011 contains 4 states (corresponding to
the four columns of the magnified cell in Figure 5.6). As shown in the
figure, when a transition from the first state of the cluster labelled with
U occurs, the first state of the cluster labelled with V is reached (cor-
responding to the 1 in the intersection of the first row and first column
in the magnified cell). This corresponds to the case when τ1 completes
execution (τ1 is the only running task in the states belonging to the
cluster labelled with U) and τ2 and τ3 are subsequently started (τ2 and
τ3 are the running tasks in the states belonging to the cluster labelled
with V).

Once we have the matrix M corresponding to the underlying GSMP,
the next step is the generation of the CTMC using the Coxian distribu-
tion for approximation of arbitrary probability distributions of transi-

66 CH. 5. MULTIPROCESSOR SYSTEMS

XY Z
uv

Figure 5.7: Part of a GSMP

(1−β1)λ1

β1λ1

β2λ2

Figure 5.8: Coxian approximation with two stages

tion delays. When using the Coxian approximation, a set of new states
is introduced for each state in S (S is the set of states in the GSMP),
resulting in an expanded state space S ′, the state space of the approx-
imating CTMC. We have to construct a matrix Q of size |S ′| × |S′|, the
so called infinitesimal generator of the approximating CTMC. The con-
struction of Q is done cell-wise: for each submatrix of M, a correspond-
ing submatrix of Q will be generated. Furthermore, null submatrices
of M will result in null submatrices of Q. A cell QU,V of Q will be of
size G × H , where

G = |U | ·
∏

i∈EnU

ri

H = |V | ·
∏

i∈EnV

ri

and U and V are clusters of states, |U | and |V | denote the number of
states belonging to the respective clusters, EnU = {k : transition ek,
corresponding to the execution of task τk , is enabled in U}, EnV = {k :
transition ek, corresponding to the execution of task τk, is enabled in
V }, and rk is the number of stages we use in the Coxian approximation
of the ETPDF of task τk.

We will illustrate the construction of a cell in Q from a cell in M
using an example. We consider a cell on the main diagonal, as it is
the most complex case. Let us consider three states in the GSMP de-
picted in Figure 5.7. Two tasks, τu and τv , are running in the states X
and Y . These two states belong to the same cluster, labelled with 11.
Only task τv is running in state Z. State Z belongs to cluster labelled
with 10. If task τv finishes running in state X , a transition to state
Y occurs in the GSMP. This corresponds to the situation when a new
instantiation of τv becomes active immediately after the completion of
a previous one. When task τu finishes running in state X , a transition
to state Z occurs in the GSMP. This corresponds to the situation when
a new instantiation of τu is not immediately activated after the comple-
tion of a previous one. Consider that the probability distribution of the
execution time of task τv is approximated with the three stage Coxian
distribution depicted in Figure 5.5(b) and that of τu is approximated
with the two stage Coxian distribution depicted in Figure 5.8. The re-
sulting CTMC corresponding to the part of the GSMP in Figure 5.7 is
depicted in Figure 5.9. The edges between the states are labelled with

5.6. MARKOV CHAIN CONSTRUCTION 67

Y01

Y10

Y00

Y11

Y02

Y12

X01

X10

X00

X02

X11

X12

β1λ1

β1λ1

β1λ1

β
2 λ2

β
2 λ2

β
2 λ2

α1µ1α 2µ
2

α 2µ
2

α1µ1

α 3µ
3

α 3µ
3

(1
−α

1)
µ 1

(1
−α

1)
µ 1

(1
−α

1)
µ 1

(1
−α

1)
µ 1

(1
−α

2)
µ 2

(1
−α

2)
µ 2

(1
−α

2)
µ 2

(1
−α

2)
µ 2

(1−
β 1)

λ 1

(1−
β 1)

λ 1

(1−
β 1)

λ 1

(1−
β 1)

λ 1

(1−
β 1)

λ 1

(1−
β 1)

λ 1

(1
−α

2)
µ 2

(1
−α

1)
µ 1

Z1

Z2

Z0

Figure 5.9: Expanded Markov chain

the average firing rates of the transitions of the Coxian distributions.
Dashed edges denote state changes in the CTMC caused by firing of
transitions belonging to the Coxian approximation of the ETPDF of τu.
Solid edges denote state changes in the CTMC caused by firing of tran-
sitions belonging to the Coxian approximation of the ETPDF of τv . The
state Y12, for example, corresponds to the situation when the GSMP in
Figure 5.7 would be in state Y and the first two of the three stages of
the Coxian distribution approximating the ETPDF of τv (Figure 5.5(b))
and the first stage out of the two of the Coxian distribution approxi-
mating the ETPDF of τu (Figure 5.8) have fired.

X00 X01 X02 X10 X11 X12

X00

X01

X02

X10

X11

X12

Y00 Y01 Y02 Y10 Y11 Y12

Y00

Y01

Y02

Y10

Y11

Y12

(1−α1)µ1

(1−α2)µ2

(1−β1)λ1

α1µ1

α2µ2

β1λ1

������������������

������������

������������������
a number such
that the sum of
row elements = 0

����

			

��

�

����

����

Figure 5.10: The cell Q(11),(11) corresponding to the example in Fig-
ure 5.9

68 CH. 5. MULTIPROCESSOR SYSTEMS

Let us construct the cell Q(11),(11) on the main diagonal of the in-
finitesimal generator Q of the CTMC in Figure 5.9. The cell is situated
at the intersection of the row and column corresponding to the cluster
labelled with 11 and is depicted in Figure 5.10. The matrix Q(11),(11)

contains the average transition rates between the states Xij and Yij ,
0 ≤ i ≤ 1, 0 ≤ j ≤ 2, of the CTMC in Figure 5.9 (no state Z, only
states X and Y belong to the cluster labelled with 11). The observed
regularity in the structure of the stochastic process in Figure 5.9 is re-
flected in the expression of Q(11),(11) as shown in Figure 5.10. Because
Q is a generator matrix (sum of row elements equals 0), some negative
elements have to be introduced on the main diagonal that do not corre-
spond to transitions in the chain depicted in Figure 5.9. The expression
of Q(11),(11) is given below:

Q(11),(11) = (Au ⊕Av) ⊗ I|11| + Iru
⊗ Bv ⊗ erv

⊗Dv

where

Au =

[

−λ1 (1 − β1)λ1

0 −λ2

]

Bv =





α1µ1

α2µ2

α3µ3



 Dv =

[

0 1
0 0

]

(5.1)

and

Av =





−µ1 (1 − α1)µ1 0
0 −µ2 (1 − α2)µ2

0 0 −µ3



 erv
=
[

1 0 0
]

(5.2)

|11| denotes the size of the cluster labelled with 11. Ii is the identity
matrix of size i × i, ri indicates the number of stages of the Coxian
distribution that approximates the ETPDF of task τi. ⊕ and ⊗ are the
Kronecker sum and product of matrices, respectively.

In general, a matrix Ak = [aij] is an rk × rk matrix, and is defined
as follows:

aij =











(1 − αki)µki if j = i + 1

−µki if j = i

0 otherwise
(5.3)

where αki and µki characterise the ith stage of the Coxian distribution
approximating a transition tk.

A matrix Bk = [bij] is an rk × 1 matrix and bi1 = αki · µki. A matrix
erk = [eij] is a 1 × rk matrix and e11 = 1, e1i = 0, 1 < i ≤ rk. A matrix
Dk = [dij] corresponding to a cell U, V is a |U | × |V | matrix defined as
follows:

dij =











1 if an edge labelled with k links
the ith state of U with the jth state of V

0 otherwise
(5.4)

In general, considering a label U , the cell QU,U on the main diagonal
of Q is obtained as follows:

QU,U =

(

⊕

i∈EnU

Ai

)

⊗ I|U |+

+
∑

i∈EnU









⊗

j∈EnU
j>i

Irj









⊗ Bi ⊗ eri
⊗









⊗

j∈EnU
j<i

Irj









⊗Di

(5.5)

5.6. MARKOV CHAIN CONSTRUCTION 69

A cell situated at the intersection of the row corresponding to label
U with the column corresponding to label V (U 6= V) is obtained as
follows:

QU,V =
∑

i∈EnU





⊗

j∈EnU∪EnV

Fij



⊗Di (5.6)

The matrices F are given by the following expression:

Fij =































vrj
if j ∈ EnU ∧ j 6∈ EnV ∧ j 6= i

Irj
if j ∈ EnU ∧ j ∈ EnV ∧ j 6= i

Bi if j 6∈ EnV ∧ j = i

Bi ⊗ eri
if j ∈ EnV ∧ j = i

erj
if j 6∈ EnU

(5.7)

where vrk
= [vi1] is a rk × 1 matrix, vi1 = 1, 1 ≤ i ≤ rk.

The solution of the CTMC implies solving for π in the following
equation:

tπ · Q = 0 (5.8)
where π is the steady-state probability vector (and tπ is its transpose)
and Q the infinitesimal generator of the CTMC.

We conclude this section with a discussion on the size of Q and its
implications on analysis time and memory. The submatrix QU,U , de-
fined by Eq.(5.5), has (|EnU |+ 1−

∑

i∈EnU
1
ri

) ·
∏

i∈EnU ri · |U | non-zero
elements. Similarly, for a given cluster label U , all the submatrices
QU,V , U 6= V , have approximately |EnU | ·

∏

i∈EnU ri · |U | non-zero el-
ements on aggregate (see Eq.(5.6)). Letting ZU =

∏

i∈EnU ri · |U |, the
entire generator Q has approximately

|Q| ≈
∑

U

(2 · |EnU | + 1 −
∑

i∈EnU

1

ri
) · ZU (5.9)

non-zero elements. The state probability vector π has

|π| =
∑

U

ZU =
∑

U

|U | ·
∏

i∈EnU

ri (5.10)

elements.
Let us suppose that we store the matrix Q in memory. Then, in

order to solve the equation tπ · Q = 0, we would need

|π| + ξ · |Q| =
∑

U

ZU + ξ ·
∑

U

(2 · |EnU | + 1 −
∑

i∈EnU

1

ri
) · ZU (5.11)

memory locations, where ξ is the number of information items charac-
terising each non-zero element of the matrix. ξ reflects also the over-
head of sparse matrix element storage.

As can be seen from the expressions of QU,U and QU,V , the matrix
Q is completely specified by means of the matrices Ai, Bi, and Di (see
Eq.(5.5) and (5.6)), hence it needs not be stored explicitly in memory,
but its elements are generated on-the-fly during the numerical solving
of the CTMC. In this case, we would need to store

|π| +
∑

i

|Ai| +
∑

i

|Bi| +
∑

i

|Di| =
∑

U

ZU+

+
∑

i

(3 · ri − 1) +
∑

U

ξ · |EnU | · |U |
(5.12)

70 CH. 5. MULTIPROCESSOR SYSTEMS

values in order to solve tπ · Q = 0. Even for large applications, the
matrices Ai and Bi are of negligible size (

∑

i(2 · ri −1) and
∑

i ri respec-
tively). The ratio between the memory space needed by Q if stored and
if generated on-the-fly is

∑

U ZU + ξ ·
∑

U (2 · |EnU | + 1 −
∑

i∈EnU
1
ri

)ZU
∑

U ZU +
∑

i(3 · ri − 1) + ξ ·
∑

U |EnU | · |U |
(5.13)

For the application example in Figure 5.2, the expression in Eq.(5.13)
evaluates to 11.12 if Coxian distributions with 6 stages substitute the
original distributions. The actual memory saving factor, as indicated by
our analysis tool, is 9.70. The theoretical overestimation is due to the
fact that possible overlaps of non-null elements of matrices QUV were
not taken into account in the Eq.(5.11). Nevertheless, we see that even
for small applications memory savings of one order of magnitude can be
achieved by exploiting the special structure of the infinitesimal genera-
tor of the approximating CTMC. Further evaluations will be presented
in Section 5.8.

The drawback of this approach is the time overhead in order to gen-
erate each non-zero element of Q on-the-fly. A naı̈ve approach would
need O(|EnU | · |EnV |) arithmetic operations in order to compute each
non-zero element of the cell (U, V). In the worst case, the number of
arithmetic operations is O(M 2), where M is the number of processors
of the system. However, a large body of research [BCKD00] provides in-
telligent numerical algorithms for matrix-vector computation that ex-
ploit factorisation, reuse of temporary values, and reordering of compu-
tation steps. Thus, the aforementioned overhead is significantly amor-
tised.

5.7 Extraction of Results
This section describes how the deadline miss ratios for each task and
task graph are calculated, once the CTMC approximating the stochas-
tic process underlying the system is solved.

As described in Section 5.3, the event of a task (task graph) missing
its deadline corresponds to identifiable edges in the tangible reacha-
bility graph of the CGPN modelling the application (and implicitly to
transitions in the underlying GSMP). The expected deadline miss ra-
tio of a task (task graph) can be computed as the sum of the expected
transition rates of the corresponding identified edges multiplied with
the task (task graph) period.

Not only deadline miss events may be modelled as transitions along
certain edges in the TRG, but also more complex events. Such events
are, for example, the event that a task graph misses its deadline when
a certain task τi missed its deadline. Another example is the event
that task τj missed its deadline when task τi started later than a given
time moment. There is indeed a large number of events that may be
represented as transitions along identifiable edges in the TRG. Inspect-
ing such events can be extremely useful for diagnosis, finding perfor-
mance bottlenecks and non-obvious correlations between deadline miss
events, detecting which task needs to be re-implemented, or whose ex-
ecution is badly scheduled such that other processors idle. Such kind
of information can be exploited for the optimisation of the application.

5.8. EXPERIMENTAL RESULTS 71

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10 20 30 40 50 60

A
na

ly
si

s
tim

e
[s

]

Number of tasks

Individual experiments
Average

Figure 5.11: Analysis time vs. number of tasks

In conclusion, once the steady state probabilities of the stochastic
process are obtained, we are interested in the expected rate of certain
edges in the TRG of the CGPN. We illustrate how to calculate this rate
based on an example.

Let us consider the edge X → Z in the GSMP in Figure 5.7. The
edges X00 → Z0, X10 → Z0, X01 → Z1, X11 → Z1, X02 → Z2, and
X12 → Z2 in the CTMC in Figure 5.9, which approximates the GSMP
in Figure 5.7, correspond to the edge X → Z in the GSMP. The expected
transition rate of X → Z can be approximated by means of the expected
transition rates of the corresponding edges in the CTMC and is given
by the expression

(πX00
+ πX01

+ πX02
) · β1λ1 + (πX10

+ πX11
+ πX12

) · β2λ2 (5.14)

where β1, β2, λ1, and λ2 characterise the Coxian distribution that ap-
proximates the probability distribution of the delay of the transition
X → Z (in this case, the ETPDF of τv). πXij

is the probability of the
CTMC being in state Xij after the steady state is reached. The proba-
bilities πXij

are obtained as the result of the numerical solution of the
CTMC (Eq(5.8)).

5.8 Experimental Results
We performed four sets of experiments. All were run on an AMD Athlon
at 1533 MHz.

5.8.1 Analysis Time as a Function of the Number of
Tasks

The first set of experiments investigates the dependency of the analysis
time on the number of tasks in the system. Sets of random task graphs
were generated, with 9 to 60 tasks per set. Ten different sets were gen-
erated and analysed for each number of tasks per set. The underlying

72 CH. 5. MULTIPROCESSOR SYSTEMS

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

10 20 30 40 50 60

S
to

ch
as

tic
 p

ro
ce

ss
 s

iz
e

[n
um

be
r

of
 s

ta
te

s]

Number of tasks

Individual experiments
Average

Figure 5.12: Stochastic process size vs. number of tasks

architecture consists of two processors. The task execution time proba-
bility distributions were approximated with Coxian distributions with
2 to 6 stages. The dependency between the needed analysis time and
the number of tasks is depicted in Figure 5.11. The crosses indicate the
analysis times of the individual applications, while the boxes represent
the average analysis time for classes of application with the same num-
ber of tasks. The analysis time depends on the size of the stochastic
process to be analysed (in terms of number of states) as well as on the
convergence rate of the numerical solution of the CTMC. This variation
of the convergence rate of the numerical solution does not allow us to
isolate the effect of the number of tasks on the analysis time. Therefore,
in Figure 5.12 we depicted the influence of the number of tasks on the
size of the CTMC in terms of number of states. As seen from the figure,
the number of states of the CTMC increases following a linear tendency
with the number of tasks. The observed slight non-monotonicity stems
from other parameters that influence the stochastic process size, such
as task graph periods, and the amount of task parallelism.

5.8.2 Analysis Time as a Function of the Number of
Processors

In the second set of experiments, we investigated the dependency be-
tween the analysis time and the number of processors. Ten different
sets of random task graphs were generated. For each of the ten sets,
5 experiments were performed, by allocating the 18 tasks of the task
graphs to 2 to 6 processors. The results are plotted in Figure 5.13.
It can be seen that the analysis time is exponential in the number of
processors. The exponential character is induced by the possible task
execution orderings. The number of task execution orderings increases
exponentially with increased parallelism provided by the architecture.
We see from Eq.(5.10) that the number of states of the CTMC is expo-
nentially dependent on |EnU |, the number of simultaneously enabled
transitions in the states of cluster |U |. |EnU | is at most M + 1, where

5.8. EXPERIMENTAL RESULTS 73

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7

A
na

ly
si

s
tim

e
[s

]

Number of processors

Individual experiments
Average

Figure 5.13: Analysis time vs. number of processors

 0

 5

 10

 15

 20

 25

 10 11 12 13 14 15 16 17 18 19

P
er

ce
nt

 o
f c

as
es

Relative reduction of the memory space needed by the analysis

Applications mapped on two processors
Applications mapped on three processors
Applications mapped on four processors

Figure 5.14: Histogram of memory reduction

M is the number of processes. Thus, the experiment confirms the the-
oretical result that the number of states of the CTMC is exponential in
the number of processors.

5.8.3 Memory Reduction as a Consequence of the
On-the-Fly Construction of the Markov Chain
Underlying the System

In the third set of experiments, we investigated the reduction in the
memory needed in order to perform the CTMC analysis when using
on-the-fly construction of the infinitesimal generator based on equa-
tions (5.5) and (5.6). We constructed 450 sets of synthetic applications

74 CH. 5. MULTIPROCESSOR SYSTEMS

Average number of stages of Coxian distribution

|S
’|/

|S
|

50

100

150

200

250

300

350

400

450

500

2 2.5 3 3.5 4 4.5 5 5.5 6

Figure 5.15: Increase in stochastic process size with number of stages
for approximating the arbitrary ETPDFs

with 20 to 40 tasks each. The execution time probability distributions
were approximated with Coxian distributions with 6 stages. For each
application, we ran our analysis twice. In the first run, the entire in-
finitesimal generator of the CTMC approximating the stochastic pro-
cess underlying the application was stored in memory. In the second
run, the elements of the infinitesimal generator were computed on-
demand during the analysis and not stored. In both runs, we measured
the memory needed for the analysis, and calculated the relative mem-
ory reduction in the case of the on-demand generation. The histogram
of the relative memory reduction is shown in Figure 5.14. We observe
a memory reduction ranging from 10 to 19 times. Additionally, we ob-
serve a strong correlation between the memory reduction factor and
the number of processors on which the application is mapped. Also,
the memory reduction factor increases with the number of processors.
Last, we observe that only 48% of the applications mapped on three
processors and only 13.3% of the applications mapped on four proces-
sors could have been analysed in both runs, such that the comparison
can be made. For 52% and 86.7% of applications mapped on 3 respec-
tively 4 processors, the 512MB memory of a desktop PC computer were
insufficient for the analysis in the case the entire infinitesimal genera-
tor is stored in memory. The cases in which the comparison could not
be made were not included in the histogram.

5.8.4 Stochastic Process Size as a Function of the
Number of Stages of the Coxian Distributions

In the fourth set of experiments, we investigated the increase in the
stochastic process size induced by using different number of stages for
approximating the arbitrary ETPDFs. We constructed 98 sets of ran-
dom task graphs ranging from 10 to 50 tasks mapped on 2 to 4 proces-
sors. The ETPDFs were approximated with Coxian distributions using
2 to 6 stages. The results for each type of approximation were averaged

5.8. EXPERIMENTAL RESULTS 75

Table 5.1: Accuracy vs. number of stages
2 stages 3 stages 4 stages 5 stages

Relative error 8.467% 3.518% 1.071% 0.4%

over the 98 sets of graphs and the results are plotted in Figure 5.15.
Recall that |S| is the size of the GSMP and |S ′| is the much larger size
of the CTMC obtained after approximation. As more stages are used
for approximation, as larger the CTMC becomes compared to the origi-
nal GSMP. As shown in Section 5.6, in the worst case, the growth factor
is

∏

i∈E

ri (5.15)

As can be seen from Figure 5.15, the real growth factor is smaller than
the theoretical upper bound. It is important to emphasise that the
matrix Q corresponding to the CTMC does not need to be stored, but
only a vector with the length corresponding to a column of Q. The
growth of the vector length with the number of Coxian stages used for
approximation can be easily derived from Figure 5.15. The same is the
case with the growth of analysis time, which follows that of the CTMC.

5.8.5 Accuracy of the Analysis as a Function of the
Number of Stages of the Coxian Distributions

The fifth set of experiments investigates the accuracy of results as a
factor of the number of stages used for approximation. This is an im-
portant aspect in deciding on a proper trade-off between quality of the
analysis and cost in terms of time and memory. For comparison, we
used analysis results obtained with our approach elaborated in the
previous chapter. That approach is an exact one based on solving the
underlying GSMP. However, because of complexity reasons, it can ef-
ficiently handle only monoprocessor systems. Therefore, we applied
the approach presented in this chapter to a monoprocessor example,
which has been analysed in four variants using approximations with
2, 3, 4, and 5 stages. The relative error between missed deadline ra-
tios resulted from the analysis using the approximate CTMC and the
ones obtained from the exact solution is presented in Table 5.1. The
generalised ETPDFs used in this experiment were created by drawing
Bézier curves that interpolated randomly generated control points. It
can be observed that good quality results can already be obtained with
a relatively small number of approximation stages.

5.8.6 Encoding of a GSM Dedicated Signalling
Channel

Finally, we considered the telecommunication application described in
Section 4.3.6, namely the baseband processing of a stand-alone dedi-
cated control channel of the GSM. In Section 4.3.6, the application was
mapped on a single processor. This implementation could be inefficient
as it combines the signal processing of the FIRE encoding and convolu-
tional encoding, and the bit-operation-intensive interleaver and cipher-
ing on one hand with the control dominant processing of the modulator

76
C

H
.5

.M
U

LT
IP

R
O

C
E

SS
O

R
SY

ST
E

M
S

FIRE enc. +
tailer

Conv. enc.
Interleaver +
assembler

block51,2,3,4 Ciphering

count Hopping

burst6 1,2,3,4

Kc A5

Oversampl. +

freq. transl.
ramping +

burst7 1,2,3,4 Modulator
burst8 1,2,3,4

block3block1

ciphering stream

block4

synch

COUNT

RNTABLE HSN MAIO

freq1,2,3,4

COUNT1,2,3,4

subTS

Figure 5.16: Encoding and mapping of a GSM dedicated signalling channel

5.9. EXTENSIONS 77

τ1

τ3

τ22 3

12

Figure 5.17: Application example

on the other hand. Moreover, the implementation of the publicly un-
available A5 algorithm could be provided as a separate circuit. Thus,
in this experiment we consider a mapping as shown in Figure 5.16. In
the implementation alternative depicted in the figure, the FIRE and
convolutional encodings, the bit interleaving and ciphering, as well as
the hopping and count tasks are mapped on a digital signal processor.
The A5 task is executed by a ASIC, while the modulating and oversam-
pling tasks are mapped on a different ASIC.

In the case of the 9 tasks depicted in Figure 5.16, the analysis re-
ported an acceptable miss deadline ratio after an analysis time of 4.8
seconds. The ETPDFs were approximated by Coxian distributions with
6 stages. If we attempt to perform the baseband processing of an ad-
ditional channel on the same DSP processor, three more tasks, namely
an additional FIRE and convolutional encoding, and interleaving tasks,
are added to the task graph. The analysis in this case took 5.6 seconds.
As a result of the analysis, in the case of two channels (9 tasks in total),
10.05% of the deadlines are missed, which is unacceptable according to
the application specification.

5.9 Extensions
Possible extensions that address the three restrictions that we as-
sumed on the system model (Section 5.1.3) are discussed in this sec-
tion.

