
Quality-Driven Synthesis and
Optimization of Embedded

Control Systems
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To my mother





Abstract

THIS thesis addresses several synthesis and optimization issues for
embedded control systems. Examples of such systems are au-
tomotive and avionics systems in which physical processes are

controlled by embedded computers through sensor and actuator inter-
faces. The execution of multiple control applications, spanning several
computation and communication components, leads to a complex tempo-
ral behavior that affects control quality. The relationship between system
timing and control quality is a key issue to consider across the control de-
sign and computer implementation phases in an integrated manner. We
present such an integrated framework for scheduling, controller synthe-
sis, and quality optimization for distributed embedded control systems.

At runtime, an embedded control system may need to adapt to envi-
ronmental changes that affect its workload and computational capacity.
Examples of such changes, which inherently increase the design com-
plexity, are mode changes, component failures, and resource usages of
the running control applications. For these three cases, we present trade-
offs among control quality, resource usage, and the time complexity of
design and runtime algorithms for embedded control systems.

The solutions proposed in this thesis have been validated by exten-
sive experiments. The experimental results demonstrate the efficiency
and importance of the presented techniques.

The research presented in this thesis has been funded by CUGS (the Na-
tional Graduate School in Computer Science in Sweden) and by ELLIIT
(Excellence Center at Linköping–Lund in Information Technology).
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1
Introduction

THE topic of this thesis is integrated design and optimization of
computer-based control systems. The main contribution is syn-
thesis and optimization of multiple control applications on em-

bedded computing and communication platforms, considering temporal
system properties, multiple operation modes, faults in computation re-
sources, and state-based scheduling. We shall in this chapter introduce
and motivate these research topics, as well as give a general introduc-
tion to embedded control systems and their research challenges. Last, we
shall summarize the contributions of this thesis and outline its organiza-
tion.

1.1 Motivation
Examples of prominent applications of embedded control can be found in
automotive and avionics systems. Usually, such embedded control sys-
tems comprise multiple sensors, actuators and computer networks that
are heterogeneous in terms of the processing and communication com-
ponents [NSSW05]. Several control applications execute on such dis-
tributed platforms to control physical processes through input–output in-
terfaces to sensors and actuators. The construction of control algorithms
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2 INTRODUCTION

is typically based on models of the physical processes or plants to be
controlled, as well as models of disturbances [ÅW97]. The execution
frequency of a control application is determined based on the dynami-
cal properties of the controlled plant, characteristics of disturbances, the
available computation and communication capacity of the system, and
the desired level of control quality.

The development of embedded control systems comprises not only
analysis and synthesis of controllers, but also scheduling of the tasks
and messages of the control applications on the computation nodes and
communication links, respectively, according to the scheduling policies
and communication protocols of the platform. Such modern systems ex-
hibit complex temporal behavior that potentially has a negative impact
on control performance and stability—if not properly taken into account
during control synthesis [WNT95, CHL+03]. In addition, real-time sys-
tems theory for scheduling and communication focuses mainly on anal-
ysis of worst-case temporal behavior, which is not a characteristic metric
for control performance. The general idea to cope with these problems
is to integrate temporal properties of the execution of control applica-
tions and characteristics of the platform in the synthesis of control algo-
rithms [ÅCES00, CHL+03, ÅC05, WÅÅ02], as well as to consider the
control performance in traditional system-level design problems for em-
bedded systems [KMN+00] (e.g., scheduling, communication synthesis,
and task mapping [PEP04, PEPP06]).

In the traditional design flow of control systems, the control algo-
rithm and its execution rate are developed to achieve a certain level of
control performance [ÅW97]. This is usually done independently of the
development and analysis of the underlying execution platform, thus ig-
noring its inherent impact on control performance. The next step is im-
plementation of the control applications on a certain execution platform.
Control performance is typically not considered at this stage, although,
as we have discussed, the delay characteristics of the whole system have
a strong impact on the control performance and are raised as a result of
the implementation [WNT95, CHL+03]. In many cases with multiple
control applications that share an execution platform, the implementa-
tion phase includes system-level integration, comprising task mapping,
scheduling, and communication synthesis. Worst-case delays and dead-
lines are often the only interface between control design and its computer
implementation. Although significant and important characterizations of
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real-time systems, worst-case delays occur very seldom and are thus not
appropriate indicators of control quality. This leads typically to solutions
with several problems: First, the controllers are not optimized for the
underlying execution platform. Second, the schedule for task executions
and message transmissions is not optimized with regard to control per-
formance. Current research aims to close this gap by integrating control
and computer design methods, with numerous research results already
developed.

At design time, as much information as possible regarding the appli-
cation and platform characteristics should be used to develop embedded
systems with high quality of service. The design solutions must not only
be synthesized efficiently and provide high application performance, but
they should also allow the system, at runtime, to adapt to different ap-
plication requirements, workload changes, and the variation of availabil-
ity of computation and communication components due to temporary or
permanent component failures. Another potential direction is to consider
the actual state of the controlled plant at runtime to decide the amount of
platform resources to be used to achieve a certain level of performance.
Such an adaptive mechanism can lead to better trade-offs between re-
source usage and control performance, compared to traditional periodic
control that merely considers the plant state to compute control signals.
Event-based and self-triggered control [Åst07, VFM03, WL09, AT10]
are the two classes of such adaptive control mechanisms that have been
presented in literature. These two control approaches do not require pe-
riodic execution; instead, the execution is triggered based on the state
of the controlled process. The development of nonperiodic control ap-
proaches is still in an early research phase. In addition, scheduling and
resource-management policies of state-triggered control applications are
open research problems.

1.2 Summary of Contributions
The contribution of this thesis may be viewed as four components that
are treated in Chapters 4–7, respectively. In Chapter 4, we consider mul-
tiple control applications on a distributed execution platform, comprising
several computation nodes and a communication bus. We consider time-
triggered scheduling of tasks and messages according to static sched-
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ules [XP90, Ram95, PSA97, WMF05] and TTP (Time-Triggered Pro-
tocol) [Kop97] communication. We also consider systems with priority-
based scheduling [LL73] and communication according to the CAN (Con-
troller Area Network) or FlexRay protocols [Bos91, Fle05]. The contri-
bution is an optimization framework for the synthesis of control laws,
periods, and schedules (or priorities) [SCEP09, SEPC11]. The frame-
work is fundamental to the work presented in Chapters 5 and 6.

Chapter 5 treats control systems with multiple operation modes. At
runtime, an embedded control system may switch between alternative
functional modes at predetermined time instants or as a response to ex-
ternal events. Each mode is characterized by a certain set of active
feedback-control loops. Ideally, when operating in a certain mode, the
system uses schedules and controllers that are customized for that mode,
meaning that the available computation and communication resources are
exploited optimally in terms of control performance for that mode. The
main design difficulty is caused by the exponential number of modes to
be considered at design time, meaning that it is not practical to synthe-
size customized solutions for all possible modes. Design solutions for
some few modes, however, can be used to operate the system in several
modes, although with suboptimal control performance. The contribution
of Chapter 5 is a synthesis method that trades control performance with
the amount of spent design time and the space needed to store schedules
and controllers in the memory of the underlying distributed execution
platform [SEPC09].

In Chapter 6, we consider variations in the available computation
capacity due to faults in computation nodes. The contribution is a de-
sign framework that ensures reliable execution and a certain level of
control performance, even if some computation nodes fail [SBEP11].
When a node fails, the configuration—the set of operational computa-
tion nodes—of the underlying distributed system changes. The system
must adapt to this new situation by activating and executing some new
tasks on the operational nodes—tasks that were running on failed com-
putation nodes. The task mapping, schedules, and controllers must be
constructed for this new configuration at design time. The design-space
complexity, which is due to the exponential number of configurations
that may appear as a consequence of node failures, leads to unaffordable
design time and large memory requirements to store information related
to mappings, schedules, and controllers. We show that it is sufficient to
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synthesize solutions for a number of minimal configurations to achieve
fault tolerance. Further, we discuss an approach to generate mappings,
schedules, and controllers for additional configurations of the platform to
improve control quality, relative to the minimum level already provided
by the minimal configurations.

The last contribution of this thesis is presented in Chapter 7. We
consider self-triggered control as an alternative to periodic control im-
plementations. Self-triggered control has been introduced recently and
enables efficient use of computation and communication resources by
considering the sampled plant states to determine resource requirements
at runtime. To exploit these advantages in the context of multiple control
applications running on a uniprocessor platform, we present a runtime-
scheduler component [SEP+10, SEPC10] for adaptive resource manage-
ment. The optimization objective is to find appropriate trade-offs be-
tween control performance and resource usage.

All proposed techniques in this thesis have been validated by exten-
sive experiments, which are presented and discussed for each contribu-
tion separately in the corresponding chapter.

1.3 List of Publications
Parts of the contents of this thesis are presented in the following publica-
tions:

■ Soheil Samii, Sergiu Rafiliu, Petru Eles, Zebo Peng. “A Simula-
tion Methodology for Worst-Case Response Time Estimation of
Distributed Real-Time Systems,” Design, Automation and Test in
Europe Conference, Münich, Germany, March 2008.

■ Soheil Samii, Anton Cervin, Petru Eles, Zebo Peng. “Integrated
Scheduling and Synthesis of Control Applications on Distributed
Embedded Systems,” Design, Automation and Test in Europe Con-
ference, Nice, France, April 2009.

■ Soheil Samii, Petru Eles, Zebo Peng, Anton Cervin. “Quality-
Driven Synthesis of Embedded Multi-Mode Control Systems,”De-
sign Automation Conference, San Francisco, California, USA, July
2009.
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■ Soheil Samii, Petru Eles, Zebo Peng, Anton Cervin. “Runtime
Trade-Offs Between Control Performance and Resource Usage in
Embedded Self-Triggered Control Systems”, Workshop on Adap-
tive Resource Management, Stockholm, Sweden, April 2010.

■ Soheil Samii, Petru Eles, Zebo Peng, Paulo Tabuada, Anton Cervin.
“Dynamic Scheduling and Control-Quality Optimization of Self-
Triggered Control Applications,” IEEE Real-Time Systems Sympo-
sium, San Diego, California, USA, December 2010.

■ Soheil Samii, Petru Eles, Zebo Peng, Anton Cervin. “Design Opti-
mization and Synthesis of FlexRay Parameters for Embedded Con-
trol Applications,” IEEE International Symposium on Electronic
Design, Test and Applications, Queenstown, New Zealand, Jan-
uary 2011.

■ Soheil Samii, Unmesh D. Bordoloi, Petru Eles, Zebo Peng. “Control-
Quality Optimization of Distributed Embedded Control Systems
with Adaptive Fault Tolerance,”Workshop on Adaptive and Recon-
figurable Embedded Systems, Chicago, Illinois, USA, April 2011.

■ Amir Aminifar, Soheil Samii, Petru Eles, Zebo Peng. “Control-
Quality Driven Task Mapping for Distributed Embedded Control
Systems,” IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, Toyama, Japan, Au-
gust 2011.

■ Soheil Samii, Unmesh D. Bordoloi, Petru Eles, Zebo Peng, Anton
Cervin. “Control-Quality Optimization of Distributed Embedded
Systems with Adaptive Fault Tolerance.” Under submission.

■ Soheil Samii, Anton Cervin, Petru Eles, Zebo Peng. “Integrated
Scheduling and Synthesis of Distributed Embedded Control Ap-
plications.” Under submission.

The following publications are not covered by this thesis but are generally
related to the field of embedded systems development:

■ Soheil Samii, Erik Larsson, Krishnendu Chakrabarty, Zebo Peng.
“Cycle-Accurate Test Power Modeling and its Application to SoC
Test Scheduling,” International Test Conference, Santa Barbara,
California, USA, October 2006.
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■ Soheil Samii, Mikko Selkälä, Erik Larsson, Krishnendu Chakrabarty,
Zebo Peng. “Cycle-Accurate Test Power Modeling and its Ap-
plication to SoC Test Architecture Design and Scheduling,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 27, No. 5, May 2008.

■ Soheil Samii, Yanfei Yin, Zebo Peng, Petru Eles, Yuanping Zhang.
“Immune Genetic Algorithms for Optimization of Task Priorities
and FlexRay Frame Identifiers,” IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications,
Beijing, China, August 2009.

1.4 Thesis Organization
This thesis is organized in nine chapters. In the next chapter, we shall
discuss related research results in the area of embedded and real-time
control systems. Specifically, we shall focus on methodologies that in-
tegrate control theory and computer systems design and optimization.
Chapter 2 also highlights the differences and contributions of this thesis
related to current state of theory and practice in the development of em-
bedded control systems. In Chapter 3, we shall discuss preliminaries re-
lated to controller analysis and synthesis, as well as notation and models
related to control applications and their distributed execution platforms.
These preliminaries serve as a common foundation for the contributions
presented in Chapters 4–7.

Chapter 4 presents an integrated optimization framework for the syn-
thesis of controllers and schedules for tasks and messages in distributed
control systems. In Chapter 5, we further develop the material in Chap-
ter 4 towards synthesis of multi-mode control systems. Another direc-
tion, for the synthesis of fault-tolerant control systems, is presented in
Chapter 6. The last contribution of this thesis is related to scheduling of
multiple self-triggered control tasks and is presented in Chapter 7.

The conclusions are presented in Chapter 8, where we relate the ma-
terial in this thesis with the general research and development of embed-
ded control systems. In Chapter 9, we outline several directions for future
research that are closely related to the material presented in this thesis.
Appendix A lists selected notation with page references.





2
Background and Related Work

THE purpose of this chapter is to review the research efforts that
have been made towards integrated design and optimization of
control and computer systems. In this context of computer–

control co-design, there are several design parameters of interest. Two of
them are related directly to the controller: the control period that deter-
mines the rate of sampling, computation, and actuation; and the control
law (also referred to as the control algorithm) that determines the map-
ping from sensor measurements to actuator values. Other synthesis and
optimization issues related to the implementation of embedded control
applications are, for example, task scheduling on computation nodes and
management of messages on the communication bus of the platform.

In the area of integrated control and computer systems design, several
previously published research results treat some of the design issues of
computer-based control systems in different contexts. In addition, it is
becoming increasingly important to construct systems that are adaptive
in several regards—for example, related to mode changes, component
failures, and states of the physical processes under control. This is due to
the varying operational environment of embedded control systems.

This chapter is organized in five sections. We discuss the traditional
design flow of control systems, as well as system-level optimization of

9
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embedded computing systems in Section 2.1. In Section 2.2, we present
the current state of computer–control co-design research for periodic con-
trol systems on uniprocessor and distributed computation platforms. Fur-
ther, in Section 2.3, we shall review the published research results in the
area of adaptive embedded systems for control applications. As a spe-
cial class of adaptive embedded platforms and methodologies, we shall
discuss fault-tolerant computing for control applications in Section 2.4.
Last, in Section 2.5, we shall consider two execution models as alterna-
tives to periodic control in resource-constrained systems—namely, event-
based and self-triggered control.

2.1 Traditional Design Flow
Embedded control systems have during the recent decades been predom-
inantly designed and implemented as periodic tasks that read sensors,
compute control signals, and write to actuators [ÅW97]. Two main ac-
tivities are performed at design time prior to deployment of the control
system: First, controllers and algorithms are synthesized, and second,
these are implemented on a given computation platform. In the tradi-
tional design flow of embedded control systems, these two activities are
treated separately and independently. This leads to a large gap and weak
interface between control design and computer implementation, subse-
quently limiting the control performance that can be achieved.

2.1.1 Controller Synthesis

The first design activity—controller synthesis—is twofold: First, a sam-
pling period is chosen, and second, a control law is synthesized. From a
control engineering viewpoint, the control period is decided merely based
on the dynamics of the physical process to be controlled as well as the ef-
fect of the period on control performance. Rules of thumb, based on plant
dynamics, are often used to select the controller period [ÅW97]. The
amount of available computation and communication bandwidth may
also impact the selection of controller periods. Seto et al. [SLSS96,
SLSS01] presented an approach for systematic optimization and trade-off
between period selection, control performance, and computation band-
width on a uniprocessor platform with schedulability constraints.

The synthesis of the control law means that a mapping from the mea-
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sured plant outputs to the actual control signal is decided. Although there
are implementation factors such as delay and jitter that degrade control
performance, these are often neglected, or assumed to be small and con-
stant, during controller synthesis. The control tasks, which implement
the synthesized controllers, execute according to the control law at a rate
given by the chosen period.

2.1.2 Computer Implementation

The second design activity is the implementation of one or several con-
trol applications on a given computation platform, which may consist of
a single computation component or of multiple computation nodes con-
nected in a network. For the case of distributed embedded platforms, the
second design activity comprises mapping and scheduling of tasks and
messages on the computation nodes and communication links, respec-
tively. This activity integrates several control applications on a platform
with multiple computation and communication components. Tasks are
mapped to computation nodes, and the system is scheduled and config-
ured according to the scheduling policy and communication protocol of
the platform.

Distributed execution platforms, which consist of several computa-
tion nodes connected to communication buses, are very common in, for
example, automotive and avionics systems. The tasks on each node are
scheduled either at design time (static cyclic scheduling [Kop97]) or at
runtime (e.g., based on priorities [LL73]). Communication of messages
on the bus is performed by the communication controllers according to
the protocol adopted by the execution platform. Common communica-
tion protocols in automotive embedded systems are the time-triggered
protocol TTP [Kop97], which is based on a TDMA1 scheme and static
schedules for message transmissions, and the event-triggered protocol
CAN [Bos91], which is based on an arbitration process that, for exam-
ple, can be driven by static message priorities. Especially in the automo-
tive systems domain, the FlexRay protocol [Fle05] is replacing TTP and
CAN. Some of the reasons are higher bandwidth and the combination of
time-driven and event-driven communication.

The communication configuration of the system has an inherent ef-
fect on the system timing and, in turn, the quality of the control appli-

1Time division multiple access.
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cations. The synthesis of schedule tables for messages in time-triggered
communication systems, and selection of priorities or frame identifiers
for event-driven communication, are therefore of critical importance dur-
ing the design of embedded control systems.

Depending on the scheduling policy and communication protocol
of the platform, the implementation-related activities to be performed
at design time include synthesis of schedule tables, assignment of pri-
orities to tasks and messages, and assignment of frame identifiers to
messages. Pop et al. [PEPP06, PEP04] proposed a design optimization
framework for such synthesis of distributed embedded systems with strict
timing constraints, supporting time-triggered execution and communica-
tion with schedule tables and the TTP communication protocol, as well
as event-driven scheduling with priorities and CAN-based communica-
tion. The application domain is hard real-time systems for which dead-
lines must be met and, if possible, worst-case delays are to be minimized.
Di Natale and Stankovic [DS00] proposed a simulated annealing-based
method that, given the application periods, constructs a static schedule to
minimize the jitter in distributed embedded systems with precedence and
timing constraints. They did not, however, address the impact of the tim-
ing jitter on the actual control performance—their work did not focus on
control applications in particular but is general for application domains
for which jitter is a central component of the performance metric.

Bus-access optimization has been elaborated in literature for vari-
ous communication protocols in the context of hard and soft real-time
systems [EDPP00, GG95, PPEP07, SYP+09]. Some other design frame-
works for hard real-time systems have been presented for period opti-
mization [DZD+07]. Design frameworks based on integer linear pro-
gramming have been used to co-synthesize task mapping and priorities
for distributed real-time systems with hard deadlines [ZZDS07].

The design optimization methods we have discussed in this section
can potentially be used for control applications. However, control per-
formance is not well reflected by the optimization parameters (periods,
worst-case temporal behavior, and hard deadlines).

2.1.3 Problems with the Traditional Design Flow

In the traditional design flow, control laws are synthesized based on the
plant dynamics, characteristics of disturbances, and the selected period.
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Delays in the control loop due to computation and communication are
typically not accounted for. At the very best, delays are assumed to be
short and constant. Mapping and scheduling of tasks and messages is per-
formed based on worst-case delays and deadlines. Worst-case temporal
behavior and deadlines are not accurate representatives of control perfor-
mance [WNT95], although these may provide the sufficient constraints
regarding stability requirements [KL04]. The execution and communica-
tion of the control tasks introduce timing delays that not only are longer
than assumed in the control design, but also varying during execution.
This variation in each period of the control applications is due to the
scheduling and communication in the system. Resource sharing by sev-
eral applications generally leads to complex temporal behavior and is
inherent in modern embedded systems with multiple computation and
communication components. The longer and varying timing delays de-
grade the overall control performance, which, in the worst case, can jeop-
ardize stability of the control loops [WNT95]. This problem is especially
relevant for modern embedded systems with the increasing volume of
functionality and sharing of computation and communication resources.
Thus, the delay distribution is a more significant factor of control per-
formance than worst-case delays and deadlines. The delay distribution
characterizes not only the worst-case delay but also the occurrence fre-
quency of delays in general. To optimize control quality, design tools
and methodologies must consider more elaborate models of delay than
worst-case delays.