5.9.1 Individual Task Periods
As presented in Section 5.1.3, we considered that all the tasks belong-
ing to a task graph have the same period. This assumption can be
relaxed as follows. Each task τi ∈ Γj has its own period πτi

, with the
restriction that πτi

is a common multiple of all periods of the tasks in
◦τi (πτi

is an integer multiple of πτk
, where τk ∈ ◦τi). In this case, πΓj

,
the period of the task graph Γj , is equal to the least common multiple
of all πτi

, where πτi
is the period of τi and τi ∈ Vj . The introduction of

individual task periods implies the existence of individual task dead-
lines: each task τi has its own deadline δτi

= πτi
and the deadline δΓj

of a task graph Γj (the time by which all tasks τi ∈ Vj have to have
finished) is πΓj

.
In order to illustrate how applications under such an extension

are modelled, let us consider the application example depicted in Fig-
ure 5.17: one task graph consisting of the three tasks τ1, τ2 and τ3,
where τ1 is mapped on processor P2 and τ2 and τ3 are mapped on pro-
cessor P1. Task τ1 has period 2, task τ2 has period 3 and task τ3 has
period 12 as indicated by the numbers near the circles in the figure.

78 CH. 5. MULTIPROCESSOR SYSTEMS

The task graph period is the least common multiple of the periods of
the tasks that belong to it, i.e. πΓ1

= 12 for our example.
Figure 5.18 depicts the CGPN that models the application described

above. Whenever an instantiation of task τ1 completes its execution
(transition e1 fires), a token is added in place r3,1. Similarly, whenever
an instantiation of task τ2 completes its execution, a token is added
in place r3,2. In order to be ready to run, an instantiation of task τ3

needs πτ3
/πτ1

= 6 data items produced by 6 instantiations of task τ1

and πτ3
/πτ2

= 4 data items produced by 4 instantiations of task τ2.
Therefore, the arcs r3,1 → r3 and r3,2 → r3 have multiplicity 6 and 4
respectively.

The firing delay T ick of the Clock transition is not any more the
greatest common divisor of the task graph periods, 12, but the greatest
common divisor of the task periods, 1. Every two ticks, f1 fires and a
new token is added to place task1, modelling an arrival of a new in-
stantiation of τ1. Similarly, every three ticks a new token is added to
place task2. In general, the fact that an instantiation of task τi has not
yet completed its execution is modelled by a marking with the prop-
erty that at least one of the places ri,k, ai or runi is marked. Hence,
an instantiation of task τi misses its deadline if and only if fi fires in a
marking with the above mentioned property.

Every 12 ticks, fΓ1
fires and a new token is added to place graph1,

modelling a new instantiation of task graph Γ1. In general, if Bndi

contains less than bi tokens when a new instantiation of Γi arrives,
then at least one instantiation is active in the system. The event of a
task graph Γi missing its deadline corresponds to the firing of fΓi

in a
marking in which Bndi contains less than bi tokens.

If Bnd1 is not marked at that time, it means that there are already
b1 active instantiations of Γ1 in the system. In this case, replace1 fires
and the oldest instantiation is removed from the system. Otherwise,
absorb1 fires, consuming a token from Bnd1. This token is added back
when synch1 fires modelling the completion of the task graph Γ1. An
instantiation of Γ1 completes its execution when πΓ1

/πτ1
= 6 instanti-

ations of τ1, πΓ1
/πτ2

= 4 instantiations of τ2 and πΓ1
/πτ3

= 1 instantia-
tion of τ3 complete their execution. Therefore, the arcs done1 → synch1,
done2 → synch1, and done3 → synch1, have multiplicity 6, 4 and 1 re-
spectively.

The following experiment has been carried out in order to assess
the impact of individual task periods on the analysis complexity. Three
sets of test data, Normal, High, and Low, have been created. The test
data in set Normal contains 300 sets of random task graphs, each set
comprising 12 to 27 tasks grouped in 3 to 9 task graphs. The tasks are
mapped on 2 to 6 processors. Each task has its own period, as described
in this section. For any task graph Γi, the least common multiple LCMi

and the greatest common divisor, GCDi, of the periods of the tasks
belonging to the task graph are computed. The test data High and Low
is identical to the test data Normal with the exception of task periods
that are equal for all tasks belonging to the same task graph. All tasks
belonging to the task graph Γi in the test data High have period LCMi

while the same tasks have period GCDi in the test data Low.
Figure 5.19 plots the dependency of the average size of the underly-

ing generalised semi-Markov process (number of states) on the number
of tasks. The three curves correspond to the three test data sets. The
following conclusions can be drawn from the figure:

5.9.
E

X
T

E
N

SIO
N

S
79

� � �� �� � �� � �

b1

graph 11absorb

r3

r1r2

task1

proc 1 proc 2

replace 1

synch 1

r3,2 r3,1

f2 f1

run2

a2 a3

run3

a1

run1

fG1

� �� ���

� ��	 		 	�

� � �� � �

� � �

5

4

61
4

5

4

3 21 4

3

3

3

1

5

4

3

4

45

4

4

3

12

3 2

4 6

4 6

3

Bnd1

e e e2 3 1

2 1j 3j j

3

Tick

task2

done 1done 3
done 2

3

64

Clock

Figure 5.18: CGPN modelling the application in Figure 5.17

80 CH. 5. MULTIPROCESSOR SYSTEMS

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

12 14 16 18 20 22

A
ve

ra
ge

 s
to

ch
as

tic
 p

ro
ce

ss
 s

iz
e

[n
um

be
r

of
 s

ta
te

s]

Number of tasks

Normal
High
Low

Figure 5.19: Individual task periods compared to uniform task

Table 5.2: Relative increase of the GSMP size in the case of individual
periods

Increase relative to
Number of tasks test set Low test set High

12 13.109 6.053

15 2.247 1.260

18 1.705 1.443

21 1.204 1.546

1. The plots corresponding to High and Low are very close to each
other. This indicates that the number of states in the GSMP is
only weakly dependent on the particular period value.

2. The number of states in the GSMP corresponding to test set
Normal is larger than the ones corresponding to test sets High
and Low. This confirms that different periods for tasks belonging
to the same task graph lead to a relative increase in the GSMP
size as compared to the case when all tasks in the same task
graph have the same period.

3. The relative growth of the size of the GSMP in the case in which
tasks belonging to the same task graph have different periods
compared to the case in which tasks belonging to the same task
graph have the same period is decreasing with the number of
tasks.

Table 5.2 contains the average increase in the size of the gener-
alised semi-Markov processes corresponding to the task sets in test
data Normal relative to the size of the generalised semi-Markov pro-
cesses underlying the task sets in test data Low and High.

5.9. EXTENSIONS 81

e2 e3 e4e1

b1

Bnd1

a01

Tick

v1 v2

j1 j2 j3 j4

dsc1 dsc2

w1 w2

b2

Bnd2

Proc1 Proc2

a12 a23 a13 a04

1 2 2 1

3

4

3

3

3

4

23

Clock

Figure 5.20: CGPN modelling the task graphs in Figure 5.2 in the case
of the rejection policy

5.9.2 Task Rejection vs. Discarding
As formulated in Section 5.1.3, when there are bi concurrently active
instantiations of task graph Γi in the system, and a new instantiation
of Γi demands service, the oldest instantiation of Γi is eliminated from
the system. Sometimes, this behaviour is not desired, as the oldest
instantiation might have been very close to finishing, and by discarding
it, the invested resources (time, memory, bandwidth, etc.) are wasted,
as discussed before.

Therefore, our approach has been extended to support a late task
policy in which, instead of discarding the oldest instantiation of Γi, the
newly arrived instantiation is denied service (rejected) by the system.
However, the analysis method supports the rejection policy only in the
context of fixed priority scheduling.

The CGPN modelling the application in Figure 5.2, when consider-
ing the rejection policy, is depicted in Figure 5.20.

If there are bi concurrently active instantiations of a task graph
Γi in the system, then the place Bndi contains no tokens. If a new
instantiation of Γi arrives in such a situation (vi fires), then dsci will
fire, “throwing away” the newly arrived instantiation.

Let us suppose that an application consists of two independent
tasks, τ1 and τ2, they are mapped on different processors and they
have the same period π. b1 = b2 = 1. An instantiation of τ2 always
finishes before the arrival of the next instantiation. Suppose that both
tasks are running at time moment t. The marking of the CGPN at time
moment t is Mt. The instantiation of τ1 that is running at time moment
t runs an extremely long time, beyond time moment (bt/πc + 1)π + ε
(ε > 0, but very small). Therefore, the instantiation of τ1 that arrives
at time moment (bt/πc + 1)π is rejected. The marking of the CGPN

82 CH. 5. MULTIPROCESSOR SYSTEMS

s1 s2

s0
τ1

(τ1,{τ2})

(τ2,)Ø

τ2

Clock

Clock

Clock
(−,Ø)

(a) Discarding

s1 s2

s0
τ1

τ2

(τ1,{τ2})

(τ2,)Ø

s3 s4

τ1

(τ1,)Ø(τ2,{τ1}) τ2

Clock

Clock

(−,Ø)

Clock
Clock

Clock

(b) Rejection

Figure 5.21: Stochastic process underlying the application

M(bt/πc+1)π+ε at time (bt/πc + 1)π + ε is identical to the marking at
time moment t, Mt. However, Mt corresponds to the situation when
the freshest instantiations of τ1 and τ2 are running, while M(bt/πc+1)π+ε

corresponds to the situation when an older instantiation of τ1 and the
freshest instantiation of τ2 are running. Hence, if the task priorities
are dynamic, it is impossible to extract their priorities solely from the
marking of the CGPN. In the case of discarding, as opposed to rejec-
tion, always the freshest task instantiations are active in the system.
Therefore, their latencies can be computed based on the current time
(extracted from the current marking, as shown in Section 5.3.5). There-
fore, the rejection policy is supported by our analysis method only in
the context of fixed (static) priority scheduling when task priorities are
constant and explicit in the CGPN model such that they do not have to
be extracted from the net marking. Time-stamping of tokens would be
a solution for extending the support of the rejection policy to dynamic
priority scheduling. This, however, is expected to lead to a significant
increase in the tangible reachability graph of the modelling Petri Net
and implicitly in the number of states of the underlying GSMP.

Although CGPNs like the one in Figure 5.20, modelling applica-
tions with rejection policy, are simpler than the CGPN in Figure 5.3,
modelling applications with discarding policies, the resulting tangible
reachability graphs (and implicitly the underlying generalised semi-
Markov processes) are larger. In the case of discarding, the task instan-
tiations are always the freshest ones. In the case of rejection, however,
the instantiation could be arbitrarily old leading to many more com-
binations of possible active task instantiations. In order to illustrate
this, let us consider the following example. The task set consists of two
independent tasks, τ1 and τ2 with the same period and mapped on the
same processor. Task τ1 has a higher priority than task τ2. At most
one active instantiation of each task is allowed in the system at each
time moment. Figure 5.21(a) depicts the underlying generalised semi-
Markov process in the case of the discarding policy, while Figure 5.21(b)
depicts the underlying generalised semi-Markov process in the case of
the rejection policy. The states are annotated by tuples of the form
(a, W) where a is the running task and W is the set of ready tasks.

5.9. EXTENSIONS 83

τ2τ1τ1 τ2

s0 s1 s0 s1 s2

Tick 2Tick

(a) Discarding

τ1 τ2

s0 s1 s3 s4

τ1

s2

Tick 2Tick

(b) Rejection

Figure 5.22: Gantt diagrams for the highlighted paths in Figure 5.21

Table 5.3: Discarding compared to rejection
Average GSMP size Relative increase

Tasks Discarding Rejection of the GSMP size
12 8437.85 18291.23 1.16
15 27815.28 90092.47 2.23
18 24089.19 194300.66 7.06
21 158859.21 816296.36 4.13
24 163593.31 845778.31 4.17
27 223088.90 1182925.81 4.30

The labels τ1 and τ2 on arcs indicate the completion of the correspond-
ing tasks, while Clock indicates the arrival of new task instantiations
every period. Figures 5.22(a) and 5.22(b) depict the Gantt diagrams
corresponding to the two highlighted paths in the stochastic processes
depicted in Figure 5.21(a) and 5.21(b). The Gantt diagrams are an-
notated with the states in the corresponding stochastic processes. As
seen, the rejection policy introduces states, like the priority inversion
noted in state s3, which are impossible when applying discarding.

In order to assess the impact of the rejection policy on the analy-
sis complexity compared to the discarding policy, the following experi-
ments were carried out. 109 task sets of 12 to 27 tasks grouped in 2 to
9 task graphs were randomly generated. Each task set has been anal-
ysed two times, first considering the discarding policy and then consid-
ering the rejection policy. The results were averaged for task sets with
the same cardinality and shown in Table 5.3.

5.9.3 Arbitrary Task Deadlines
As discussed in Section 5.3, a deadline miss is modelled by the firing of
a transition capturing the deadline arrival in a marking with certain
properties. Therefore, when the task deadline is equal to the corre-
sponding task period, and, implicitly, it coincides with the arrival of a
new instantiation, such a transition is already available in the CGPN

84 CH. 5. MULTIPROCESSOR SYSTEMS

model. For example, such transitions are vi in Figure 5.3 and Fig-
ure 5.20 and fi in Figure 5.18. In the case of arbitrary deadlines, such
a transition has to be explicitly added to the model, very much in the
same way as the modelling of new task instantiations is done. In this
case, the firing delay T ick of Clock is the greatest common divisor of
the task periods and of their relative deadlines. Because the deadlines
may be arbitrary, very often the value of T ick will be 1. This leads to an
increase in the number of tokens circulating in the CGPN model and
implicitly to a potentially huge increase of the number of states of the
underlying generalised semi-Markov process.

5.10 Conclusions
In the current and the previous chapter we have presented two ap-
proaches to the performance analysis of applications with stochastic
task execution time. The first approach calculates the exact deadline
miss ratios of tasks and task graphs and is efficient for monoprocessor
systems. The second approach approximates the deadline miss ratios
and is conceived for the complex case of multiprocessor systems.

While both approaches efficiently analyse one design alternative,
they cannot be successfully applied to driving the optimisation phase
of a system design process where a huge number of alternatives has
to be evaluated. The next chapter presents a fast but less accurate
analysis approach together with an approach for deadline miss ratio
minimisation.

Chapter 6

Deadline Miss Ratio
Minimisation

The previous two chapters addressed the problem of analysing the
deadline miss ratios of applications with stochastic task execution
times. In this chapter we address the complementary problem: given
a multiprocessor hardware architecture and a functionality as a set of
task graphs, find a task mapping and priority assignment such that
the deadline miss ratios are below imposed upper bounds.

6.1 Problem Formulation
The problem addressed in this chapter is formulated as follows.

6.1.1 Input
The problem input consists of

• The set of processing elements PE, the set of buses B, and their
connection to processors,

• The set of task graphs Γ,
• The set of task periods ΠT and the set of task graph periods ΠΓ,
• The set of task deadlines ∆T and of task graph deadlines ∆Γ,
• The set PEτ of allowed mappings of τ for all tasks τ ∈ T ,
• The set of execution (communication) time probability density

functions corresponding to each processing element p ∈ PEτ for
each task τ ,

• The late task policy is the discarding policy,
• The set Bounds = {bi ∈ N\{0} : 1 ≤ i ≤ g}, where bi = 1, ∀1 ≤

i ≤ g, i.e. there exists at most one active instantiation of any task
graph in the system at any time,

• The set of task deadline miss thresholds ΘT and the set of task
graph deadline miss thresholds ΘΓ, and

• The set of tasks and task graphs that are designated as being
critical.

85

86 CH. 6. MISS RATIO MINIMISATION

6.1.2 Output
The problem output consists of a mapping and priority assignment
such that the cost function

∑

dev =

N
∑

i=1

devτi
+

g
∑

i=1

devΓi
(6.1)

giving the sum of miss deviations is minimised, where the deadline
miss deviation is defined as in Section 3.2.5. If a mapping and priority
assignment is found such that

∑

dev is finite, it is guaranteed that the
deadline miss ratios of all critical tasks and task graphs are below their
imposed thresholds.

6.1.3 Limitations
We restrict our assumptions on the system to the following:

• The scheduling policy is restricted to fixed priority non-preemp-
tive scheduling.

• At most one instance of a task graph may be active in the system
at any time.

• The late task policy is the discarding policy.

6.2 Approach Outline
Because the defined problem is NP-hard (see the complexity of the clas-
sical mapping problem [GJ79]), we have to rely on heuristic techniques
for solving the formulated problem. An accurate estimation of the miss
deviation, which is used as a cost function for the optimisation process,
is in itself a complex and time consuming task, as shown in the previ-
ous two chapters. Therefore, a fast approximation of the cost function
value is needed to guide the design space exploration. Hence, the fol-
lowing subproblems have to be solved:

• Find an efficient design space exploration strategy, and
• Develop a fast and sufficiently accurate analysis, providing the

needed cost indicators.

Section 6.4 discusses the first subproblems while Section 6.5 focuses
on the system analysis we propose. First, however, we will present
a motivation to our endeavour showing how naı̈ve approaches fail to
successfully solve the formulated problem.

6.3 The Inappropriateness of Fixed Execu-
tion Time Models

A naı̈ve approach to the formulated problem would be to use fixed ex-
ecution time models (average, median, worst-case execution time, etc.)
and to hope that the resulting designs would be optimal or close to
optimal also from the point of view of the percentage of missed dead-
lines. The following example illustrates the pitfalls of such an approach
and emphasises the need for an optimisation technique that considers

6.3. FIXED EXECUTION TIME MODELS 87

B

A

C

D E

(a)

ED

B

A

C

(b)

Figure 6.1: Motivational example

P1

P2

Bus

A B D

C E
miss 25%

18

18

1815

15

time

time

time

21

(a)

P1

P2

E

D

Bus

A B

C

18

18 19

time

time

time

miss 8.33%

17 18

(b)

Figure 6.2: Gantt diagrams of the two mapping alternatives in Fig-
ure 6.1

88 CH. 6. MISS RATIO MINIMISATION

WCET8%

pr
ob

ab
ili

ty
 d

en
si

ty
time

deadline

(a)

WCET

30%

deadline

time

pr
ob

ab
ili

ty
 d

en
si

ty

(b)

Figure 6.3: Motivational example

the stochastic execution times. Let us consider the application in Fig-
ure 6.1(a). All the tasks have period 20 and the deadline of the task
graph is 18. Tasks A, B, C, and D have constant execution times of 1, 6,
7, and 8 respectively. Task E has a variable execution time whose prob-
ability is uniformly distributed between 0 and 12. Hence, the average
(expected) execution time of task E is 6. The inter-processor commu-
nication takes 1 time unit per message. Let us consider the two map-
ping alternatives depicted in Figure 6.1(a) and 6.1(b). The two Gantt
diagrams in Figure 6.2(a) and 6.2(b) depict the execution scenarios cor-
responding to the two considered mappings if the execution of task E
took the expected amount of time, that is 6. The shaded rectangles de-
pict the probabilistic execution of E. A mapping strategy based on the
average execution times would select the mapping in Figure 6.1(a) as
it leads to a shorter response time (15 compared to 17). However, in
this case, the worst-case execution time of the task graph is 21. The
deadline miss ratio of the task graph is 3/12 = 25%. If we took into
consideration the stochastic nature of the execution time of task E,
we would prefer the second mapping alternative, because of the better
deadline miss ratio of 1/12 = 8.33%. If we considered worst-case re-
sponse times instead of average ones, then we would choose the second
mapping alternative, the same as the stochastic approach. However,
approaches based on worst-case execution times can be dismissed by
means of very simple counter-examples.

Let us consider a task τ that can be mapped on processor P1 or on
processor P2. P1 is a fast processor with a very deep pipeline. Because
of its pipeline depth, mispredictions of target addresses of conditional
jumps, though rare, are severely penalised. If τ is mapped on P1, its
ETPDF is shown in Figure 6.3(a). The long and flat density tail cor-
responds to the rare but expensive jump target address misprediction.
If τ is mapped on processor P2, its ETPDF is shown in Figure 6.3(b).
Processor P2 is slower with a shorter pipeline. The WCET of task τ on
processor P2 is smaller than the WCET if τ ran on processor P1. There-
fore, a design space exploration tool based on the WCET would map
task τ on P2. However, as Figure 6.3 shows, the deadline miss ratio in
this case is larger than if task τ was mapped on processor P1.

6.4. MAPPING AND PRIORITY ASSIGNMENT 89

6.4 Mapping and Priority Assignment Heu-
ristic

In this section, we propose a design space exploration strategy that
maps tasks to processors and assigns priorities to tasks in order to
minimise the cost function defined in Eq.(6.1). The exploration strategy
is based on the Tabu Search (TS) heuristic [Glo89].

6.4.1 The Tabu Search Based Heuristic
Tabu Search is a heuristic introduced by Glover [Glo89]. We use an
extended variant, which is described in this section. The variant is
not specific to a particular problem. After explaining the heuristic in
general, we will become more specific at the end of the section where
we illustrate the heuristic in the context of task mapping and priority
assignment.

Typically, optimisation problems are formulated as follows: Find a
configuration, i.e. an assignment of values to parameters that charac-
terise a system, such that the configuration satisfies a possibly empty
set of imposed constraints and the value of a cost function is minimal
for that configuration.

We define the design space S as a set of points (also called solutions),
where each point represents a configuration that satisfies the imposed
constraints. A move from one solution in the design space to another
solution is equivalent to assigning a new value to one or more of the pa-
rameters that characterise the system. We say that we obtain solution
s2 by applying the move m on solution s1, and we write s2 = m(s1). So-
lution s1 can be obtained back from solution s2 by applying the negated
move m, denoted m (s1 = m(s2)).

Solution s′ is a neighbour of solution s if there exists a move m such
that solution s′ can be obtained from solution s by applying move m. All
neighbours of a solution s form the neighbourhood V (s) of that solution
(V (s) = {q : ∃m such that q = m(s)}).

The exploration algorithm is shown in Figure 6.4. The exploration
starts from an initial solution, labelled also as the current solution (line
1) considered as the globally best solution so far (line 2). The cost func-
tion is evaluated for the current solution (line 3). We keep track of a
list of moves TM that are marked as tabu. Initially the list is empty
(line 4).

We construct CM , a subset of the set of all moves that are possible
from the current solution point (line 7). Let N(CM) be the set of solu-
tions that can be reached from the current solution by means of a move
in CM .1 The cost function is evaluated for each solution in N(CM). A
move m ∈ CM is selected (line 8) if

• m is non-tabu and leads to the solution with the lowest cost
among the solutions in N(CM\TM) (m 6∈ TM ∧cost(m(crt sol)) ≤
cost(q), ∀q ∈ N(CM\TM)), or

• it is tabu but improves the globally best solution so far (m ∈ TM∧
cost(m(crt sol)) ≤ global best), or

1N(CM) = V (crt sol) if CM is the set of all possible moves from crt sol.

90 CH. 6. MISS RATIO MINIMISATION

(1) crt sol = init sol
(2) global best sol = crt sol
(3) global best = cost(crt sol)
(4) TM = ∅

(5) since last improvement = 0
(6) iteration count = 1
(7) CM = set of candidate moves(crt sol)
(8) (chose move, next sol cost) = choose move(CM)
(9) while iteration count < max iterations do

(10) while since last improvement < W do
(11) next sol = move(crt sol, chosen move)

(12) TM = TM ∪ {chosen move}
(13) since last improvement + +
(14) iteration count + +
(15) crt sol = next sol
(16) if next sol cost < global best cost then
(17) global best cost = next sol cost
(18) global best sol = crt sol
(19) since last improvement = 0
(20) end if
(21) CM = set of candidate moves(TM, crt sol)
(22) (chosen move, next sol cost) = choose move(CM)
(23) end while
(24) since last improvement = 0
(25) (chosen move, next sol cost) = diversify(TM, crt sol)
(26) iteration count + +
(27) end while
(28) return global best sol

Figure 6.4: Design space exploration algorithm

6.4. MAPPING AND PRIORITY ASSIGNMENT 91

• all moves in CM are tabu and m leads to the solution with the
lowest cost among those solutions in N(CM) (∀mv ∈ CM , mv ∈
TM ∧ cost(m(crt sol)) ≤ cost(mv(crt sol))).

The new solution is obtained by applying the chosen move m on the cur-
rent solution (line 11). The reverse of move m is marked as tabu such
that m will not be reversed in the next few iterations (line 12). The new
solution becomes the current solution (line 15). If it is the case (line
16), the new solution becomes also the globally best solution reached
so far (lines 17–18). However, it should be noted that the new solution
could have a larger cost than the current solution. This could hap-
pen if there are no moves that would improve on the current solution
or all such moves would be tabu. The list TM of tabu moves ensures
that the heuristic does not get stuck in local minima. The procedure
of building the set of candidate moves and then choosing one accord-
ing to the criteria listed above is repeated. If no global improvement
has been noted for the past W iterations, the loop (lines 10–23) is inter-
rupted (line 10). In this case, a diversification phase follows (line 25) in
which a rarely used move is performed in order to force the heuristic to
explore different regions in the design space. The whole procedure is
repeated until the heuristic iterated for a specified maximum number
of iterations (line 9). The procedure returns the solution characterised
by the lowest cost function value that it found during the design space
exploration (line 28).

Two issues are of utmost importance when tailoring the general
tabu search based heuristic described above for particular problems.

First, there is the definition of what is a legal move. On one hand,
the transformation of a solution must result in another solution, i.e.
the resulting parameter assignment must satisfy the set of constraints.
On the other hand, because of complexity reasons, certain restrictions
must be imposed on what constitutes a legal move. For example, if
any transformation were a legal move, the neighbourhood of a solution
would comprise the entire solution space. In this case, it is sufficient
to run the heuristic for just one iteration (max iterations = 1) but that
iteration would require an unreasonably long time, as the whole solu-
tion space would be probed. Nevertheless, if moves were too restricted,
a solution could be reached from another solution only after applying a
long sequence of moves. This makes the reaching of the far-away solu-
tion unlikely. In this case, the heuristic would be inefficient as it would
circle in the same region of the solution space until a diversification
step would force it out.

The second issue is the construction of the subset of candidate
moves. One solution would be to include all possible moves from the
current solution in the set of candidate moves. In this case, the cost
function, which sometimes can be computationally expensive, has to
be calculated for all neighbours. Thus, we would run the risk to ren-
der the exploration slow. If we had the possibility to quickly assess
which are promising moves, we could include only those in the subset
of candidate moves.

For our particular problem, namely the task mapping and priority
assignment, each task is characterised by two attributes: its mapping
and its priority. In this context, a move in the design space is equivalent
to changing one or both attributes of one single task.

92 CH. 6. MISS RATIO MINIMISATION

In the following section we discuss the issue of constructing the sub-
set of candidate moves.

6.4.2 Candidate Move Selection
The cost function is evaluated |CM | times at each iteration, where
|CM | is the cardinality of the set of candidate moves. Let us consider
that task τ , mapped on processor Pj , is moved to processor Pi and there
are qi tasks on processor Pi. Task τ can take one of qi + 1 priorities on
processor Pi. If task τ is not moved to a different processor, but only its
priority is changed on processor Pj , then there are qj − 1 possible new
priorities. If we consider all processors, there are M − 2 + N possible
moves for each task τ , as shown in the equation

qj − 1 +

M
∑

i=1
i6=j

(qi + 1) = M − 2 +

M
∑

i=1

qi = M − 2 + N, (6.2)

where N is the number of tasks and M is the number of processors.
Hence, if all possible moves are candidate moves,

N · (M − 2 + N) (6.3)

moves are possible at each iteration. Therefore, a key to the efficiency
of the algorithm is the intelligent selection of the set CM of candidate
moves. If CM contained only those moves that had a high chance to
drive the search towards good solutions, then fewer points would be
probed, leading to a speed up of the algorithm.

In our approach, the set CM of candidate moves is composed of all
moves that operate on a subset of tasks. Tasks are assigned scores
and the chosen subset of tasks is composed of the first K tasks with
respect to their score. Thus, if we included all possible moves that
modify the mapping and/or priority assignment of only the K highest
ranked tasks, we would reduce the number of cost function evaluations
N/K times.

We illustrate the way the scores are assigned to tasks based on the
example in Figure 6.1(a). As a first step, we identify the critical paths
and the non-critical paths of the application. In general, we consider
a path to be an ordered sequence of tasks (τ1, τ2, . . . , τn) such that τi+1

is data dependent on τi. The average execution time of a path is given
by the sum of the average execution times of the tasks belonging to
the path. A path is critical if its average execution time is the largest
among the paths belonging to the same task graph. For the example
in Figure 6.1(a), the critical path is A → B → D, with an average
execution time of 1+6+8 = 15. In general, non-critical paths are those
paths starting with a root node or a task on a critical path, ending with
a leaf node or a task on a critical path and containing only tasks that
do not belong to any critical path. For the example in Figure 6.1(a),
non-critical paths are A → C and B → E.

For each critical or non-critical path, a path mapping vector is com-
puted. The mapping vector is a P -dimensional integer vector, where P
is the number of processors. The modulus of its projection along dimen-
sion pi is equal to the number of tasks that are mapped on processor
pi and that belong to the considered path. For the example in Fig-
ure 6.1(a), the vectors corresponding to the paths A → B → D, A → C

6.5. ANALYSIS 93

and B → E are 3i + 0j, 1i + 1j, and 1i + 1j respectively, where i and j

are the versors along the two dimensions. Each task is characterised
by its task mapping vector, which has a modulus of 1 and is directed
along the dimension corresponding to the processor on which the task
is mapped. For example, the task mapping vectors of A, B, C, D, and
E are 1i, 1i, 1j, 1i, and 1j respectively.

Next, for each path and for each task belonging to that path, the
angle between the path and the task mapping vectors is computed. For
example, the task mapping vectors of tasks A, B, and D form an angle
of 0◦ with the path mapping vector of critical path A → B → D and
the task mapping vectors of task A and C form an angle of 45◦ with
the path mapping vector of the non-critical path A → C. The score
assigned to each task is a weighted sum of angles between the task’s
mapping vector and the mapping vectors of the paths to whom the task
belongs. The weights are proportional to the relative criticality of the
path. Intuitively, this approach attempts to map the tasks that belong
to critical paths on the same processor. In order to avoid processor
overload, the scores are penalised if the task is intended to be moved
on highly loaded processors.

Once scores have been assigned to tasks, the first K = N/c tasks are
selected according to their scores. In our experiments, we use c = 2.
In order to further reduce the search neighbourhood, not all possible
moves that change the task mapping and/or priority assignment of one
task are chosen. Only 2 processors are considered as target processors
for each task. The selection of those two processors is made based on
scores assigned to processors. These scores are a weighted sum of po-
tential reduction of interprocessor communication and processor load.
The processor load is weighted with a negative weight, in order to pe-
nalise overload. For example, if we moved task C from the shaded
processor to the white processor, we would reduce the interprocessor
communication with 100%. However, as the white processor has to cope
with an average work load of 15 units (the average execution times of
tasks A, B, and D), the 100% reduction would be penalised with an
amount proportional to 15.

On average, there will be N/M tasks on each processor. Hence, if
a task is moved to a different processor, it may take N/M + 1 possible
priorities on its new processor. By considering only N/2 tasks and only
2 processors for each task, we restrict the neighbourhood to

N/2 · 2 · (1 + N/M) = N · (1 + N/M) (6.4)

candidate moves on average, i.e. approximately

N · (M − 2 + N)/(N · (1 + N/M)) ≈ M times. (6.5)

We will denote this method as the restricted neighbourhood search. In
Section 6.6 we will compare the restricted neighbourhood search with
an exploration of the complete neighbourhood.

6.5 Analysis
This section presents our approximate analysis algorithm. The first
part of the section discusses the deduction of the algorithm itself, while
the second part presents some considerations on the approximations
that were made and their impact regarding the accuracy.

94 CH. 6. MISS RATIO MINIMISATION

6.5.1 Analysis Algorithm
The cost function that is driving the design space exploration is

∑

dev,
where dev is the miss deviation as defined in Eq.(6.1). The miss devia-
tion for each task is obtained as the result of a performance analysis of
the system.

In the previous chapter, we presented a performance analysis
method for multiprocessor applications with stochastic task executions
times. The method is based on the Markovian analysis of the under-
lying stochastic process. As the latter captures all possible behaviours
of the system, the method gives great insight regarding the system’s
internals and bottlenecks. However, its relatively large analysis time
makes its use inappropriate inside an optimisation loop. Therefore,
we propose an approximate analysis method of polynomial complexity.
The main challenge is in finding those dependencies among random
variables that are weak and can be neglected such that the analysis
becomes of polynomial complexity and the introduced inaccuracy is
within reasonable bounds.

Before proceeding with the exposition of the approximate analysis
approach, we introduce the notation that we use in the sequel.

The finishing time of the jth job of task τ is the time moment when
(τ, j) finishes its execution. We denote it with Fτ,j . The deadline miss
ratio of a job is the probability that its finishing time exceeds its dead-
line:

mτ,j = 1 − P(Fτ,j ≤ δτ,j) (6.6)

The ready time of (τ, j) is the time moment when (τ, j) is ready to exe-
cute, i.e. the maximum of the finishing times of jobs in its predecessor
set. We denote the ready time with Aτ,j and we write

Aτ,j = max
σ∈◦τ

Fσ,j (6.7)

The starting time of (τ, j) is the time moment when (τ, j) starts execut-
ing. We denote it with Sτ,j . Obviously, the relation

Fτ,j = Sτ,j + Exτ,j (6.8)

holds between the starting and finishing times of (τ, j), where Exτ,j

denotes the execution time of (τ, j). The ready time and starting times
of a job may differ because the processor might be busy at the time
the job becomes ready for execution. The ready, starting and finishing
times are all random variables.

Let Lτ,j(t) be a function that takes value 1 if (τ, j) is running at time
moment t and 0 otherwise. In other words, if Lτ,j(t) = 1, processing
element Map(τ) is busy executing job j of task τ at time t. If (τ, j)
starts executing at time t, Lτ,j(t) is considered to be 1. If (τ, j) finishes
its execution at time t′, Lτ,j(t

′) is considered to be 0. For simplicity, in
the sequel, we will write Lτ,j(t) when we mean Lτ,j(t) = 1. Also, Lσ(t)
is a shorthand notation for

∑

j∈N
Lσ,j(t).

Let Iτ,j(t) be a function that takes value 1 if

• All tasks in the ready-to-run queue of the scheduler on processor
Map(τ) at time t have a lower priority than task τ , and

•
∑

σ∈Tτ\{τ} Lσ(t) = 0,

6.5. ANALYSIS 95

and it takes value 0 otherwise, where Tτ = TMap(τ) is the set of tasks
mapped on the same processor as task τ . Intuitively, Iτ,j(t) = 1 im-
plies that (τ, j) could start running on processing element Map(τ) at
time t if (τ, j) becomes ready at or prior to time t. Let Iτ,j(t, t

′) be a
shorthand notation for ∃ξ ∈ (t, t′] : Iτ,j(ξ) = 1, i.e. there exists a time
moment ξ in the right semi-closed interval (t, t′], such that (τ, j) could
start executing at ξ if it become ready at or prior to ξ.

In order to compute the deadline miss ratio of (τ, j) (Eq.(6.6)), we
need to compute the probability distribution of the finishing time Fτ,j .
This in turn can be precisely determined (Eq.(6.8)) from the probability
distribution of the execution time Exτ,j , which is an input data, and the
probability distribution of the starting time of (τ, j), Sτ,j . Therefore, in
the sequel, we focus on determining P(Sτ,j ≤ t).

We start by observing that Iτ,j(t, t + h) is a necessary condition for
t < Sτ,j ≤ t + h. Thus,

P(t < Sτ,j ≤ t + h) = P(t < Sτ,j ≤ t + h ∩ Iτ,j(t, t + h)). (6.9)

We can write

P(t < Sτ,j ≤ t + h ∩ Iτ,j(t, t + h)) =

= P(t < Sτ,j ∩ Iτ,j(t, t + h))−

− P(t + h < Sτ,j ∩ Iτ,j(t, t + h)).

(6.10)

Furthermore, we observe that the event

t + h < Sτ,j ∩ Iτ,j(t, t + h)

is equivalent to

(t + h < Aτ,j ∩ Iτ,j(t, t + h))∪

∪(sup{ξ ∈ (t, t + h] :Iτ,j(ξ) = 1} < Aτ,j ≤ t + h ∩ Iτ,j(t, t + h)).

In other words, (τ, j) starts executing after t+h when the processor was
available sometimes in the interval (t, t + h] if and only if (τ, j) became
ready to execute after the latest time in (t, t + h] at which the processor
was available. Thus, we can rewrite Eq.(6.10) as follows:

P(t < Sτ,j ≤ t + h ∩ Iτ,j(t, t + h)) =

= P(t < Sτ,j ∩ Iτ,j(t, t + h))−

− P(t + h < Aτ,j ∩ Iτ,j(t, t + h))−

− P(sup{ξ ∈ (t, t + h] : Iτ,j(ξ) = 1} < A ≤ t + h∩

∩ Iτ,j(t, t + h)).

(6.11)

After some manipulations involving negations of the events in the
above equation, and by using Eq.(6.9), we obtain

P(t < Sτ,j ≤ t + h) = P(Aτ,j ≤ t + h ∩ Iτ,j(t, t + h))−

− P(Sτ,j ≤ t ∩ Iτ,j(t, t + h))−

− P(sup{ξ ∈ (t, t + h] : Iτ,j(ξ) = 1} < Aτ,j ≤ t + h∩

∩ Iτ,j(t, t + h)).

(6.12)

When h becomes very small, the last term of the right-hand side of
the above equation becomes negligible relative to the other two terms.

96 CH. 6. MISS RATIO MINIMISATION

Hence, we write the final expression of the distribution of Sτ,j as fol-
lows:

P(t < Sτ,j ≤ t + h) ≈

≈ P(Aτ,j ≤ t + h ∩ Iτ,j(t, t + h))−

− P(Sτ,j ≤ t ∩ Iτ,j(t, t + h)).

(6.13)

We observe from Eq.(6.13) that the part between t and t + h of the
probability distribution of Sτ,j can be calculated from the probability
distribution of Sτ,j for time values less than t. Thus, we have a method
for an iterative calculation of P(Sτ,j ≤ t), in which we compute

P(kh < Sτ,j ≤ (k + 1)h), k ∈ N,

at iteration k + 1 from values obtained during previous iterations.
A difficulty arises in the computation of the two joint distributions

in the right-hand side of Eq.(6.13). The event that a job starts or be-
comes ready prior to time t and that the processor may start executing
it in a vicinity of time t is a very complex event. It depends on many
aspects, such as the particular order of execution of tasks on differ-
ent (often all) processors, and on the execution time of different tasks,
quite far from task τ in terms of distance in the computation tree. Par-
ticularly the dependence on the execution order of tasks on different
processors makes the exact computation of

P(Aτ,j ≤ t + h ∩ Iτ,j(t, t + h))

and
P(Sτ,j ≤ t ∩ Iτ,j(t, t + h))

of exponential complexity. Nevertheless, exactly this multitude of de-
pendencies of events Iτ,j(t, t + h), Aτ,j ≤ t + h, and Sτ,j ≤ t on various
events makes the dependency weak among the aforementioned three
events. Thus, we approximate the right-hand side of Eq.(6.13) by con-
sidering the joint events as if they were conjunctions of independent
events. Hence, we approximate P(t < Sτ,j ≤ t + h) as follows:

P(t < Sτ,j ≤ t + h) ≈

≈ (P(Aτ,j ≤ t + h) − P(Sτ,j ≤ t)) · P(Iτ,j(t, t + h)).
(6.14)

The impact of the introduced approximation on the accuracy of the
analysis is discussed in Section 6.5.2 based on a non-trivial example.

In order to fully determine the probability distribution of Sτ,j (and
implicitly of Fτ,j and the deadline miss ratio), we need the probabil-
ity distribution of Aτ,j and the probability P(Iτ,j(t, t + h)). Based on
Eq.(6.7), if the finishing times of all tasks in the predecessor set of task
τ were statistically independent, we could write

P(Aτ ≤ t) =
∏

σ∈◦τ

P(Fσ ≤ t). (6.15)

In the majority of cases the finishing times of all tasks in the pre-
decessor set of task τ are not statistically independent. For example, if
there exists a task α and two computation paths α → σ1 and α → σ2,
where tasks σ1 and σ2 are predecessors of task τ , then the finishing
times Fσ1

and Fσ2
are not statistically independent. The dependency

6.5. ANALYSIS 97

(1) Sort all tasks in topological order of the task
graph and put the sorted tasks in sequence T

(2) For all (τ, j), such that τ has no predecessors
determine P(Aτ,j ≤ t)

(3) For all (τ, j), let P(Iτ,j(0, h)) = 1
(4) for t := 0 to LCM step h do
(5) for each τ ∈ T do
(6) compute P(Aτ ≤ t) Eq.(6.15)
(7) compute P(t < Sτ,j ≤ t + h) Eq.(6.14)
(8) compute P(Fτ,j ≤ t + h) Eq.(6.8)
(9) compute P(Lτ,j(t + h)) Eq.(6.17)

(10) compute P(Iτ,j(t, t + h)) Eq.(6.16)
(11) end for
(12) end for
(13) compute the deadline miss ratios Eq.(6.6)

Figure 6.5: Approximate analysis algorithm

becomes weaker the longer these computation paths are. Also, the de-
pendency is weakened by the other factors that influence the finishing
times of tasks σ, for example the execution times and execution order
of the tasks on processors Map(σ1) and Map(σ2). Even if no common
ancestor task exists among any of the predecessor tasks σ, the finish-
ing times of tasks σ may be dependent because they or some of their
predecessors are mapped on the same processor. However, these kind
of dependencies are extremely weak as shown by Kleinrock [Kle64] for
computer networks and by Li [LA97] for multiprocessor applications.
Therefore, in practice, Eq.(6.15) is a good approximation.

Last, we determine the probability P(Iτ,j(t, t + h)), i.e. the probabil-
ity that processor Map(τ) may start executing (τ, j) sometimes in the
interval (t, t + h]. This probability is given by the probability that no
task is executing at time t, i.e.

P(Iτ,j(t, t + h)) = 1 −
∑

σ∈Tτ\{τ}

P(Lσ(t) = 1). (6.16)

The probability that (τ, j) is running at time t is given by

P(Lτ,j(t) = P(Sτ,j ≤ t) − P(Fτ,j ≤ t). (6.17)

The analysis algorithm is shown in Figure 6.5. The analysis is per-
formed over the interval [0, LCM), where LCM is the least common
multiple of the task periods. The algorithm computes the probabil-
ity distributions of the random variables of interest parsing the set of
tasks in their topological order. Thus, we make sure that ready times
propagate correctly from predecessor tasks to successors.

Line 7 of the algorithm computes the probability that job (τi, j)
starts its execution sometime in the interval (t, t + h] according to
Eq. (6.14). The finishing time of the job may lie within one of the in-
tervals (t + BCETi, t + h + BCETi], (t + BCETi + h, t + 2h + BCETi],
. . . , (t + WCETi, t + h + WCETi], where BCETi and WCETi are the
best and worst-case execution times of task τi respectively. There are
d(WCETi − BCETi)/he such intervals. Thus, the computation of the
probability distribution of the finishing time of the task (line 8) takes
d|ETPDFi|/he steps, where |ETPDFi| = WCETi − BCETi.

98 CH. 6. MISS RATIO MINIMISATION

C D

BA

E

Figure 6.6: Application example

Let |ETPDF | = max1≤i≤N d|ETPDFi|/he. Then the complexity of
the algorithm is O(N ·LCM/h · d|ETPDF |/he), where N is the number
of processing and communication tasks. The choice of the discretisation
resolution h is done empirically such that we obtain a fast analysis with
reasonable accuracy for the purpose of task mapping.

6.5.2 Approximations
We have made several approximations in the algorithm described in
the previous section. These are:

1. The discretisation approximation used throughout the approach,
i.e. the fact that the probability distributions of interest are all
computed at discrete times {0, h, 2h, . . . , bLCM/hc},

2. P(Aτ ≤ t) ≈
∏

σ∈◦τ P(Fσ ≤ t),
3. P(Aτ,j ≤ t + h∩ Iτ,j(t, t + h)) ≈ P(Aτ,j ≤ t + h) ·P(Iτ,j(t, t + h)) and

P(Sτ,j ≤ t ∩ Iτ,j(t, t + h)) ≈ P(Sτ,j ≤ t) · P(Iτ,j(t, t + h)).

The first approximation is inevitable when dealing with continuous
functions. Moreover, its accuracy may be controlled by choosing differ-
ent discretisation resolutions h.

The second approximation is typically accurate as the dependencies
between the finishing times Fσ are very weak [Kle64], and we will not
focus on its effects in this discussion.

In order to discuss the last approximation, we will introduce the fol-
lowing example. Let us consider the application depicted in Figure 6.6.
It consists of 5 tasks, grouped into two task graphs Γ1 = {A, B, C, D}
and Γ2 = {E}. Tasks A and B are mapped on the first processor, while
tasks C, D, and E are mapped on the second processor. The two black
dots on the arrows between tasks A and C, and tasks B and D rep-
resent the inter-processor communication tasks. Tasks C, D, and E
have fixed execution times of 4, 5, and 6 time units respectively. Tasks
A and B have execution times with exponential probability distribu-
tions, with average rates of 1/7 and 1/2 respectively.2 Each of the two
inter-processor communications takes 0.5 time units. Task A arrives at
time moment 0, while task E arrives at time moment 11. Task E is the
highest priority task. The deadline of both task graphs is 35.

Because of the data dependencies between the tasks, task D is the
last to run among the task graph Γ1. The probability that processor two
is executing task D at time t is analytically determined and plotted in
Figure 6.7(a) as a function of t. On the same figure, we plotted the
approximation of the same probability as obtained by our approximate

2We chose exponential execution time probability distributions only for the scope of
this illustrative example. Thus, we are able to easily deduce the exact distributions in or-
der to compare them to the approximated ones. Note that our approach is not restricted
to exponential distributions and we use generalised distributions throughout the exper-
imental results

6.5. ANALYSIS 99

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30 35 40

P
ro

ba
bi

lit
y

th
at

 th
e

ta
sk

 is
 r

un
ni

ng

Time

Probability of task D running
Approximation of probability of task D running

(a) Approximation of the probability that task D is running

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30

P
ro

ba
bi

lit
y

th
at

 th
e

ta
sk

 is
 r

un
ni

ng

Time

Probability of task E running
Approximation of probability of task E running

(b) Approximation of the probability that task E is running

Figure 6.7: Approximation accuracy

100 CH. 6. MISS RATIO MINIMISATION

Task Average error Standard deviation of errors
19 0.056351194 0.040168796
13 0.001688039 0.102346107
5 0.029250265 0.178292338
9 0.016695770 0.008793487

Table 6.1: Approximation accuracy

analysis method. The probability that task E is running at time t and
its approximation are shown in Figure 6.7(b).

In Figure 6.7(a), we observe that large approximation errors occur
at times around the earliest possible start time of task D, i.e. around
time 4.5.3 We can write

P(AD ≤ t + h ∩ ID(t, t + h)) =

= P(ID(t, t + h)|AD ≤ t + h) · P(AD ≤ t + h).

P(ID(t, t + h)|AD ≤ t + h) is interpreted as the probability that task D
may start to run in the interval (t, t+h] knowing that it became ready to
execute prior to time t+h. If t+h < 4.5, and we took into consideration
the fact that AD ≤ t + h, then we know for sure that task C could not
have yet finished its execution of 4 time units (see footnote). Therefore

P(ID(t, t + h)|AD ≤ t + h) = 0, t + h < 4.5.

However, in our analysis, we approximate P(ID(t, t + h)|AD ≤ t + h)
with P(ID(t, t + h)), i.e. we do not take into account that AD ≤ t. Not
taking into account that task D became ready prior to time t opens the
possibility that task A has not yet finished its execution at time t. In
this case, task C has not yet become ready, and the processor on which
tasks C and D are mapped could be idle. Thus,

P(ID(t, t + h)) 6= 0,

because the processor might be free if task C has not yet started. This
illustrates the kind of approximation errors introduced by

P(AD ≤ t + h ∩ ID(t, t + h)) ≈ P(ID(t, t + h)) · P(AD ≤ t + h).

However, what we are interested in is a high-quality approximation
towards the tail of the distribution, because typically there is the dead-
line. As we can see from the plots, the two curves almost overlap for
t > 27. Thus, the approximation of the deadline miss ratio of task D
is very good. The same conclusion is drawn from Figure 6.7(b). In this
case too we see a perfect match between the curves for time values close
to the deadline.

Finally, we assessed the quality of our approximate analysis on
larger examples. We compare the processor load curves obtained by
our approximate analysis (AA) with processor load curves obtained by
our high-complexity performance analysis (PA) presented in the previ-
ous chapter. The benchmark application consists of 20 processing tasks

3The time when task D becomes ready is always after the time when task C becomes
ready. Task C is ready the earliest at time 0.5, because the communication A → C takes
0.5 time units. The execution of task C takes 4 time units. Therefore, the processor is
available to task D the earliest at time 4.5.

6.6. EXPERIMENTAL RESULTS 101

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

P
ro

ce
ss

or
 lo

ad

Time [sec]

AA
PA

Figure 6.8: Approximation accuracy

mapped on 2 processors and 3 communication tasks mapped on a bus
connecting the two processors. Figure 6.8 gives a qualitative measure
of the approximation. It depicts the two processor load curves for a task
in the benchmark application. One of the curves was obtained with PA
and the other with AA. A quantitative measure of the approximation is
given in Table 6.1. We present only the extreme values for the average
errors and standard deviations. Thus, row 1 in the table, corresponding
to task 19, shows the largest obtained average error, while row 2, cor-
responding to task 13, shows the smallest obtained average error. Row
3, corresponding to task 5, shows the worst obtained standard devia-
tion, while row 4, corresponding to task 9, shows the smallest obtained
standard deviation. The average of standard deviations of errors over
all tasks is around 0.065. Thus, we can say with 95% confidence that
AA approximates the processor load curves with an error of ±0.13.