The temporal behavior of embedded systems with several computa-
tion and communication units has been studied by the real-time systems
community for several decades. The main focus has been analysis of
worst-case timing for systems with various scheduling policies and com-
munication protocols, starting with the paper by Liu and Layland [LL73]
on schedulability conditions for rate-monotonic and earliest-deadline-
first scheduling on periodic, uniprocessor systems. Sha et al. [SAÅ+04]
surveyed the key results in real-time scheduling theory over three decades
of research, since the results of Liu and Layland. Fixed-point itera-
tion is one of the successful techniques to analyze response times in
real-time systems [JP86, ABR+93]. Various methods for timing anal-
ysis of uniprocessor and distributed real-time systems have been pro-
posed over the years [TC94, PG98, Fid98, CKT03a, CKT+03b, PEP03,
RJE03, HHJ+05, PEPP06]. Response-time analysis of real-time com-
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munication has also been proposed for systems with CAN [DBBL07]
and FlexRay [PPE+08, HBC+07]. Relatively little work has been done
to make use of knowledge and analysis of system timing in the design
phase of controllers.

In addition to the computation delay of a control application itself, re-
source sharing and communication contribute to the delay in the control
loop. It is already well known that not only the average delay impacts
the control performance, but also the delay variance or jitter [WNT95,
Tör98, ÅCES00, CHL+03]. The variance, in particular, is difficult to
compensate for in the actual control law. When such compensations can
be made, the control law is typically time varying [NBW98, MFFR01].
The restriction that the delays must be smaller than the sampling pe-
riod is also common [NBW98], but is usually not applicable in the con-
text of distributed control with communication in the control loop. In
addition, time stamps are needed to implement jitter-compensating con-
trollers [Lin02].

To achieve high performance in distributed embedded control sys-
tems, it is important to consider the system timing during controller syn-
thesis, and to consider the control performance during system scheduling.
Such control–scheduling co-design problems [ÅCES00, ÅC05, ÅCH05,
ACSF10] have become important research directions in recent years.
Furthermore, the interaction between control and computation has been
emphasized and acknowledged as an important area of research in the
context of cyber-physical systems with tight interaction between the com-
puter system and its operational environment [Wol09, Lee09].

2.2 Integrated Control and Computing
The periodic application model with hard deadlines is a convenient in-
terface between controller design and its computer implementation but
it also abstracts away the implementation-induced delays and jitters that
affect the control performance significantly. Nevertheless, until recently,
hard deadlines have been the interface between control design and com-
puter implementation of control applications. As has been pointed out
by Wittenmark et al. [WNT95], delay and jitter in sampling, as well as
between controller execution and actuation, have a negative impact on
control performance and may—in the worst-case—lead to an unstable



2.2 INTEGRATED CONTROL AND COMPUTING 15

closed-loop system. This problem has to be addressed by considering the
time-varying delays and their impact on control performance both during
controller design and during scheduling of computations and communi-
cations. This has opened up a relatively new research area on the border
between control and computer engineering.

In their seminal work, Seto et al. [SLSS96, SLSS01] studied unipro-
cessor systems that run several control tasks. They solved the problem
of optimal period assignment to each controller, considering schedula-
bility constraints for rate-monotonic and earliest-deadline-first schedul-
ing [LL73]. The optimization objective is to maximize the performance
of the running controllers. Their approach does not consider the delays in
the control loop and their impact on the control performance. Recently,
Bini and Cervin [BC08] proposed an approximate response-time analysis
as a method for the estimation of the control delay in a uniprocessor sys-
tem with multiple control tasks. Using a control-performance function
that is linear in the sampling periods and the estimated, constant control
delays, the authors used analytical methods to assign controller periods
that give optimal control performance. Bini and Di Natale [BD05] ex-
tended the work by Seto et al. [SLSS96, SLSS01] towards priority-based
systems with arbitrary fixed priorities. Wu et al. [WBBC10] presented
a solution to the period-selection problem for uniprocessor control sys-
tems with earliest-deadline-first scheduling. With the motivation of large
execution-time variations, Sha et al. [SLCB00] extended the work on pe-
riod assignment by Seto et al. [SLSS96], leading to better CPU utilization
at runtime based on elastic scheduling [CBS00]. Related work on inte-
grated control and uniprocessor scheduling by Palopoli et al. [PPS+02]
addresses robustness optimization of multiple control applications on a
uniprocessor platform. The optimization results are the periods and the
control laws. Another step was taken by Zhang et al. [ZSWM08] for pe-
riod assignment to multiple control tasks with the objective to optimize
robustness and power consumption under rate-monotonic, uniprocessor
scheduling.

Other important results in the context of control–scheduling co-design
for uniprocessor systems make it possible to divide the control tasks
into several subtasks to improve control performance [Cer99]. Further-
more, Cervin et al. [CLE+04] combined stability conditions related to
sampling–actuation jitter and response-time analysis for uniprocessor sys-
tems for the assignment of periods to multiple control tasks. Cervin and
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Eker proposed a complementary scheduling policy—the control server—
to eliminate jitter in uniprocessor control systems [CE05]. For static
cyclic scheduling on uniprocessor execution platforms, Rehbinder and
Sanfridson [RS00] proposed a method that computes an offline sched-
ule and the corresponding control actions for multiple independent con-
trol tasks. The result of the optimization is a static cyclic schedule and
time-varying controllers. Buttazzo and Cervin [BC07] discuss three ap-
proaches to tackle the problem of timing jitter (the difference between
worst-case and best-case delay). The first approach is to cancel timing
jitter completely by actuating the control input at the end of the task pe-
riods. The second method reduces jitter and delay by appropriate assign-
ment of task deadlines in uniprocessor systems with deadline-monotonic
or earliest-deadline-first scheduling. The third method is to adopt non-
preemptive execution. The second approach is also taken by Balbas-
tre et al. [BRVC04] to reduce control-delay jitter.

For control loops that are closed over computer networks, stability
requirements based on communication delays and packet dropouts were
provided by Zhang et al. [ZBP01]. Research results on integrated control
and computer systems design for distributed control applications have
started to appear recently. For example, Ben Gaid et al. [BCH06] consid-
ered static scheduling of control-signal transmission on a communication
channel for a single control loop with given sampling period. The results
of the optimization are a finite sequence of control signals and start times
for their transmissions over the communication channel to the actuator.
Based on state feedback and a resource-allocation method [MLB+04],
Velasco et al. [VMC+06] presented a bandwidth-management and op-
timization framework for CAN-based networked control systems, with-
out considering delay characteristics and their impact on control perfor-
mance. Goswami et al. [GSC11a] presented a framework for the design
of controllers and communication schedules that satisfy stability condi-
tions. The communication schedules are chosen such that the number of
unstable samples is upper-bounded in an arbitrary time interval. Such
communication schedules were found experimentally through control–
communication co-simulations for FlexRay. Voit et al. [VSG+10] pre-
sented an optimization framework for distributed control systems, where
multiple performance metrics are considered under the influence of the
communication schedule. For each performance metric, a subset of the
schedule parameters is of importance during optimization. Further, the
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authors derived closed-form expressions of worst-case message delays as
functions of the schedule parameters. Such design frameworks are rele-
vant for control applications for which worst-case temporal behavior is a
major factor in the control-performance metric.

As we have noticed, a significant amount of research has been already
conducted towards integrated control–computer design methods. Espe-
cially for the case of distributed control systems, however, several param-
eters have not been considered by the design and optimization method-
ologies we have mentioned in this chapter. Most works in this context
have focused on co-design of controllers and communication schedules,
under the assumption that periods are given. The global task and message
schedule has not been considered in the existing frameworks. Also, there
is still a gap between the details of the delay characteristics and the delay
information that is used to characterize the control performance during
optimization. Chapter 4 presents an integrated design framework towards
the optimization of periods, schedules, and controllers that execute on
distributed platforms with static cyclic or priority-based scheduling.

2.3 Adaptive Platforms for Control
Although many control systems are implemented on systems with static
configuration of schedule parameters (e.g., priorities and schedule tables)
and other parameters related to resource usage of the running control
applications, there are situations in which appropriate mechanisms are
needed to adapt to workload and environmental changes during system
operation. Some examples of such situations are temporary overloads in
computation and communication resources, large variations in execution
times, and variations in external disturbances. To adapt to such changes,
the system needs to be prepared to solve resource-management problems
at runtime. Several such solutions have been proposed to maintain an op-
erational and stable control system with a certain level of quality. In addi-
tion to performance and quality of service, it is important to consider the
time overhead of adaptive mechanisms and to keep it as low as possible—
for example, by solving most parts of the resource-management problem
at design time.

The controller period is one of the parameters that can be adjusted at
runtime to adapt to changes in the computational demand of the running
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control applications. Runtime methods have been proposed [EHÅ00,
CEBÅ02] to adjust controller periods and schedule the execution of con-
trol tasks on uniprocessor platforms. The optimization objective is given
by a quadratic cost function, representing the control performance of
multiple control tasks. The solution is based on feedback from the con-
trolled plants, as well as feedforward information on the workload to the
task scheduler that adjusts periods. In various contexts, several other
approaches for adaptive period assignment have been presented [HC05,
CVMC10, CMV+06]. Shin and Meissner [SM99] proposed algorithms
for task reallocation and runtime assignment of task periods to be used
in multiprocessor control systems with transient overloads and failures—
however, with no consideration of delay and jitter effects on control per-
formance.

Martı́ et al. [MLB+09] presented a resource-management framework,
where the main contribution is feedback from controlled plants to the
resource manager. The system allocates resources to the control tasks
at runtime based on the measured state of the controlled plants. But-
tazzo et al. [CBS02, BVM07] followed a similar line of motivation, ex-
tended towards control-quality optimization, for resource management
in overloaded real-time systems. Martı́ et al. [MYV+04] formulated a
message-scheduling problem to be solved at runtime, where the goal is
to maximize the overall control quality in networked control systems.
The optimization variables are the network bandwidths to be assigned
to the individual control loops. Ben Gaid et al. [BCH09] presented a
method that schedules control tasks based on feedback of plant states.
The method is based on a runtime-scheduling heuristic that aims to op-
timize control performance by reacting to disturbances and selecting ap-
propriate task schedules; a set of such static schedules are generated at
design time [BCH06] and stored in the memory of the underlying execu-
tion platform. Henriksson et al. [HCÅÅ02a, HCÅÅ02b] presented solu-
tions for feedback scheduling of multiple model-predictive control tasks
on uniprocessor platforms. Model-predictive control is an approach in
which control signals are optimized iteratively at runtime. An intrinsic
property of such control approaches is the possibility to find trade-offs
between execution time of the control task and the quality of the pro-
duced control signal. The feedback scheduler determines the order of
execution of multiple periodic control tasks and decides when to termi-
nate the optimization of a running control task based on its CPU usage
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and control performance.
A multi-mode implementation of control applications is presented

by Goswami et al. [GSC11b]. The authors characterize a control appli-
cation by two modes: a transient phase and a steady-state phase. It is
argued that a control application in a transient phase is more prone to
performance degradations due to large and varying delays, compared to
when it is in steady-state phase and the controlled plant is close to equi-
librium. Considering distributed execution platforms with communica-
tion in both time-driven and event-driven communication segments (e.g,
TTCAN [LH02] or FlexRay [Fle05]), Goswami et al. [GSC11b] pro-
posed to implement the message communication implied by the control
applications during their transient phase in the time-driven TDMA-based
communication segment, which provides predictability. The steady-state
phase is typically more robust to large delay variations and is thus im-
plemented in the event-driven segment, which typically leads to more
complex temporal behavior than the time-driven segment of FlexRay.

We have discussed several methods for runtime management of re-
sources in embedded control systems. For the related approaches we have
discussed in this section, the need for adaptation is motivated by varia-
tions in workload, overload scenarios, and disturbances. In Chapter 5,
the resource-management problem is raised by the runtime-variation of
the number of controlled plants. Appropriate mechanisms are needed
to implement such multi-mode control systems for which each mode is
characterized by a set of running control applications and needs a cus-
tomized resource-allocation solution for optimized control quality.

2.4 Fault-Tolerant Computing and Control
The aggressive shrinking of transistor sizes and the environmental fac-
tors of modern embedded computing systems make electronic devices
increasingly prone to faults [Bor05, BC11]. Broadly, faults may be clas-
sified as transient or permanent. Transient faults (e.g., caused by electro-
magnetic interference) manifest themselves for a short time and then dis-
appear without causing permanent damage to devices. Permanent faults,
however, sustain for much longer time intervals, or—in the worst case—
for the remaining lifetime of the system. Permanent faults can occur due
to aging, wear out, design defects, or manufacturing defects [KK07].
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Because of the feedback mechanism in control loops, temporary per-
formance degradations caused by transient faults are often automatically
remedied in the next sampling instants. In addition, controllers are often
synthesized with a certain amount of robustness to modeling errors and
disturbances; transient faults may be considered as one possible moti-
vation for synthesis of robust controllers. Integrated real-time schedul-
ing and robust control have been studied by Palopolo et al. [PPS+02].
They investigated stability of control systems in the presence of pertur-
bations in the control law. Recent research has also dealt with transient
faults explicitly when analyzing and synthesizing control systems. Con-
trol over computer networks with noisy communication channels has re-
ceived attention in literature [HNX07, SSF+07] with recent results by
Sundaram et al. [SCV+11]. Robust control in the context of unspecified
disturbances has been developed by Majumdar et al. [MRT11]. The au-
thors applied their framework to control synthesis for robustness against
transient faults. Another approach to fault tolerance in the context of
embedded systems is to first assess the impact of faults on the appli-
cation performance, and then take appropriate fault-tolerance measures.
Towards such assessments, Skarin et al. [SBK10a, SBK10b] developed
fault injection-based tools for experimental evaluation and assessment of
system operation in the presence of different types of faults.

In the context of distributed control systems, the proposed analysis
and synthesis methods in literature assume that computation nodes oper-
ate without permanent or long-term faults. In case a computation node
fails due to a permanent fault, applications that are controlled by tasks
running on this node will potentially become unstable. To avoid such sit-
uations, these tasks must now be activated and executed on other nodes.
In addition to appropriate fault-detection mechanisms [Kop97], the sys-
tem must adapt to situations in which nodes fail, as well as to reintegrate
nodes in the system when these are operational again. It is thus important
to construct control systems that are resilient to node failures and, in ad-
dition, provide as high control performance as possible with the available
computation and communication resources. We shall address this prob-
lem in Chapter 6 by appropriate synthesis and optimization methods, as
well as task replication and migration as reconfiguration mechanisms to
be used at runtime in case nodes fail. Related approaches for embed-
ded systems design and permanent faults, relying on task remapping by
replication and migration, have been proposed by Pinello et al. [PCS08]
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and Lee et al. [LKP+10]. These works differ significantly as compared
to the material presented in Chapter 6. First, none of them focused on
control-quality optimization. Further, the related methods consider a set
of predefined fault scenarios. We present methods that guarantee proper
operation in fault scenarios that are derived directly based on the inherent
design constraints for embedded control systems. Finally, the proposed
heuristic in Chapter 6 explores the design space judiciously to improve
control quality in an incremental manner at design time.

2.5 Paradigms for Nonperiodic Control
For many control systems, it may be important to minimize the number
of controller executions, while still providing a certain level of control
performance. This is due to various costs related to sensing, computa-
tion, and actuation (e.g., computation time, communication bandwidth,
and energy consumption). In addition to optimize control performance,
it is thus important for the system to minimize the resource usage of the
control tasks, in order to accommodate several control applications on
a limited amount of computation and communication resources and, if
needed, provide a certain amount of bandwidth to other applications. Al-
though integrated computing and periodic control has been elaborated
in literature—at least to a certain extent—periodic implementations can
result in inefficient resource usage in many execution scenarios. The
control tasks are triggered and executed periodically merely based on the
elapsed time and not based on the states of the controlled plants. This
may be inefficient for two reasons: First, resources are used unnecessar-
ily much when a plant is close to equilibrium. Second, depending on
the selected execution period, the resources might be used too little to
provide a reasonable level of control quality when a plant is far from the
desired state in equilibrium. The two inefficiencies also arise in situations
with varying amount of external disturbance and noise on the system.

Event-based and self-triggered control are the two main approaches
that have been proposed recently to address inefficient resource usage
in periodic control systems. The main idea is that execution is not only
triggered by the elapsed time—this is the only triggering parameter in pe-
riodic control—but also, and more importantly, by the actual state of the
controlled process. It has been demonstrated that such adaptive, state-
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based control approaches can lead to better control performance than
their periodic counterpart, given a certain level of resource usage [Åst07].
Another viewpoint is that a certain level of control performance can
be achieved with an event-based or self-triggered implementation with
lower resource usage than a corresponding periodic implementation. As
a result, compared to periodic control, event-based and self-triggered
control can result in implementations with less number of sensing and
actuation instants, lower usage of computation and communication re-
sources, and lower energy consumption of the system at runtime. In addi-
tion, other application tasks (e.g., best-effort tasks) on the same platform
as the control tasks can be allocated more resources.

2.5.1 Event-Based Control

Event-based control [Åst07] is an approach that can result in similar con-
trol performance as periodic control but with relaxed requirements on
computation capacity. Several such approaches have been presented in
literature in recent years [ÅB99, Årz99, Tab07, HJC08, CH08, HSv08,
VMB09]. In event-based control, plant states are measured continuously
to generate control events when needed, which then activate the control
tasks that perform sampling, computation, and actuation. Periodic con-
trol systems can be considered as a special class of event-based systems
that generate control events with a constant time period that is chosen
independently of the states of the controlled plant.

Åström and Bernhardsson [ÅB99] motivated the use of event-based
control for linear systems with one state perturbed by random noise. It
was assumed that control events are generated whenever the plant state
leaves a given region of the state space. The control action, which is
executed as a response to events, is an impulse that resets the plant state
to zero instantaneously. In the worst-case, infinite number of events may
be generated in some time interval, making it impossible to bound the
resource requirements of the underlying computation platform on which
the applications execute.

To overcome the problem of unbounded resource requirements of
event-based control, several researchers proposed to use sporadic control,
by defining a minimum time interval between two control events [HJC08,
CJ08]; this is a combination of event-based impulse control with sporadic
real-time tasks. The sporadic control paradigm has also been applied
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to scheduling of networked control systems [CH08]. Other event-based
control strategies have been proposed over the years [HSv08, Cog09,
LL10], although no resource-management framework to accommodate
multiple event-based control loops on a shared platform has been pre-
sented in literature. Tabuada [Tab07] presented an event-triggered con-
trol method and further presented co-schedulability requirements for mul-
tiple real-time tasks with hard deadlines and a single event-triggered con-
trol task that executes with highest priority on a uniprocessor platform
with fixed-priority scheduling.

While reducing resource usage, event-based control loops typically
require specialized hardware—for example, ASIC (application-specific
integrated circuit) implementations for continuous measurement or very
high-rate sampling of plant states to generate control events. In event-
based control systems, a control event usually implies that the control
task has immediate or very urgent need to execute—and to communicate,
if the control loop is closed over a network. This imposes very tight
constraints on resource management and scheduling components in case
multiple control applications execute on a shared platform.

2.5.2 Self-Triggered Control

Self-triggered control [VFM03, WL09, AT10, VMB08] is an alternative
that leads to similar reduced levels of resource usage as event-based con-
trol, but without dedicated event-generator resources. A self-triggered
control task computes deadlines on its future executions, by using the
sampled states and the dynamical properties of the controlled system,
thus canceling the need of specialized hardware components for event
generation. The deadlines are computed based on stability requirements
or other specifications of minimum control performance. Because the
deadline of the next execution of a task is computed already at the end
of the latest completed execution, a resource manager has, compared to
event-based control systems, a larger time window and more options for
task scheduling and optimization of control performance and resource
usage.