6.6 Experimental Results
The proposed heuristic for task mapping and priority assignment has
been experimentally evaluated on randomly generated benchmarks
and on a real-life example. This section presents the experimen-
tal setup and comments on the obtained results. The experiments
were run on a desktop PC with an AMD Athlon processor clocked at
1533MHz.

The benchmark set consisted of 396 applications. The applications
contained t tasks, clustered in g task graphs and mapped on p proces-
sors, where t ∈ {20, 22, . . . , 40}, g ∈ {3, 4, 5}, and p ∈ {3, 4, . . . , 8}. For
each combination of t, g, and p, two applications were randomly gen-
erated. Three mapping and priority assignment methods were run on
each application. All three implement a Tabu Search algorithm with
the same tabu tenure, termination criterion and number of iterations
after which a diversification phase occurs. In each iteration, the first
method selects the next point in the design space while considering the

102 CH. 6. MISS RATIO MINIMISATION

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20

[%
]

Deviation of cost function obtained from RNS relative to ENS [%]

Histogram of deviation
Average deviation = 1.6512%

Figure 6.9: Cost obtained by RNS vs. ENS

entire neighbourhood of design space points. Therefore, we denote it
ENS, exhaustive neighbourhood search. The second method considers
only a restricted neighbourhood of design space points when selecting
the next design transformation. The restricted neighbourhood is de-
fined as explained in Section 6.4. We call the second method RNS, re-
stricted neighbourhood search. Both ENS and RNS use the same cost
function, defined in Eq.(6.1) and calculated according to the approx-
imate analysis described in Section 6.5. The third method considers
only fixed task execution times, equal to the average task execution
times. It uses an exhaustive neighbourhood search and minimises the
value of the cost function

∑

laxτ , where laxτ is defined as follows

laxτ =

{

∞ Fτ > δτ ∧ τ is critical
Fτ − δτ otherwise.

(6.18)

The third method is abbreviated LO-AET, laxity optimisation based
on average execution times. Once LO-AET has produced a solution,
the cost function defined in Eq.(6.1) is calculated and reported for the
produced mapping and priority assignment.

6.6.1 RNS and ENS: Quality of Results
The first issue we look at is the quality of results obtained with RNS
compared to those produced by ENS. The deviation of the cost function
obtained from RNS relative to the cost function obtained by ENS is
defined as

costRNS − costENS

costENS
(6.19)

Figure 6.9 depicts the histogram of the deviation over the 396 bench-
mark applications. The relative deviation of the cost function appears
on the x-axis. The value on the y-axis corresponding to a value x on the
x-axis indicates the percentage of the 396 benchmarks that have a cost
function deviation equal to x. On average, RNS is only 1.65% worse

6.6. EXPERIMENTAL RESULTS 103

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

20 25 30 35 40

A
ve

ra
ge

 ti
m

e
pe

r
ite

ra
tio

n
[s

ec
/it

er
at

io
n]

Tasks

ENS
RNS

LO-AET

Figure 6.10: Run times of RNS vs. ENS

than ENS. In 19% of the cases, the obtained deviation was between 0
and 0.1%. Note that RNS can obtain better results than ENS (nega-
tive deviation). This is due to the intrinsically heuristic nature of Tabu
Search.

6.6.2 RNS and ENS: Exploration Time
As a second issue, we compared the run times of RNS, ENS, and LO-
AET. Figure 6.10 shows the average times needed to perform one it-
eration in RNS, ENS, and LO-AET respectively. It can be seen that
RNS runs on average 5.16–5.6 times faster than ENS. This corresponds
to the theoretical prediction, made at in Section 6.4.2, stating that the
neighbourhood size of RNS is M times smaller than the one of ENS
when c = 2. In our benchmark suite, M is between 3 and 8 averaging
to 5.5. We also observe that the analysis time is close to quadratic in the
number of tasks, which again corresponds to the theoretical result that
the size of the search neighbourhood is quadratic in N , the number of
tasks.

We finish the Tabu Search when 40 · N iterations have executed,
where N is the number of tasks. In order to obtain the execution times
of the three algorithms, one needs to multiply the numbers on the or-
dinate in Figure 6.10 with 40 ·N . For example, for 40 tasks, RNS takes
circa 26 minutes while ENS takes roughly 2h12’.

6.6.3 RNS and LO-AET: Quality of Results and Ex-
ploration Time

The LO-AET method is marginally faster than RNS. However, as
shown in Figure 6.11, the value of the cost function obtained by LO-
AET is on average almost an order of magnitude worse (9.09 times)
than the one obtained by RNS. This supports one of the main messages
of this chapter, namely that considering a fixed execution time model
for optimisation of systems is completely unsuitable if deadline miss

104 CH. 6. MISS RATIO MINIMISATION

0

2

4

6

8

10

12

14

16

0 2000 4000 6000 8000 10000

[%
]

Deviation of cost function obtained from LO-AET relative to RNS [%]

Histogram of deviation
Average deviation = 909.1818%

Figure 6.11: Cost obtained by LO-AET vs. RNS

ratios are to be improved. Although LO-AET is able to find a good
implementation in terms of average execution times, it turns out that
this implementation is very poor from the point of view of deadline
miss ratios. What is needed is a heuristic like RNS, which is explicitly
driven by deadline miss ratios during design space exploration.

6.6.4 Real-Life Example: GSM Voice Decoding
Last, we considered an industrial-scale real-life example from the
telecommunication area, namely a smart GSM cellular phone [Sch03],
containing voice encoder and decoder, an MP3 decoder, as well as a
JPEG encoder and decoder.

In GSM a second of human voice is sampled at 8kHz, and each sam-
ple is encoded on 13 bits. The resulting stream of 13000 bytes per sec-
ond is then encoded using so-called regular pulse excitation long-term
predictive transcoder (GSM 06.10 specification [ETS]). The encoded
stream has a rate of 13000 bits per second, i.e. a frame of 260 bits ar-
rives every 20ms. Such a frame is decoded by the application shown in
Figure 6.12. It consists of one task graph of 34 tasks mapped on two
processors. The task partitioning and profiling was done by M. Schmitz
[Sch03]. The period of every task is equal to the frame period, namely
20ms. The tasks process an input block of 260 bits. The layout of a 260
bit frame is shown on the top of Figure 6.12, where also the correspon-
dence between the various fields in the frame and the tasks processing
them is depicted.

For all tasks, the deadline is equal to the period. No tasks are crit-
ical in this application but the deadline miss threshold of every task
is 0. Hence, the value of the cost function defined in Eq.(6.1) is equal
to the sum of the deadline miss ratios of all 34 tasks and the deadline
miss ratio of the entire application.

The restricted neighbourhood search found a task mapping and pri-
ority assignment of cost 0.0255 after probing 729, 662 potential solutions
in 1h31′ on an AMD Athlon clocked at 1533MHz. This means that the

6.6.
E

X
P

E
R

IM
E

N
TA

L
R

E
SU

LT
S

105

Mcr(grid) xMcr[...]

Mcr[0] xmaxrc[0] xMcr[0..12] bcr[0] Ncr[0] Mcr[1] xmaxcr[1] xMcr[13..25] bcr[1] Ncr[1] Mcr[2] xmaxcr[2] xMcr[26..39] bcr[2] Ncr[2] Mcr[3] xmaxcr[3] xMcr[40..52] bcr[3] Ncr[3] LARcr[1..8]

Buffer
read

APCM inverse
quantization

RPE grid
positioning

synthesis filtering
GSM long term

APCM inverse
quantization

RPE grid
positioning

synthesis filtering
GSM long term

APCM inverse
quantization

RPE grid
positioning

synthesis filtering
GSM long term

APCM inverse
quantization

RPE grid
positioning

synthesis filtering
GSM long term

Decoding of
coded LAR

Buffer
write

LARp to rp

coefficients
0..12

Short term
synthesis filtering

LARp to rp

Short term
synthesis filtering

LARp to rp

Short term
synthesis filtering

LARp to rp

Short term
synthesis filtering

coefficients
27..39

coefficients
13..26

coefficients
40..139

Postprocessing

φ=
 0

.0
2s

xmaxcr(max value)
4*6 = 24bit4*2 = 8bit 4*13*3 = 156bit 4*2 = 8bit

bcr(gain) Ncr(delay)
4*7 = 28bit

LARcr[1..8]
36bit

0

1 2 3 4 5

6

7

8

10

9

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

scale

Figure 6.12: Task graph modelling GSM voice decoding. From M. Schmitz’s [Sch03] PhD thesis.

106 CH. 6. MISS RATIO MINIMISATION

deadline miss ratio of the voice decoding application, if the tasks are
mapped and their priority is assigned as found by the RNS, is less than
2.55%. This result is about 16 times better than the cost of an initial
random solution.

Part III

Communication
Synthesis for

Networks-on-Chip

107

Chapter 7

Motivation and Related
Work

Transient failures of on-chip network links are a source of stochastic
behaviour of applications implemented on networks-on-chip. In this
chapter, we introduce the motivation of our work in the area of pro-
viding reliable and low-energy communication under timeliness con-
straints. Next, in Section 7.2 we survey the related work in the area
and underline our contributions.

7.1 Motivation
Shrinking feature sizes make possible the integration of millions and
soon billions of transistors on multi-core chips. At this integration
level, effects such as capacitive cross-talk, power supply noise, and neu-
tron and alpha radiation [SN96, AKK+00] lead to non-negligible rates
of transient failures of interconnects and/or devices, jeopardising the
correctness of applications.

For example, new technologies such as Extreme Ultraviolet Lithog-
raphy promise to deliver feature sizes of 20nm [Die00]. This allows
for single-chip implementations of extremely complex, computation-
intensive applications, such as advanced signal processing in, for exam-
ple, the military or medical domains, high-quality multimedia process-
ing, high-throughput network routing, and high-traffic web services.

However, these technological capabilities do not come without un-
precedented challenges to the design community. These challenges in-
clude increased design and verification complexity and high power den-
sity and an increased rate of transient faults of the components and/or
communication links.

Several authors [BD02, DRGR03, KJS+02] have proposed network-
on-chip (NoC) architectures as replacements to bus-based designs in
order to improve scalability, reduce design, verification and test com-
plexity and to ease the power management problem.

With shrinking feature size, the on-chip interconnects have become
a performance bottleneck [Dal99]. Thus, a first concern, which we ad-
dress in this part of the thesis, is application latency.

The energy consumption of wires has been reported to account for
about 40% of the total energy consumed by the chip [Liu94]. More-
over, another significant source of energy consumption are the buffers

109

110 CH. 7. MOTIVATION AND RELATED WORK

distributed within the on-chip communication infrastructure. This is
a strong incentive to consider the communication energy reduction by
means of efficient utilisation of the on-chip communication channels
and by means of reducing the buffering demand of applications. Thus,
a second concern, which we address in Chapters 9 and 10, is communi-
cation energy and buffer space demand minimisation.

A third problem arising from shrinking feature size is the increas-
ing rate of transient failures of the communication lines. The reliability
of network nodes is guaranteed by specific methods, which are outside
the scope of this work. In general, 100% reliable communication cannot
be achieved in the presence of transient failures, except under assump-
tions such as no multiple simultaneous faults or at most n bit flips,
which are unrealistic in the context of complex NoC. Hence, we are
forced to tolerate occasional errors, provided that they occur with a rate
below an imposed threshold. Thus, a third concern, addressed in Chap-
ter 9, is to ensure an imposed communication reliability degree under
constraints on application latency, while keeping energy consumption
as low as possible.

We address the three identified problems, namely energy reduc-
tion and satisfaction of timeliness and communication reliability con-
straints, by means of communication synthesis. In this context, syn-
thesizing the communication means mapping data packets to network
links and determining the time moments when the packets are re-
leased on the links. The selection of message routes has a significant
impact on the responsiveness of applications implemented on the NoC.
The communication reliability is ensured by deploying a combination
of spatially and temporally redundant communication. This however
renders the communication mapping problem particularly difficult.

The next section surveys related work and contrasts it with ours.
Chapter 9 presents our approach to communication mapping for en-
ergy-efficient reliable communication with predictable latency. Chap-
ter 10 presents a communication synthesis approach for the minimisa-
tion of the buffer space demands of applications.

7.2 Related Work
Communication synthesis greatly affects performance and energy con-
sumption. Closest to our approach, which maps data packets to net-
work links in an off-line manner, is deterministic routing [HM05,
MD04]. One of its advantages is that it may guarantee deadlock-free
communication and the communication latency and energy consump-
tion are easier to predict. Nevertheless, deterministic routing can be
efficiently applied only if traffic patterns are known in more detail at
design time. Under the assumptions that we make in this thesis, the
communication mapping (and the deterministic routing that results
from it) is complicated by the fact that we deploy redundant communi-
cation.

Wormhole routing [BIGA04] is a popular switching technique
among NoC designs. However, an analysis that would provide bounds
on its latency and/or energy consumption has yet to be devised. There-
fore, throughout this part of the thesis, we will assume virtual cut-
through switching [KK79], whose analysis we present in Chapter 9.

7.3. HIGHLIGHTS OF OUR APPROACH 111

As opposed to deterministic routing, Dumitraş and Mărculescu
[DM03] have proposed stochastic communication as a way to deal with
permanent and transient faults of network links and nodes. Their
method has the advantage of simplicity, low implementation overhead,
and high robustness w.r.t. faults. However, their method suffers the
disadvantages of non-deterministic routing. Thus, the selection of
links and of the number of redundant copies to be sent on the links is
stochastically done at runtime by the network routers. Therefore, the
transmission latency is unpredictable and, hence, it cannot be guaran-
teed. More importantly, stochastic communication is very wasteful in
terms of energy [Man04].

Pirretti et al. [PLB+04] report significant energy savings relative
to Dumitraş’ and Mărculescu’s approach, while still keeping the low
implementation overhead of non-deterministic routing. An incoming
packet is forwarded to exactly one outgoing link. This link is randomly
chosen according to pre-assigned probabilities that depend on the mes-
sage source and destination. However, due to the stochastic charac-
ter of transmission paths and link congestion, neither Dumitraş and
Mărculescu, nor Pirretti et al. can provide guarantees on the transmis-
sion latency.

As opposed to Dumitraş and Mărculescu and Pirretti et al., who ad-
dress the problem of reliable communication at system-level, Bertozzi
et al. [BBD02] address the problem at on-chip bus level. Bertozzi’s ap-
proach is based on low-swing signals carrying data encoded with error
resilient codes. They analyse the trade-off between consumed energy,
transmission latency and error codes, while considering the energy and
the chip area of the encoders/decoders. While Bertozzi et al. address
the problem at link level, in this chapter we address the problem at ap-
plication level, considering time-constrained multi-hop transmission of
messages sharing the links of an NoC.

Several researchers addressed the problem of dimensioning of the
buffers of the on-chip communication infrastructure. Saastamoinen et
al. [SAN03] study the properties of on-chip buffers, report gate-area
estimates and analyse the buffer utilisation. Chandra et al. [CXSP04]
analyse the effect of increasing buffer size on interconnect throughput.
However, they use a single source, single sink scenario.

An approach for buffer allocation on NoC is given by Hu and
Mărculescu [HM04a]. They consider a design scenario in which an NoC
is custom designed for a particular application. Hu and Mărculescu
propose a method to distribute a given buffer space budget over the
network switches. The algorithm is based on a buffer space demand
analysis that relies on given Poisson traffic patterns of the application.
Therefore, their approach cannot provide application latency guaran-
tees.

7.3 Highlights of Our Approach
In Chapter 9, we address all of the three stringent problems identi-
fied in Section 7.1: link reliability, latency, and energy consumption.
We propose a solution for the following problem: Given an NoC archi-
tecture with a failure probability for its network links and given an
application with required message arrival probabilities and imposed
deadlines, find a mapping of messages to network links such that the

112 CH. 7. MOTIVATION AND RELATED WORK

imposed message arrival probability and deadline constraints are sat-
isfied at reduced energy costs.

Our approach differs from the approaches of Dumitraş and Mărcu-
lescu [DM03] and of Pirretti et al. [PLB+04] in the sense that we deter-
ministically select at design time the links to be used by each message
and the number of copies to be sent on each link. Thus, we are able to
guarantee not only message arrival probabilities, but also worst-case
message arrival times. In order to cope with the unreliability of on-
chip network links, we propose a way to combine spatially and tempo-
rally redundant message transmission. Our approach to communica-
tion energy reduction is to minimise the application latency at almost
no energy overhead by intelligently mapping the redundant message
copies to network links. The resulting time slack can be exploited for
energy minimisation by means of voltage reduction on network nodes
and links.

While the work presented in Chapter 9 tackles the problem of
energy-efficient communication, it leaves a potential for further energy
and cost savings unexploited. A key factor to the energy and cost-
efficiency of applications implemented on NoC is the synthesis of the
communication such that buffer needs are kept low.

A poor synthesis of the communication may lead to a high degree
of destination contention at ingress buffers of network switches. Un-
desirable consequences of this contention include long latency and an
increased energy consumption due to repeated reads from the buffers
[YBD02]. Moreover, a high degree of destination contention runs the
risk of buffer overflow and consequently packet drop with significant
impact on the throughput [KJS+02]. Even in the presence of a back
pressure mechanism, which would prevent packet drops, the commu-
nication latency would be severely affected by the packet contention
[HM04a]. Thus, in Chapter 10, we concentrate on the buffer space
aware communication mapping and packet release timing for applica-
tions implemented on NoC.

We focus on two design scenarios, namely the custom design of
application-specific NoCs and the implementation of applications on
general-purpose NoCs. In the former, the size and distribution of com-
munication buffers can be tailored to precisely fit the application de-
mands. Thus, synthesizing the communication in an intelligent man-
ner could significantly reduce the total need of buffering. In this sce-
nario, the optimisation objective for the communication synthesis ap-
proach that we propose is the minimisation of the overall communica-
tion buffer space.

In the second design scenario, we assume that an application has
to be implemented on a given NoC, with fixed capacity for each buffer.
Thus, the challenge consists in mapping the data packets such that no
buffer overflow occurs. In both scenarios, it has to be guaranteed that
the worst-case task response times are less than the given deadlines,
and that the message arrival probability is equal or above an imposed
threshold.

Our approach relies on an analysis of both timing behaviour and
communication buffer space demand at each buffer in the worst case.
Thus, in both design scenarios, if a solution to the communication syn-
thesis problem is found, we are able to guarantee worst-case timing
behaviour and worst-case buffer space demand, which means that no
buffer overflows/packet drops occur.

7.3. HIGHLIGHTS OF OUR APPROACH 113

Our approach differs in several aspects from the approach of Hu
and Mărculescu [HM04a]. First, in addition to buffer allocation, we
perform off-line packet routing under timeliness and buffer capacity
constraints. Second, we are able to guarantee the application latency
and that no packets are dropped due to buffer overflows at the switches.
Third, we propose a complementary technique that can be indepen-
dently deployed for the minimisation of the buffer space demand. This
technique consists of delaying the release of packets in order to min-
imise destination contention at the buffers. The method is sometimes
referred to as traffic shaping [RE02].

The next chapter introduces the system model we use throughout
this part of the thesis, while Chapter 9 presents our approach to com-
munication mapping for low energy and Chapter 10 describes our ap-
proach to buffer space demand minimisation.

114 CH. 7. MOTIVATION AND RELATED WORK

Chapter 8

System Modelling

This chapter presents the system model used throughout this part of
the thesis.

8.1 Hardware Model
We describe the system model and introduce the notations based on the
example in Figure 8.1. The hardware platform consists of a 2D array of
W ×H cores, depicted as squares in the figure, where W and H denote
the number of columns and rows of the array respectively. The cores
are denoted with Px,y, where x is the 0-based column index and y is the
0-based row index of the core in the array. The inter-core communica-
tion infrastructure consists of a 2D mesh network. The small circles in
Figure 8.1 depict the switches, denoted Sx,y, 0 ≤ x < W , 0 ≤ y < H .
Core Px,y is connected to switch Sx,y, ∀0 ≤ x < W , 0 ≤ y < H . The thick
lines connecting the switches denote the communication links. Each
switch, except those on the borders of the 2D mesh, contains five input
buffers: one for the link connecting the switch to the core with the same
index as the switch, and the rest corresponding to the links conveying
traffic from the four neighbouring switches.

The link connecting switch Sx,y to switch Sx,y+1 is denoted with
Lx,y,N while the link connecting switch Sx,y+1 to switch Sx,y is denoted
with Lx,y+1,S. The link connecting switch Sx,y to switch Sx+1,y is de-

τ 8

τ 7

τ 11τ 10

τ 9

L0,1,E L1,1,E

L0,0,E L1,0,E L2,0,E

L
0,

1,
S

L
1,

1,
S

L
2,

1,
S

P2,0

P0,1 P1,1 P2,1

P1,0P0,0

P3,1

P3,0

τ 1

τ 5

τ 2

τ 6 τ 3 τ 4

Figure 8.1: Application example

115

116 CH. 8. SYSTEM MODELLING

noted with Lx,y,E while the link connecting switch Sx+1,y to switch Sx,y

is denoted with Lx+1,y,W . Each link is characterised by the time and
energy it needs to transmit a bit of information.

8.2 Application Model
The application model is similar to the one described in Section 3.2. It
diverges from the application model introduced in Section 3.2 in the
following aspects:

• Tasks belonging to the same task graph have the same period
(πa = πb if τa, τb ∈ Vi and (Vi, Ei ⊂ Vi × Vi) is a task graph.)

• The task execution time probability density functions are un-
known. For each task τi ∈ T , we know only the upper and lower
bounds on its execution time, WCETi and BCETi respectively.

• There are no limits on the maximum number of task graph in-
stantiations that may be active in the system at the same time.

• Tasks are scheduled according to a fixed-priority preemptive
scheduling policy.

8.3 Communication Model
Communication between pairs of tasks mapped on different cores is
performed by message passing. Their transmission on network links is
done packet-wise, i.e. the message is chopped into packets, which are
sent on links and reassembled at the destination core. Messages are
characterised by their priority, length (number of bits), and the size of
the packets they are chopped into.

If an output link of a switch is busy sending a packet while another
packet arrives at the switch and demands forwarding on the busy link,
the newly arrived packet is stored in the input buffer corresponding
to the input link on which it arrived. When the output link becomes
available, the switch picks the highest priority packet that demands
forwarding on the output link. If an output link of a switch is not busy
while a packet arrives at the switch and demands forwarding on the
busy link, then the packet is forwarded immediately, without buffering.
This scheme is called virtual cut-through routing [KK79].

Packet transmission on a link is modelled as a task, called commu-
nication task. The worst-case execution time of a communication task
is given by the packet length divided by the link bandwidth. The exe-
cution of communication tasks is non-preemptible.

8.4 Fault Model
Communication links may temporarily malfunction, with a given prob-
ability. If a data packet is sent on the link during the time the link is
in the failed state, the data is scrambled. We assume that the switches
have the ability to detect if an incoming packet is scrambled. Scram-
bled packets are dropped as soon as they are detected and are not for-
warded further. Several copies of the same packet may be sent on the
network links. In order for a message to be successfully received, at the
destination core, at least one copy of every packet of the message has

8.5. MESSAGE COMMUNICATION SUPPORT 117

to reach the destination core unscrambled. Otherwise, the message is
said to be lost.

We define the message arrival probability of the message τi → τj as
the long term ratio MAPi,j = limt→∞

Si,j(t)
dt/πie

, where Si,j is the number
of messages between tasks τi and τj that are successfully received at
the destination in the time interval [0, t), and πi denotes the period of
the sender task. For each pair of communicating tasks τi → τj , the
designer may require lower bounds Bi,j on the ratio of messages that
are received unscrambled at the destination.

Let us assume that switches have the capability to detect erroneous
(scrambled) packets, but they do not have the capacity to correct these
errors. We let α denote the probability of a packet to traverse a net-
work link unscrambled. A strategy to satisfy the constraints on the
message arrival probability (MAPi,j ≥ Bi,j) is to make use of spatially
and/or temporally redundant packet transmission, i.e. several copies
of the same packet are simultaneously transmitted on different paths
and/or they are resent several times on the same path. This strategy is
discussed in Chapter 9.

An alternative strategy to cope with transient faults on the network
links is to add redundant bits to the packets for error correction. Ad-
ditionally, extra circuitry has to be deployed at the switches such that
they can correct some of the erroneous packets. In this case, let α de-
note the probability of a packet successfully traversing a link, which
means that

• the packet traverses the network link unscrambled, or
• the packet is scrambled during its transmission along the link,

but the error correction circuitry at the end of the link is able to
correct the scrambled bits.

Note that the two strategies are orthogonal, in the sense that the
redundant transmission can be deployed even when error correction
capability is present in the network. In this case, redundant trans-
mission attempts to cope with the errors that are detected but cannot
be corrected by the correction circuitry. An analysis of the trade-off
between the two strategies is beyond the scope of this thesis.

In the sequel, we will make use of α, the probability of a packet to
successfully traverse a link, abstracting away whether the successful
transmission is due to error correction or not.