Anta and Tabuada developed a method for self-triggered control of
nonlinear systems [AT10, AT08a, AT08b]. An implementation of this
self-triggered control approach on CAN-based embedded platforms has
also been proposed [AT09]. Wang and Lemmon [WL09] developed a
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theory for self-triggered control of linear systems, considering worst-
case bounds on state disturbances. The main issues addressed in their
work are release and completion times of control tasks, and, more specif-
ically, conditions on the temporal behavior of self-triggered control sys-
tems to meet stability and performance requirements. These conditions
on release and completion times depend on the sampled plant state, the
model of the plant, and a given performance index. The timing require-
ments can thus be computed by the self-triggered control task itself. Fur-
ther, Almeida et al. [ASP10] presented model-based control with self-
triggered execution to further improve control performance compared to
the already presented approaches in literature.

Although several methods for event-based and self-triggered control
have been presented recently, the interaction and resource-sharing among
multiple control loops has not received much attention in literature. In
Chapter 7, we present a resource-management framework that can be
used to accommodate multiple self-triggered control tasks on a given
uniprocessor platform. We shall in that chapter investigate appropriate
trade-offs between control performance and resource usage.



3
Preliminaries

THIS chapter presents preliminaries related to models and theory for
control applications and their underlying distributed execution
platform. We shall also introduce notation that is common for

the remainder of this thesis. In Section 3.1, we shall discuss control
design, modeling, and performance. Further, we present the application
and platform model in Section 3.2.

3.1 Control Model and Design
In this section, we shall introduce the plant and disturbance models to
be considered throughout this thesis. We continue with a discussion of
the structure and performance of a feedback-control loop, including a
physical plant and a controller implementation. The section ends with a
discussion of controller synthesis in relation to the introduced metric of
control performance.

3.1.1 Feedback-Control Loop

Figure 3.1 shows a block diagram of a typical feedback-control loop,
including a controller and a plant, or physical process, to be controlled.

25
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Figure 3.1: Structure of a feedback-control loop comprising
a controller and the physical plant to be controlled. The con-
troller communicates with sensors and actuators to implement
a state observer and a state-feedback component.

The control problem is to control the state x of the plant to the desired
state xd in the presence of continuous disturbances v acting on the plant.
Sensors are connected to the plant in order to measure its outputs. These
measurements, including measurement errors of the sensors, are inputs
to the controller block, depicted in Figure 3.1 with a dashed rectangle.
In practice, it is not possible to measure all plant states. Therefore, the
controller includes an observer component that produces an estimate x̂
of the plant state, based on the measured plant outputs y. The feedback-
gain block, denoted with L in the figure, computes the control signal u
to be actuated based on the estimated error xd− x̂. The dashed rectangle
in Figure 3.1 thus shows the control law

u : Rny −→ R
nu ,

where ny and nu, respectively, are the number of measured plant outputs
and the number of control signals applied to the plant. We shall in the
continuation, depending on the context, use the notation u to refer to the
control law and to refer to the actual plant input as well. When u is used
to denote the plant input, it is a function of time

u : [0,∞) −→ R
nu .

The desired state xd is typically given or is computed by a sepa-
rate control component based on reference signals and the model of the
controlled plant. In the continuation, without loss of generality for the
linear time-invariant systems considered in this thesis, we shall consider
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xd = 0; the plant model is described in Section 3.1.2. In addition to state
feedback, control applications can include additive feedforward informa-
tion in the control signal. Feedforward is typically used to reduce mea-
surable disturbances or to improve response to command signals. The
feedback and feedforward components are usually designed separately
and are evaluated against different performance metrics.

Control applications are typically implemented as periodic activities
comprising computation and communication. Thus, a controller of a
plant is characterized by a sampling period and a control law. Periodic
implementations are very common in most embedded control systems
(adaptive, event-based control strategies are emerging in application do-
mains in which computation and communication resources are very lim-
ited [Åst07]; this is the topic of Chapter 7). The controller is imple-
mented by one or several tasks that sample and process the plant outputs
y periodically, and subsequently compute and update the control signal
u according to the control law.

3.1.2 Plant Model

Throughout this thesis, we shall denote the set of plants to be controlled
by P. Let us also introduce its index set IP. The synthesis problem is
to construct controllers (periods and control laws) and to accommodate
these on a given execution platform. Each plant Pi (i ∈ IP) is modeled
as a continuous-time linear system [ÅW97]. Specifically, this model is
given by a set of differential equations

ẋi(t) = Aixi(t) +Biui(t) + vi(t), (3.1)

where the vector functions of time xi and ui are the plant state and con-
trolled input, respectively, and the vector vi models plant disturbance as
a continuous-time white-noise process with given variance R1i. The ma-
trices Ai and Bi model how the plant state evolves in time depending
on the current plant state and provided control input, respectively. Typi-
cally, not all plant states can be measured by the available sensors. The
measurable plant outputs are denoted with yi and are modeled as

yi(t) = Cixi(t) + ei(t), (3.2)

where ei is an additive measurement noise. The continuous-time out-
put yi is measured and sampled periodically and is used to produce the
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control signal ui. The matrix Ci, which often is diagonal, indicates those
plant states that can be measured by available physical sensors. If all
states can be measured, the matrix Ci is the identity matrix and the lin-
ear model is only given by Equation 3.1. Because the plant outputs are
sampled at discrete time instants, the measurement noise ei is modeled
as a discrete-time white-noise process with variance R2i. The control
signal is actuated at discrete time instants and is held constant between
two updates by a hold circuit in the actuator [ÅW97].

As an example of a system with two plants, let us consider a set of
two inverted pendulums P = {P1, P2}. Each pendulum Pi (i ∈ IP =
{1, 2}) is modeled according to Equations 3.1 and 3.2, with

Ai =

[
0 1

g/li 0

]
,

Bi =

[
0

g/li

]
,

and
Ci =

[
1 0

]
,

where g ≈ 9.81 m/s2 and li are the gravitational constant and length
of pendulum Pi, respectively (l1 = 0.2 m and l2 = 0.1 m). The two
states are the pendulum position and speed. For the plant disturbance
and measurement noise we have R1i = BiBT

i and R2i = 0.1. The
inverted pendulum model appears often in literature as an example of
control problems for unstable processes.

3.1.3 Control Quality

Considering one of the controlled plants Pi in isolation, the goal is to
control the plant states in the presence of the additive plant disturbance
vi and measurement error ei. We use quadratic control costs [ÅW97] to
measure the quality of a control application and its implementation. This
includes a cost for the error in the plant state and the cost of changing
the control signals to achieve a certain state error (the latter cost can be
related to the amount of energy spent by the actuators). Specifically, the
quality of a controller for plant Pi is given by the quadratic cost

Ji = lim
T→∞

1

T
E

{∫ T

0

[
xi

ui

]T
Qi

[
xi

ui

]
dt

}
. (3.3)
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This stationary cost indicates the ability of the controller to reduce the
disturbances in the system (i.e., to have a small control error) relative
to the magnitude of the control signal (i.e., the amount of spent control
energy). The cost Ji is decided partly by the controller period and the
control law ui. The weight matrix Qi is a positive semi-definite matrix
(usually a diagonal matrix) that is used by the designer to assign weights
to the individual components of the state xi and the inputs ui (E {·} de-
notes the expected value of a stochastic variable). The weight of a state,
which is given by the corresponding position in the matrix Qi, indicates
the importance of a small variance in the state relative to the other states.
The controlled inputs are also given weights by appropriate elements in
Qi. In this way, the designer can indicate the desired trade-off between
the state cost and a small variance in the controlled input.

For the example with the inverted pendulums (Section 3.1.2), a pos-
sible weight matrix is

Qi = diag
(
CT
i Ci, 0.002

)
=




1 0 0
0 0 0
0 0 0.002



 .

This indicates the importance of having a control that achieves small vari-
ance in the pendulum position. The last element (0.002) indicates that it
is also of some importance to have small variance in the controlled input
(e.g., because of energy consumption in changing the value of the input),
however with less importance than the pendulum state. For systems with
several control loops, the matrixQi can also be used to transform the cost
to a common baseline or to indicate importance relative to other control
loops.

The quadratic cost in Equation 3.3 is a very common performance
metric in the literature of control systems [ÅW97]. Note that a small
control cost Ji indicates high control performance, and vice versa. The
control cost is a function of the sampling period of the controller, the
control law, and the characteristics of the delay between sampling and
actuation. As we have discussed, this delay is complex and is induced
not only by the computations and communications of the controller but
also, and more important, by the interference experienced due to compu-
tation and communication delays of other tasks and messages on the plat-
form. To compute the cost Ji for the examples and experimental results
presented in this thesis, the Jitterbug toolbox [LC02, CHL+03, CL10]
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has been used with the controller and characteristics of the sampling–
actuation delay as inputs.

3.1.4 Controller Synthesis

The synthesis of a controller for a plant Pi comprises the determination of
the sampling period hi and the control law ui. The period hi decides the
rate of execution of the tasks that implement the control law. This period
is typically decided based on the dynamics of the plant and the available
resources, as well as trade-offs between the control performance and the
performance of other applications running on the same execution plat-
form. The control law determines how the sampled plant output is used
to compute the control signal to be applied to the plant through actuator
interfaces.

For a given sampling period hi and a given constant sensor–actuator
delay δsai (i.e., the time between sampling the output yi and updating the
controlled input ui), it is possible to find the control law ui that min-
imizes the control cost Ji [ÅW97]. Thus, optimal delay compensation
can be achieved if the delay of a certain control application is constant.
It is, in general, difficult to synthesize an optimal control law for the case
of varying delays in the control loop. As mentioned earlier, for those
cases when an optimal controller can be synthesized, the control law is
typically time varying and complicated to implement (e.g., time stamps
may be required to find optimal delay compensation laws at runtime). A
recent feature in the Jitterbug toolbox makes it possible to design a con-
trol law that is optimal for a given constant delay with a certain built-in
robustness against given delay variations.

The control-design command in Jitterbug [CL10] produces a con-
troller with the same structure as depicted in Figure 3.1. The controller
is given by the following equations [CL10]:

u[k] = −Lx̂e[k | k] (3.4)
x̂e[k | k] = x̂e[k | k − 1] +Kf (y[k]− Cex̂e[k | k − 1]) (3.5)

x̂e[k + 1 | k] = Φex̂e[k | k − 1] + Γeu[k]

+K (y[k]− Cex̂e[k | k − 1]) (3.6)

The observer state vector x̂e combines an estimate of the plant state and
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the previous control signals as defined by

x̂e[k] =





x̂[k]
u[k − 1]

...
u[k − #]




,

where
# = max

(
1,

⌈
δsa

h

⌉)
.

As we have already mentioned, the period h and constant sampling–
actuation delay δsa are given as inputs to the control-law synthesis pro-
cedure. In Equations 3.4–3.6, we use the notation [ · ] to denote the value
of a variable at a certain sampling instant. For example, y[k] denotes the
output of the plant at the kth sampling instant, whereas u[k] denotes the
controlled input at actuation k. The notation x̂e[k | k− 1] means the esti-
mate of the plant state at sampling instant k, when computed at sampling
instant k−1. At a certain sampling instant k, the controller measures the
output y[k] and uses it to compute an estimate x̂e[k | k] of the plant state
at the current sampling instant (Equation 3.5). This computation is also
based on an estimate x̂e[k | k − 1] of the current state for which the es-
timation was performed at the previous sampling instant (Equation 3.6).
Following that, the controlled input u[k] to be actuated is computed ac-
cording to Equation 3.4. Last, the state at the next sampling instant k+1
is estimated according to Equation 3.6. The parameters L, Kf , K , Ce,
Φe, and Γe in Equations 3.4–3.6 are outputs of the controller synthesis
and are optimized for the given period and constant sensor–actuator de-
lay.

The quality of a controller is degraded (its cost Ji is increased) if
the sensor–actuator delay is different from what was assumed during the
control-law synthesis, or if this delay is not constant (i.e., there is jitter).
Considering that the sensor–actuator delay is represented as a stochastic
variable ∆sa

i with probability function ξsa∆i
, we can compute the cost Ji

with the Jitterbug toolbox [LC02]. This is done for the cost computations
related to the results presented in this thesis. The delay characteristics of
the system depend on the scheduling policy and communication protocol,
as well as their parameters and configuration. Optimization of scheduling
and communication with regard to control delays and performance of
multiple distributed control applications is the subject of Chapter 4.
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3.2 System Model
This section contains models and notation for the execution platform and
their running control applications. We shall also discuss mapping and
scheduling of the tasks and messages in the system.

3.2.1 Platform Model

The control applications execute on a distributed execution platform with
multiple computation nodes that communicate on a bus. The computa-
tion nodes, which are also called electronic control units in the auto-
motive domain, have input–output interfaces to the sensors and actua-
tors of the controlled plants. In addition, a computation node comprises
a CPU, several memories (e.g., RAM or ROM memories), an operat-
ing system, and a communication controller. The operating system im-
plements a scheduling policy (e.g., static cyclic scheduling or priority-
based scheduling) for the executions on the CPU. The communication
of messages between computation nodes is conducted by the communi-
cation controllers according to a certain communication protocol (e.g.,
TTP [Kop97], FlexRay [Fle05], or CAN [Bos91]). Let us denote the set
of computation nodes withN and its index set with IN. Figure 3.2 shows
two computation nodes (N = {N1, N2}) that are connected to a bus (the
communication controllers are denoted CC). The figure also shows that
the computation nodes are connected to sensors and actuators. The nodes
have input–output interfaces that are used by the control applications to
measure and read plant outputs, and to write control signals to actuators.

3.2.2 Application Model

The applications that execute and communicate on the distributed plat-
form comprise a set of tasks and messages. Let us denote the set of all
applications with Λ. Each application represents the controller of a cer-
tain plant. We shall use the set IP—the same index set as for the set of
plants P—to index applications in Λ. Thus, application Λi is the con-
troller for plant Pi (i ∈ IP). An application Λi ∈ Λ is modeled as a
directed acyclic graph

Λi = (Ti,Γi).

The vertices in the set Ti, which are indexed by Ii, represent computa-
tion tasks, whereas the edges in the set Γi ⊂ Ti×Ti represent messages
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Figure 3.2: Example of an execution platform. Two compu-
tation nodes transmit and receive messages on the bus through
the communication controllers (CC). Two control applications,
comprising three tasks each, execute on the two nodes.

between tasks (data dependencies). We also introduce the set of all tasks
in the system as

TΛ =
⋃

i∈IP

Ti.

The specification of an application as a set of tasks is based on the struc-
ture of the application and its different types of computations. In Fig-
ure 3.2, we show two applications Λ = {Λ1,Λ2} (IP = {1, 2}), which
are controllers for the two pendulums P1 and P2 in the example in Sec-
tion 3.1.2. For i ∈ IP, the task set of application Λi isTi = {τis, τic, τia}
with index set Ii = {s, c, a}. For example, task τ1s on node N1 is the
sensor task that measures the position of the pendulum by reading and
processing data from the sensor. A message γ1sc is sent on the bus to
node N2, whereafter the control task τ1c computes the control signal to
be actuated. The actuation is done by task τ1a on node N1, which is the
only node connected to the actuator of P1. An arbitrary task shall in the
continuation be denoted by τ . A task of application Λi is denoted τij ,
where i ∈ IP and j ∈ Ii. An arbitrary message between tasks τij and
τik in application Λi is denoted γijk.

Each application Λi ∈ Λ has a period hi, which decides the rate
of execution of Λi. Jobs of the application tasks are released for ex-
ecution periodically and are scheduled for execution according to the
scheduling policies of the computation nodes. Thus, at time (q − 1)hi,
a job of each task in the application is released for execution. Job q of
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task τij is denoted τ (q)ij and is released at time (q − 1)hi. For a mes-
sage γijk = (τij, τik) ∈ Γi, the message instance produced by job τ

(q)
ij

is denoted γ(q)ijk. An edge γijk = (τij, τik) ∈ Γi means that the earliest
start time of a job τ (q)ik is when τ (q)ij has completed its execution and the
produced message instance γ(q)ijk has been communicated to the compu-
tation node that hosts task τik. Let us also define the hyper period hΛ of
all control applications as the least common multiple of all application
periods. Further, a task can have a deadline, which means that any job of
that task must finish within a given time relative to its release. Control
applications do not typically have hard timing constraints, but instead
the goal is to achieve a certain level of control quality. Additional tasks,
representing other application domains (e.g., safety-critical applications
with strict timing constraints, or best-effort applications), may coexist
with the control applications on the distributed execution platform.

3.2.3 Mapping and Scheduling

Each task in the system is mapped to a computation node. The mapping
is given by a function

map : TΛ −→ N

that returns the computation node of a certain task in the system. Typi-
cally, a certain task may be mapped only to a subset of the computation
nodes of the system. For example, tasks that read sensors or write to actu-
ators can only be mapped to computation nodes that provide input–output
interfaces to the needed sensors and actuators. Also, some tasks may re-
quire specialized instructions or hardware accelerators that are available
only on some nodes in the platform. To model such mapping constraints,
we consider given a function

Π : TΛ −→ 2
N

that, for each task τ ∈ TΛ in the system, gives the set of computation
nodes Π(τ) ⊆ N that task τ can be mapped to. We shall treat mapping
constraints further in Chapter 6 for the remapping problem that arises as a
consequence of failed computation nodes. Let us proceed by introducing
the function

map∗ : N −→ 2
TΛ
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that, for a certain nodeNd, returns the set of tasks that are mapped toNd.
Thus, we have

map∗(Nd) = {τij ∈ TΛ : map(τij) = Nd} .

A message between tasks mapped to different nodes is sent on the bus.
Thus, the set of messages that are communicated on the bus is

Γbus =




(τij, τik) ∈
⋃

i∈IP

Γi : map(τij) )= map(τik)




 .

For a message instance γ(q)ijk, we denote with cijk the communication time
when there are no conflicts on the bus. For our example with the mapping
in Figure 3.2, we note that the set of messages on the bus is Γbus =
Γ1∪Γ2. Given a mapping of the tasks to the computation nodes, we have,
for each task, a specification of possible execution times during runtime.
We model the execution time of task τij as a stochastic variable cij with
probability function ξcij . It is assumed that the execution time is bounded
by given best-case and worst-case execution times, denoted cbcij and cwcij ,
respectively. These properties are obtained with tools and methods for
simulation, profiling, and program analysis [WEE+08]. In Figure 3.2,
the execution times (constant in this example) and communication times
for the tasks and messages are given in milliseconds inside parentheses.

In this thesis, we consider systems with static cyclic scheduling or
priority-based scheduling of tasks and messages. For static cyclic schedul-
ing, tasks are executed on each computation node according to schedule
tables that are constructed at design time. Similarly, the communication
controllers conduct the communication on the bus according to tables
with start times for the transmissions. An example of such a statically
scheduled system is the time-triggered architecture with the TTP com-
munication protocol [Kop97]. Examples of priority-based scheduling
policies with static priorities are rate-monotonic and deadline-monotonic
scheduling, whereas the earliest-deadline-first policy is a representative
of a scheduling algorithm with dynamic priorities [LL73, But97, KS97,
SSDB95]. The most prominent example of a communication protocol
for priority-based scheduling of messages is CAN [Bos91]. The de-
sign frameworks that are proposed in this thesis support systems with
static-cyclic scheduling according to schedule tables and priority-based
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scheduling with static priorities that are synthesized at design time. These
parameters related to scheduling and communication are synthesized at
design time and influence the delay characteristics (delay and jitter) of
the system at runtime. As we have discussed in Section 3.1.3, the delay
is an important and influential parameter that decides the control per-
formance. Thus, optimization of parameters related to scheduling and
communication in embedded control systems is an important design ac-
tivity, in addition to period selection and control-law synthesis. We shall
in the beginning of the next chapter motivate such optimizations with an
example (Section 4.1).



4
Synthesis of Distributed Control

Systems

WEshall in this chapter present the formulation and solution of a
control–scheduling co-design problem for distributed embed-
ded systems. The objective is to optimize the overall perfor-

mance of several control loops in the presence of plant disturbance and
measurement noise. We shall consider the temporal properties of the
system and their influence on controller design and performance. In ad-
dition, we consider control performance as a driving factor in system-
level optimization of embedded systems. As part of the optimization,
we synthesize a controller (sampling period and control law) for each
plant. Further, considering both static cyclic scheduling and priority-
based scheduling of the tasks and messages in the system, we schedule
the execution and communication of the control applications on the given
distributed execution platform. The resulting optimization method inte-
grates controller design with system-level design and leads to design so-
lutions with significant performance improvements relative to traditional
design methods for distributed embedded control systems.