8.5 Message Communication Support
In order to satisfy message arrival probabilities imposed by the de-
signer, temporally and/or spatially redundant communication is de-
ployed. We introduce the notion of communication supports (CS) for
defining the mapping of redundant messages to network links. For this
purpose, we use the example in Figure 8.1. A possible mapping of mes-
sages to network links is depicted in Figure 8.2. The directed lines de-
picted parallel to a particular link denote that the message represented
by the directed line is mapped on that link. Thus, message τ1 → τ2 is
conveyed by link L0,1,E, message τ1 → τ5 by link L0,1,S, message τ7 → τ8

by link L2,1,S , message τ9 → τ10 by link L0,0,E, message τ5 → τ6 by links
L0,0,E and L1,0,E, message τ10 → τ11 by links L1,0,E and L2,0,E.

118 CH. 8. SYSTEM MODELLING

τ 7

τ 11τ 10

τ 9

L0,1,E L1,1,E

L0,0,E L1,0,E L2,0,E

L
0,

1,
S

L
1,

1,
S

L
2,

1,
S

P2,0

P0,1 P1,1 P2,1

P1,0P0,0

P3,1

P3,0

τ 1

τ 5

τ 2

τ 6 τ 3 τ 4

τ 8

Figure 8.2: Message mapping for the application in Figure 8.1

Of particular interest are messages τ3 → τ4 and τ2 → τ3. Two iden-
tical copies of the former are sent on the same link, namely link L2,0,E,
as indicated by the double arrow between task τ3 and τ4 in the fig-
ure. Therefore, the transmission of message τ3 → τ4 is temporally
redundant. A more complex case is exemplified by message τ2 → τ3.
Identical copies of the message take different routes. Therefore, the
transmission of message τ2 → τ3 is spatially redundant. One copy is
conveyed by links L1,1,E and L2,1,S, while the second copy is conveyed
by links L1,1,S and L1,0,E. Moreover, the copy travelling along the first
route is in its turn replicated once it reaches switch S2,3 and sent twice
on link L2,1,S, as shown by the double arrow in the figure.

In general, the mapping of the communication between two tasks
τi → τj can be formalised as a set of tuples CSi,j = {(L, n) : L is a link,
n ∈ N}, where n indicates the number of copies of the same message
that are conveyed by the corresponding link L. We will call the set CSi,j

the communication support (CS) of τi → τj .
Let M ⊂ T × T be the set of all pairs of communicating tasks that

are mapped on different cores ((τa, τb) ∈ M iff ∃Γi = (Vi, Ei ⊂ Vi ×
Vi) such that (τa, τb) ∈ Ei and Map(τi) 6= Map(τj).) A communication
mapping, denoted CM, is a function defined on M that maps each pair
of communicating tasks to one communication support.

In our example, the communication mapping is the following: τ1 →
τ2 is mapped on CS1,2 = {(L0,1,E, 1)}, τ1 → τ5 on CS1,5 = {(L0,1,S, 1)},
τ7 → τ8 on CS7,8 = {(L2,1,S, 1)}, τ9 → τ10 on CS9,10 = {(L0,0,E, 1)},
τ10 → τ11 on CS10,11 = {(L1,0,E, 1), (L2,0,E , 1)}, τ5 → τ6 on CS5,6 =
{(L0,0,E, 1), (L1,0,E , 1)}, τ3 → τ4 on CS3,4 = {(L2,0,E, 2)}, and τ2 → τ3 on
CS2,3 = {(L1,1,E, 1), (L2,1,S, 2), (L1,1,S , 1), (L1,0,E, 1)}.

Two properties of a communication support are of interest:

• The arrival probability of a message that is mapped on that com-
munication support, called message arrival probability of the CS,
denoted MAP, and

• The expected energy consumed by the transmission of the mes-
sage on that support, called expected communication energy of
the CS, denoted ECE.

The values of MAP and ECE can be computed by means of simple prob-
ability theory. We will illustrate their computation using the CS sup-
porting message τ2 → τ3, CS2,3. For simplicity, in this example we

8.5. MESSAGE COMMUNICATION SUPPORT 119

assume that the message consists of a single packet and the energy
consumed by the transmission of the packet on any link is 1.

The MAP of CS2,3 is given by P(V ∪W), where V is the event that the
copy sent along the path L1,1,S → L1,0,E successfully reaches core P2,0,
and W is the event that the copy sent along the path L1,1,E → L2,1,S

successfully reaches core P2,0.

P(V) = α2.

The probability that both temporally redundant copies that are sent
on link L2,1,S get scrambled is (1 − α)2. Thus, the probability that the
packet successfully reaches core P2,0 if sent on path L1,1,E → L2,1,S is

P(W) = α · (1 − (1 − α)2).

Thus, the MAP of CS2,3 is

P(V ∪ W) = P(V) + P(W) − P(V ∩ W) =

= α2 + α · (1 − (1 − α)2) − α3 · (1 − (1 − α)2).

The expected communication energy is the expected number of sent
bits multiplied by the average energy per bit. The energy per bit, de-
noted Ebit, can be computed as shown by Ye et al. [YBD02].

The ECE of CS2,3 is proportional to

E[SentS1,1
] + E[SentS2,1

] + E[SentS1,0
],

where SentS denotes the number of packets sent from switch S and
E[SentS] denotes its expected value.

E[SentS] = E[SentS |RS] · P(RS),

where RS is the event that at least one copy of the packet successfully
reaches switch S, end E[SentS|RS] is the number of copies of the packet
that are forwarded from switch S given that at least one copy success-
fully reaches switch S. Hence,

ECE2,3 ∼ 2 + 2 · α + 1 · α = 2 + 3α.

The proportionality constant is Ebit · b, where Ebit is the energy per bit
and b is the number of bits of the packet.

120 CH. 8. SYSTEM MODELLING

Chapter 9

Energy and Fault-Aware
Time-Constrained
Communication
Synthesis for NoC

In this chapter we present an approach for determining the communi-
cation support for each message such that the communication energy
is minimised, the deadlines are met and the message arrival probabil-
ity is higher than imposed lower bounds. The approach is based on
constructing a set of promising communication support candidates for
each message. Then, the space of communication support candidates
is explored in order to find a communication support for each message
such that the task response times are minimised. In the last step of our
approach, the resulted execution time slack can be exploited by means
of voltage and/or frequency scaling in order to reduce the communica-
tion energy.

9.1 Problem Formulation
This section gives the formulation of the problem that we solve in this
chapter.

9.1.1 Input
The input to the problem consists of:

• The hardware model, i.e. the size of the NoC, and, for each link,
the energy-per-bit, the bandwidth, and the probability of a packet
to be successfully conveyed by the link; and

• The application model, i.e. the set of task graphs Γ, the set of task
and task graph deadlines ∆T and ∆Γ respectively, the mapping
of tasks to cores, the set of task periods ΠT , the best-case and
worst-case execution times of all tasks on the cores on which they
are mapped, the task priorities and the amounts of data to be
transmitted between communicating tasks;

121

122 CH. 9. ENERGY-AWARE SYNTHESIS

(1) for each pair of communicating tasks τi → τj

(2) find a set of candidate CSs that satisfies MAPi,j ≥ Bi,j

(Section 9.3)
(3) end for
(4) (sol, min cost) = explore the space of candidate CSs

(Section 9.5)
(5) using response time calculation (Section 9.4)

for driving the exploration
(6) if min cost = ∞ then
(7) return “no solution”
(8) else
(9) sol′ =voltage freq selection(sol) (according to [ASE+04])

(10) return sol′

(11) end if

Figure 9.1: Approach outline

• The communication model, i.e. the packet size and message pri-
ority for each message (alternatively, our approach can automat-
ically assign message priorities according to the message critical-
ity);

• The lower bounds Bi,j imposed on the message arrival probability
MAPi,j , which is the expected fraction of successfully transmitted
messages, for each pair of communicating tasks τi → τj .

9.1.2 Output
The output of the problem consists of the communication mapping CM,
such that the total communication energy is minimised.

9.1.3 Constraints
The application has to satisfy the following constraints:

• For each pair of communicating tasks τi → τj , such that tasks τi

and τj are mapped on different cores, the message arrival proba-
bility MAPi,j is greater than or equal to the imposed lower bound
Bi,j (MAPi,j ≥ Bi,j , ∀τi, τj ∈ T : τi ∈

◦τj ∧ Map(τi) 6= Map(τj)).
• All deadlines are met.

9.2 Approach Outline
The outline of our approach to solve the problem is shown in Figure 9.1.
First, for each pair of communicating tasks (message), we find a set of
candidate communication supports (line 2, see Section 9.3), such that
the lower bound constraint on the message arrival probability is sat-
isfied. Second, the space of candidate communication supports is ex-
plored in order to find sol, the selection of communication supports that
result in the minimum cost min cost (line 4).1 The worst-case response

1See Section 9.5 for a precise definition of the cost of a solution. Intuitively, a low cost
corresponds to a solution characterised by large time slack (long intervals between the
finishing time of a task and its deadline.)

9.3. COMMUNICATION SUPPORT CANDIDATES 123

time of each explored solution is determined by the response time cal-
culation function that drives the design space exploration (line 5, see
Section 9.4). If no solutions are found that satisfy the response time
constraints (min cost = ∞), the application is deemed impossible to
implement with the given resources (line 7). Otherwise, the solution
with the minimum cost among the found solutions is selected. Voltage
selection is performed on the selected solution in order to decrease the
overall system energy consumption (line 9), and the modified solution
is returned (line 10).

The next section discusses the construction of the set of candidate
communication supports for an arbitrary pair of communicating tasks.
Section 9.4 describes how the response time calculation is performed,
while Section 9.5 outlines how the preferred communication supports
representing the final solution are selected.

9.3 Communication Support Candidates
This section describes how to construct a set of candidate communica-
tion supports for a pair of communicating tasks. First we introduce the
notions of path, coverage, and spatial, temporal, and general redun-
dancy degree of a CS.

A path of length n connecting the switch corresponding to a source
core to a switch corresponding to a destination core is an ordered se-
quence of n links, such that the end point of the ith link in the sequence
coincides with the start point of the i + 1th link, ∀1 ≤ i < n, and the
start point of the first link is the source switch and the end point of the
last link is the destination switch. We consider only loop-free paths. A
path belongs to a CS if all its links belong to the CS. A link of a CS is
covered by a path if it belongs to the path.

The spatial redundancy degree (SRD) of a CS is given by the min-
imum number of distinct paths belonging to the CS that cover all the
links of the CS. For example, the CSs depicted in Figures 9.2(a) and
9.2(b) both have a SRD of 1, as they contain only one path, namely
path (L0,0,N , L0,1,E, L1,1,E , L2,1,N , L2,2,N , L2,3,E). The CS shown in Fig-
ure 9.2(c) has spatial redundancy degree 2, as at least two paths are
necessary in order to cover links L1,1,N and L1,1,E , for example paths
(L0,0,N , L0,1,E , L1,1,E, L2,1,N , L2,2,N , L2,3,E) and (L0,0,N , L0,1,E, L1,1,N ,
L1,2,E, L2,2,N , L2,3,E).

The temporal redundancy degree (TRD) of a link is given by the
number of redundant copies to be sent on the link. The TRD of a CS
is given by the maximum TRD of its links. For example, the TRD of
the CS shown in Figure 9.2(b) is 2 as two redundant copies are sent on
links L1,1,E, L2,1,N , L2,2,N , and L2,3,E. The TRD of the CSs shown in
Figures 9.2(a) and 9.2(c) is 1.

The general redundancy degree (GRD) of a CS is given by the sum
of temporal redundancy degrees of all its links. For example, the GRD
of the CS shown in Figure 9.2(a) is 6, the GRD of the CSs shown in
Figures 9.2(b) and 9.2(c) is 10.

It is important to use CSs of minimal GRD because the expected
communication energy (ECE) of a message is strongly dependent on
the GRD of the CS supporting it. To illustrate this, we constructed
all CSs of SRD 2 and GRD 10–13 for a message sent from the lower-
left core to the upper-right core of a 4 × 4 NoC. We also constructed

124 CH. 9. ENERGY-AWARE SYNTHESIS

P0,0

P0,1

P0,2

P0,3

P1,0

P1,1

P1,2

P1,3

P2,0

P2,1

P2,2

P2,3

P3,0

P3,1

P3,2

P3,3

(a)

P0,0

P0,1

P0,2

P0,3

P1,0

P1,1

P1,2

P1,3

P2,0

P2,1

P2,2

P2,3

P3,0

P3,1

P3,2

P3,3

(b)

P0,0

P0,1

P0,2

P0,3

P1,0

P1,1

P1,2

P1,3

P2,0

P2,1

P2,2

P2,3

P3,0

P3,1

P3,2

P3,3

(c)

Figure 9.2: Communication supports

 520

 540

 560

 580

 600

 620

 640

 660

 680

 700

 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995 1

E
xp

ec
te

d
nu

m
be

r
of

 tr
an

sm
itt

ed
 b

its
 (

pr
op

or
tio

na
l t

o
E

C
E

)

Message arrival probability

SRD = 1, GRD = 10
SRD = 2, GRD = 10
SRD = 2, GRD = 11
SRD = 2, GRD = 12
SRD = 2, GRD = 13

Figure 9.3: Energy-efficiency of CSs of SRD 1 and 2

9.3. COMMUNICATION SUPPORT CANDIDATES 125

(1) for each pair of communicating tasks τi → τj

(2) Determine N1 and N2, the minimum general redundancy
degrees of CSs of SRD 1 and 2 respectively, such that the
MAP constraint on τi → τj is satisfied

(3) Add all CSs with SRD 1 and with GRD N1 and all CSs
with SRD 2 and with GRD N2 to the set of CS candidates
of τi → τj

(4) end for

Figure 9.4: Construction of candidate CS set

all CSs of SRD 1 and GRD 10. For each of the constructed CS, we
computed their MAP and ECE. In Figure 9.3, we plotted all resulting
(MAP, ECE) pairs. Note that several different CSs may have the same
MAP and ECE and therefore one dot in the figure may correspond to
many CSs. We observe that the ECE of CSs of the same GRD do not
differ significantly among them, while the ECE difference may account
to more than 10% for CSs of different GRD.

The algorithm for the candidate set construction proceeds as shown
in Figure 9.4. Candidate CSs with SRD of only 1 and 2 are used. The
justification for this choice is given later in the section.

We illustrate how to find the minimal GRD for a message based on
the example depicted in Figure 9.2. We consider a 4 × 4 NoC, and a
message sent from core P0,0 to core P3,3. The message consists of just
one packet, the probability that the packet successfully traverses any
of the links is α = 0.99, and the imposed lower bound on the MAP is
B = 0.975.

We look first at CSs with SRD of 1, i.e. consisting of a single path.
We consider only shortest paths, that is of length 6. Obviously, a lower
bound on GRD is 6. If we assign just one copy per link, the message ar-
rival probability would be α6 ≈ 0.941 < 0.975 = B. We try with a GRD
of 7, and regardless to which of the 6 links we assign the redundant
copy, we get a MAP of α5 · (1 − (1 − α)2) ≈ 0.95 < 0.975 = B. Hence,
we are forced to increase the GRD once more. We observe that there
are 5 links left with a TRD of 1. The probability to traverse them is
α5 ≈ 0.95, less than the required lower bound. Therefore it is useless
to assign one more redundant copy to the link that now has a TRD of
2 because anyway the resulting MAP would not exceed α5. Thus, the
new redundant copy has to be assigned to a different link of the CS of
GRD 8. In this case, we get a MAP of α4 · (1 − (1 − α)2)2 ≈ 0.96, still
less than the required bound. We continue the procedure of increasing
the GRD and distributing the redundant copies to different links un-
til we satisfy the MAP constraint. In our example, this happens after
adding 4 redundant copies (MAP = α2 · (1 − (1 − α2))4 ≈ 0.9797). The
resulting CS of SRD 1 and GRD 10 is shown in Figure 9.2(b), where the
double lines represent links that convey two copies of the same packet.
Thus, the minimal GRD for CSs of SRD 1 is N1 = 10. There are 20
distinct paths between core P0,0 and core P3,3 and there are 15 ways of
distributing the 4 redundant copies to each path. Thus, 15 · 20 = 300
distinct candidate CSs of SRD 1 and GRD 10 can be constructed for the
considered message. They all have the same message arrival probabil-
ity, but different expected communication energies. The ECEs among
them vary 1.61%.

126 CH. 9. ENERGY-AWARE SYNTHESIS

Similarly, we obtain N2, the minimal GRD for CSs of SRD 2. In this
case, it can be mathematically shown that larger message arrival prob-
abilities can be obtained with the same GRD if the two paths of the
CS intersect as often as possible and the distances between the inter-
section points are as short as possible [Man04]. Intuitively, intersec-
tion points are important because even if a copy is lost on one incoming
path, the arrival of another copy will trigger a regeneration of two pack-
ets in the core where the two paths intersect. The closer to each other
the intersection points are, the shorter the packet transmission time
between the two points is. Thus, the probability to lose a message be-
tween the two intersection points is lower. Therefore, in order to obtain
N2, we will consider CSs with many intersection points that are close
to each other. For our example, the lowest GRD that lets the CS satisfy
the MAP constraint is N2 = 10 (MAP = α6 ·(2−α2)2 ≈ 0.9793). This CS
is shown in Figure 9.2(c). The minimum number of needed redundant
copies in order to satisfy the MAP constraint is strongly dependent on α
and the imposed lower bound on the MAP, and only weakly dependent
on the geometric configuration of the CS. Therefore, typically N2 = N1

or it is very close to N1.
In conclusion, N1 and N2 are obtained by progressively increasing

the GRD until the CS satisfies the MAP constraint. The redundant
copies must be uniformly distributed over the links of the CS. Addi-
tionally, in the case of CSs with SRD 2, when increasing the GRD, links
should be added to the CS such that many path intersection points are
obtained and that they are close to each other.

The following reasoning lies behind the decision to use CSs with
SRD of only 1 and 2. First, we give the motivation for using CSs with
SRD larger than 1. While, given a GRD of N , it is possible to obtain the
maximum achievable message arrival probability with CSs of SRD 1,
concurrent transmission of redundant message copies would be impos-
sible if we used CSs with SRD of only 1. This could severely affect the
message latency or, even worse, lead to link overload. CSs with SRD 2
are only marginally more energy hungry, as can be seen from the clus-
ter of points in the lower-left corner of Figure 9.3. Usually, the same
MAP can be obtained by a CS of SRD 2 with only 1–2% more energy
than a CS of SRD 1.

While the previous consideration supports the use of CSs with SRD
greater than 1, there is no reason to go with the SRD beyond 2. Be-
cause of the two-dimensional structure of the NoC, there are at most
2 different links that belong to the shortest paths between the source
and the destination and whose start points coincide with the source
core. Thus, if a CS consisted only of the shortest paths, the message
transmission would be vulnerable to a double fault of the two initial
links. Therefore, CSs with SRD greater than 2, while consuming more
energy for communication, would still be vulnerable to a double fault
on the initial links and hence can only marginally improve the MAP. If
we did not restrict the CS to the shortest paths, while overcoming the
limitation on the MAP, we would consume extra energy because of the
longer paths. At the same time, latency would be negatively affected.
Thus, for two-dimensional NoC, we consider CSs of SRD of only 1 and
2.

9.4. RESPONSE TIME CALCULATION 127

1τ 2τ

3τ

1τ

1τ
2τ

3τ

P0,1 P1,1

P1,0P0,0

(a)

� �� �
� �� � � �� �

� �� �

τ 1

τ 2 τ 3

τ 4 τ 5 τ 6

τ 7

τ 8 τ 9

τ 10 τ 11

(b)

Figure 9.5: Application modelling for response time analysis

9.4 Response Time Calculation
In order to guarantee that tasks meet their deadlines, in case no mes-
sage is lost, response times have to be determined in the worst case.

Let us consider the example depicted in Figure 9.5(a). Solid lines
depict data dependencies among the tasks, while the dotted lines show
the actual communication mapping to the on-chip links. The two CSs
are CS1,2 = {(L0,0,E, 1)} and CS1,3 = {(L0,0,E, 1), (L1,0,N , 1), (L0,0,N , 2),
(L0,1,E, 2)}. Packet sizes are such that message τ1 → τ2 is chopped into
2 packets, while message τ1 → τ3 fits into a single packet.

Based on the application graph, its mapping and the communica-
tion supports, we construct a task graph as shown in Figure 9.5(b).
Each link L is regarded as a processor PL, and each packet transmis-
sion on link L is regarded as a non-preemptive task executed on pro-
cessor PL. The shadings of the circles denote the processors (links) on
which the tasks (packets) are mapped. Tasks τ4 and τ5 represent the
first and the second packet of the message τ1 → τ2. They are both
dependent on task τ1, as the two packets are generated when task τ1

completes its execution, while task τ2 is dependent on both task τ4 and
τ5 as it can start only after it has received the entire message, i.e. both
packets, from task τ1. Both tasks τ4 and τ5 are mapped on the “proces-
sor” corresponding to the link L0,0,E. Task τ6 represents the packet of
the message τ1 → τ3 that is sent on link L0,0,E and task τ7 represents
the same packet once it reaches link L1,0,N . Tasks τ8 and τ9 are the two
copies of the packet of the message τ1 → τ3 that are sent on link L0,0,N .

We are interested in the worst-case scenario w.r.t. response times.
In the worst case, all copies of packets get scrambled except the latest
packet. Therefore, the copies to be sent by a core on its outgoing links
have to wait until the last of the copies arriving on incoming links of
the core has reached the core. For example, tasks τ10 and τ11, modelling
the two copies of the message τ1 → τ3 that are sent on the link L0,1,E,
depend on both τ8 and τ9, the two copies on link L0,0,N . Also, task τ3

depends on all three copies, τ7, arriving on link L1,0,N , and τ10 and τ11,
arriving on link L0,1,E.

The modified model, as shown in Figure 9.5(b), is analysed using
the dynamic offset based schedulability analysis proposed by Palencia

128 CH. 9. ENERGY-AWARE SYNTHESIS

and Harbour [PG98]. The analysis calculates the worst-case response
times and jitters for all tasks.

9.5 Selection of Communication Supports
As shown in Section 9.3 (see also line 2 in Figure 9.1), we have deter-
mined the most promising (low energy, low number of messages) set
of CSs for each transmitted message in the application. All those CSs
guarantee the requested MAP. As the next step of our approach (line
4 in Figure 9.1) we have to select one particular CS for each message,
such that the solution cost is minimised, which corresponds to max-
imising the smallest time slack. The response time for each candidate
solution is calculated as outlined in Section 9.4 (line 5 in Figure 9.1).

The design space is explored with the Tabu Search based heuris-
tic. The basic principles of Tabu Search have been described in Sec-
tion 6.4.1. The design space is the Cartesian product of the sets of
CS candidates for each message (constructed as shown in Section 9.3.)
Because all CS candidates guarantee the requested MAP, all points
in the solution space satisfy the MAP constraint of the problem (Sec-
tion 9.1.3). A point in the design space is an assignment of communi-
cation supports to messages (see Section 8.5). A move means picking
one pair of communicating tasks and selecting a new communication
support for the message sent between them. In order to select a move,
classical Tabu Search explores all solutions that can be reached by one
move from the current solution. For each candidate solution, the ap-
plication response time has to be calculated. Such an approach would
be too time consuming for our problem. Therefore, we only explore
“promising” moves. Thus,

1. we look at messages with large jitters as they have a higher
chance to improve their transmission latency by having assigned
a new CS; and

2. for a certain message τi → τj , we consider only those candidate
CSs that would decrease the amount of interference of messages
of higher priority than τi → τj . (By this we remove messages from
overloaded links.)

The value of the cost function that drives the response-time min-
imisation, evaluated for an assignment of communication supports to
messages CS, is:

cost(CS) =











∞ ∃τ ∈ T : WCRTτ > δτ∨

∨∃Γi ∈ Γ : WCRTΓi
> δΓi

maxτ∈T
WCRTτ

δτ
otherwise,

(9.1)

where T is the set of tasks and WCRT and δ denote worst-case re-
sponse times and deadlines respectively. The worst-case response time
of a task is obtained as shown in Section 9.4.

In the case of the cost function in Eq. (9.1), we make the conserva-
tive assumption that voltage and frequency are set system-wide for the
whole NoC. This means that, at design time, an optimal voltage and/or
frequency is determined for the whole NoC. The determined values for
voltage and frequency do not change during the entire execution time
of the application. For such a scenario, if we decrease the system-wide

9.6. EXPERIMENTAL RESULTS 129

voltage (or frequency), the worst-case response times of all tasks would
scale with the same factor. Therefore, in the definition of the cost func-
tion (Eq. (9.1)) we use the max operator, as the width of the interval in
which the response time is allowed to increase is limited by the small-
est slack (largest WCRTτi

δτi

) among the tasks.
In a second scenario, we can assume that voltage and/or frequency

may be set core-wise. This means that, at design time, an optimal
voltage and/or frequency is calculated for each core. These voltages
and frequencies do not change during the whole execution time of the
application. The cost function would become

cost(CS) =















∞ ∃τ ∈ T : WCRTτ > δ∨

∃Γi ∈ Γ : WCRTΓi
> δΓi

∑

p∈P

maxτ∈Tp

WCRTτ

δτ
otherwise,

(9.2)

where p is a core in P , the set of cores of the NoC, and Tp is the set of
tasks mapped on core p.

If we assume that voltage and/or frequency may change for each
core during operation, then they may be set task-wise and the cost
function becomes

cost(CS) =















∞ ∃τ ∈ T : WCRTτ > δ∨

∨∃Γi ∈ Γ : WCRTΓi
> δΓi

∑

τ∈T

WCRTτ

δτ
otherwise.

(9.3)

9.6 Experimental Results
We report on three sets of experiments that we ran in order to assess
the quality of our approach.

9.6.1 Latency as a Function of the Number of Tasks
The first set investigates the application latency as a function of the
number of tasks. 340 applications of 16 to 80 tasks were randomly gen-
erated. The applications are executed by a 4 × 4 NoC. The probability
that a link successfully conveys a data packet is 0.97, and the imposed
lower bound on the message arrival probability is 0.99. For each appli-
cation, we ran our communication mapping tool twice. In the first run,
we consider CSs of SRD 1, i.e. packets are retransmitted on the same,
unique path. In the second run, we consider CSs of SRD 1 and 2, as
described in Section 9.3. Figure 9.6 depicts the averaged results. The
approach that uses both spatially and temporally redundant CSs leads
to shorter application latencies than the approach that just re-sends on
the same path.

9.6.2 Latency as a Function of the Imposed Message
Arrival Probability

The second experiment investigates the dependency of latency on the
imposed message arrival probability. 20 applications, each of 40 tasks,
were randomly generated. We considered the same hardware platform

130 CH. 9. ENERGY-AWARE SYNTHESIS

 500

 1000

 1500

 2000

 2500

 3000

 20 30 40 50 60 70 80

R
es

po
ns

e
tim

e

Number of tasks

Only temporal redundancy
Temporal and spatial redundancy

Figure 9.6: Application latency vs number of tasks

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0.94 0.95 0.96 0.97 0.98 0.99 1

R
es

po
se

 ti
m

e

Imposed message arrival probability

Only temporal redundancy
Temporal and spatial redundancy

Figure 9.7: Application latency vs bound on MAP

9.6. EXPERIMENTAL RESULTS 131

 0

 5

 10

 15

 20

 25

 1 1.5 2 2.5 3 3.5 4

R
el

at
iv

e
la

te
nc

y
re

du
ct

io
n

[%
]

Amount of communication per time unit [bits / abstract time unit]

4x4 NoC
5x5 NoC
6x6 NoC

Figure 9.8: Application latency vs NoC size and communication load

as in the first experiment. For each application, we considered 17 dif-
ferent lower bounds on MAP, ranging from 0.94 to 0.9966. The aver-
aged results are shown in Figure 9.7. For low bounds on MAP, such
as 0.94, almost no transmission redundancy is required to satisfy the
MAP constraint. Therefore, the approach combining spatially and tem-
porally redundant communication fares only marginally better than
the approach that uses only temporal redundancy. However, for higher
bounds on the MAP, the approach that combines spatially and tempo-
rally redundant transmission has the edge. In the case of bounds on
the MAP larger than 0.9992, spatial redundancy cannot satisfy the con-
straint anymore, and therefore the temporally redundant transmission
becomes dominant and the approach combining spatial and temporal
redundancy does not lead to significant latency reductions anymore.

9.6.3 Latency as a Function of the Size of the NoC
and Communication Load

The third experiment has a double purpose. First, it investigates the
dependency of latency reduction on the size of the NoC. Second, it in-
vestigates latency reduction as a function of the communication load
(bits/time unit). 20 applications of 40, 62 and 90 tasks were randomly
generated. The applications with 40 tasks run on a 4 × 4 NoC, those
with 62 tasks run on a 5 × 5 NoC and those with 90 tasks run on a
6 × 6 NoC. For each application, we considered communication loads
of 1–4 bits/time unit. The averaged latency reductions when using the
optimal combination of spatial and temporal redundancy, compared to
purely temporal redundancy, are depicted in Figure 9.8. We observe
that for low communication loads, the latency reduction is similar for
all three architectures, around 22%. However, at loads higher than 3.4
the relatively small number of links of the 4× 4 NoC get congested and
response times grow unboundedly. This, however, is not the case with
the larger NoCs. Latency reduction for a load of 4 is 22% for a NoC of
6 × 6 and 12% for 5 × 5.

132 CH. 9. ENERGY-AWARE SYNTHESIS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2000 4000 6000 8000 10000

P
er

ce
nt

ag
e

of
 b

en
ch

m
ar

ks
 [%

]

Optimisation time [s]

Figure 9.9: Histogram of the optimisation time as measured on an
AMD Athlon@1533MHz desktop PC

9.6.4 Optimisation Time
Figure 9.9 depicts the histogram of the optimisation time for all bench-
marks that are used in this section, as measured on a desktop PC with
an AMD Athlon processor clocked at 1533 MHz. On average, the opti-
misation time is 912 seconds. We note that the optimisation time for a
large majority of benchmarks is smaller than 1000 seconds, while 5.6%
of all benchmarks took between 1000 and 2000 seconds to optimise, and
the optimisation of 8.7% of benchmarks took longer than 2000 seconds.

9.6.5 Exploiting the Time Slack for Energy Reduc-
tion

The presented experiments have shown that, by using an optimal com-
bination of temporal and spatial redundancy for message mapping, sig-
nificant reduction of latency can be obtained while guaranteeing mes-
sage arrival probability at the same time. It is important to notice that
the latency reduction is obtained without energy penalty, as shown in
Section 9.3. This means that for a class of applications using the pro-
posed approach it will be possible to meet the imposed deadlines, which
otherwise would not be possible without changing the underlying NoC
architecture. However, the proposed approach gives also the opportu-
nity to further reduce the energy consumed by the application. If the
obtained application response time is smaller than the imposed one,
the resulting slack can be exploited by running the application at re-
duced voltage. In order to illustrate this, we have performed another
set of experiments.

Applications of 16 to 60 tasks running on a 4 × 4 NoC were ran-
domly generated. For each application we ran our message mapping
approach twice, once using CSs with SRD of only 1, and second using
CSs with SRD of 1 and 2. The slack that resulted in the second case
was exploited for energy reduction. We have used the algorithm pub-

9.6. EXPERIMENTAL RESULTS 133

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 15 20 25 30 35 40 45 50 55 60

E
ne

rg
y

co
ns

um
pt

io
n

[J
]

Number of tasks

Only temporal redundancy
Temporal and spatial redundancy

Figure 9.10: Energy consumption vs. number of tasks

lished in [ASE+04] for calculating the voltage levels for which to run
the application. For our energy models, we considered a 70nm CMOS
fabrication process. The resulted energy consumption is depicted in
Figure 9.10. The energy reduction ranges from 20% to 13%. For this ex-
periment, we considered the conservative scenario in which, at design
time, an optimal voltage and/or frequency is computed for the whole
NoC (see Eq. (9.1) in Section 9.5). We do not assume the availability
of a dynamic voltage scaling capability in the NoC. If such capability
existed, even larger energy savings could be achieved.

9.6.6 Real-Life Example: An Audio/Video Encoder
Finally, we applied our approach to a multimedia application, namely
an audio/video encoder implementing the H.263 recommendation
[Int05] of the International Telecommunication Union (ITU) for video
encoding and the MPEG-1 Audio Layer 3 standard for audio encoding
(ISO/IEC 11172-3 Layer 3 [Int93]).

Figure 9.11 depicts the task graph that models the application,
while Figure 9.12 shows the application mapping to the NoC cores.
The task partitioning, mapping, and profiling was done by Hu and
Mărculescu [HM04b]. The video encoding part of the application con-
sists of 9 tasks: frame prediction (FP), motion estimation (ME), discrete
cosine transform (DCT), quantisation (Q), inverse quantisation (IQ),
inverse discrete cosine transform (IDCT), motion compensation (MC),
addition (ADD), and variable length encoding (VLE). Three memory
regions are used for frame stores FS0, FS1, and FS2. The audio en-
coding part consists of 7 tasks: frame prediction (FP), fast Fourier
transform (FFT), psycho-acoustic model (PAM), filter (Flt), modified
discrete cosine transform (MDCT), and two iterative encoding tasks
(IE1 and IE2). The numbers that annotate arcs in Figure 9.11 denote
the communication amount of the message represented by the corre-
sponding arc. The period of the task graph depends on the imposed
frame rate, which depends on the video clip. We use periods of 41.6ms,

134 CH. 9. ENERGY-AWARE SYNTHESIS

FP

ME

Q

VLE

IQ

IDCT

MC

ADD

FS2

FS0

FS1

Synch

Multiplexing

FP

FFT

PAM

MDCT

IE1 Bit reservoir 1

Bit reservoir 2IE2

Buffer

Flt

DCT
38

k 116.8k

33
.8

k
33

.8
k

33
.8

k

16
.6

k

16.6k

75.2k
0.2k

38k

0.6k

0.7k

7k
26

.9
k

28
.2

k
0.

6k

7k

Audio

Video

Figure 9.11: H.263 and MP3 encoding application

Buffer VLE

Bit reservoir 1

Bit reservoir 2

IE2

IE1

Synch

Multiplexing

Q

IQ

FS2

FP

FS0

FS1ME

PAM

FFT

FP

MC

ADD

DCT IDCT
MDCT

Flt

Mem2

CPU2

ASIC3 ASIC4

ASIC1

DSP4 DSP5

DSP6 DSP1 CPU1 DSP3

DSP2

Mem1ASIC2

Figure 9.12: NoC implementation of the H.263 and MP3 encoding ap-
plication

9.7. CONCLUSIONS 135

corresponding to 24 frames per second. The deadlines are equal to the
periods.

The application is executed by an NoC with 6 DSPs, 2 CPUs, 4
ASICs, and 2 memory cores, organised as a 4 × 4 NoC with two un-
used tiles, as shown in Figure 9.12. The probability that a packet suc-
cessfully traverses a network link is assumed to be 0.99. The approach
combining spatially and temporally redundant message transmission
obtained a 25% response time reduction relative to the approach de-
ploying only temporal redundancy. The energy savings after voltage re-
duction amounted to 20%. Because of the relatively small design space
of this example, the optimisation took only 3 seconds when combining
spatially and temporally redundant communication supports.

9.7 Conclusions
In this chapter we addressed the problem of communication energy
minimisation under task response time and message arrival probabil-
ity constraints. The total communication energy is reduced by means of
two strategies. On one hand, we intelligently select the communication
supports of messages such that we reduce application response time
with negligible energy penalty while satisfying message arrival prob-
ability constraints. On the other hand, the execution time slack can
be exploited by deploying voltage and/or frequency scaling on the cores
and communication links. The approach is efficient as it results in en-
ergy reductions up to 20%. Nevertheless, a significant cost and energy
reduction potential has not been considered in this chapter, namely the
reduction of buffer sizes at the network switches. The next chapter
presents an approach for communication mapping with the goal to re-
duce the buffering need of packets while guaranteeing timeliness and
lower bounds on message arrival probability.

136 CH. 9. ENERGY-AWARE SYNTHESIS

Chapter 10

Buffer Space Aware
Communication
Synthesis for NoC

In this chapter we address two problems related to the buffering of
packets at the switches of on-chip networks. First, we present an
approach to minimise the buffer space demand of applications imple-
mented on networks-on-chip. This is particularly relevant when de-
signing application-specific NoCs, as the amount and distribution of on-
chip memory can be tailored for the application. Second, we solve the
problem of mapping the communication of an application implemented
on an NoC with predefined buffers such that no buffer overflows oc-
cur during operation. Both problems are additionally constrained by
timeliness requirements and bounds on the message arrival probabil-
ity. For solving the described problems we introduce a buffer space
demand analysis procedure, which we present in Section 10.3.3.

The buffer space demand minimisation is achieved by a combina-
tion of two techniques: an intelligent mapping of redundant messages
to network links and a technique for delaying the sending of packets
on links, also known as traffic shaping [RE02]. Section 10.1 gives a
precise formulation of the two problems that we solve in this chap-
ter. Section 10.2 discusses the two techniques that we propose. Sec-
tion 10.3 presents our approach to solving the formulated problems
and the buffer demand analysis procedure. Section 10.4 presents ex-
perimental results. Finally, Section 10.5 draws the conclusions.

10.1 Problem Formulation
In this section we define the two problems that we solve in this chapter.

10.1.1 Input
The input common to both problems consists of:

• The hardware model, i.e. the size of the NoC, and, for each link,
the energy-per-bit, the bandwidth, and the probability of a packet
to be successfully conveyed by the link;

137

138 CH. 10. BUFFER SPACE AWARE SYNTHESIS

• The application model, i.e. the set of task graphs Γ, the mapping
of tasks to cores Map, the set of task periods ΠT , deadlines ∆T ,
worst-case execution times, priorities and the amounts of data to
be transmitted between communicating tasks;

• The communication model, i.e. the packet size and message pri-
ority for each message; and

• The lower bounds Bi,j imposed on the message arrival probability
MAPi,j , for each message τi → τj .

10.1.2 Constraints
The constraints for both problems are:

• All message arrival probabilities satisfy MAPi,j ≥ Bi,j ;
• All tasks meet their deadlines.

10.1.3 Output
The communication synthesis problem with buffer space demand min-
imisation (CSBSDM) is formulated as follows:

Given the above input, for each message τi → τj find the commu-
nication support CSij , and determine the time each packet is delayed
at each switch, such that the imposed constraints are satisfied and the
total buffer space demand is minimised. Additionally, determine the
needed buffer capacity of every input buffer at every switch.

The communication synthesis problem with predefined buffer space
(CSPBS) is formulated as follows:

Given the above input, and additionally the capacity of every input
buffer at every switch, for each message τi → τj find the communication
support CSij , and determine the time each packet is delayed at each
switch, such that the imposed constraints are satisfied and no buffer
overflow occurs at any switch.

10.2 Motivational Example
In this section we motivate the importance of intelligently choosing
communication supports and we demonstrate the power of traffic shap-
ing based on an example.

Let us consider the application shown in Figure 10.1(a). We assume
that each message consists of a single packet. Assuming that messages
are mapped on only shortest paths (paths traversing a minimum num-
ber of switches), for each message, except the message τ2 → τ3, there
is only one mapping alternative, namely the shortest path. For the
message τ2 → τ3, however, there are two such shortest paths, namely
L1,1,E → L2,1,S and L1,1,S → L1,0,E.

One way to minimise buffer space demand is to intelligently map
the message τ2 → τ3. Let us assume that the message is mapped on
path L1,1,E → L2,1,S. Such a situation is depicted in Figure 10.1(b). The
corresponding Gantt diagram is shown in Figure 10.2(a). The rectan-
gles represent task executions (respectively message transmissions) on
the processing elements (respectively communication links) to which
the tasks (messages) are mapped.

10.2. MOTIVATIONAL EXAMPLE 139

τ 8

τ 7

τ 11τ 10

τ 9

L0,1,E L1,1,E

L0,0,E L1,0,E L2,0,E

L
0,

1,
S

L
1,

1,
S

L
2,

1,
S

P2,0

P0,1 P1,1 P2,1

P1,0P0,0

P3,1

P3,0

τ 1

τ 5

τ 2

τ 6 τ 3 τ 4

(a)

τ 8

τ 7

τ 11τ 10

τ 9

L0,1,E L1,1,E

L0,0,E L1,0,E L2,0,E

L
0,

1,
S

L
1,

1,
S

L
2,

1,
S

P2,0

P0,1 P1,1 P2,1

P1,0P0,0

P3,1

P3,0

τ 1

τ 5 τ 6 τ 3 τ 4

τ 2

(b)

τ 8

τ 7

τ 11τ 10

τ 9

L0,1,E L1,1,E

L0,0,E L1,0,E L2,0,E

L
0,

1,
S

L
1,

1,
S

L
2,

1,
S

P2,0

P0,1 P1,1 P2,1

P1,0P0,0

P3,1

P3,0

τ 1

τ 5

τ 2

τ 6 τ 4τ 3

(c)

Figure 10.1: Application example

14
0

C
H

.1
0.

B
U

F
F

E
R

SP
A

C
E

A
W

A
R

E
SY

N
T

H
E

SI
S

P0,1

L0,1,E

P1,1

L1,1,E

P2,0

L1,0,E

L0,0,E

P0,0

L0,1,S

L2,0,E

P3,0

P2,1

L2,1,S

L1,1,S

τ 9

τ 11

P1,0
τ 10

τ 8

τ 1

τ 2

τ 3 τ 6

τ 5

τ 4

τ 7

� �� �� �� �
� � � �� � � �� � � �� � � �

time

(a)

P0,1

L0,1,E

P1,1

L1,1,E

P2,0

L1,0,E

L0,0,E

P0,0

L0,1,S

L2,0,E

P3,0

P2,1

L2,1,S

L1,1,S

τ 9

τ 11

P1,0
τ 10

τ 7
τ 8

τ 1

τ 2

τ 3 τ 6

τ 4

τ 5��� ���
� �� �� �� �

time

(b)

P0,1

L0,1,E

P1,1

L1,1,E

P2,0

L1,0,E

L0,0,E

P0,0

L0,1,S

L2,0,E

P3,0

P2,1

L2,1,S

L1,1,S

τ 9

τ 11

P1,0
τ 10

τ 7
τ 8

τ 5

τ 4

τ 3 τ 6

τ 2

τ 1

	�	
�

time

(c)

Figure 10.2: Impact of communication mapping and traffic shaping

10.3. APPROACH OUTLINE 141

Message τ2 → τ3 competes with message τ7 → τ8 for link L2,1,S.
Message τ7 → τ8 arrives at the switch connecting tile P2,1 to the net-
work while message τ2 → τ3 is conveyed on link L2,1,S. Due to the
unavailability of the link, message τ7 → τ8 has to be buffered. The
situations in which buffering is necessary are highlighted by black el-
lipses. Messages that have been buffered before being transmitted, due
to momentary resource unavailability, are depicted in hashed manner.
The total needed buffering space is proportional to the sum of hashed
areas. One more such situation occurs in Figure 10.2(a), caused by the
conflict between messages τ5 → τ6 and τ9 → τ10 on link L0,0,E.

We observe that message τ7 → τ8 needs a relatively large buffer-
ing space, which can be avoided by choosing a different mapping
alternative for message τ2 → τ3. This mapping is depicted in Fig-
ure 10.1(c), while its corresponding Gantt diagram is shown in Fig-
ure 10.2(b). However, while saving the buffering space required by
message τ7 → τ8, the new mapping introduces a conflict between mes-
sages τ2 → τ3 and τ5 → τ6 on link L1,0,E. As a result, the packet from
task τ5 to task τ6 has to be buffered at the switch S10 in the input
buffer corresponding to link L0,0,E. Nevertheless, because message
τ7 → τ8 does not need to be buffered, we reduced the overall buffer
space demand relative to the alternative in Figure 10.1(b).

As there are no other mapping alternatives, we resort to the second
technique, namely traffic shaping, in order to further reduce the total
amount of buffering space.

In Figure 10.2(b), we observe that message τ5 → τ6 is buffered twice,
the first time before being sent on L0,0,E, and the second time before be-
ing sent on link L1,0,E. If we delayed the sending of message τ5 → τ6, as
shown in the Gantt diagram in Figure 10.2(c), we could avoid the need
to buffer the message at switch S10. In the particular case of our ex-
ample, this message delaying comes with no task graph response time
penalty. This is because the task graph response time is given by the
largest response time among the tasks of the graph (τ4 in our case),
shown as the dotted line in Figure 10.2, which is unaffected by the de-
laying of message τ5 → τ6. In general, traffic shaping may increase the
application latency. Therefore, we deploy traffic shaping with predilec-
tion to messages on non-critical computation paths.

The above example demonstrates the efficiency of intelligent com-
munication mapping and traffic shaping when applied to the problem
of buffer need minimisation. Obviously, the techniques are also effec-
tive in the case of the second problem formulated in Section 10.1, the
communication synthesis problem with predefined buffer space.

10.3 Approach Outline
The solution to both problems defined in Section 10.1 consists of two
components each: the set of message communication supports and the
set of packet delays. Thus, each problem is divided into two subprob-
lems, the communication mapping subproblem (CM), which determines
the communication support for each message, and the traffic shaping
subproblem (TS), which determines the possible delays applied to for-
warding a particular packet. Depending on the actual problem, we
will introduce CSBSDM-CM and CSBSDM-TS, and CSPBS-CM and
CSPBS-TS respectively.

142 CH. 10. BUFFER SPACE AWARE SYNTHESIS

System analysis (S. 10.3.3)

Design space delimitation (S.10.3.1)

Design space exploration (S 10.3.2)

CM
Design space delimitation (S.10.3.1)

Design space exploration (S 10.3.2)

System analysis (S. 10.3.3)

TS

Figure 10.3: Approach outline

The outline of our approach is depicted in Figure 10.3. Solving the
communication mapping as well as the traffic shaping subproblem is
itself decomposed into three subproblems:

1. Delimit the space of potential solutions (Section 10.3.1)
2. Deploy an efficient strategy for the exploration of the design space

(Section 10.3.2), and
3. Find a fast and accurate system analysis procedure for guiding

the search (Section 10.3.3).

10.3.1 Delimitation of the Design Space
Concerning the CM problem, including all possible CSs for each mes-
sage in the set of potential solutions leads to a very large design space,
impossible to explore in reasonable time. Thus, in Section 9.3 we es-
tablished criteria for picking only promising CS candidates, which we
include in the space of potential solutions.

The solution space for the TS problem is constructed as follows.
For each tuple (pi,j , S), where pi,j is a packet from task τi to task τj

and S is a network switch on its route, we consider the set of delays
{0, ∆, 2∆, . . . , Dj}, where ∆ is the minimum amount of time it takes for
the packet to traverse a network link, and Dj = δj − WCETj − H · ∆,
where δj is the deadline of task τj , WCETj is the worst-case execu-
tion time of task τj , and H is the Manhattan distance between the two
cores on which tasks τi and τj are mapped. Delaying the packet pi,j

longer than Dj would certainly cause task τj to break its deadline δj if
it executed for its worst-case execution time WCETj .

10.3.2 Exploration Strategy
Cost Function

The value of the cost function that drives the design space exploration
is infinite for solutions in which there exists a task whose response
time exceeds its deadline.

The cost function for the CSBSDM-CM and CSBSDM-TS subprob-
lems is

∑

b∈B db, where B is the set of all switch input buffers, b is a
buffer in this set, and db is the maximum demand of buffer space of the
application at buffer b.

The cost function for the CSPBS-CM and CSPBS-TS subproblems
is maxb∈B(db − cb), where cb is the capacity of buffer b. Solutions of the
CSPBS problem with strictly positive cost function value do not satisfy
the buffer space constraint and are thus unfeasible. For the CSPBS
problem, we stop the design space exploration as soon as we find a
solution whose cost is zero or negative.

10.3. APPROACH OUTLINE 143

(1) sm = sort messages;
(2) for each msg in sm do
(3) CS[msg] = select(msg, candidates[msg]);
(4) if CS[msg] =NONE then
(5) abort NO SOLUTION;
(6) return CS;

select(msg, cand list):
(7) cost = ∞; selected =NONE;
(8) for each cnd in cand list do
(9) CS[msg] = cnd; crt cost = cost func;
(10) if crt cost < cost then
(11) selected = cnd; cost = crt cost;
(12) return selected;

Figure 10.4: Heuristic for communication mapping

Communication Mapping

We propose a greedy heuristic for communication mapping. We map
messages to CSs stepwise. At each step, we map one message and
we obtain a partial solution. When evaluating partial solutions, the
messages that have not yet been mapped are not considered.

The heuristic proceeds as shown in Figure 10.4, lines 1–6. It returns
the list of communication supports for each message if a feasible solu-
tion is found (line 6) or aborts otherwise (line 5). Before proceeding, we
sort all messages in increasing order of their number of mapping alter-
natives (line 1). Then, we iterate through the sorted list of messages
sm. In each iteration, we select a mapping alternative to the current
message (line 3).

The selection of a mapping alternative out of the list of candidates
(determined in the previous step, Section 10.3.1, and in Section 9.3) is
shown in Figure 10.4, lines 7–12. We iterate over the list of mapping
alternatives (line 8) and evaluate each of them (line 9). We select the
alternative that gives the minimum cost (line 11).

The motivation for synthesizing the communication in the particu-
lar order of increasing number of mapping alternatives of messages is
the following. We would like to minimise the chance that the heuristic
runs into the situation in which it does not find any feasible solution,
although at least one exists. If messages enjoying a large number of
mapping alternatives are mapped first, we restrict the search space
prematurely and gratuitously, running the risk that no feasible map-
ping is found for other messages among their few mapping alternatives.