The remainder of this chapter is organized as follows. The moti-
vation and formal statement of the co-design problem are presented in

37
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Sections 4.1 and 4.2, respectively. The integrated design approach is
presented in Section 4.3. Details of the solution related to static cyclic
scheduling and priority-based scheduling, respectively, are presented in
Sections 4.4 and 4.5. We present an experimental validation of the pro-
posed approach in Section 4.6, followed by a case study on an automo-
tive control application in Section 4.7. The contribution of the chapter is
summarized and discussed in Section 4.8.

4.1 Motivational Example
In Section 3.1.2, we introduced an example in which two inverted pen-
dulums are controlled over a network of two computation nodes. Let
us consider that the two pendulums are controlled by the two applica-
tions with three communicating tasks each as depicted in Figure 3.2 on
page 33. The somewhat unrealistic mapping of tasks to computation
nodes is chosen such that the example has communication of messages
on the bus. This enables us to illustrate the key issues treated in this
chapter by a small and comprehensible example. Towards this, we shall
consider static cyclic scheduling as the scheduling policy of tasks and
messages, although the discussions and conclusions of this section are
valid also for other scheduling policies and communication protocols.
All time quantities are given in milliseconds throughout this section.

4.1.1 Ideal Execution Scenario

Let us now consider that the periods of Λ1 and Λ2 are h1 = 20 and
h2 = 30, respectively. We shall consider that optimal control design has
been used to synthesize the control laws u1 : R −→ R and u2 : R −→ R

for the chosen periods and constant delays between sampling and actu-
ation of each of the two control loops. The delay that has been consid-
ered during control-law synthesis is equal to the sum of task execution
times; this isolates control design from the particularities of the under-
lying execution platform and communication protocol. Thus, we have a
control law u1 that gives optimal control performance in the sense that
it minimizes the control cost defined in Equation 3.3 on page 28 and
compensates optimally for a constant delay. The control performance is
optimal if the control law u1 is executed periodically without jitter ev-
ery 20 milliseconds and with a constant delay of 9 milliseconds between
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sampling and actuation. Similarly, we have an optimal control law u2

for the period 30 and the constant delay 13 for the second control loop.
The individual control costs are computed with Jitterbug to J1 = 0.9 and
J2 = 2.4, giving a total control cost of Jtot = J1+J2 = 3.3 for the entire
system. These costs indicate the control performance that is achieved if
control delays are constant during execution.

4.1.2 Effect of Execution and Communication

In practice, because the control applications share computation and com-
munication resources, it is usually not possible to schedule the task ex-
ecutions and message transmissions such that all control loops execute
with strict periodicity and with the constant sampling–actuation delay
assumed during control-law synthesis. The control performance is de-
graded if there are sampling jitters or delay variations. The control cost
for such scenarios is computed with Jitterbug by providing as inputs the
synthesized control loop together with the specification of the actual de-
lays during controller execution. Let us consider the system schedule
in Figure 4.1. The schedule is shown with three rows for node N1, the
bus, and node N2, respectively. The boxes depict the task executions
and message transmissions. The grey boxes show the execution of con-
trol application Λ1, whereas the white boxes show the execution of Λ2.
Each box is labeled with an index that specifies the corresponding task or
message, and with a number that specifies the job or message instance.
For example, the white box labeled a(2) shows the execution of job τ (2)2a
of the actuator task τ2a. The job starts and finishes at times 50 and 54,
respectively. The grey box labeled sc(1) shows the first message γ(1)1sc
between the sensor and controller task of Λ1. The schedule of execution
and communication is repeated with the period 60 (the hyper period hΛ
of the application set Λ).

Let us now focus on the delays between sampling and actuation. We
consider that the outputs of the plants are sampled periodically without
jitter (e.g., by some dedicated hardware mechanism that stores the sam-
pled data in buffers, which are read by the sensor tasks). The sampling–
actuation delay of control application Λi is denoted ∆sa

i . In the schedule
in Figure 4.1, we have three instances of Λ1. The three actuations τ

(1)
1a ,

τ (2)1a , and τ (3)1a complete at times 32, 49, and 54, respectively. By con-
sidering the sampling period 20, we observe that the sampling–actuation
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delays are 32, 29, and 14, which are repeated during the execution of
the control applications. Each of these delays occurs with the same fre-
quency during execution. By modeling the sampling–actuation delay as
a stochastic variable ∆sa

i , we note that the nonzero values of the prob-
ability function are given by ξsa∆1

(14) = ξsa∆1
(29) = ξsa∆1

(32) = 1/3.
Thus, if the control system is implemented according to the schedule in
Figure 4.1, the delay of Λ1 is different from 9 (the delay assumed dur-
ing controller synthesis), and, moreover, it is not constant. By using the
Jitterbug toolbox and providing as input the probability function ξsa∆1

, we
obtained a much larger cost J1 = 4.2, which indicates a worse control
performance than an ideal implementation that does not violate the as-
sumptions regarding delays during control-law synthesis. Similarly, the
two instances of application Λ2 have the delays 44 and 24. We thus
have ξsa∆2

(24) = ξsa∆2
(44) = 1/2 and the corresponding control cost is

J2 = 6.4. The total cost of the whole system is Jtot = 10.6, and is in-
creased significantly from a total of 3.3 as a result of the implementation
in Figure 4.1.

4.1.3 Integrated Control and Scheduling

Scheduling To obtain a better control performance, it is important to
reduce delay and jitter. The delay characteristics and their impact on con-
trol performance are important to consider when constructing the execu-
tion schedule. Considering the same periods and control laws as before,
let us study the schedule in Figure 4.2. With this schedule, the sensor–
actuator delay is 14 for all the three instances of Λ1; that is, ξsa∆1

(14) = 1.
Similarly, we have ξsa∆2

(18) = ξsa∆2
(24) = 1/2. The second control loop

has a smaller delay with less jitter than in Figure 4.1. When the system
operates with the schedule in Figure 4.2, the control costs are J1 = 1.1
and J2 = 5.6. This results in a total cost of Jtot = 6.7, which indicates a
better overall control performance compared to the previous schedule; as
already discussed, the previous schedule incurs a very high control cost
of 10.6. An important observation in the context of integrated control
and computing is thus that the control performance may be improved if
the tasks and messages are scheduled properly to reduce delay and jitter.

Delay Compensation While it is important to consider control perfor-
mance during system scheduling, it is possible to achieve further im-
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provements by synthesizing the control laws to compensate for the sensor–
actuator delays. Let us consider the same schedule (Figure 4.2) and re-
design the control laws. We have synthesized the control law u1 for the
same period as before but for the delay 14, which is the constant sensor–
actuator delay in the schedule. The control law for P2 is redesigned for
the average sensor–actuator delay E {∆sa

2 } = 21. With the schedule
in Figure 4.2 and the new control laws, which are customized for the
schedule, the costs of the implementation are J1 = 1.0 and J2 = 3.7.
The total cost is Jtot = 4.7 and it shows that performance improvements
can be obtained by considering the system schedule when synthesizing
control laws. We observe that the negative influence of delays can be
compensated for both by appropriate scheduling and by appropriate de-
lay compensation during control design.

Period Selection As a last step, let us change the periods of the two
control applications to h1 = 30 and h2 = 20. Figure 4.3 shows a sched-
ule with two instances of Λ1 and three instances of Λ2 (the period of the
schedule is 60). It can be seen that the first control loop has some de-
lay jitter, whereas the second control loop executes periodically with a
constant delay between sampling and actuation. The delays in the first
control loop are 13 and 23, which gives ξsa∆1

(13) = ξsa∆1
(23) = 1/2. We

have redesigned the control law u1 for the period 30 and a constant delay
of E {∆sa

1 } = 18. The delay in the second control loop is 14 (constant).
The control law u2 is synthesized for the period 20 and the delay 14.
The evaluation resulted in the costs J1 = 1.3 and J2 = 2.1. The total
control cost is thus Jtot = 3.4, which is a significant quality improvement
relative to the previous design solution. Appropriate period optimization
is important for several reasons. First, the plants have different dynamics
(some are faster than others), which should be reflected in the choice of
periods. Second, some selection of periods may enable the possibility of
finding a schedule with good delay characteristics (small and low-varying
delays), which in turn may favor the delay compensation during control-
law synthesis. To conclude, the example in this section highlights several
design trade-offs and illustrates the importance of a proper integration of
period selection, scheduling, and control synthesis.



4.2 PROBLEM FORMULATION 43

4.2 Problem Formulation
Let us define the control–scheduling co-design problem treated in this
chapter by specifying the required inputs, the decision parameters, and
the optimization objective. The inputs are

■ a set of plants P to be controlled, where each plant Pi ∈ P (i ∈
IP) is a continuous-time linear system;

■ a set of periodic applications Λ, each modeled as a set of data-
dependent tasks that control a plant;

■ a finite set of available sampling periodsHi for each control appli-
cation Λi (i ∈ IP);

■ a set of computation nodes N connected to a single bus;

■ a mapping function map : TΛ −→ N of the whole task set;

■ a scheduling policy for the tasks and the communication protocol
for messages; and

■ execution-time distributions of the tasks and communication times
of the messages.

The set of available sampling periods Hi of a control application Λi is
specified by the designer and should cover a reasonable range of differ-
ent sampling rates to enable a proper exploration of trade-offs among
the sampling periods of the multiple control applications. The inputs to
the design problem are essentially described in detail in Sections 3.1.2
and 3.2. In addition, we consider that other application tasks with hard
deadlines and given release periods may coexist with the control appli-
cations. For static cyclic scheduling of the system, we consider non-
preemptive execution of tasks, whereas for priority-based scheduling, we
consider preemptive task execution. The communication on the bus is
non-preemptive.

The outputs related to the controller synthesis are the period hi ∈ Hi

and the control law ui (the controller in Figure 3.1) for each plant Pi.
The outputs related to scheduling depend on the scheduling policy and
communication protocol adopted by the computation platform. For static
cyclic scheduling of tasks and messages, the output is a schedule table
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with start times of the job executions and the communications on the bus.
In the case of priority-based scheduling, the output is a priority for each
task and message. In both cases, it must be guaranteed that the specified
task deadlines for the hard real-time applications are met at runtime. The
cost function to be minimized is the overall control cost

J =
∑

i∈IP

Ji, (4.1)

where Ji is given by Equation 3.3. Note that this formulation indicates
optimization of control quality as defined by the control cost in Equa-
tion 3.3 on page 28. As we discussed in more detail in Section 3.1.3,
appropriate weights can be embedded in the Qi matrices in Equation 3.3
to indicate relative importance of the different control applications.

4.3 Scheduling and Synthesis Approach
This section starts with a general description of our proposed solution.
The overall description is valid independently of the underlying schedul-
ing policy of the computation and communication platform. The details
of the solution related to static cyclic scheduling are described in Sec-
tion 4.4, whereas the case of priority-based scheduling is treated in Sec-
tion 4.5.

Figure 4.4 illustrates the overall approach. The dashed box in the
figure shows the portion of the flowchart that is specific for static cyclic
scheduling (Section 4.4). If priority-based scheduling is the scheduling
policy of tasks and messages, this box is replaced by the flowchart in Fig-
ure 4.5 on page 55 (Section 4.5). In the outer loop, we iterate over several
assignments of the controller periods. In each iteration, we choose a pe-
riod for each control application in the set of available periods. Thus, a
solution candidate for period assignment is a tuple

h =
(
h(1), . . . , h(|IP|)

)
∈ HσP(1)

× · · · ×Hσ
P(|IP|)

=

|IP|∏

p=1

HσP(p),

(4.2)
where

σP : {1, . . . , |IP|} −→ IP
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Choose controller periods

Task periods

Schedule

Delay distributions

Compute control laws

Controllers (periods
and control laws)

Compute cost

Cost of period
assignment

Schedule specification
Controllers (periods

and control laws)

Stop?

Yes

No

Period specification
Execution−time specification

System model

Figure 4.4: Overall approach with iterative assignment of con-
troller periods. The dashed block for scheduling and control-
law synthesis is specific to platforms with static cyclic schedul-
ing.

is any bijection, which gives an order of the control applications, and∏
denotes the Cartesian product of sets. The period hi of controller Λi

(i ∈ IP) is thus
hi = h(σ

−1
P

(i)).

For each period assignment h that is considered in the period-exploration
phase, the following steps are performed (the dashed rectangle in Fig-
ure 4.4):

1. Schedule all tasks and messages of the system,



46 SYNTHESIS OF DISTRIBUTED CONTROL SYSTEMS

2. synthesize the control law ui of each plant Pi, and

3. compute the cost Ji of the controller for each plant Pi.

These synthesis steps and cost computations result in a final cost Jh of
the period assignment h under consideration. The details of the first step
depend on the underlying scheduling policy of the platform and are de-
scribed in Sections 4.4 and 4.5 for static cyclic scheduling and priority-
based scheduling, respectively. In the remainder of this section, we shall
consider that the results of the first step are the delay characteristics of
the controllers. The sampling–actuation delay of controller Λi (i ∈ IP)
is represented as a stochastic variable ∆sa

i . The probability function ξsa∆i

of this delay is determined by the execution-time distributions ξcij of the
tasks and the scheduling of the whole system. In Sections 4.4 and 4.5,
we shall discuss the determination of ξsa∆i

for the case of static cyclic
scheduling and priority-based scheduling, respectively. Considering the
delay distributions for a certain period assignment h given, let us proceed
by describing the last two steps: synthesis of control laws and computa-
tion of control costs.

4.3.1 Synthesis and Cost Computation for Given Periods

Given is an assignment of controller periods h = (h(1), . . . , h(|IP|)),
where h(p) is the period of controller ΛσP(p) (1 " p " |IP|). From
the task and message scheduling step, we also know the sensor–actuator
delay ∆sa

i —with given probability distribution—for each control appli-
cation Λi. Let us first describe the synthesis of control laws. Each con-
trol law ui is synthesized to minimize the cost Ji for the sampling pe-
riod h(σ

−1
P

(i)) and a constant sampling–actuation delay δsai = E {∆sa
i },

which is the expected value of the delay. Thus, the controllers are de-
signed to compensate optimally for average delays. For each plant Pi

(i ∈ IP), we now have a controller Λi with a period hi and a control law
ui synthesized for a constant delay of E {∆sa

i }.
In general, the actual implementation of the synthesized controllers

results in a varying sensor–actuator delay. As we have discussed, this
delay is modeled as a stochastic variable ∆sa

i for which the probabil-
ity function ξsa∆i

is given by the system schedule for tasks and messages
(Sections 4.4 and 4.5). We compute the cost Ji of each control loop with
Jitterbug [LC02, CHL+03] based on the stochastic delay ∆sa

i . The total
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cost associated with the period assignment h is given by Equation 4.1 as

Jh =
∑

i∈IP

Ji.

4.3.2 Period Optimization Based on Genetic Algorithms

The period-exploration process is based on genetic algorithms [Ree93,
Mic96, Hol75]. An initial population

Ψ1 ⊂
|IP|∏

p=1

HσP(p)

is generated randomly and comprises several solution candidates for the
period assignment problem. At each iteration k > 0, the cost Jh of
each member h ∈ Ψk in the population is computed by performing the
three steps discussed previously: system scheduling, control-law synthe-
sis, and cost computation (Section 4.3.1). Following that, the crossover
and mutation operators are applied to the members ofΨk to generate the
next population Ψk+1 to be evaluated in the next iteration.

Let us discuss the crossover and mutation implementation in more
detail. Crossover is performed on the current population

Ψk ⊂
|IP|∏

p=1

HσP(p),

to obtain a set of offsprings

Ψ
offspr
k ⊂

|IP|∏

p=1

HσP(p).

The members inΨoffspr
k are created by applying the crossover operator to

distinct parent members successively. A crossover operation is initiated
by selecting two distinct parents h1,h2 ∈ Ψk. The first parent h1 is
selected from Ψk randomly, where the probability for a member to be
selected is induced by its control cost. The second parent h2 is selected
randomly with a uniform, cost-independent probability distribution over
the members of the current population Ψk. Let us consider

h1 =
(
h(1)1 , . . . , h(|IP|)

1

)
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and any bijection
σP : {1, . . . , |IP|} −→ IP.

Similar to our discussion around Equation 4.2, we note that the period
assignment h1 assigns the period h

(p)
1 to control application ΛσP(p). In a

similar manner for the second parent, we have

h2 =
(
h(1)2 , . . . , h(|IP|)

2

)
.

The crossover operator is applied to h1 and h2 to generate two off-
springs hoffspra and h

offspr
b to be included in Ψ

offspr
k . The two offsprings

are created by generating randomly a crossover point κ for which 1 <
κ < |IP|. The two offsprings are then given by

hoffspra =
(
h(1)1 , . . . , h(κ)1 , h(κ+1)

2 , . . . , h(|IP|)
2

)

and
h
offspr
b =

(
h(1)2 , . . . , h(κ)2 , h(κ+1)

1 , . . . , h(|IP|)
1

)
.

After the crossover step, we proceed by generating randomly a subset
Ψ′

k ⊂ Ψk with |Ψ′
k| =

∣∣∣Ψoffspr
k

∣∣∣. The members of this subset shall
be replaced by the generated offsprings. The probability for a member
h ∈ Ψk to be included inΨ′

k is directly proportional to its cost Jh; that
is, the probability of replacing a member is high if the member has a high
control cost (i.e., low control quality). Finally, with a given probability,
mutation is performed on each member of the set

(
Ψk \Ψ′

k

)
∪Ψ

offspr
k

to obtain the population Ψk+1 to be evaluated in the next iteration. Mu-
tation of a member

h = (h(1), . . . , h(|IP|))

is done by generating randomly an index p ∈ {1, . . . , |IP|} and replacing
h(p) with a randomly selected period inHσ(p) \ {h(p)}.

Genetic algorithms have several parameters that are decided based on
the optimization problem at hand. We have tuned the parameters of the
genetic algorithm experimentally according to rules of thumb and typical
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ranges for the parameters [Ree93, Mic96, Hol75]. The population size is
constant (i.e., |Ψk| = |Ψk+1|) and is chosen to be

2 |IP|max
i∈IP

|Hi| .

The number of offsprings
∣∣∣Ψoffspr

k

∣∣∣ that are generated in each iteration
is the closest even integer to 0.25 |Ψk|, where 0.25 is the crossover rate.
The mutation probability is 0.01. The period exploration terminates when
the average cost

Javg =
1

|Ψk|
∑

h∈Ψk

Jh

of the current population is sufficiently close to the cost

Jmin = min
h∈Ψ1∪···∪Ψk

Jh

of the current best solution; in our implementation and experiments, the
period-exploration process is stopped when Javg < 1.05Jmin. This indi-
cates a deviation of less than 5 percent between the average cost of the
current population and the cost of the best solution found in the optimiza-
tion process.

4.4 Solution for Static Cyclic Scheduling
In this section, we start by defining a static cyclic schedule for a given set
of applications. We proceed by deriving the sensor–actuator delays for a
given schedule. Last, we present an approach to construct the task and
message schedule. We shall consider that a period assignment

h ∈
|IP|∏

p=1

HσP(p)

is given. This means that the period hi of each application Λi ∈ Λ is
given (i ∈ IΛ). This is also the assumption for the material presented in
Section 4.5, which treats task and message scheduling for priority-based
systems.
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4.4.1 Definition of a Static Cyclic Schedule

For each node index d ∈ IN, we define

Θd =
⋃

τij∈map∗(Nd)

{
τ (q)ij : q = 1, . . . , hΛ/hi

}

to be the set of jobs that are released for execution on nodeNd in the half-
open time interval [0, hΛ). Note thatmap∗ is defined in Section 3.2.3. Let
us also define the set of message instances Θbus that are communicated
on the bus in the time interval [0, hΛ) as

Θbus =
⋃

γijk∈Γbus

{
γ(q)ijk : q = 1, . . . , hΛ/hi

}
.

A static cyclic schedule Ω is a set of schedules

Ω =




⋃

i∈ IN

{Ωi}



 ∪ {Ωbus}

for each computation node and the bus. For each d ∈ IN, the schedule
for node Nd is an injective function

Ωd : Θd −→ [0, hΛ)

that gives the start time of each job. The bus schedule is an injective
function

Ωbus : Θbus −→ [0, hΛ)

that gives the start time of each message instance.
The schedule Ω is executed regularly with a period equal to the hyper

period hΛ of the application set Λ. Let

q′ = 1 +

(
(q − 1) mod

hΛ
hi

)
.

Then, the periodicity of the schedule means that, for each τij ∈ map∗(Nd),
the start time of job τ (q)ij is

⌊
(q − 1)

/
hΛ
hi

⌋
hΛ + Ωd

(
τ (q

′)
ij

)
,
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whereas, for each message γijk ∈ Γbus, the start time of instance γ
(q)
ijk is

⌊
(q − 1)

/
hΛ
hi

⌋
hΛ + Ωbus

(
γ(q

′)
ijk

)
.

We shall now introduce a set of constraints that a scheduleΩmust satisfy.

Periodic task releases The start time of any job τ (q)ij ∈ Θd must be
after its release time. This means that

Ωd

(
τ (q)ij

)
# (q − 1)hi

for d ∈ IN, i ∈ IΛ, j ∈ Ii, and q = 1, . . . , hΛ/hi.

Data dependencies If a job needs data that are produced by other jobs,
it can start executing only after that data is available. For each i ∈ IΛ
and γijk = (τij, τik) ∈ Γi, letNc = map(τij) andNd = map(τik) be the
computation nodes that host tasks τij and τik, respectively. If Nc = Nd

(i.e., the two tasks are executed on the same node), then

Ωc

(
τ (q)ij

)
+ cwcij " Ωd

(
τ (q)ij

)

must hold. If the two tasks execute on different computation nodes, we
require that the following two constraints hold:

Ωc

(
τ (q)ij

)
+ cwcij " Ωbus

(
γ(q)ijk

)

Ωbus
(
γ(q)ijk

)
+ cijk " Ωd

(
τ (q)ik

)

Resource constraints On each computation node, at most one job can
execute at any given time instant. This means that, for each d ∈ IN,
there must exist a bijection

σd : {1, . . . , |Θd|} −→ Θd

such that, for each job τ (q)ij = σd(p) with p ∈ {1, . . . , |Θd|− 1},

Ωd(σd(p)) + cwcij " Ωd(σd(p + 1))
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holds. For the last job τ (q)ij = σ(|Θd|), we require

Ωd(σ(|Θd|)) + cwcij " hΛ.

The bijection σd gives the order of job executions on node Nd.
The resource constraint for the bus is formulated in a similar manner

as for the computation nodes. For the bus schedule Ωbus, there must exist
a bijection

σbus : {1, . . . , |Θbus|} −→ Θbus

such that, for each instance γ(q)ijk = σbus(p) with p ∈ {1, . . . , |Θbus|− 1},

Ωbus(σbus(p)) + cijk " Ωbus(σbus(p+ 1))

holds. The bijection σbus gives the communication order on the bus.

Timing constraints If a task τij on node Nd = map(τij) has a hard
relative deadline Dij , the timing constraint

Ωd

(
τ (q)ij

)
+ cwcij " (q − 1)hi +Dij

must hold for all q ∈ {1, . . . , hΛ/hi}.

4.4.2 Sensor–Actuator Delay

For a given a schedule Ω, let us now discuss the computation of the
sensor–actuator delay ∆sa

i of each control application Λi (i ∈ IP). For
a control application Λi of plant Pi, let us denote the actuator task of
Λi with τia (a ∈ Ii). The probability function of ∆sa

i is determined
by the start times of the actuator task τia and the stochastic execution
time cia with given probability function ξcia (these execution times are
introduced in Section 3.2.3). LetNd = map(τia) denote the computation
node for the actuator task of controller Λi. For q = 1, . . . , hΛ/hi, in the
qth instance of Λi, the sensors are read at time (q − 1)hi. The start time
of the corresponding actuation is Ωd

(
τ (q)ia

)
. Letting

φ(q)
ia = Ωd

(
τ (q)ia

)
− (q − 1)hi,

we observe that the sampling–actuation delay in the qth controller in-
stance is distributed between a minimum and maximum delay of φ(q)

ia +
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cbcia and φ
(q)
ia + cwcia , respectively. The probability function of the delay in

the qth instance is thus

ξsa(q)∆i
(δ) = ξcia

(
δ − φ(q)

ia

)
.

By considering all jobs in the schedule, we observe that the probability
function of the delay ∆sa

i is

ξsa∆i
(δ) =

hi
hΛ

hΛ/hi∑

q=1

ξsa(q)∆i
(δ).

This information is used to synthesize a control law and, subsequently, to
compute the control cost of a control application and its implementation.

4.4.3 Schedule Construction

Our goal is to find a schedule Ω that minimizes the cost
∑

i∈IP

Ji.

We use a constraint logic programming (CLP) formulation [AW07] of
the scheduling problem. CLP solvers have been used successfully in the
past for various scheduling problems [Kuc03]. We have formulated the
constraints in Section 4.4.1 in the CLP framework of ECLiPSe [AW07].
The control cost Ji defined in Equation 3.3 (page 28) cannot be incor-
porated in the CLP framework. For this reason, we have considered an
approximate cost to be used during the construction of the static cyclic
schedule; the control cost Ji is, however, considered during the other
design activities in our integrated control and scheduling framework.

As stated before, two timing parameters, characterizing the sensor–
actuator delay, affect the control performance: the average delay and its
variance. During the construction of the schedule, we minimize therefore
the quadratic cost

∑

i∈IP

(
αiE {∆sa

i }
2 + βiD {∆sa

i }
2
)
,

where αi and βi are given parameters (D {·} denotes the standard de-
viation of a stochastic variable). We have used αi = βi = 1 for the
experiments presented in Section 4.6.
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The CLP formulation, comprising the constraints and optimization
objective, are inputs to the CLP solver, which is based on branch-and-
bound search and constraint propagation [AW07]. Because of computa-
tional complexity of finding optimal solutions to the scheduling problem,
we cannot, for large problem sizes, afford a complete search of the set of
possible schedules. Therefore, the CLP solver is configured for heuristic
search based on the characteristics of the problem at hand. We have con-
figured the CLP solver to use limited-discrepancy search [AW07], which
is an incomplete branch-and-bound search, and to exclude solutions that
only lead to less than 10 percent of the cost of the current best solution
during the search process.

4.5 Solution for Priority-Based Scheduling
In this section, we consider preemptive scheduling of tasks and non-
preemptive scheduling of messages, both based on fixed priorities that
are determined at design time. The overall flowchart of the integrated
control and scheduling solution for the case of priority-based scheduling
is obtained by replacing the dashed box in Figure 4.4 on page 45 with the
flowchart in Figure 4.5. Given from the outer loop in Figure 4.4 are the
periods h of all applications. The goal is to minimize the overall cost by
deciding task and message priorities, and by computing the control laws.
In the outer loop in Figure 4.5, we explore and compute costs for several
priority assignments. In the continuation of this section, we describe the
computation flow that leads to the cost of a priority assignment. Last, we
describe the priority-exploration approach.

4.5.1 Definition of Priority Assignment and Schedulability

Let us define a priority assignment as a set

ρ =




⋃

d∈IN

{ρd}



 ∪ {ρbus},

where ρd : map∗(Nd) −→ N and ρbus : Γbus −→ N are injective func-
tions that give the priorities of the tasks on node Nd (d ∈ IN) and the
priorities of the messages on the bus, respectively (a larger value indi-
cates a higher priority). Let us recall that map∗(Nd) denotes the set of
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No

Cost of period
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No
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Figure 4.5: Integrated control-law synthesis and assignment of
task and message priorities. Schedulability is verified by formal
timing analysis, whereas the delay distributions for control syn-
thesis and cost computation are obtained through simulation.

tasks that are mapped to node Nd (Section 3.2.3). Given a priority as-
signment ρ, we are interested in the temporal behavior of the system.

For a given period and priority assignment, it is needed to perform
timing analysis to verify schedulability. We have used the holistic timing
analysis method by Pop et al. [PPEP08, PPE+08] to obtain the worst-case
response time of each task. The system is schedulable if all worst-case
response times exist—this means that no task has an unbounded response
time—and they are smaller than or equal to any imposed task deadline.



56 SYNTHESIS OF DISTRIBUTED CONTROL SYSTEMS

Note that, in this step, we check the satisfaction of the imposed timing
constraints by formal response-time analysis. In the next step, we synthe-
size the control laws and assess their quality based on delay distributions
obtained with simulation; we have used our simulation framework for
distributed real-time systems [SREP08].

4.5.2 Estimation of Sensor–Actuator Delay

For a given assignment of periods and priorities, we use a simulation
environment for distributed real-time systems [SREP08] to obtain an
approximation ∆̂sa

i of each sensor–actuator delay ∆sa
i . The probability

function of the discrete stochastic variable ∆̂sa
i , which approximates ∆sa

i ,
is denoted ξ̂sa∆i

and is an output of the simulation. During simulation,
we compute the average sensor–actuator delays regularly with the period
hΛ. Let ∆

(k)
i denote the set of sensor–actuator delays for application

Λi (i ∈ IP) that, during simulation, occur in the time interval [0, khΛ]
(k > 0). Further, let

η(k)
∆i

: ∆(k)
i −→ N \ {0}

be a function for which η(k)
∆i

(δ) is the number of times the delay δ oc-
curred in the time interval [0, khΛ]. The total number of delays for Λi in
the simulated time interval is

η(k)i,tot =
∑

δ∈∆(k)
i

η(k)
∆i

(δ).

At times khΛ during simulation, we compute an average delay

δ(k)i,avg =
1

η(k)i,tot

∑

δ∈∆(k)
i

δ · η(k)
∆i

(δ)

for each control application Λi. The simulation is terminated at the first
simulated time instant k′hΛ (k′ > 1) where the condition

max
i∈IP





∣∣∣δ(k
′)

i,avg − δ(k
′−1)

i,avg

∣∣∣

δ(k
′−1)

i,avg



 < ζsim

is satisfied. The parameter ζsim is given and is used to regulate the stop-
ping condition and the runtime of the simulation. We have tuned this
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parameter to ζsim = 0.05 experimentally. This means that the simulation
is stopped when the average delay has changed with less than 5 percent.
After the simulated time k′hΛ, the approximation of each ∆sa

i is given
by the probability function

ξ̂sa∆i
(δ) = η(k

′)
∆i

(δ)
/

η(k
′)

i,tot .

Given the approximate delay ∆̂sa
i for each control loop, we proceed by

computing the control law ui for a constant delay of E
{
∆̂sa

i

}
. Finally,

the control cost Ji is computed, using the approximate probability func-
tion ξ̂sa∆i

. The cost of the priority assignment ρ, given the periods h, is

Jρ|h =
∑

i∈IP

Ji.

4.5.3 Optimization of Priorities

The outer loop in Figure 4.5, which explores different priority assign-
ments, is based on a genetic algorithm, similar to the period exploration
in Section 4.3. We generate a population randomly and, in the iterations,
we evaluate the cost of priority assignments that are generated with the
crossover and mutation operators [Ree93, Mic96, Hol75]. The popula-
tion size is constant and equal to the number of tasks and messages in the
system. The crossover rate is 0.25 and the mutation probability is 0.01.
The exploration of priority assignments terminates when Javg < 1.1Jmin,
where Javg is the average cost of the current population and Jmin is the
cost of the current best priority assignment. After the priority optimiza-
tion has terminated, the cost that is associated to the period assignment
h is Jh = Jmin.

4.6 Experimental Results
We have run experiments to study the performance improvements that
can be achieved with our control–scheduling co-design technique. Our
method is compared to a straightforward approach, which is described in
Section 4.6.1. The experimental results are presented and discussed in
Section 4.6.2.
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4.6.1 Straightforward Design Approach

We have defined a straightforward approach as a baseline for comparison
against our proposed optimization technique. The objective is to compare
the integrated control and scheduling method with an approach in which
control design and implementation are separated. In the straightforward
design approach, each controller Λi is synthesized for a sampling period
equal to the average of the set of available periods Hi and for a delay
equal to the cumulative execution time of the control application. For the
implementation, the following steps are performed:

1. Assign the period of each control application Λi to the smallest
period in the set of available periods Hi.

2. Schedule the system (depends on the scheduling policy).
(a) Static cyclic scheduling: Schedule the tasks and messages,

respectively, for execution and communication as early as
possible, taking into account the schedule constraints. In this
step, start times of tasks and messages are chosen to be as
small as possible.

(b) Priority-based scheduling: Assign priorities rate monotoni-
cally. Priorities of tasks and messages are inversely propor-
tional to the periods; a task with a small period has a higher
priority than a task with a large period, running on the same
computation node. Each computation node is treated sepa-
rately during period assignment. The messages on the bus
are assigned priorities in a similar manner.

3. If the system is not schedulable, perform the following steps:
(a) If, for each application, the current period is the largest in the

original set of available periods, the straightforward approach
terminates. In this case, the straightforward design method
could not find a solution.

(b) For each of the control applications with highest utilization,
if the current period is not the largest in the original set of
available periods, then remove it fromHi. Go to Step 1.

Thus, the straightforward approach takes the designed controllers and
produces a schedulable implementation for as small controller periods as
possible, but does not further consider the control quality.
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To investigate the efficiency of period exploration and appropriate
scheduling separately, we defined two semi-straightforward approaches.
For the first approach—straightforward period assignment—periods are
assigned as in the straightforward approach. The scheduling, however, is
performed according to our proposed approach, which integrates control-
law synthesis. For the second approach—straightforward scheduling—
periods are chosen according to our proposed genetic algorithm-based
approach, but the scheduling is done according to Step 2 in the straight-
forward approach; the control laws in this case are synthesized according
to the straightforward approach.

4.6.2 Setup and Results

For the evaluation, we created 130 test cases with varying number of
plants to be controlled. We used test cases with 2 to 9 plants that were
chosen randomly from a set of inverted pendulums, ball and beam pro-
cesses, DC servos, and harmonic oscillators [ÅW97]. For each plant, we
generated a control application with 3 to 5 tasks with data dependencies.
Thus, the number of tasks for the generated test cases varies from 6 to 45.
The tasks were mapped randomly to platforms consisting of 2 to 7 com-
putation nodes. For each controller, we generated 6 available periods
(i.e., |Hi| = 6). Based on the average values of these periods, we gener-
ated the execution and communication times of the tasks and messages
to achieve maximum node and bus utilization between 40 and 80 percent.
For the tasks, we considered uniform execution-time distributions.

For each test case, the proposed integrated design approach has been
executed for both static cyclic scheduling and priority-based scheduling
of the tasks and messages. In the experiments, we have considered a TTP
bus [Kop97] for the static cyclic scheduling case and a CAN bus [Bos91]
for the priority-based scheduling case. Our implementation also supports
the FlexRay protocol [Fle05] through optimization of frame identifiers
for messages [SEPC11]. We have also run the two semi-straightforward
approaches. For each of the three approaches (the integrated approach
and the two semi-straightforward approaches), we obtained a final overall
cost Japproach. We were interested in the relative cost improvements

JSF − Japproach
JSF

,

where JSF is the cost obtained with the straightforward approach. This
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Figure 4.6: Improvements for static cyclic scheduling. Our in-
tegrated approach and the two semi-straightforward approaches
are compared to the straightforward design approach in which
control design and system scheduling are separated.
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Figure 4.7: Improvements for priority-based scheduling. The
same comparison as in Figure 4.6 is made but for systems with
priority-based scheduling and communication.

improvement factor characterizes the quality improvement achieved with
a certain design approach compared to the straightforward method in
Section 4.6.1.

The average quality improvements for static cyclic scheduling and
priority-based scheduling are depicted in Figures 4.6 and 4.7, respec-
tively. In each of the two figures, the vertical axis is the average cost
improvement in percent for all test cases, with the number of controllers
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Figure 4.8: Runtime for the optimization. The runtime of
the integrated design approach is shown for various problem
sizes. Optimization of systems with static cyclic scheduling
and priority-based scheduling can be performed with compara-
ble runtime.

given on the horizontal axis. In Figure 4.6, for example, the average
relative cost improvements of the straightforward period-exploration and
straightforward scheduling for 9 controllers are 17.2 and 13.6 percent,
respectively. For the same case, the integrated synthesis and scheduling
approach gives a quality improvement of 31.0 percent. For a small num-
ber of controllers, we note that the semi-straightforward approaches give
improvements close to the improvements by the integrated approach. For
a larger number of controllers, however, the design space becomes larger,
and thus the semi-straightforward approaches perform worse. The results
show that it is important to combine period exploration with integrated
scheduling and control-law synthesis to obtain high-quality solutions.

We have measured the runtime for the proposed integrated approach;
all experiments were run on a PC with the CPU frequency 2.2 GHz, 8 Gb
of RAM, and running Linux. In Figure 4.8, we show, for both static and
priority-based scheduling, the average runtime in seconds as a function
of the number of controllers. It can be seen that the complex optimiza-
tion, involving period assignment, scheduling (priority assignment), con-
troller design, and cost computation, can be run in our framework in less
than 19 minutes for large systems of 9 controllers and 45 tasks.
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Figure 4.9: Benchmark comprising a driveline model and two
motors. Several tasks implement control functionality and exe-
cute on a two-node platform.

4.7 Automotive Example
To further evaluate the performance of our optimization tool, and to vali-
date its practicality, we performed a case study on a benchmark with au-
tomotive control applications. We performed the optimization and syn-
thesis for a benchmark consisting of a driveline model and two motor
models that are controlled by a system with two computation nodes. We
have considered static cyclic scheduling of the system.

Figure 4.9 shows an overview of the considered benchmark. The
driveline is controlled through sensors and actuators with interfaces to
both computation nodes. Two motors are stabilized by two control ap-
plications, each running on one computation node. The driveline-control
tasks are depicted with grey circles, whereas the other two controllers are
shown with white circles. The worst-case execution times of the tasks
and communication times of the messages on the bus are indicated in
parentheses. We considered the best-case execution time of each task to
be a quarter of its worst-case (the execution-time distributions are uni-
form). We have used sampling periods of 10, 20, 30, or 40 milliseconds.

The driveline model and the details of its parameters are provided
by Kiencke and Nielsen [KN05]. The model contains states that repre-
sent the angle of the engine flywheel, the engine speed, the wheel po-
sition, and the wheel speed. Sensors are available for measurements of
the wheel speed. The control problem at hand for the driveline is to con-
trol the wheel speed by applying and actuating engine torque. The motor
model [ÅW97] describes the dynamics of the velocity and position of the
motor shaft. The input to the motor is a voltage that is used to control the
shaft position, which is the only variable that can be measured with the
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Table 4.1: Control costs for the two motors and the driveline.
Our integrated approach is compared to the straightforward de-
sign.

Integrated Straightforward Relative improvement
Motor 1 0.63 1.13 44.2%
Motor 2 0.72 0.99 27.3%
Driveline 1.51 2.01 25.0%
Total 2.86 4.13 30.6%

available sensors.
Our optimization tool and the straightforward design approach both

found solutions with the assigned periods 10, 20, and 10 milliseconds,
respectively, for the two motors and the driveline. The individual and
total costs are shown in Table 4.1. Let us now focus on the driveline con-
troller and discuss the characteristics of the obtained solution. With the
straightforward approach, the control law is synthesized for the average
period of 25 milliseconds of the available sampling periods (10, 20, 30,
and 40 milliseconds). The controller compensates for a delay of 7 mil-
liseconds, which is the cumulative delay of the grey control application
in Figure 4.9. With the straightforward design approach, we obtained a
schedule for which the delay in the driveline-control loop varies between
5 and 8 milliseconds. With our proposed integrated approach, the delay
varies between 6 and 7 milliseconds, and, in addition, the control laws
are synthesized to compensate for the delays in the produced schedules.
This results in the significant performance improvements presented in
Table 4.1.

4.8 Summary and Discussion
Scheduling and communication in embedded control systems lead to
complex temporal behavior and influence the control quality of the run-
ning applications. To address this problem at design time, we have de-
veloped a control–scheduling co-design approach that integrates task and
message scheduling with controller design (control-period selection and
control-law synthesis). Our solution is to consider a control-performance
metric as an optimization objective for the scheduling of tasks and mes-
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sages, as well as to integrate information regarding the system timing
in the traditional control-synthesis framework. The experimental results
and a case study show that such an integrated design flow is essential to
achieve high control performance for distributed embedded control sys-
tems.