Traffic Shaping

The greedy heuristic, shown in Figure 10.5, determines the amount of
time each communication task has to be delayed (a.k.a. shaping delay).
As a first step, we sort the communication tasks according to a criterion
to be explained later (line 1). Then, for all communication tasks in the
sorted list we find the appropriate shaping delay (line 2). The selection
of a shaping delay of a communication task is performed by the function
shape (lines 3–9). We probe shaping delays ranging from 0 to Dj =
δj −WCETj −H ·∆ in increments of ∆, where the index δj and WCETj

144 CH. 10. BUFFER SPACE AWARE SYNTHESIS

(1) sct =sort comm tasks;
(2) for each τ in sct do delay[τ] =shape(τ);

shape(τ):
(3) cost = ∞;
(4) for delay[τ] = 0; delay[τ] < Dτ ; delay[τ] := delay[τ] + ∆
(5) crt cost = cost func;
(6) if crt cost < cost then
(7) best delay = delay[τ]; cost = crt cost;
(8) end for;
(9) return best delay;

Figure 10.5: Heuristic for traffic shaping

are the deadline and the worst-case execution time of the receiving
task τj (see Section 10.3.1). For each probed shaping delay, we evaluate
the cost of the obtained partial solution (line 5). When calculating it,
we assume that the shaping delay of those tasks for which none has
yet been chosen is 0. We select the shaping delay that leads to the
minimum cost solution (lines 6–7).

Before closing this section, we will explain in which order to perform
the shaping delay selection. We observe that communication tasks on
paths whose response times are closer to the deadline have a smaller
potential for delaying. Thus, delaying such communication tasks runs
a higher risk to break the timeliness constraints. In order to quantify
this risk, we compute the worst-case response time Rτ of each leaf task
τ . Then, for each task τi we determine L(τi), the set of leaf tasks τj such
that there exists a computation path between task τi and τj . Then, to
each task τi we assign the value prti = minτ∈L(τi)(δτ − Rτ). Last, we
sort the tasks in decreasing order of their prti.1 In case of ties, tasks
with smaller depths2 in the task graph are placed after tasks deeper in
the graph. (If tasks with small depths were delayed first, their delay
would seriously restrict the range of feasible delays of tasks with large
depths.)

10.3.3 System Analysis Procedure
In order to be able to compute the cost function as defined in Sec-
tion 10.3.2, we need to determine the worst-case response time of each
task as well as the buffering demand at each buffer in the worst case.
To do so, we extended the schedulability analysis algorithm of Palencia
and González [PG98].

At the core of the worst-case response time calculation of task τi is
a fix-point equation of type wi = Ri(wi). Ri(t) gives the worst-case re-
sponse time of task τi when considering interference of tasks of higher
priority than that of τi that arrive in the interval [0, t). The time ori-
gin is considered the arrival time of task τi. Thus, evaluating Ri at
two time moments, t1 and t2, allows us to determine the execution time
demanded by higher priority tasks arrived during the interval [t1, t2).
More details regarding the calculation of the worst-case response time

1The procedure can be easily generalised for the case in which not only leaf tasks have
deadlines.

2The depth of a task τ is the length of the longest computation path from a root task
to task τ .

10.3. APPROACH OUTLINE 145

(1) Buf = 0; b = 0; t = 0; F = R0(t); F1 = F ;
(2) loop
(3) t′ = next t′;
(4) F ′ = R0(t

′);
(5) if t′ = F ′ then
(6) return Buf ;
(7) b′ = (F ′ − F) · bw + b − (t < F1)?1 : 0;
(8) if b′ > Buf then
(9) Buf = b′;
(10) if t′ > F1 then
(11) b := b − (t′ − max(t, F1) − (F ′ − F)) · bw;
(12) t = t′; F = F ′;
(13) end loop;

Figure 10.6: Buffer space analysis algorithm

p2

p3 p4
p5

0 5 10 15 20 25 30 35 40 45

10

8

6

4

2

oc
cu

pi
ed

 b
uf

fe
r

sp
ac

e

real demand

estimated demand

es
tim

at
ed

 d
em

an
d

re
al

 d
em

an
d

time

Figure 10.7: Waiting time and buffer demand

can be found in cited work [PG98]. Here we will concentrate on our ap-
proach to buffer demand analysis. For communication tasks, their “ex-
ecution time” on their “processors” are actually the transmission times
of packets on network links. This transmission time is proportional to
the length of the packet. Thus, by means of the analysis of Palencia and
González, which can determine the execution time demanded during a
time interval, we are able to determine the buffering demand arrived
during the interval.

The algorithm for the calculation of the buffer space demand of an
ingress buffer of an arbitrary network link is given in Figure 10.6. We
explain the algorithm based on the following example.

Let us consider the following scenario. Prior to time moment 0, a
400MHz link is idle. The links convey the bits of a word in parallel,
with one word per cycle. At time moment 0, the first word of a 6-word
packet p1 arrives at the switch and is immediately conveyed on the link
without buffering. The following packets subsequently arrive at the
switch and demand forwarding on the link: p2, 5 words long, arrives
at 5ns, p3, 3 words long, arrives at 10ns, p4, 2 words long, arrives at
15.25ns, and p5, 1 word long, arrives at 17.5ns. Let us assume that a
fictive packet p0 of zero length and of very low priority arrived at time
0+, i.e. immediately after time 0. We compute the worst-case buffer
space need based on the worst-case transmission time of this fictive
packet.

The scenario is shown in Figure 10.7. Time is shown on the ab-
scissa, while the saw-teeth function shows the instantaneous commu-

146 CH. 10. BUFFER SPACE AWARE SYNTHESIS

nication time backlog, and the solid step function shows the instan-
taneous amount of occupied buffer space. The arrows pointing from
the steps in the backlog line to the shaded areas show which message
arrival causes the corresponding buffering.

The time interval during which the link is busy sending packets is
called the busy period. In our example the busy period is the interval
[0, 42.5), as can be seen on the figure. The main part of the algorithm
in Figure 10.6 consists of a loop (lines 2–13). A subinterval [t, t′) of
the busy period is considered in each iteration of the loop. In the first
iteration t = 0 while in iteration i, t takes the value of t′ of iteration
i − 1 for all i > 1 (line 12). F and F ′ are the times at which the link
would be idle if it has to convey just the packets arrived sooner than
or exactly at times t and t′ respectively (lines 1 and 4). t′, the upper
limit of the interval under consideration in each iteration, is obtained
as shown in line 3. For the moment, let us consider that next t′ = F
and we will discuss the rationale and other possible choices later in the
section.

For our example, only packet p1 of 6 words is to be sent just after
time 0. Hence, R0(0

+) = 6words/0.4 · 10−9words/sec = 15ns. The
first iteration of the loop considers the interval [t = 0, t′ = F =
R0(0

+) = 15). We compute F ′ = R0(t
′ = 15) (line 4) and we get

35ns, i.e. the 15ns needed to convey the six words of packet p1 plus
the 5words/0.4 · 10−9words/sec = 12.5ns needed to convey packet p2

plus the 7.5ns needed to convey packet p3 (p2 and p3 having arrived
in the interval [0, 15)). The time by which the link would become
idle if it has to convey just the packets arrived prior to t′ = 15ns is
greater than t′. Hence, there are unexplored parts of the busy pe-
riod left and the buffer space calculation is not yet over (lines 5–6).
The packets that arrived between 0 and 15ns extended the busy pe-
riod with F ′ − F = 20ns, hence the number of newly arrived words
is (F ′ − F) × bw = 20ns × 0.4 · 10−9 = 8words. The algorithm is un-
able to determine the exact time moments when the 8 words arrived.
Therefore, we assume the worst possible moment from the perspective
of the buffer space demand. This moment is time t+, i.e. immediately
after time t. The 8 words are latched at the next clock period after time
t+ = 0, i.e. at 2.5ns. b′, the amount of occupied buffer after latching,
is b, the amount of occupied buffer at time t, plus the 8 words, minus
possibly one word that could have been pumped out of the buffer be-
tween t and t + 2.5ns. During the time interval [0, F1 = 15), where F1

is the time it takes to convey packet p1, the words conveyed on the link
belong to p1, which is not stored. Therefore, no parts of the buffer are
freed in the interval [0, F1) (see line 7). If the required buffer space is
larger than what has been computed so far, the buffer space demand
is updated (lines 8–9). Because no buffer space is freed during the
interval [0, 15), lines 10–11 are not executed in the first iteration of the
loop.

The second iteration considers the interval [t = 15, t′ = 35). F =
35ns and F ′ = 42.5ns in this case. Hence, (F ′ − F) · bw = 7.5ns ×
0.4 · 10−9words/sec = 3words arrived during interval [15, 35). The three
words are considered to have arrived at the worst moment, i.e. at 15+.
They are latched at time 17.5ns when b = 8 − 1, i.e. the 8 words that
are stored in the buffer at 15ns minus one word that is pumped out
between 15 and 17.5ns. Thus b′, the amount of occupied buffer at 17.5ns
is 8 − 1 + 3 = 10 (line 7). The value Buf is updated accordingly (lines

10.4. EXPERIMENTAL RESULTS 147

8–9). Between 15 and 35ns some words that were stored in the buffer
are sent on the link and therefore we have to account for the reduction
of the amount of occupied buffer. Thus, the amount of occupied buffer
at 35ns is equal to 8, the amount present at 15ns, plus the 3 words that
arrived between 15 and 35ns and minus the (35 − 15) × 0.4 · 10−9 = 8
that are conveyed on the link in the interval [15, 35) (see lines 10–11).

The third iteration considers the interval [35, 42.5). As no new pack-
ets arrive during this interval, t′ = R0(t

′) = 42.5 and the algorithm has
reached a fix-point and returns the value of Buf .

We will close the section with a discussion on next t′, the complexity
of the algorithm, and the trade-off between the algorithm execution
speed and accuracy.

The actual amount of occupied buffer is shown as the thick solid
line in Figure 10.7, while the amount, as estimated by the algorithm,
is shown as thick dotted line. We observe that the analysis procedure
produces a pessimistic result. This is due to the fact that the analysis
assumes that the new packets that arrive in the interval [t, t′) arrive
always at the worst possible moment, that is moment t+. If we par-
titioned the interval in which the link is busy sending packets into
many shorter intervals, we could reduce the pessimism of the analysis,
because fewer arrivals would be amassed at the same time moment.
However, that would also imply that we invoke function R0 more often,
which is computationally expensive. Thus, there exists a trade-off be-
tween speed of the analysis and pessimism, which is reflected in the
choice of next t′ (line 3). A value closer to t would lead to short inter-
vals, i.e. less pessimism and slower analysis, while a value farther from
t would lead to longer intervals, i.e. more pessimistic but possibly (not
necessarily, as shown below) faster analysis.

In our experiments, we use next t′ = F , which is the finishing time
of the busy period if no new packets arrive after time t. Choosing a
value larger than F would incur the risk to overestimate the busy pe-
riod. As a result, packets that arrive after the real finishing time of the
busy period might wrongly be considered as part of the current busy pe-
riod. On one hand that leads to the overestimation of the buffer space,
and on the other hand it increases the time until the loop in Figure 10.6
reaches fix-point. In our experiments, choosing next t′ = 1.6 · F results
in a 10.3% buffer overestimation and a 2.3× larger analysis time rela-
tive to the case when next t′ = F . Conversely, choosing smaller values
for next t′ lead to reductions of at most 5.3% of the buffer space esti-
mate while the analysis time increased with up to 78.5%.

The algorithm is of pseudo-polynomial complexity due to the calcu-
lation of function R [PG98].

10.4 Experimental Results
We use a set of 225 synthetic applications in order to assess the effi-
ciency of our approach to solve the CSBSDM problem. The applications
consist of 27 to 79 tasks, which are mapped on a 4 × 4 NoC. The proba-
bility that a 110-bit packet traverses one network link unscrambled is
0.99, while the imposed lower bound on the message arrival probability
is also 0.99. Due to the fact that the implementation of the packet de-
lay capability could excessively increase the complexity of the switches,

148 CH. 10. BUFFER SPACE AWARE SYNTHESIS

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 30 40 50 60 70 80

T
ot

al
 a

m
ou

nt
 o

f n
ee

de
d

bu
ffe

r
sp

ac
e

Number of tasks

No buffer minimisation
Tabu search, no traffic shaping

Tabu search, after traffic shaping
Greedy, no traffic shaping

Greedy, after traffic shaping

Figure 10.8: Buffering space vs. number of tasks

we have considered that traffic shaping is performed only at the source
cores. This has the advantage of no hardware overhead.

10.4.1 Evaluation of the Solution to the CSBSDM
Problem

For each application, we synthesized the communication using three
approaches and we determined the total buffer space demand obtained
in each of the three cases. In the first case, we use the buffer space
minimisation approach presented in chapter. In the second case, we
replaced the greedy heuristics described in Section 10.3.2 with Tabu
Search based heuristics that are assumed to generate close to optimal
solutions provided that they are let to explore the design space for a
very long time. In the third case, we deployed the communication syn-
thesis approach presented in the previous chapter, in which we do not
considered buffer space minimisation. The resulting total buffer space
as a function of the number of tasks is shown in Figure 10.8 as the
curves labelled with “greedy”, “tabu”, and “no buffer minimisation” re-
spectively.

First, we observe that buffer space minimisation is worth pursu-
ing, as it results in 22.3% reduction of buffer space on average when
compared to the case when buffer space minimisation is neglected.
Second, traffic shaping is an effective technique, reducing the buffer
space demand with 14.2% on average relative to the approach that is
based solely on communication mapping. Third, the greedy heuris-
tic performs well as it obtains results on average of only 3.6% worse
than the close-to-optimal Tabu Search. The running times of the Tabu
Search based and the greedy heuristic, as measured on a 1533 MHz
AMD Athlon processor, are shown in Figure 10.9. The greedy heuristic
performs about two orders of magnitude faster (note the logarithmic
scale of the y axis) than the Tabu Search based heuristic. Thus, we
are able to synthesize the communication for applications of 79 tasks

10.4. EXPERIMENTAL RESULTS 149

 1

 10

 100

 1000

 10000

 30 40 50 60 70 80

D
es

ig
n

sp
ac

e
ex

pl
or

at
io

n
tim

e
[s

ec
]

Number of tasks

Tabu search
Greedy

Figure 10.9: Run time comparison

in 1′40′′, while the Tabu Search based heuristic requires around 1h30′

for applications of 59 tasks.

10.4.2 Evaluation of the Solution to the CSPBS
Problem

We use 50 different 4 × 4 NoCs in order to assess the efficiency of our
approach to solve the CSPBS problem. The total buffering capacities
at switches range between 9, 000 and 30, 000 bits, uniformly distributed
among the switches. We map 200 applications, one at a time, each con-
sisting of 40 tasks, on each of the 50 NoCs, and we attempt to synthe-
size the communication of the application such that no buffer overflows
or deadline violations occur. For each NoC, we count the applications
for which we succeeded to find feasible solutions to the CSPBS prob-
lem. The percentage of the number of applications for which feasible
communication synthesis solutions were found is plotted as a function
of the total buffer capacity of the NoC in Figure 10.10. The proposed
heuristic soundly outperforms the approach that neglects the buffer-
ing aspect as the percentage of found solutions is on average 53 points
higher in the former case than in the latter. Also, the deployment of
traffic shaping results in leveraging the percentage of found solutions
to the CSPBS problem with 18.5% compared to the case when no traffic
shaping is deployed. The results of the greedy heuristic come within
9% of the results obtained by Tabu Search, while the greedy heuristic
runs on average 25 times faster.

10.4.3 Real-Life Example: An Audio/Video Encoder
Finally, we applied our approach the multimedia application described
in Section 9.6.6 and depicted in Figures 9.11 and 9.12. The commu-
nication mapping heuristic reduced the total buffer space with 12.6%
relative to the approach that synthesized the communication without
attempting to reduce the total buffer space demand. Traffic shaping

150 CH. 10. BUFFER SPACE AWARE SYNTHESIS

 0

 20

 40

 60

 80

 100

 10000 15000 20000 25000 30000

P
er

ce
nt

ag
e

of
 a

pp
lic

at
io

ns
 th

at
 c

an
 b

e
im

pl
em

en
te

d
w

ith
 th

e
gi

ve
n

bu
ffe

r
sp

ac
e

Total buffer space of the NoC

No buffer minimisation
Tabu search, no traffic shaping

Tabu search, after traffic shaping
Greedy, no traffic shaping

Greedy, after traffic shaping

Figure 10.10: Percentage of the number of feasible applications as a
function of the NoC buffer capacity

allowed for a further reduction of 31.8%, giving a total buffer space de-
mand of 77.3kB.

10.5 Conclusions
In this chapter, we developed an approach to the worst-case buffer need
analysis of time constrained applications implemented on NoCs. Based
on this analysis we solved two related problems: (1) the total buffer
space need minimisation for application-specific NoCs and (2) commu-
nication synthesis with imposed buffer space constraints. For both
cases we guarantee that imposed deadlines and message arrival prob-
ability thresholds are satisfied. We have argued that traffic shaping
is a powerful method for buffer space minimisation. We proposed two
efficient greedy heuristics for the communication mapping and traffic
shaping subproblems and we presented experimental results, which
demonstrate the efficiency of the approach.

Part IV

Conclusions

151

Chapter 11

Conclusions

This thesis addresses several problems related to real-time systems
with stochastic behaviour. Two sources of stochastic behaviour were
considered. The first source, namely the stochastic task execution
times, stems with predilection from the application, although features
of the hardware platform, such as cache replacement algorithms, may
also influence it. The second source, namely the transient faults that
may occur on the on-chip network links, is inherent in the hardware
platform and the environment.

11.1 Applications with Stochastic Execu-
tion Times

In the area of real-time systems with stochastic task execution times,
we provide three different analysis approaches, each efficiently appli-
cable in a different context. Additionally, we propose a heuristic for
deadline miss probability minimisation.

11.1.1 An Exact Approach for Deadline Miss Ratio
Analysis

In Chapter 4 we proposed a method for the schedulability analysis of
task sets with probabilistically distributed task execution times. Our
method improves the currently existing ones by providing exact solu-
tions for larger and less restricted task sets. Specifically, we allow arbi-
trary continuous task execution time probability distributions, and we
do not restrict our approach to one particular scheduling policy. Addi-
tionally, task dependencies are supported, as well as arbitrary dead-
lines.

The analysis of task sets under such generous assumptions is made
possible by three complexity management methods:

1. The exploitation of the PMI concept,
2. The concurrent construction and analysis of the stochastic pro-

cess, and
3. The usage of a sliding window of states, made possible by the

construction in topological order.

153

154 CH. 11. CONCLUSIONS

As the presented experiments demonstrate, the proposed method
can efficiently be applied to applications implemented on monoproces-
sor systems.

11.1.2 An Approximate Approach for Deadline Miss
Ratio Analysis

In Chapter 5 we presented an approach to performance analysis of
tasks with probabilistically distributed execution times, implemented
on multiprocessor systems. The arbitrary probability distributions of
the execution times are approximated with Coxian distributions, and
the expanded underlying Markov chain is constructed in a memory effi-
cient manner exploiting the structural regularities of the chain. In this
way we have practically pushed the solution of an extremely complex
problem to its limits. Our approach also allows to trade-off between
time and memory complexity on one side and solution accuracy on the
other. The efficiency of the approach has been investigated by means
of experiments. The factors that influence the analysis complexity, and
their quantitative impact on the analysis resource demands have been
discussed. Additional extensions of the problem formulation and their
impact on complexity have also been illustrated.

11.1.3 Minimisation of Deadline Miss Ratios
In Chapter 6 we addressed the problem of design optimisation of soft
real-time systems with stochastic task execution times under deadline
miss ratio constraints. The contribution is threefold:

1. We have shown that methods considering fixed execution time
models are unsuited for this problem.

2. We presented a design space exploration strategy based on tabu
search for task mapping and priority assignment.

3. We introduced a fast and approximate analysis for guiding the
design space exploration.

Experiments demonstrated the efficiency of the proposed approach.

11.2 Transient Faults of Network-on-Chip
Links

The contribution of this thesis in the area of network-on-chip communi-
cation in the presence of transient faults on the links is fourfold. First,
we present a way to intelligently combine spatial and temporal redun-
dant communication for response time reduction and energy minimi-
sation. Second, we provide an analysis algorithm that determines the
amount of needed buffers at the network switches. Third, we present
a heuristic algorithm for minimising the buffer space demand of appli-
cations. Fourth, we propose a heuristic algorithm for communication
mapping under buffer space constraints.

11.2. TRANSIENT FAULTS OF NOC LINKS 155

11.2.1 Time-Constrained Energy-Efficient Commu-
nication Synthesis

In Chapter 9 we presented an approach to reliable, low-energy on-chip
communication for time-constrained applications implemented on NoC.
The contribution is manifold:

1. We showed how to generate supports for message communication
in order to meet the message arrival probability constraint and to
minimise communication energy.

2. We gave a heuristic for selecting most promising communication
supports with respect to application responsiveness and energy.

3. We modelled the fault-tolerant application for response time anal-
ysis.

4. We presented experiments demonstrating the proposed approach.

11.2.2 Communication Buffer Minimisation
In Chapter 10 we developed an approach to the worst-case buffer need
analysis of time-constrained applications implemented on NoCs. Based
on this analysis we solved two related problems:

1. The total buffer space need minimisation for application-specific
NoCs, and

2. the communication synthesis with imposed buffer space con-
straints.

For both cases we guarantee that imposed deadlines and message ar-
rival probability thresholds are satisfied. We argued that traffic shap-
ing is a powerful method for buffer space minimisation. We proposed
two efficient greedy heuristics for the communication mapping and
traffic shaping subproblems and we presented experimental results,
which demonstrate the efficiency of the approach.

156 CH. 11. CONCLUSIONS

Appendix A

Abbreviations

AA Approximate Analysis
BCET Best-Case Execution Time
CGPN Concurrent Generalised Petri Nets
CM Communication Mapping
CS Communication Support
CSBSDM Communication Synthesis with Buffer Space Demand

Minimisation
CSPBS Communication Synthesis with Predefined Buffer Space
CTMC Continuous Time Markov Chain
ECE Expected Communication Energy
ENS Exhaustive Neighbourhood Search
ETPDF Execution Time Probability Density Function
GRD General Redundancy Degree
GSMP Generalised Semi-Markov Process
GSPN Generalised Stochastic Petri Net
LCM Least Common Multiple
LO-AET Laxity Optimisation based on Average Execution Times
MAP Message Arrival Probability
MRGP Markov Regenerative Process
MRSPN Markov Regenerative Stochastic Petri Net
PA High-Complexity Performance Analysis
PMI Priority Monotonicity Interval
RNS Restricted Neighbourhood Search
SRD Spatial Redundancy Degree
TRD Temporal Redundancy Degree
TRG Tangible Reachability Graph
TS Traffic Shaping
WCET Worst-Case Execution Time
WCRT Worst-Case Response Time

157

158 APPENDIX A. ABBREVIATIONS

Bibliography

[AB98] A. Atlas and A. Bestavros. Statistical rate monotonic
scheduling. In Proceedings of the 19th IEEE Real-Time Sys-
tems Symposium, pages 123–132, 1998.

[AB99] L. Abeni and G. Butazzo. QoS guarantee using probabilistic
deadlines. In Proceedings of the 11th Euromicro Conference
on Real-Time Systems, pages 242–249, 1999.

[ABD+91] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and A. J.
Wellings. Hard real-time scheduling: The deadline mono-
tonic approach. In Proceedings of the 8th IEEE Workshop
on Real-Time Operating Systems and Software, pages 133–
137, 1991.

[ABD+95] N. C. Audsley, A. Burns, R. I. Davis, K. W. Tindell, and
A. J. Wellings. Fixed priority pre-emptive scheduling: An
historical perspective. Journal of Real-Time Systems, 8(2-
3):173–198, March-May 1995.

[ABR+93] N. Audsley, A. Burns, M. Richardson, K. Tindell, and
A. Wellings. Applying new scheduling theory to static prior-
ity pre-emptive scheduling. Software Engineering Journal,
8(5):284–292, 1993.

[ABRW93] N. C Audsley, A. Burns, M. F. Richardson, and A. J.
Wellings. Incorporating unbounded algorithms into pre-
dictable real-time systems. Computer Systems Science and
Engineering, 8(3):80–89, 1993.

[AKK+00] K. Aingaran, F. Klass, C. M. Kim, C. Amir, J. Mitra, E. You,
J. Mohd, and S. K. Dong. Coupling noise analysis for VLSI
and ULSI circuits. In Proceedings of IEEE ISQED, pages
485–489, 2000.

[ASE+04] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. Al-Hashimi.
Simultaneous communication and processor voltage scal-
ing for dynamic and leakage energy reduction in time-
constrained systems. In Proc. of ICCAD, 2004.