5
Synthesis of Multi-Mode Control

Systems

EMBEDDED computing systems that control several physical plants
may switch between alternative modes at runtime either as a re-
sponse to external events or at predetermined moments in time.

In an operation mode, the system controls a subset of the plants by exe-
cuting the corresponding control applications according to precomputed
solutions (control laws, periods, and schedules). In the context of this
chapter, a mode change means that some of the running control loops
are deactivated, some new controllers are activated, or both. This leads
to a change in the execution and communication demand of the system.
Consequently, new design solutions must be used at runtime to achieve
best possible control performance by an efficient use of the computation
and communication resources.

In this chapter, we shall extend the framework presented in Chap-
ter 4 towards synthesis and optimization of multi-mode control systems.
The number of possible modes is exponential in the number of control
loops. This design-space complexity leads to unaffordable synthesis time
and memory requirements to store the synthesized controllers and sched-
ules. With the objective of optimizing the overall control performance,

65
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Figure 5.1: Three control applications running on a platform
with two nodes. Execution and communication times are given
inside parentheses.

we shall address these problems by a limited exploration of the set of
modes and a careful selection of the produced schedules and controllers
to store in memory.

This chapter is organized as follows. Section 5.1 presents models and
formalisms related to multi-mode systems. We discuss a motivational ex-
ample in Section 5.2, leading to a problem statement in Section 5.3. The
synthesis approach for multi-mode control systems is presented in Sec-
tion 5.4, and its experimental evaluation is discussed in Section 5.5. In
Section 5.6, we discuss and summarize the contributions of this chapter.

5.1 Multi-Mode Systems
We shall consider the same system and notation as in Chapter 3: A set
of plants P are controlled by a set of applications Λ that execute on a
platform with a set of nodesN. Application Λi implements the controller
for plant Pi (i ∈ IP).

Figure 5.1 shows an example with two nodesN = {N1, N2} that are
connected to a bus. We shall consider this example system throughout
this chapter. Three applications Λ = {Λ1,Λ2,Λ3} are mapped to the
nodes and control the three pendulums P1, P2, and P3. For this example,
the task set of application Λi is Ti = {τis, τic, τia} with index set Ii =
{s, c, a} (IP = {1, 2, 3}). The data dependencies are given by the edges

Γi = {γisc = (τis, τic), γica = (τic, τia)} .

The sensor task is τis, the controller task is τic, and the actuator task is
τia.
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Figure 5.2: Hasse diagram of modes. Eight possible modes for
the system in Figure 5.1 are shown. The vertices are operation
modes and the edges order modes by inclusion.

We shall consider that the system can run in different operation modes,
where each mode is characterized by a set of running applications. A
mode is therefore defined as a subsetM ⊆ Λ. For a modeM )= ∅, let us
denote the index set ofM by IM. When the system is operating in mode
M, only the applications Λi ∈M (i ∈ IM) are executing. The complete
set of modes is the power setM = 2Λ and its cardinality is |M| = 2|Λ|.
The set of modesM is a partially ordered set under the subset relation.
For our example with the three applications in Figure 5.1, we illustrate
this partial order with the Hasse diagram [Gri04] in Figure 5.2 for the
case

M = 2
Λ = 2

{Λ1,Λ2,Λ3}.

Let us consider two modes M,M′ ∈ M with M′ ⊂ M. Mode M′ is
called a submode ofM. Similarly, modeM is a supermode of modeM′.
We define the set of submodes ofM ∈M as

M(M) =
{
M′ ∈M : M′ ⊂M

}
.

Defined similarly, the set of supermodes ofM is denoted M(M). The
idle mode is the empty set ∅, which indicates that the system is inactive,
whereas mode Λ indicates that all applications are running. It can be the
case that certain modes do not occur at runtime—for example, because
certain plants are never controlled concurrently. We shall refer to modes
that may occur during execution as functional modes. The other modes
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do not occur at runtime and are referred to as virtual modes. Let us
therefore introduce the set of functional modes Mfunc ⊆ M that can
occur during execution. The virtual modesMvirt = M \Mfunc do not
occur at runtime. In a given mode M ∈ M, an application Λi ∈ M

(i ∈ IM) releases jobs for execution periodically with the period hMi .
We define the hyper period hM of M as the least common multiple of
the periods

{hMi }i∈IM .

An implementation of a modeM ∈M comprises the period hMi and
control law uM

i of each control application Λi ∈ M (i ∈ IM), and the
schedule (or priorities) for the tasks and messages in that mode. We de-
note with memM

d the memory consumption on node Nd ∈ N (d ∈ IN)
of the implementation ofM. An implementation of a mode can serve as
an implementation of all its submodes. This means that the system can
run in a submode M′ ⊂ M with the same controllers and schedule as
for modeM. This is performed, for example, by not running the appli-
cations in M \ M′ or by not writing to their outputs. To achieve better
performance in mode M′, however, a customized set of controllers and
schedule for submodeM′ can exploit the available computation and com-
munication resources that are not used by the other applicationsM\M′.
To have a correct implementation of the whole multi-mode system, for
each functional mode M ∈ Mfunc, there must exist an implementation
in memory, or there must exist an implementation of at least one of its
supermodes. Let us denote the set of implemented modes with Mimpl.
We know thatMimpl ⊆M\ {∅}. Thus, only the modes inMimpl have
implementations stored in memory. In Section 5.4, we shall describe how
to select the modes to be implemented by the system with the objective to
synthesize a functionally correct system with optimized control quality.

We use the framework presented in Chapter 4 to obtain an implemen-
tation of a certain modeM ∈M\ {∅}. After this optimization process,
we obtain a design solution with a cost

JM =
∑

i∈IM

JM
i , (5.1)

where JM
i is the cost of controller Λi when executing in mode M with

the synthesized implementation. The produced mode implementation
comprises the periods hMi , control lawsuM

i , and system schedule (sched-
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Figure 5.3: Schedule for mode {Λ1,Λ2,Λ3} with periods
h1 = 40, h2 = 20, and h3 = 40. The schedule, periods, and
control laws are optimized for the situation in which all three
plants are controlled.

ule table or priorities). As an output, we also obtain the memory con-
sumption memM

d ∈ N of the implementation on each computation node
Nd ∈ N (d ∈ IN).

5.2 Motivational Example
In this section, we shall highlight the two problems that are addressed in
this chapter—the time complexity of the synthesis of embedded multi-
mode control systems and the memory complexity of the storage of pro-
duced mode implementations. Let us consider our example in Section 5.1
with three applications Λ = {Λ1,Λ2,Λ3} that control three inverted
pendulums P = {P1, P2, P3}. We shall use static cyclic scheduling in
our examples; the conclusions, however, are general and valid also for
priority-based scheduling and communication.

By using our framework for controller scheduling and synthesis in
Chapter 4, we synthesized an implementation of modeM123 = Λ with
the periods hM123

1 = 40, hM123
2 = 20, and hM123

3 = 40 and the schedule
in Figure 5.3. In Figure 5.1, the execution times (constant in this exam-
ple) and communication times for the tasks and messages are given in
milliseconds in parentheses. All times are given in milliseconds in the
discussion that follows. The schedule is constructed for modeM = Λ—
the mode in which all three applications are running—and for the peri-
ods hM1 = 40, hM2 = 20, and hM3 = 40. The period of the schedule
is hM = 40, which is the hyper period of M. Considering the periods
of the applications, the jobs to be scheduled on node N1 are τ

(1)
1s , τ

(1)
2c ,

τ (2)2c , τ
(1)
2a , τ

(2)
2a , τ

(1)
3s , and τ

(1)
3a . The jobs on node N2 are τ

(1)
1c , τ

(1)
1a , τ

(1)
2s ,

τ (2)2s , and τ
(1)
3c . The message transmissions on the bus are γ

(1)
1sc, γ

(1)
2sc, γ

(2)
2sc,

γ(1)3sc, and γ
(1)
3ca. The schedule in Figure 5.3 is shown with three rows for
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Table 5.1: Individual control costs when running the system
in Figure 5.1 in different modes. Each row shows an opera-
tion mode and the corresponding control costs for the control
applications in that mode.

ModeM JM
1 JM

2 JM
3

{Λ1,Λ2,Λ3} 2.98 1.19 2.24
{Λ1,Λ2} 1.60 1.42 -
{Λ1,Λ3} 1.60 - 1.95
{Λ2,Λ3} - 1.36 1.95
{Λ1} 1.60 - -
{Λ2} - 1.14 -
{Λ3} - - 1.87

nodeN1, the bus, and nodeN2, respectively. The small boxes depict task
executions and message transmissions. The white, grey, and black boxes
show the execution of applications Λ1, Λ2, and Λ3, respectively. Each
box is labeled with an index that indicates a task or message, and with a
number that specifies the job or message instance. For example, the black
box labeled c(1) shows that the execution of job τ (1)3c on node N2 starts
at time 8 and completes at time 20. The grey box labeled sc(2) shows
the second message between the sensor and controller task of Λ2. The
message is scheduled for transmission at time 24. Note that the schedule
executes periodically every 40 milliseconds.

The outputs of the plants are sampled periodically without jitter (e.g.,
by some mechanism that stores the sampled data in buffers). The actua-
tions of Λ1 and Λ3 finish at times 40 and 28, respectively. Because the
schedule is periodic, the delay from sampling to actuation is 40 in each
instance of Λ1 (i.e., the delay is constant). Similarly, application Λ3 has
the constant sampling–actuation delay 28. Two instances are scheduled
for application Λ2. The first actuation finishes at time 20, whereas the
second actuation finishes at time 38. By considering the sampling pe-
riod 20, we note that the sampling–actuation delay of Λ2 during periodic
execution of the schedule is either 20 or 18. With this implementation,
we obtained the individual control costs JM123

1 = 2.98, JM123
2 = 1.19,

and JM123
3 = 2.24. Table 5.1 includes the individual controller costs of

the modes considered in this section.
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Figure 5.4: Schedule for mode {Λ1,Λ2} with periods h1 = 30
and h2 = 30. This design solution gives better control perfor-
mance for the case in which only plants P1 and P2 are con-
trolled, compared to the situation in which the solution in Fig-
ure 5.3 is used.

5.2.1 Quality Improvement

Let us now consider modeM12 = {Λ1,Λ2} in which Λ3 is not execut-
ing. The system can operate in the new mode by using the schedule and
control laws from modeM123. This can be done by not writing to the ac-
tuators of Λ3 or by omitting the executions and communications related
to Λ3. By using the implementation of mode M123, the overall control
cost of modeM12 is JM123

1 +JM123
2 = 2.98+1.19 = 4.17. This cost can

be reduced because, compared to mode M123, there is now more com-
putation and communication power available for applications Λ1 and Λ2.
Thus, it is worth to investigate whether a better implementation can be
produced for modeM12—for example, an implementation with reduced
periods and delays. By running the synthesis of M12, we obtained an
implementation with the periods hM12

1 = hM12
2 = 30 and the schedule in

Figure 5.4. Note from the new schedule that both the period and delay of
Λ1 have been reduced. The costs of Λ1 and Λ2 with the new implemen-
tation are JM12

1 = 1.60 and JM12
2 = 1.42 (Table 5.1). The cost of Λ1

is reduced significantly as a result of the reduction in its sampling period
and delay. The sampling period of Λ2 is increased, which results in a
small increase in the cost of Λ2. This cost increase is accepted because it
makes possible a significant quality improvement of Λ1, which leads to
a cost reduction for modeM12 from 4.17 to 3.02.

To achieve best possible control quality, implementations of all func-
tional modes have to be produced at design time. However, the number
of modes is exponential in the number of control loops that run on the
platform. Thus, even if some modes are functionally excluded, imple-
mentations of all possible functional modes cannot be produced in af-
fordable time (except cases with small number of functional modes or
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systems with small number of control loops). The selection of the actual
modes to synthesize is thus of critical importance for the overall con-
trol quality of most systems. Let us consider that we can only afford
the synthesis time of three modes. Modes M123 andM12 have already
been discussed in this section. Considering the third mode to be M13,
the synthesis resulted in the costs JM13

1 = 1.60 and JM13
3 = 1.95 (Ta-

ble 5.1). When using the implementation ofM123, the costs ofΛ1 and Λ3

are 2.98 and 2.24, respectively. The customized implementation of mode
M13 gives a significant improvement in control performance, compared
to when using the implementation ofM123 to operate the system in mode
M13.

At runtime, the system has implementations of the modesMimpl =
{M123,M12,M13} in memory. For modes that are not implemented, the
system chooses an implementation at runtime based on the three available
implementations. For example, mode M2 = {Λ2} does not have an
implementation but can run with the implementation of either M12 or
M123. The cost of Λ2 when running with the implementation of M12

is JM12
2 = 1.42, whereas it is JM123

2 = 1.19 for the implementation of
M123. Thus, at runtime, the implementation ofM123 is chosen to operate
the system in modeM2.

5.2.2 Memory Space

Let us consider that the memory limitations in the platform imply that
we can only store implementations of two modes out of the three modes
inMimpl. We cannot use the implementation ofM12 orM13 to run the
system in modeM123. Thus, the implementation ofM123 is mandatory
to be stored in memory of the platform. As we discussed in the beginning
of this section, the total control cost when running mode M12 with the
implementation ofM123 is 4.17, compared to the total cost of 3.02 when
running with the implementation of M12. The implementation of M12

thus gives a total cost reduction of 1.15. If, on the other hand,M13 runs
with the implementation of M123, the total cost is JM123

1 + JM123
3 =

2.98 + 2.24 = 5.22. If M13 runs with its produced implementation,
the total cost is JM13

1 + JM13
3 = 1.60 + 1.95 = 3.55. This gives a

cost reduction of 1.67, which is better than the reduction obtained by the
implementation of M12. Thus, in the presence of memory limitations,
the implementations of M123 and M13 should be stored in memory to
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achieve the best control performance.
In this discussion, we have assumed that M12 and M13 are equally

important. However, ifM12 occurs more frequently thanM13, the cost
improvement of the implementation of M12 becomes more significant.
In this case, the best selection could be to exclude the implementation
of M13 and store implementations of M123 and M12 in memory. Im-
portance of modes relative to others are modeled in our framework by
weights (Section 5.3).

5.2.3 Usage of Virtual Modes

As the last example, let us consider thatM123 is a virtual mode (i.e., it
does not occur at runtime). LetMimpl = {M12,M13,M23} be the set
of modes with produced implementations. We have run the synthesis of
modeM23 = {Λ2,Λ3} and obtained a total cost of 3.31. Let us assume
that the three produced implementations of the modes in Mimpl cannot
be all stored in memory. If the implementation ofM23 is removed, for
example, there is no valid implementation of the functional mode M23

in memory. Similarly, if any of the other mode implementations are re-
moved, then the system does not have a functionally correct implemen-
tation. To solve this problem, we implement the virtual modeM123. Its
implementation can be used to run the system in all functional modes—
however, with degraded control performance compared to the customized
implementations of the modes in Mimpl. The available memory allows
us to further store the implementation of one of the modes M12, M13,
orM23. We choose the mode implementation that gives the largest cost
reduction, compared to the implementation withM123. By studying the
costs in Table 5.1 and considering the cost reductions in our discussions
earlier in this example, we conclude that M13 gives the largest cost re-
duction among the modes inMimpl. The best control performance under
these tight memory constraints is achieved if the virtual modeM123 and
functional modeM13 are implemented and stored in memory. This dis-
cussion shows that memory limitations can lead to situations in which
virtual modes must be implemented to cover a set of functional modes.



74 SYNTHESIS OF MULTI-MODE CONTROL SYSTEMS

5.3 Problem Formulation
In addition to the plants, control applications, and their mapping to an
execution platform (Section 5.1), the inputs to the synthesis problem that
we address in this chapter are

■ a set of functional modes1 Mfunc ⊆M that can occur at runtime
(the set of virtual modes isMvirt = M\Mfunc);

■ a weight2 wM > 0 for each mode M ∈ Mfunc (wM = 0 for
M ∈Mvirt); and

■ the available memory in the platform, modeled as a memory limit3
memmax

d ∈ N for each node Nd (d ∈ IN).

The outputs are implementations of a set of modesMimpl ⊆M\{∅}.
For a design solution to be correct, we require that each functional mode
has an implementation or a supermode implementation. Thus, for each
functional mode M ∈ Mfunc \ {∅}, we require that M ∈ Mimpl or
Mimpl ∩M(M) )= ∅ hold.

IfM ∈Mimpl, the cost JM is given from the scheduling and synthe-
sis step that produces the implementation (Equation 5.1). IfM /∈Mimpl

andM )= ∅, the cost JM is given by the available supermode implemen-
tations: Given an implemented supermodeM′ ∈Mimpl ∩M(M) ofM,
the cost ofM when using the implementation ofM′ is

JM(M′) =
∑

i∈IM

JM′

i = JM′ −
∑

i∈IM′\IM

JM′

i . (5.2)

1Due to the large number of modes, it can be impractical (or even impossible) to
explicitly mark the set of functional modes. In such cases, however, the designer can
indicate control loops that cannot be active in parallel due to functionality restrictions.
Then, the set of functional modesMfunc includes all modes except those containing two
or more mutually exclusive controllers. If no specification of functional modes is made,
it is assumed thatMfunc

= M.
2It can be impractical for the designer to assign weights to all functional modes ex-

plicitly. An alternative is to assign weights to some particularly important and frequent
modes (all other functional modes get a default weight). Another alternative is to corre-
late the weights to the occurrence frequency of modes (e.g., obtained by simulation).

3We model the memory consumption as an integer representing the number of units
of physical memory that is occupied.
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At runtime, the system uses the supermode implementation that gives the
smallest cost. The cost JM in the caseM /∈Mimpl is thus

JM = min
M′∈Mimpl∩M(M)

JM(M′).

The cost of the idle mode ∅ is defined as J∅ = 0.
The objective is to find a set of modes Mimpl and synthesize them

such that their implementations can be stored in the available memory of
the platform. The cost to be minimized is

Jtot =
∑

M∈Mfunc

wMJM. (5.3)

This cost defines the cumulative control cost over the set of functional
modes and gives the overall control quality of a multi-mode system with a
certain set of implemented functional or virtual modesMimpl ⊆M\{∅}.

5.4 Synthesis Approach
Our synthesis method consists of two parts. First, we synthesize imple-
mentations for a limited set of functional modes (Section 5.4.1). Second,
we select the implementations to store under given memory constraints
and, if needed, we synthesize implementations of some virtual modes
(Section 5.4.2).

5.4.1 Control Quality versus Synthesis Time

The synthesis heuristic is based on a limited depth-first exploration of
the Hasse diagram of modes. We use an improvement factor λ # 0
to limit the exploration and to find appropriate compromises between
control quality and optimization time.

Before we discuss the details of the search heuristic, let us introduce
several definitions. Given a set of modesM′ ⊆M, let us introduce the
set

M′
↑ = {M ∈M′ : M(M) ∩M′ = ∅},

which contains the modes inM′ that do not have supermodes in the same
setM′. Such modes are called top modes ofM′. For example, mode Λ
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is the only top mode ofM (i.e.,M↑ = {Λ}). We also introduce the set
of immediate submodes ofM ∈M as

M−(M) = {M′ ∈M(M) : |M|− 1 =
∣∣M′

∣∣},

and the set of immediate supermodes as

M+(M) = {M′ ∈M(M) : |M|+ 1 =
∣∣M′

∣∣}

For example, the set of immediate supermodes of mode {Λ2} is

M+({Λ2}) = {{Λ1,Λ2}, {Λ2,Λ3}}.

Let us now turn our attention to the synthesis heuristic for multi-
mode systems. Figure 5.5 outlines the approach. In the first and second
step, the set of modes with produced implementations is initialized to the
empty set and an empty list is initialized. In this subsection, we con-
sider only implementations of functional modes. Virtual modes are im-
plemented only as a solution to memory constraints (Section 5.4.2). Note
that it is mandatory to implement the top functional modesMfunc

↑ —that
is, those functional modes that do not have any functional supermodes.
For each such top functional mode M, we perform Steps 3–5 in Fig-
ure 5.5. In Step 3, we run the synthesis in Chapter 4 for mode M to
produce an implementation (periods, control laws, and schedule). After
the synthesis of a modeM, the setMimpl is updated by adding modeM.
We proceed, in Step 4, by finding the edges from modeM to its immedi-
ate submodes. These edges are added to the beginning of the list edges,
which contains the edges leading to modes that are chosen for synthesis.

As long as the list edges is not empty, we perform Step 5, which is
manifold: First, in Step (a), an edge (M,M′) is removed from the be-
ginning of edges. In Step (b), ifM′ )= ∅ is a virtual mode, we do not
consider it in the synthesis and resume the exploration with its immedi-
ate submodes. In Step (c), if an implementation of the functional mode
M′ )= ∅ has not yet been synthesized, we perform four steps (Steps i–iv).
We first run the synthesis for modeM′. Based on the obtained cost, we
decide whether or not to continue synthesizing modes along the current
path (i.e., synthesize immediate submodes of M′). To take this deci-
sion, we consider the cost improvement of the implementation of mode
M′ relative to the cost when using the implementation of mode M to
operate the system in mode M′. We also consider the weights of the
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Initialization:
1. Mimpl ←− ∅
2. list edges←− empty

For each modeM ∈Mfunc
↑ , perform Steps 3–5 below.

3. SynthesizeM and setMimpl ←−Mimpl ∪ {M}
4. For eachM′ ∈M−(M), add the edge (M,M′) to the begin-
ning of the list edges

5. while edges )= empty
(a) Remove edge (M,M′) from the beginning of edges
(b) ifM′ ∈ Mvirt andM′ )= ∅, for each M′′ ∈ M−(M′),

add (M,M′′) to the beginning of edges
(c) else ifM′ ∈Mfunc \Mimpl andM′ )= ∅

i. SynthesizeM′ and setMimpl ←−Mimpl ∪ {M′}
ii. ∆JM′

(M)←−
(
JM′

(M)− JM′
)/

JM′
(M)

iii. Compute the average weight wavg of the immediate
functional submodes ofM′

iv. if ∆JM′
(M) # λ

wavg , for eachM
′′ ∈M−(M′), add

(M′,M′′) to the beginning of edges

Figure 5.5: Synthesis with improvement factor λ. The number
of modes to synthesize is tuned by the designer through the
improvement factor λ. The trade-off in this step is between
control performance and synthesis time.

immediate submodes of M′. In Step ii, we compute the relative cost
improvement ∆JM′

(M). The cost JM′ of the synthesized modeM′ is
defined in Equation 5.1 on page 68, whereas the cost JM′

(M) of mode
M′ when using the implementation of modeM is given by Equation 5.2
on page 74. In Step iii, we compute the average weight of the immediate
functional submodes ofM′ as

wavg =
1

|M−(M′) ∩Mfunc|
∑

M′′∈M−(M′)∩Mfunc

wM′′ .

In Step iv, it is decided whether to consider the immediate submodes
M−(M′) in the continuation of the synthesis. This decision is based on
the given improvement factor λ # 0, the relative improvement∆JM′

(M),
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and the average mode weight wavg. Note that, in this way, the sub-
modes with larger weights are given higher priority in the synthesis. If
M−(M′) ∩Mfunc = ∅ (i.e., all immediate submodes are virtual), the
average weight is set to wavg =∞, which means that all immediate sub-
modes are added in Step iv.

The parameter λ # 0 is used to regulate the exploration of the set of
functional modesMfunc. For example, a complete synthesis of the func-
tional modes corresponds to λ = 0. The results of this first part of the
synthesis (Figure 5.5) are implementations of a set of functional modes
Mimpl ⊆ Mfunc. Note that all top functional modes are synthesized,
which means that the system can operate in any functional mode with
this design solution. The next subsection treats the case when all gener-
ated implementations cannot be stored in the memory of the underlying
platform.

5.4.2 Control Quality versus Memory Consumption

Given are implementations of functional modesMimpl as a result of the
first part presented in Section 5.4.1. We shall now discuss how to select
the implementations to store, such that given memory constraints are sat-
isfied and the system can operate in any functional mode with the stored
implementations. Note that the set of top functional modesMfunc

↑ must
have implementations in memory. These implementations can be used
to operate the system in any of the other functional modes. If the im-
plementations of the top functional modes can be stored with the given
available memory space of the platform, we do not need to synthesize im-
plementations of virtual modes. The remaining problem is then to select
additional implementations for modes inMimpl \Mfunc

↑ to store in mem-
ory. If, however, the implementations of the top functional modes cannot
be stored, we must produce implementations of virtual modes to reduce
the required memory space. These implementations should cover a large
number of functional modes. An implementation of a virtual supermode
can replace several implementations and, therefore, save memory space.
These savings, however, are made possible at the cost of degraded control
performance in the modes with replaced implementations.

To select the mode implementations to store in memory, we propose
the two-step approach outlined in Figure 5.6. Step 1 asserts that there are
implementations in memory to operate the system in any of the functional
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1. if
∑

M∈Mimpl
↑

memM
d > memmax

d for some d ∈ IN
(a) FindM′ ⊆

⋃
M∈Mimpl

↑

M+(M) with smallest size such

that, for eachM ∈Mimpl
↑ ,M′ ∩M(M) )= ∅

(b) For each M′ ∈ M′, synthesize M′ and set Mimpl ←−
Mimpl ∪ {M′}

(c) Repeat Step 1
2. Find bM ∈ {0, 1} for each M ∈ Mimpl such that the cost in
Equation 5.4 is minimized and the constraint in Equation 5.5 is
satisfied for each d ∈ IN and bM = 1 forM ∈Mimpl

↑

Figure 5.6: Mode-selection approach. If necessary, virtual
modes are considered and synthesized if all implementations
of top modes cannot be stored in the memory of the platform.
The implementations to store in memory are the solutions to an
integer linear program.

modes. Potentially, virtual modes must be implemented to guarantee a
correct operation of the multi-mode system. We first check whether the
implementations of the top functional modes Mimpl

↑ = Mfunc
↑ can be

stored in the available memory on each computation node Nd ∈ N. If
not, we proceed by selecting virtual modes to implement. In Step (a), we
find among the immediate supermodes of the top modesMimpl

↑ (these su-
permodes are virtual modes) a subsetM′ with minimal size that contains
a supermode for each top mode. In Step (b), we produce implementations
of the chosen virtual modesM′ and add them to the set of implemented
modesMimpl. The set of top modes ofMimpl is nowM′. We go back
to Step 1 and check whether the implementations of the new top modes
can be stored in memory. If not, we repeat Steps (a) and (b) and consider
larger virtual modes. This process is repeated until we find a set of virtual
modes that cover all functional modes and the implementations of those
virtual modes can be stored in the available memory of the platform. Af-
ter this first step, we know that the implementations of Mimpl

↑ can be
stored in the available memory and that they are sufficient to operate the
system in any functional mode.

The second step selects mode implementations to store in the avail-
able memory such the control quality is optimized. This selection is done
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by solving a linear program with binary variables: Given the set of im-
plemented modes, possibly including virtual modes from Step 1 in Fig-
ure 5.6, let us introduce a binary variable bM ∈ {0, 1} for each mode
M ∈ Mimpl. If bM = 1, it means that the implementation of M is se-
lected to be stored in memory, whereas it is not stored if bM = 0. For
a correct implementation of the multi-mode system, the implementation
of each top mode in Mimpl must be stored in memory. Thus, bM = 1
for eachM ∈Mimpl

↑ . To select the other mode implementations to store,
we consider the obtained cost reduction (quality improvement) by imple-
menting a mode. For any M ∈ Mimpl \ Mimpl

↑ , this cost reduction is
defined as

∆JM = min
M′∈Mimpl∩M(M)

∆JM(M′),

where∆JM(M′) is given in Step ii in Figure 5.5 (page 77). By not stor-
ing the generated implementation of a modeM ∈Mimpl \ Mimpl

↑ (i.e.,
by setting bM = 0), we lose this control-quality improvement, which is
relative to the control quality that is provided when the system operates
in modeM with the best implementation of the top modesMimpl

↑ .
When selecting the additional mode implementations to store in mem-

ory (i.e., when setting bM for eachMimpl \ Mimpl
↑ ), the cost to be min-

imized is the overall loss of cost reductions for mode implementations
that are removed fromMimpl \Mimpl

↑ . This cost is formulated as
∑

M∈Mimpl\Mimpl
↑

(1− bM)wM∆JM. (5.4)

The memory consumption of an implementation of modeM ismemM
d on

node Nd ∈ N. This information is given as an output of the scheduling
and control synthesis step. The memory constraint on node Nd ∈ N is

∑

M∈Mimpl

bMmemM
d " memmax

d , (5.5)

considering a given memory limit memmax
d on node Nd. Having formu-

lated the linear program (Equations 5.4 and 5.5), Step 2 in Figure 5.6
is performed by optimization tools for integer linear programming; for
the experiments presented in the next section, we have used the eplex
library for mixed integer programming in ECLiPSe [AW07]. The imple-
mentations of the selected modes {M ∈ Mimpl : bM = 1} are chosen
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to be stored in the memory of the underlying execution platform. This
completes the synthesis of multi-mode control systems.

5.5 Experimental Results
We have conducted experiments to evaluate our proposed approach. We
created 100 test cases from a set of inverted pendulums, ball and beam
processes, DC servos, and harmonic oscillators [ÅW97]. We considered
10 percent of the modes to be virtual for test cases with 6 or more con-
trol loops. We generated 3 to 5 tasks for each control application; thus,
the number of tasks in our test cases varies from 12 to 60. The tasks
were mapped randomly to platforms comprising 2 to 10 nodes. Further,
we considered uniform distributions of the execution times of tasks. The
best-case and worst-case execution times of the tasks were chosen ran-
domly from 2 to 10 milliseconds and the communication times of mes-
sages were chosen from 2 to 4 milliseconds. In this section, we show
experimental results for platforms with static cyclic scheduling.

5.5.1 Control Quality versus Synthesis Time

In the first set of experiments, we evaluate the synthesis heuristic in Sec-
tion 5.4.1. The synthesis was run for each test case and for different
values of the improvement factor λ. All experiments were run on a PC
with a quad-core CPU at 2.2 GHz, 8 Gb of RAM, and running Linux.
For each value of λ and for each test case, we computed the obtained
cost after the synthesis. This cost is

J (λ)
tot =

∑

M∈Mfunc

wMJM

(Equation 5.3) and we could compute it in affordable time for test cases
with at most 12 control loops. Note that the time-consuming calculation
of the cost is only needed for the experimental evaluation and is not part
of the heuristic. We used the values 0, 0.1, 0.3, and 0.5 for the improve-
ment factor λ. Because of long runtime, we could run the synthesis with
λ = 0 (exhaustive synthesis of all functional modes) and λ = 0.1 for test
cases with at most 7 control loops.

As a baseline for the comparison, we used the cost J↑
tot obtained

when synthesizing only the top functional modesMfunc
↑ . This cost repre-
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Figure 5.7: Control-performance improvements. The improve-
ments are relative to the case when synthesized solutions are
available only for the mandatory top modes. Smaller values of
λ yield better design solutions, but at the cost of longer synthe-
sis time.

sents the minimum level of control quality that is achieved if the system
only has implementations of the mandatory top functional modes of the
test case. For each test case and for each value of λ, we computed the
achieved cost improvement as the relative difference

∆J (λ)
tot =

(
J↑
tot − J (λ)

tot

)

J↑
tot

.

Figure 5.7 shows the obtained cost improvements relative to the base-
line solution. The vertical axis shows the average value of the relative
cost improvement ∆J (λ)

tot for test cases with number of control loops
given on the horizontal axis. The results show that the achieved con-
trol performance becomes better with smaller values on λ (i.e., a more
thorough exploration of the set of modes). We also observe that the im-
provement is better for larger number of control loops in the multi-mode
system. This demonstrates that, for systems with many control loops,
it is important to synthesize additional implementations for other modes
than the mandatory top functional modes. The experiments also validate
that significant quality improvements can be obtained with larger values
of λ, which provide affordable runtimes for large examples.

The runtimes for the synthesis heuristic are shown in Figure 5.8. We
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Figure 5.8: Runtimes for mode synthesis. Large values of λ
lead to shorter design time, however with compromises in con-
trol performance.

show the average runtimes in seconds for the different values of the im-
provement factor λ and for each dimension of the test cases (number of
control loops). Figures 5.7 and 5.8 illustrate how the designer can find
trade-offs between control quality and optimization time, depending on
the size of the control system. To further illustrate the scaling of synthesis
time, we performed experiments with a system consisting of 20 control
loops on 12 nodes. A solution was synthesized with λ = 0.5 in 38 min-
utes.

5.5.2 Control Quality versus Memory Consumption

In the second set of experiments, we evaluate the mode-selection ap-
proach. Towards this, we consider results from the mode-synthesis heuris-
tic (Section 5.4.1) with λ = 0.3. Let us denote with memreq

d the amount
of memory needed to store the generated mode implementations on each
node Nd. We have run the mode-selection algorithm (Section 5.4.2) with
a memory limitation of 0.7memreq

d for each node. The average runtimes
are shown in seconds in Figure 5.9. Note that the mode selection results
are optimal if all top functional modes can be stored in memory. The
selection of modes to store in memory (i.e., the solution of the integer
linear program) is performed only once as a last step of the synthesis. As
Figure 5.9 shows, the selection made in negligible runtime compared to
the overall runtime of the system synthesis.
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Figure 5.9: Runtimes for mode selection (λ = 0.3). The solver
for the integer linear program finds an optimal solution in less
than one second for large systems. This time overhead is in-
significant compared to the overall design time of a multi-mode
control system.

To study the quality degradation as a result of memory limitations,
we used a test case with 12 control loops. We have run the mode syn-
thesis for three scenarios: First, we considered no memory limitation in
the platform, which resulted in a cost reduction (quality improvement)
of 48.5 percent, relative to the cost obtained with the baseline approach
(synthesis of only top functional modes). Second, we considered that
only 70 percent of the memory required by the produced implementations
can be used. As a result of the mode selection, all top functional modes
could be stored, leading to a cost reduction of 41.4 percent (a quality
degradation of 7.1 percent compared to the first scenario without mem-
ory constraints). For the third and last scenario, we considered memory
limitations such that the implementations of the top functional modes
cannot be all stored in memory. After the mode-selection approach, in-
cluding the synthesis of virtual modes, we obtained a solution with a
cost reduction of only 30.1 percent (a quality degradation of 18.4 percent
compared to the case without memory constraints).

5.6 Summary and Discussion
In this chapter, we addressed control-performance optimization of em-
bedded multi-mode control systems. The main design difficulty is raised
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by the potentially very large number of operation modes. In this con-
text, an appropriate selection of the actual modes to be implemented is of
critical importance. We presented our synthesis approach that produces
optimized schedules and controllers towards an efficient deployment of
embedded multi-mode control systems.

We did not address the process of performing a mode change. This is
an orthogonal and separate issue when developing systems with multiple
operation modes. The mode-change protocols to implement and the syn-
thesis procedure discussed in this chapter will both influence the overall
quality of the system. Various mode-change protocols and their analy-
sis methods are available in literature [RC04, PB98, SRLR89, SBB11,
PLS11]. The correct protocol to choose depends on the application do-
main and its requirements. Independent of the mode-change protocol,
the synthesis approach presented in this chapter produces schedules and
controllers for an efficient deployment of embedded multi-mode control
systems.





6
Synthesis of Fault-Tolerant

Control Systems

MODERN distributed computing platforms may have components
that fail temporarily or permanently during operation. In this
chapter, we present a framework for fault-tolerant operation

of control applications in the presence of permanent faults.
When a node fails, the configuration of the underlying distributed

system changes. A configuration of the system is a set of currently opera-
tional computation nodes. When the configuration of the system changes
(i.e., when one or several nodes fail), the tasks that were running on the
failed nodes must now be activated at nodes of this new configuration. To
guarantee stability and a minimum level of control quality of the control
applications, it is necessary that a solution for this new configuration is
synthesized at design time and that the system has the ability to adapt
to this solution at runtime. A solution comprises a mapping, a sched-
ule, and controllers that are optimized for the computation nodes in a
certain configuration. However, such a construction is not trivial due to
that the total number of configurations is exponential in the number of
nodes of a distributed system. Synthesis of all possible configurations is
thus impractical, because of the very large requirements on design time

87
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and memory space of the underlying execution platform. In this chapter,
we propose a method to synthesize solutions for a small number of min-
imal configurations and still provide guarantees on fault tolerance and
a minimum level of control performance. Additional configurations are
considered for synthesis with multiple trade-off considerations related to
control performance, synthesis time, migration time, and memory con-
sumption of the platform.

In the next section, we shall present notation and assumptions related
to the distributed execution platform and its configurations. Section 6.2
presents a classification of the set of configurations, leading to the iden-
tification of base configurations in Section 6.3. Section 6.4 presents the
extension of our synthesis framework in Chapter 4 for mapping opti-
mization of distributed control systems. In Section 6.5, we consider the
synthesis of solutions for base configurations and, if needed, for a set of
minimal configurations. In Sections 6.6 and 6.7, we motivate and formu-
late a design-space exploration problem for control-quality optimization,
followed by an optimization heuristic in Section 6.8. This chapter ends
with experimental results in Section 6.9 and conclusions in Section 6.10.

6.1 Distributed Platform and Configurations
The execution platform comprises a set of computation nodes N that
are connected to a single bus. The set of nodes N is indexed with IN.
Figure 6.1 shows a set of control loops comprising n plants P with index
set IP = {1, . . . , n} and, for each plant Pi, a control application Λi with
three tasksTi = {τis, τic, τia}. The edges indicate the data dependencies
between tasks, as well as communication between sensors and actuators
(arrows with dashed lines). For the platform in the same figure, we have
N = {NA, NB , NC , ND} and its index set IN = {A,B,C,D}.

We consider that a function Π : TΛ −→ 2N is given, as described in
Section 3.2.3 on page 34. This determines the set of allowed computation
nodes for each task in the system: The set of computation nodes that task
τ ∈ TΛ can be mapped to is Π(τ). In Figure 6.1, tasks τ1s and τ1a
may be mapped to the nodes indicated by the dashed lines. Thus, we
have Π(τ1s) = {NA, NC} and Π(τ1a) = {NC , ND}. We consider that
task τ1c can be mapped to any of the four nodes in the platform—that
is, Π(τ1c) = N. We have omitted the many dashed lines for task τ1c to
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τnc ττns na

P1 Pn

Bus

(n control loops)

NA NB NC ND

τ1c 1aτ1sτ

Figure 6.1: A set of feedback-control applications running on a
distributed execution platform. Task τ1s reads sensors and may
execute on nodesNA orNC , whereas the actuator task τ1a may
execute on nodesNC orND. Task τ1c can be mapped to any of
the four nodes.

obtain a clear illustration. The mapping constraints are the same for the
other control applications.

At any moment in time, the system has a set of computation nodes
X ⊆ N that are operational. The remaining nodes N \ X have failed
and are not available for computation. We shall refer to X as a config-
uration of the distributed platform. The complete set of configurations
is the power set X = 2N and is partially ordered by inclusion. The par-
tial order of configurations is shown in Figure 6.2 as a Hasse diagram
of configurations for our example with four computation nodes in Fig-
ure 6.1. For example, configuration {NA, NB , NC} indicates that ND

has failed and only the other three nodes are available for computation.
The configuration ∅ indicates that all nodes have failed.

We consider that the platform implements appropriate mechanisms
for fault detection [Kop97, KK07]. The failure of a node must be detected
and all remaining operational nodes must know about such failures. In
addition, the event that a failed node has been repaired is detected by
the operational nodes in the system. This allows each operational node
to know about the current configuration. Adaptation due to failed or re-
paired nodes involves switching schedules and control algorithms that
are optimized for the available resources in the new configuration (Sec-
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tion 6.8), or, if no such optimizations have been performed at design time,
to switch to mandatory backup solutions (Section 6.5). This information
is stored in the nodes of the platform [SN05, Kop97]. Another phase dur-
ing system reconfiguration is task migration [LKP+10] that takes place
when tasks that were running on failed nodes are activated at other nodes
in the system. We consider that the system has the ability to migrate tasks
to other nodes in the platform. Each node stores information regarding
those tasks that it must migrate through the bus when the system is adapt-
ing to a new configuration. This information is generated at design time
(Section 6.8.2). For the communication, we assume that the commu-
nication protocol of the system ensures fault-tolerance for messages by
different means of redundancy [NSSW05, Kop97].

6.2 Classification of Configurations
In this section, we shall provide a classification of the different configu-
rations that may occur during operation. The first subsection illustrates
the idea with the running example in Figure 6.1. The second subsection
gives formal definitions of the different types of configurations.