[Aud91] N. C. Audsley. Optimal priority assignment and feasibility
of static priority tasks with arbitrary start times. Technical
Report YCS 164, Department of Computer Science, Univer-
sity of York, December 1991.

[BBB01] E. Bini, G. Butazzo, and G. Butazzo. A hyperbolic bound
for the rate monotonic algorithm. In Proceedings of the 13th

159

160 BIBLIOGRAPHY

Euromicro Conference on Real-Time Systems, pages 59–66,
2001.

[BBB03] A. Burns, G. Bernat, and I. Broster. A probabilistic frame-
work for schedulability analysis. In R. Alur and I. Lee,
editors, Proceedings of the Third International Embedded
Software Conference, EMSOFT, number LNCS 2855 in
Lecture Notes in Computer Science, pages 1–15, 2003.

[BBD02] D. Bertozzi, L. Benini, and G. De Micheli. Low power error
resilient encoding for on-chip data buses. In Proc. of DATE,
pages 102–109, 2002.

[BBRN02] I. Broster, A. Burns, and G. Rodriguez-Navas. Probabilistic
analysis of CAN with faults. In Proceedings of the 23rd Real-
Time Systems Symposium, 2002.

[BCFR87] G. Balbo, G. Chiola, G. Franceschinis, and G. M. Roet. On
the efficient construction of the tangible reachability graph
of Generalized Stochastic Petri Nets. In Proceedings of the
2nd Workshop on Petri Nets and Performance Models, pages
85–92, 1987.

[BCKD00] P. Buchholtz, G. Ciardo, P. Kemper, and S. Donatelli. Com-
plexity of memory-efficient Kronecker operations with ap-
plications to the solution of Markov models. INFORMS
Journal on Computing, 13(3):203–222, 2000.

[BCP02] G. Bernat, A. Colin, and S. Petters. WCET analysis of prob-
abilistic hard real-time systems. In Proceedings of the 23rd

Real-Time Systems Symposium, pages 279–288, 2002.

[BD02] L. Benini and G. De Micheli. Networks on chips: a new SoC
paradigm. IEEE Computer, 35(1):70–78, 2002.

[BIGA04] E. Bolotin, Cidon I., R. Ginosar, and Kolodny A. QNoC:
QoS architecture and design process for networks-on-chip.
Journal of Systems Architecture, 50:105–128, 2004.

[Bla76] J. Blazewicz. Scheduling dependent tasks with different ar-
rival times to meet deadlines. In E. Gelenbe and H. Bellner,
editors, Modeling and Performance Evaluation of Computer
Systems. North-Holland, Amsterdam, 1976.

[Bos91] Bosch, Robert Bosch GmbH, Postfach 50, D-7000 Stuttgart
1, Germany. CAN Specification, 1991.

[BPSW99] A. Burns, S. Punnekkat, L. Strigini, and D.R. Wright. Prob-
abilistic scheduling guarantees for fault-tolerant real-time
systems. In Proceedings of the 7th International Working
Conference on Dependable Computing for Critical Applica-
tions, pages 339–356, 1999.

[But97] Giorgio C. Buttazzo. Hard Real-Time Computing Systems.
Kluwer Academic, 1997.

[BW94] A. Burns and A. Wellings. Real-Time Systems and Their
Programming Languages. Addison Wesley, 1994.

BIBLIOGRAPHY 161

[CKT94] H. Choi, V.G. Kulkarni, and K.S. Trivedi. Markov Regener-
ative Stochastic Petri Nets. Performance Evaluation, 20(1–
3):337–357, 1994.

[Cox55] D. R. Cox. A use of complex probabilities in the theory
of stochastic processes. In Proceedings of the Cambridge
Philosophical Society, pages 313–319, 1955.

[CXSP04] V. Chandra, A. Xu, H. Schmit, and L. Pileggi. An inter-
connect channel design methodology for high performance
integrated circuits. In Proceedings of the Conference on De-
sign Automation and Test in Europe, page 21138, 2004.

[Dal99] W. Dally. Interconnect-limited VLSI architecture. In
IEEE Conference on Interconnect Technologies, pages 15–
17, 1999.

[Dav81] M. Davio. Kronecker products and shuffle algebra. IEEE
Transactions on Computing, C-30(2):1099–1109, 1981.

[DGK+02] J. L. Dı́az, D. F. Garcı́a, K. Kim, C.-G. Lee, L. Lo Bello, J. M.
López, S. L. Min, and O. Mirabella. Stochastic analysis of
periodic real-time systems. In Proceedings of the 23rd Real-
Time Systems Symposium, 2002.

[Die00] K. Diefenderhoff. Extreme lithography. Microprocessor Re-
port, 6(19), 2000.

[dJG00] G. de Veciana, M. Jacome, and J.-H. Guo. Assessing proba-
bilistic timing constraints on system performance. Design
Automation for Embedded Systems, 5(1):61–81, February
2000.

[DLS01] B. Doytchinov, J. P. Lehoczky, and S. Shreve. Real-time
queues in heavy traffic with earliest-deadline-first queue
discipline. Annals of Applied Probability, 11:332–378,
2001.

[DM03] T. Dumitraş and R. Mărculescu. On-chip stochastic com-
munication. In Proc. of DATE, 2003.

[DRGR03] J. Dielissen, A. Rădulescu, K. Goossens, and E. Rijpkema.
Concepts and implementation of the Philips network-on-
chip. In IP-Based SoC Design, 2003.

[DW93] J. G. Dai and Y. Wang. Nonexistence of Brownian models
for certain multiclass queueing networks. Queueing Sys-
tems, 13:41–46, 1993.

[Ele02] P. Eles. System design and methodology, 2002.
http://www.ida.liu.se/˜TDTS30/.

[Ern98] R. Ernst. Codesign of embedded systems: Status and
trends. IEEE Design and Test of Computers, pages 45–54,
April-June 1998.

[ETS] European telecommunications standards institute.
http://www.etsi.org/.

162 BIBLIOGRAPHY

[Fid98] C. J. Fidge. Real-time schedulability tests for preemptive
multitasking. Journal of Real-Time Systems, 14(1):61–93,
1998.

[FJ98] M. Frigo and S. G. Johnson. FFTW: An adaptive software
architecture for the FFT. In Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech and Signal Pro-
cessing, volume 3, pages 1381–1384, 1998.

[Gar99] M.K. Gardner. Probabilistic Analysis and Scheduling of
Critical Soft Real-Time Systems. PhD thesis, University
of Illinois at Urbana-Champaign, 1999.

[Gau98] H. Gautama. A probabilistic approach to the analysis
of program execution time. Technical Report 1-68340-
44(1998)06, Faculty of Information Technology and Sys-
tems, Delft University of Technology, 1998.

[GI99] A. Goel and P. Indyk. Stochastic load balancing and related
problems. In IEEE Symposium on Foundations of Com-
puter Science, pages 579–586, 1999.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractabil-
ity. Freeman, 1979.

[GKL91] M. González Harbour, M. H. Klein, and J. P. Lehoczky.
Fixed priority scheduling of periodic rasks with varying ex-
ecution priority. In Proceedings of the IEEE Real Time Sys-
tems Symposium, pages 116–128, 1991.

[GL94] R. German and C. Lindemann. Analysis of stochastic Petri
Nets by the method of supplementary variables. Perfor-
mance Evaluation, 20(1–3):317–335, 1994.

[GL99] M.K. Gardner and J. W.S. Liu. Analyzing Stochastic Fixed-
Priority Real-Time Systems, pages 44–58. Springer, 1999.

[Glo89] F. Glover. Tabu search—Part I. ORSA J. Comput., 1989.

[Gly89] P.W Glynn. A GSMP formalism for discrete-event systems.
In Proceedings of the IEEE, volume 77, pages 14–23, 1989.

[Gv00] H. Gautama and A. J. C. van Gemund. Static performance
prediction of data-dependent programs. In Proceedings of
the 2nd International Workshop on Software and Perfor-
mance, pages 216–226, September 2000.

[HM04a] J. Hu and R. Mărculescu. Applicationspecific buffer space
allocation for networksonchip router design. In Proc. of the
ICCAD, 2004.

[HM04b] J. Hu and R. Mărculescu. Energy-aware communication
and task scheduling for network-on-chip architectures un-
der real-time constraints. In Proceedings of the Design Au-
tomation and Test in Europe Conference, page 10234, 2004.

[HM05] J. Hu and R. Mărculescu. Energy and performance-aware
mapping for regular NoC architectures. IEEE Transactions
on CAD of Integrated Circuits and Systems, 24(4), 2005.

BIBLIOGRAPHY 163

[HMC97] S. Haddad, P. Moreaux, and G Chiola. Efficient handling
of phase-type distributions in Generalized Stochastic Petri
Nets. In 18th International Conference on Application and
Theory of Petri Nets, 1997.

[HN93] J. M. Harrison and V. Nguyen. Brownian models of mul-
ticlass queueing networks: Current status and open prob-
lems. Queueing Systems, 13:5–40, 1993.

[HZS01] X. S. Hu, T. Zhou, and E. H.-M. Sha. Estimating prob-
abilistic timing performance for real-time embedded sys-
tems. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 9(6):833–844, December 2001.

[Int93] International Organization for Standardization (ISO).
ISO/IEC 11172-3:1993 – Coding of moving pictures and as-
sociated audio for digital storage media at up to about 1,5
Mbit/s – Part 3: Audio, 1993. http://www.iso.org/.

[Int05] International Telecommunication Union (ITU). H.263
– Video coding for low bit rate communication, 2005.
http://www.itu.int/publications/itu-t/.

[JMEP00] R. Jigorea, S. Manolache, P. Eles, and Z. Peng. Modelling
of real-time embedded systems in an object oriented de-
sign environment with UML. In Proceedings of the 3rd

IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC00), pages 210–213,
March 2000.

[KJS+02] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Mill-
berg, J. Öberg, K. Tiensyrjä, and A. Hemani. A network on
chip architecture and design methodology. In Proceedings
of the IEEE Computer Society Annual Symposium on VLSI,
April 2002.

[KK79] P. Kermani and L. Kleinrock. Virtual Cut-Through: A new
computer communication switching technique. Computer
Networks, 3(4):267–286, 1979.

[Kle64] L. Kleinrock. Communication Nets: Stochastic Message
Flow and Delay. McGraw-Hill, 1964.

[KM98] A. Kalavade and P. Moghé. A tool for performance estima-
tion of networked embedded end-systems. In Proceedings
of the 35th Design Automation Conference, pages 257–262,
1998.

[Kop97] H. Kopetz. Real-Time Systems. Kluwer Academic, 1997.

[KRT00] J. Kleinberg, Y. Rabani, and E. Tardos. Allocating band-
width for bursty connections. SIAM Journal on Computing,
30(1):191–217, 2000.

[KS96] J. Kim and K. G. Shin. Execution time analysis of commu-
nicating tasks in distributed systems. IEEE Transactions
on Computers, 45(5):572–579, May 1996.

164 BIBLIOGRAPHY

[KS97] C. M. Krishna and K. G. Shin. Real-Time Systems.
McGraw-Hill, 1997.

[LA97] Y. A. Li and J. K. Antonio. Estimating the execution time
distribution for a task graph in a heterogeneos computing
system. In Proceedings of the Heterogeneous Computing
Workshop, 1997.

[Leh96] J. P. Lehoczky. Real-time queueing theory. In Proceedings
of the 18th Real-Time Systems Symposium, pages 186–195,
December 1996.

[Leh97] J. P. Lehoczky. Real-time queueing network theory. In Pro-
ceedings of the 19th Real-Time Systems Symposium, pages
58–67, December 1997.

[Lin98] Ch. Lindemann. Performance Modelling with Deterministic
and Stochastic Petri Nets. John Wiley and Sons, 1998.

[Liu94] D. Liu et al. Power consumption estimation in CMOS VLSI
chips. IEEE Journal of Solid-State Circuits, (29):663–670,
1994.

[LL73] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment. Journal
of the ACM, 20(1):47–61, January 1973.

[LSD89] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: Exact characterization and average
case behaviour. In Proceedings of the 11th Real-Time Sys-
tems Symposium, pages 166–171, 1989.

[LW82] J. Y. T. Leung and J. Whitehead. On the complexity of
fixed-priority scheduling of periodic, real-time tasks. Per-
formance Evaluation, 2(4):237–250, 1982.

[Man04] S. Manolache. Fault-tolerant communication on network-
on-chip. Technical report, Linköping University, 2004.

[MD04] S. Murali and G. De Micheli. Bandwidth-constrained map-
ping of cores onto NoC architectures. In Proceedings of the
Conference on Design Automation and Test in Europe, 2004.

[MEP] S. Manolache, P. Eles, and Z. Peng. An approach to
performance analysis of multiprocessor applications with
stochastic task execution times. Submitted for publication.

[MEP01] S. Manolache, P. Eles, and Z. Peng. Memory and time-
efficient schedulability analysis of task sets with stochastic
execution time. In Proceedings of the 13th Euromicro Con-
ference on Real Time Systems, pages 19–26, June 2001.

[MEP02] S. Manolache, P. Eles, and Z. Peng. Schedulability analy-
sis of multiprocessor real-time applications with stochastic
task execution times. In Proceedings of the 20th Interna-
tional Conference on Computer Aided Design, pages 699–
706, November 2002.

BIBLIOGRAPHY 165

[MEP04a] S. Manolache, P. Eles, and Z. Peng. Optimization of soft
real-time systems with deadline miss ratio constraints. In
Proceedings of the 10th IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 562–570,
2004.

[MEP04b] S. Manolache, P. Eles, and Z. Peng. Schedulability analysis
of applications with stochastic task execution times. ACM
Transactions on Embedded Computing Systems, 3(4):706–
735, 2004.

[MEP05] S. Manolache, P. Eles, and Z. Peng. Fault and energy-aware
communication mapping with guaranteed latency for appli-
cations implemented on NoC. In Proc. of DAC, 2005.

[MEP06] S. Manolache, P. Eles, and Z. Peng. Buffer space optimisa-
tion with communication synthesis and traffic shaping for
NoCs. In Proceedings of the Conference on Design Automa-
tion and Test in Europe, March 2006.

[MP92] M. Mouly and M.-B. Pautet. The GSM System for Mobile
Communication. Palaiseau, 1992.

[MR93] M. Malhotra and A. Reibman. Selecting and implementing
phase approximations for semi-Markov models. Stochastic
Models, 9(4):473–506, 1993.

[PF91] B. Plateau and J-M. Fourneau. A methodology for solving
Markov models of parallel systems. Journal of Parallel and
Distributed Computing, 12(4):370–387, 1991.

[PG98] J. C. Palencia Gutiérrez and M. González Harbour. Schedu-
lability analysis for tasks with static and dynamic offsets.
In Proceedings of the 19th IEEE Real Time Systems Sympo-
sium, pages 26–37, December 1998.

[PKH01] E. L. Plambeck, S. Kumar, and J. M. Harrison. A multiclass
queue in heavy traffic with throughput time constraints:
Asymptotically optimal dynamic controls. Queueing Sys-
tems, 39(1):23–54, September 2001.

[PLB+04] M. Pirretti, G. M. Link, R. R. Brooks, N. Vijaykrishnan,
M. Kandemir, and Irwin M. J. Fault tolerant algorithms
for network-on-chip interconnect. In Proc. of the ISVLSI,
2004.

[PST98] A. Puliafito, M. Scarpa, and K.S. Trivedi. Petri Nets with k-
simultaneously enabled generally distributed timed transi-
tions. Performance Evaluation, 32(1):1–34, February 1998.

[PTVF92] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes in C. Cambridge University
Press, 1992.

[RE02] K. Richter and R. Ernst. Event model interfaces for hetero-
geneous system analysis. In Proc. of DATE, 2002.

[Ros70] S.M. Ross. Applied Probability Models with Optimization
Applications. Holden-Day, 1970.

166 BIBLIOGRAPHY

[SAN03] I. Saastamoinen, M. Alho, and J. Nurmi. Buffer implemen-
tation for proteo network-on-chip. In Proceedings of the
2003 International Symposium on Circuits and Systems,
volume 2, pages II 113–II 116, 2003.

[Sch03] M. Schmitz. Energy Minimisation Techniques for Dis-
tributed Embedded Systems. PhD thesis, Dept. of Com-
puter and Electrical Enginieering, Univ. of Southampton,
UK, 2003.

[SGL97] J. Sun, M. K. Gardner, and J. W. S. Liu. Bounding com-
pletion times of jobs with arbitrary release times, variable
execution times, and resource sharing. IEEE Transactions
on Software Engineering, 23(10):604–615, October 1997.

[She93] G.S Shedler. Regenerative Stochastic Simulation. Academic
Press, 1993.

[SL95] J. Sun and J. W. S. Liu. Bounding the end-to-end response
time in multiprocessor real-time systems. In Proceedings
of the Workshop on Parallel and Distributed Real-Time Sys-
tems, pages 91–98, April 1995.

[SN96] K. Shepard and V. Narayanan. Noise in deep submicron
digital design. In ICCAD, pages 524–531, 1996.

[SS94] M. Spuri and J. A. Stankovic. How to integrate precedence
constraints and shared resources in real-time scheduling.
IEEE Transactions on Computers, 43(12):1407–1412, De-
cember 1994.

[Sun97] J. Sun. Fixed-Priority End-to-End Scheduling in Dis-
tributed Real-Time Systems. PhD thesis, University of Illi-
nois at Urbana-Champaign, 1997.

[TC94] K. Tindell and J. Clark. Holistic schedulability analysis for
distributed real-time systems. Euromicro Jurnal on Micro-
processing and Microprogramming (Special Issue on Paral-
lel Embedded Real-Time Systems), 40:117–134, 1994.

[TDS+95] T.-S. Tia, Z. Deng, M. Shankar, M. Storch, J. Sun, L.-C.
Wu, and J. W. S. Liu. Probabilistic performance guaran-
tee for real-time tasks with varying computation times. In
Proceedings of the IEEE Real-Time Technology and Appli-
cations Symposium, pages 164–173, May 1995.

[TTT99] TTTech Computertechnik AG, TTTech Computertechnik
AG, Schönbrunner Straße, A-1040 Vienna, Austria. TTP/C
Protocol, 1999.

[van96] A. J. van Gemund. Performance Modelling of Parallel Sys-
tems. PhD thesis, Delft University of Technology, 1996.

[van03] A. J. C. van Gemund. Symbolic performance modeling of
parallel systems. IEEE Transactions on Parallel and Dis-
tributed Systems, 2003. to be published.

BIBLIOGRAPHY 167

[Wil98] R. J. Williams. Diffusion approximations for open multi-
class queueing networks: Sufficient conditions involving
state space collapse. Queueing Systems, 30:27–88, 1998.

[YBD02] T.T. Ye, L. Benini, and G. De Micheli. Analysis of power
consumption on switch fabrics in network routers. In Proc.
of DAC, pages 524–529, 2002.

[ZHS99] T. Zhou, X. (S.) Hu, and E. H.-M. Sha. A probabilistic per-
formace metric for real-time system design. In Proceedings
of the 7th International Workshop on Hardware-Software
Co-Design, pages 90–94, 1999.

	I Preliminaries
	1 Introduction
	1.1 Embedded System Design Flow
	1.2 Contribution
	1.3 Thesis Organisation

	II Stochastic Schedulability Analysis and Optimisation
	2 Motivation and Related Work
	2.1 Motivation
	2.2 Related Work

	3 System Modelling
	3.1 Hardware Model
	3.2 Application Model
	3.2.1 Functionality
	3.2.2 Periodic Task Model
	3.2.3 Mapping
	3.2.4 Execution Times
	3.2.5 Real-Time Requirements
	3.2.6 Late Task Policy
	3.2.7 Scheduling Policy

	3.3 Illustrative Example

	4 Analysis of Monoprocessor Systems
	4.1 Problem Formulation
	4.1.1 Input
	4.1.2 Output
	4.1.3 Limitations

	4.2 Analysis Algorithm
	4.2.1 The Underlying Stochastic Process
	4.2.2 Memory Efficient Analysis Method
	4.2.3 Multiple Simultaneously Active Instantiations of the Same Task Graph
	4.2.4 Construction and Analysis Algorithm

	4.3 Experimental Results
	4.3.1 Stochastic Process Size as a Function of the Number of Tasks
	4.3.2 Stochastic Process Size as a Function of the Application Period
	4.3.3 Stochastic Process Size as a Function of the Task Dependency Degree
	4.3.4 Stochastic Process Size as a Function of the Average Number of Concurrently Active Instantiations of the Same Task Graph
	4.3.5 Rejection versus Discarding
	4.3.6 Encoding of a GSM Dedicated Signalling Channel

	4.4 Limitations and Extensions

	5 Analysis of Multiprocessor Systems
	5.1 Problem Formulation
	5.1.1 Input
	5.1.2 Output
	5.1.3 Limitations

	5.2 Approach Outline
	5.3 Intermediate Model Generation
	5.3.1 Modelling of Task Activation and Execution
	5.3.2 Modelling of Periodic Task Arrivals
	5.3.3 Modelling Deadline Misses
	5.3.4 Modelling of Task Graph Discarding
	5.3.5 Scheduling Policies

	5.4 Generation of the Marking Process
	5.5 Coxian Approximation
	5.6 Approximating Markov Chain Construction
	5.7 Extraction of Results
	5.8 Experimental Results
	5.8.1 Analysis Time as a Function of the Number of Tasks
	5.8.2 Analysis Time as a Function of the Number of Processors
	5.8.3 Memory Reduction as a Consequence of the On-the-Fly Construction of the Markov Chain Underlying the System
	5.8.4 Stochastic Process Size as a Function of the Number of Stages of the Coxian Distributions
	5.8.5 Accuracy of the Analysis as a Function of the Number of Stages of the Coxian Distributions
	5.8.6 Encoding of a GSM Dedicated Signalling Channel

	5.9 Extensions
	5.9.1 Individual Task Periods
	5.9.2 Task Rejection vs. Discarding
	5.9.3 Arbitrary Task Deadlines

	5.10 Conclusions

	6 Deadline Miss Ratio Minimisation
	6.1 Problem Formulation
	6.1.1 Input
	6.1.2 Output
	6.1.3 Limitations

	6.2 Approach Outline
	6.3 The Inappropriateness of Fixed Execution Time Models
	6.4 Mapping and Priority Assignment Heuristic
	6.4.1 The Tabu Search Based Heuristic
	6.4.2 Candidate Move Selection

	6.5 Analysis
	6.5.1 Analysis Algorithm
	6.5.2 Approximations

	6.6 Experimental Results
	6.6.1 RNS and ENS: Quality of Results
	6.6.2 RNS and ENS: Exploration Time
	6.6.3 RNS and LO-AET: Quality of Results and Exploration Time
	6.6.4 Real-Life Example: GSM Voice Decoding

	III Communication Synthesis for Networks-on-Chip
	7 Motivation and Related Work
	7.1 Motivation
	7.2 Related Work
	7.3 Highlights of Our Approach

	8 System Modelling
	8.1 Hardware Model
	8.2 Application Model
	8.3 Communication Model
	8.4 Fault Model
	8.5 Message Communication Support

	9 Energy and Fault-Aware Time Constrained Communication Synthesis for NoC
	9.1 Problem Formulation
	9.1.1 Input
	9.1.2 Output
	9.1.3 Constraints

	9.2 Approach Outline
	9.3 Communication Support Candidates
	9.4 Response Time Calculation
	9.5 Selection of Communication Supports
	9.6 Experimental Results
	9.6.1 Latency as a Function of the Number of Tasks
	9.6.2 Latency as a Function of the Imposed Message Arrival Probability
	9.6.3 Latency as a Function of the Size of the NoC and Communication Load
	9.6.4 Optimisation Time
	9.6.5 Exploiting the Time Slack for Energy Reduction
	9.6.6 Real-Life Example: An Audio/Video Encoder

	9.7 Conclusions

	10 Buffer Space Aware Communication Synthesis for NoC
	10.1 Problem Formulation
	10.1.1 Input
	10.1.2 Constraints
	10.1.3 Output

	10.2 Motivational Example
	10.3 Approach Outline
	10.3.1 Delimitation of the Design Space
	10.3.2 Exploration Strategy
	10.3.3 System Analysis Procedure

	10.4 Experimental Results
	10.4.1 Evaluation of the Solution to the CSBSDM Problem
	10.4.2 Evaluation of the Solution to the CSPBS Problem
	10.4.3 Real-Life Example: An Audio/Video Encoder

	10.5 Conclusions

	IV Conclusions
	11 Conclusions
	11.1 Applications with Stochastic Execution Times
	11.1.1 An Exact Approach for Deadline Miss Ratio Analysis
	11.1.2 An Approximate Approach for Deadline Miss Ratio Analysis
	11.1.3 Minimisation of Deadline Miss Ratios

	11.2 Transient Faults of Network-on-Chip Links
	11.2.1 Time-Constrained Energy-Efficient Communication Synthesis
	11.2.2 Communication Buffer Minimisation

	A Abbreviations
	Bibliography