6.2.1 Example of Configurations

Let us consider our example in Figure 6.1. Task τ1s reads sensors and τ1a
writes to actuators. Task τ1c does not perform input–output operations
and can be executed on any node in the platform. Sensors can be read by
nodesNA andNC , whereas actuation can be performed by nodesNC and
ND. The mapping constraints for the tasks are thus given by Π(τ1s) =
{NA, NC}, Π(τ1c) = N, and Π(τ1a) = {NC , ND}. The same mapping
constraints and discussion hold for the other control applications Λi (i =
2, . . . , n). Thus, in the remainder of this example, we shall restrict the
discussion to application Λ1.

First, let us consider the initial scenario in which all computation
nodes are operational and are executing one or several tasks each. The
system is thus in configurationN = {NA, NB , NC , ND} (see Figure 6.2)
and we assume that the actuator task τ1a executes on node NC in this
configuration. Consider now that NC fails and the system reaches con-
figuration XABD = {NA, NB , ND}. Task τ1a must now execute on ND

in this new configuration, because actuation can only be performed by
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nodes NC and ND. According to the mapping constraints given by Π,
there exists a possible mapping for each task in configurationXABD , be-
causeXABD ∩Π(τ) )= ∅ for each task τ ∈ TΛ. We refer to such config-
urations as feasible configurations. Thus, for a feasible configuration and
any task, there is at least one node in that configuration on which the task
can be mapped—without violation of the imposed mapping constraints.

If the system is in configuration XABD and node NA fails, a new
configuration XBD = {NB , ND} is reached. Because task τ1s cannot
be mapped to any node in the new configuration, we say that XBD is an
infeasible configuration (i.e., we have Π(τ1s) ∩ XBD = ∅). If, on the
other hand, node NB fails in configuration XABD, the system reaches
configuration XAD = {NA, ND}. In this configuration, tasks τ1s and
τ1a must execute on NA and ND, respectively. Task τ1c may run on
either NA or ND. Thus, XAD is a feasible configuration, because it is
possible to map each task to a node that is both operational and allowed
according to the given mapping restrictions. We observe that if either of
the nodes in XAD fails, the system reaches an infeasible configuration.
We shall refer to configurations like XAD as base configurations. Note
that any configuration that is a superset of the base configuration XAD

is a feasible configuration. By considering the mapping constraints, we
observe that the only other base configuration in this example is {NC}
(node NC may execute any task). The set of base configurations for our
example system is thus

X base = {{NA, ND}, {NC}}.

Let us consider that design solutions are generated for the two base
configurations in X base. Considering Figure 6.2 again, we note that the
mapping for base configuration {NA, ND}, including the produced sched-
ule, task periods, and control laws, can be used to operate the system
in the feasible configurations {NA, NB , NC , ND}, {NA, NB , ND}, and
{NA, NC , ND}. This is done by merely using the two nodes in the base
configuration (i.e.,NA andND), even though more nodes are operational
in the mentioned feasible configurations. Similarly, base configuration
{NC} covers another subset of the feasible configurations. Figure 6.3
shows the partial order that remains when infeasible configurations in
Figure 6.2 are removed. Specifically, note that the two base configu-
rations cover all feasible configurations together (there is a path to any
feasible configuration, starting from a base configuration).
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By generating a mapping (as well as customized schedules, periods,
and control laws as in Chapter 4) for each base configuration, and con-
sidering that tasks are stored in the memory of the corresponding compu-
tation nodes to realize the base configuration mappings, the system can
tolerate any sequence of node failures that lead the system to any feasible
configuration. Thus, a necessary and sufficient step in the design phase
(in terms of fault tolerance) is to identify the set of base configurations
and to generate design solutions for them. It can be the case that the com-
putation capacity is insufficient in some base configurations, because of
the small number of operational nodes. We shall discuss this issue in Sec-
tion 6.5. Although faults leading to any feasible configuration can be tol-
erated by the fact that execution is supported in base configurations, the
control quality of the system can be improved if all computation nodes
are utilized to efficiently distribute the executions. Towards this, we shall
consider synthesis of additional feasible configurations in Section 6.8.

6.2.2 Formal Definitions

We consider that the mapping constraint Π : TΛ −→ 2N is given, mean-
ing that Π(τ) defines the set of computation nodes that task τ ∈ TΛ may
execute on. Thus, Π decides directly the set of configurations for which
the system must be able to adapt to by using the information that is syn-
thesized at design time and stored in memory. Specifically, a given con-
figuration X ∈ X is defined as a feasible configuration if X ∩Π(τ) )= ∅
for each task τ ∈ TΛ. The set of feasible configurations is denoted X feas.

For an infeasible configuration X ∈ X \ X feas, there exists at least
one task that due to the given mapping constraints cannot execute on any
computation node in X (i.e., X ∩ Π(τ) = ∅ for some τ ∈ TΛ). A base
configuration X is a feasible configuration for which the failure of any
computation nodeN ∈ X results in an infeasible configurationX\{N}.
The set of base configurations is thus defined as

X base = {X ∈ X feas : X \ {N} /∈ X feas for each N ∈ X}.

The set of configurations X = 2N is thus partitioned into disjoint sets
of feasible and infeasible configurations. Some of the feasible configu-
rations form a set of base configurations, which represents the boundary
between the set of feasible and infeasible configurations.

In the next section, we shall discuss an approach to identify the set of
base configurations. In the ideal case, solutions for base configurations
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are synthesized, enabling the system to operate in any feasible configu-
ration. If not all base configurations allow for acceptable solutions to be
synthesized, we construct solutions for a set of minimal configurations in
Section 6.5 to cover as many feasible configurations as possible. Such
situations may occur, for example, if the computation capacity is too re-
stricted in certain base configurations.

6.3 Identification of Base Configurations
A straightforward approach to find the set of base configurations is to
perform a search through the Hasse diagram of configurations. Given the
mapping constraint Π : TΛ −→ 2N, we find the set of base configura-
tions X base based on a breadth-first search [LD91] of the Hasse diagram
of configurations. The search starts at the full configurationNwith X base

initialized to ∅. It is assumed that N is a feasible configuration. Let us
consider an arbitrary visit of a feasible configuration X during any point
of the search. To determine whether or not to addX to the set of base con-
figurations X base, we consider each configurationX′ with |X′| = |X|−1
(i.e., we consider the failure of any node in X). If each such configura-
tion X′ is infeasible, we add X to the set of base configurations X base.
Infeasible configurations X′, as well as any configuration X′′ ⊂ X′, are
not visited during the search.

Due to the complexity of the Hasse diagram, a breadth-first search
starting from the full configuration N is practical only for systems with
relatively small number of nodes. Let us therefore discuss a practically
efficient algorithm that constructs the set of base configurations X base

from the mapping constraint Π : TΛ −→ 2N directly. Without loss of
generality, we shall assume that the function Π is injective (i.e., Π(τi) )=
Π(τj) for τi )= τj). If this is not the case, then, for the purpose of finding
the set of base configurations, it is an equivalent problem to study an
injective function Π′ : T′

Λ
−→ 2N as a mapping constraint, whereT′

Λ
⊂

TΛ. Further in that case, it is required that, for each τ ∈ TΛ \T′
Λ
, there

exists exactly one τ ′ ∈ T′
Λ
for which Π(τ) = Π′(τ ′). Finally, in the

following discussion, T′
Λ
and Π′ replace TΛ and Π, respectively.

We construct the set of base configurations starting from the tasks
that have the most restrictive mapping constraints. Towards this, let us
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consider a bijection

σ : {1, . . . , |TΛ|} −→ TΛ,

where
|Π(σ(k))| " |Π(σ(k + 1))|

for 1 " k < |TΛ|. This order of the tasks is considered during the
construction of the set of base configurations X base. The construction is
based on a function

construct : {1, . . . , |TΛ|} −→ 2
X ,

where construct(k) returns a set of configurations that include the base
configurations of the system when considering the mapping constraints
for only tasks σ(1), . . . ,σ(k). We shall give a recursive definition of the
function construct. For the base case, we define

construct(1) =
⋃

N∈Π(σ(1))

{N}.

Before we define construct(k) for 1 < k " |TΛ|, let us define a
function

feasible : X × {1, . . . , |TΛ|} −→ 2
X

as
feasible(X, k) = {X} (6.1)

if X ∩ Π(σ(k)) )= ∅—that is, if configuration X already includes an
allowed computation node for task σ(k)—and

feasible(X, k) =
⋃

N∈Π(σ(k))

X ∪ {N} (6.2)

otherwise. If X contains a computation node that task σ(k) can exe-
cute on, then feasible(X, k) does not add additional nodes to X (Equa-
tion 6.1). If not, however, then feasible(X, k) extendsX in several direc-
tions given by the set of nodes Π(σ(k)) that task σ(k) may execute on
(Equation 6.2). Now, we define recursively

construct(k) =
⋃

X∈construct(k−1)

feasible(X, k)
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for 1 < k " |TΛ|. The set construct(k) thus comprises configurations
for which it is possible to execute the tasks {σ(1), . . . ,σ(k)} according
to the mapping constraints induced by Π.

We know by construction that X base ⊆ construct(|TΛ|). We also
know that construct(|TΛ|) does not contain infeasible configurations. A
pruning of the set construct(|TΛ|)must be performed to identify feasible
configurations construct(|TΛ|) \ X base that are not base configurations.
This shall end our discussion regarding the identification of the set X base.

6.4 Task Mapping for Feasible Configurations
Let us define the mapping of the task set TΛ onto a feasible configura-
tionX ∈ X feas as a function mapX : TΛ −→ X. For each task τ ∈ TΛ,
mapX(τ) is the computation node that executes task τ when the system
configuration is X. It is required that the mapping constraints are con-
sidered, meaning that mapX(τ) ∈ Π(τ) for each τ ∈ TΛ. For a given
feasible configuration X ∈ X feas and mapping mapX : TΛ −→ X, we
use our integrated control and scheduling framework for distributed em-
bedded systems in Chapter 4 to obtain a design solution. The solution
parameters that are synthesized are the periods and control laws, as well
as the execution and communication schedule of the tasks and messages
in the system. The objective is to minimize the overall control cost

JX =
∑

i∈IP

Ji, (6.3)

which indicates maximization of the total control quality of the system,
under the consideration that only the nodes inX are operational.

We have used a genetic algorithm-based approach—similar to the
approach in Section 4.3.2—to optimize task mapping [ASEP11]. The
mapping affects the delay characteristics indirectly through task and mes-
sage scheduling. It is thus of great importance to optimize task mapping,
schedules, and control laws to obtain a customized solution with high
control quality in a given configuration. Thus, for a given X ∈ X feas,
we can find a customized mapping mapX : TΛ −→ X together with
a schedule and controllers (periods and control laws). The mapping is
constructed to satisfy the mapping constraints (i.e., mapX(τ) ∈ Π(τ) for
each τ ∈ TΛ) and with the objective to minimize the total control cost
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given by Equation 6.3. We denote withmemX
d the amount of memory re-

quired on node Nd (d ∈ IN) to store information related to the mapping,
schedule, periods, and control laws that are customized for configuration
X. This memory consumption is given as an output of the synthesis step;
we shall consider this memory consumption in the context of memory
limitations in Section 6.8.2.

6.5 Minimal Configurations
By definition, it is not possible to operate the system in infeasible config-
urations, because at least one task cannot be executed in such situations.
In this section, we shall discuss the synthesis of mandatory solutions that
are required to achieve system operation in feasible configurations. The
first approach is to synthesize solutions for each base configuration of
the system. It can be the case, however, that no solution can be found
for some base configurations; the control cost in Equation 6.3 is infinite
in such cases, indicating that at least one control loop is unstable. If
a solution cannot be found for a certain configuration, this means that
the computation capacity of the platform is insufficient for that config-
uration. In such cases, we shall progressively synthesize solutions for
configurations with additional computation nodes.

We first synthesize a solution for each base configurationX ∈ X base.
If a solution could be found—the control cost JX is finite—then that
solution can be used to operate the system in any feasible configuration
X′ ∈ X feas for which X ⊆ X′. If a solution cannot be found for base
configurationX, we proceed by synthesizing solutions for configurations
with one additional computation node. This process is repeated as long
as solutions cannot be found. Let us now outline such an approach.

During the construction of solutions to configurations, we shall main-
tain two sets Xmin and X ∗ with initial values Xmin = ∅ and X ∗ = X base.
The set Xmin shall contain the configurations that have been synthesized
successfully: Their design solutions have finite control cost and stabil-
ity is guaranteed. The set X ∗ contains configurations that are yet to be
synthesized. The following steps are repeated as long as X ∗ )= ∅.

1. Select any configuration X ∈ X ∗.

2. Synthesize a solution for X. This results in the control cost JX.
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3. RemoveX from X ∗ by the update

X ∗ ←− X ∗ \ {X}.

4. If JX <∞, update Xmin according to

Xmin ←− Xmin ∪ {X}, (6.4)

otherwise update X ∗ as

X ∗ ←− X ∗ ∪
⋃

N∈N\X

(X ∪ {N}) . (6.5)

5. If X ∗ )= ∅, go back to Step 1.

In the first three steps, configurations can be chosen for synthesis in any
order from X ∗. In Step 4, we observe that the set X ∗ becomes smaller
as long as solutions can be synthesized with finite control cost (Equa-
tion 6.4). If a solution for a certain configuration cannot be synthesized
(i.e., the synthesis framework returns an infinite control cost, indicat-
ing an unstable control system), we consider configurations with one ad-
ditional computation node to increase the possibility to find solutions
(Equation 6.5).

The configurations for which solutions could be synthesized form a
set of minimal feasible configurations Xmin. The set of minimal config-
urations Xmin is thus defined by Steps 1–5. A configuration X ∈ Xmin

is minimal in the sense that it is either a base configuration or it is a
feasible configuration with minimal number of nodes that cover a base
configuration that could not be synthesized due to insufficient computa-
tion capacity of the platform. For each minimal configurationX ∈ Xmin,
we consider that each node N ∈ X stores all tasks τ ∈ TΛ for which
mapX(τ) = N ; that is, we consider that tasks are stored permanently
on nodes to realize mappings for minimal configurations. Further, we
consider that all information (e.g., periods, control laws, and schedules)
that is needed to switch solutions for minimal configurations at runtime
is stored in the memory of computation nodes.

The set of feasible configurations for which the system is operational
with our solution is

X oper =
⋃

X∈Xmin

{X′ ∈ X feas : X ⊆ X′} (6.6)
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and it includes the minimal configurations Xmin, as well as feasible con-
figurations that are covered by aminimal configuration. The system is not
able to operate in the feasible configurations X feas \ X oper—this set rep-
resents the border between base and minimal configurations—because of
insufficient computation capacity of the platform. A direct consequence
of the imposed mapping constraints is that the system cannot operate
when it is in any infeasible configuration in X \ X feas. Infeasible con-
figurations, as well as feasible configurations not covered by minimal
configurations, are identified by our approach. To tolerate particular fault
scenarios that lead the system to configurations in

(
X \ X feas) ∪

(
X feas \ X oper) ,

the problem of insufficient computation capacity has to be solved by con-
sidering complementary fault-tolerance techniques (e.g., hardware repli-
cation). The system remains operational in all other configurations X oper

by using the solutions generated for minimal configurations. As a special
case, we have Xmin = X base if solutions to all base configurations could
be synthesized. In that case, we have X oper = X feas, meaning that the
system is operational in all feasible configurations.

6.6 Motivational Example for Optimization
The synthesis of a set of minimal configurations Xmin in the previous sec-
tion results in a solution that covers all fault scenarios that lead the system
to a configuration in X oper (Equation 6.6). The synthesis of minimal con-
figurations provides not only fault tolerance for the configurations X oper

but also a minimum level of control quality. Considering that all solu-
tions for minimal configurations are realized by storing information in
the memory of the platform, we shall in this section motivate and formu-
late an optimization problem for control-quality improvements, relative
to the minimum quality provided by minimal configurations.

Let us resume our example in Section 6.2.1 by considering synthesis
of additional configurations than the minimal configurations. We have
considered three control applications for three inverted pendulums (i.e.,
n = 3 Figure 6.1). We shall find that such optimizations can lead to
better control quality than a system that only uses the mandatory design
solutions for minimal configurations.
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Table 6.1: Control costs for several configurations. The first
two entries indicate a minimum level of control quality given
by the two minimal configurations. Control quality is improved
(cost is reduced) for configurations with additional operational
nodes.

Configuration X Control cost JX

{NA, ND} 5.2
{NC} 7.4

{NA, NB , NC , ND} 3.1
{NA, NB , NC} 4.3

6.6.1 Improved Solutions for Feasible Configurations

Let us consider the set of base configurations

X base = {{NA, ND}, {NC}}.

Considering that solutions for the two base configurations have been
synthesized, and that these solutions have finite control costs, we note
that the set of minimal configurations is Xmin = X base. We thus have
X oper = X feas, meaning that the system can operate in any feasible con-
figuration with the solutions for minimal configurations. Let us also con-
sider that a customized solution (mapping, schedule, and controllers) has
been synthesized for the configuration in which all nodes are operational.
This solution exploits the full computation capacity of the platform to
achieve as high control quality as possible. Note that all feasible con-
figurations can be handled with solutions for the two base configurations
(Figure 6.3).

We shall now improve control quality by additional synthesis of con-
figurations. Towards this, we have synthesized solutions for the two min-
imal configurations, as well as configuration {NA, NB , NC}. Table 6.1
shows the obtained control costs defined by Equation 6.3. Considering
that a solution for {NA, NB , NC} would not have been generated, then
in that configuration the system can only run with the solution for the
minimal configuration {NC} with a cost of 7.4. By generating a cus-
tomized solution, however, we can achieve a better control quality in that
configuration according to the obtained cost 4.3—a cost improvement
of 3.1. By synthesizing additional feasible configurations, we can ob-
tain additional control-quality improvements—however, at the expense
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Table 6.2: Task mapping for two configurations and three con-
trol applications. Each row shows tasks that run on a certain
node in a given configuration.

X NA NB NC ND

{NA, NB , NC} τ1s, τ2s, τ3s τ1c, τ2c, τ3c τ1a, τ2a, τ3a –

τ1s, τ1c, τ1a,
{NC} – – τ2s, τ2c, τ2a, –

τ3s, τ3c, τ3a

of the total synthesis time of all solutions. The particular selection of
additional configurations to synthesize solutions for is based on the al-
lowed synthesis time, the failure probabilities of the nodes in the system,
and the potential improvement in control quality relative to the minimum
level provided by the minimal configurations. We shall elaborate on this
selection in more detail in Section 6.8.

6.6.2 Mapping Realization

Once a solution for a configuration—not a minimal configuration—has
been synthesized, it must be verified whether it is possible for the sys-
tem to adapt to this solution at runtime. Thus, for the additional map-
ping of configuration {NA, NB , NC} in our example, we must check
whether the mapping can be realized if the system is in configuration
{NA, NB , NC , ND} and node ND fails. In Table 6.2, we show the map-
ping for this configuration, as well as the mapping of its corresponding
minimal configuration {NC}. For the minimal configurations, we con-
sider that the tasks are stored on the corresponding computation nodes.
For example, the tasks in the column for NC , corresponding to the min-
imal configuration, are stored on node NC . Let us consider the map-
ping of the tasks to the configuration {NA, NB , NC}. We note that all
tasks that are needed to realize the mapping for node NC are already
stored on that node. Nodes NA and NB, however, do not store the tasks
that are needed to realize the mapping for configuration {NA, NB , NC}.
When switching to the solution for this configuration—from configura-
tion {NA, NB , NC , ND}—the tasks for nodes NA and NB need to be
migrated from node NC . Note that it is always possible to migrate tasks
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from nodes in a minimal configuration: Because any feasible configura-
tion in X oper is covered by a minimal configuration, which realizes its
mapping by storing tasks in memory of the operational nodes, there is
always at least one operational node that stores a certain task for a given
feasible configuration.

During task migration, the program state does not need to be trans-
ferred (because of the feedback mechanism of control applications, the
state is automatically restored when task migration has completed). The
migration time cannot exceed specified bounds, in order to guarantee sta-
bility. Hence, if the migration time for tasks τ1s, τ2s, τ3s, τ1c, τ2c, and
τ3c satisfies the specified bound, the system can realize the solution for
configuration {NA, NB , NC} at runtime.

If the time required to migrate the required tasks at runtime exceeds
the given bounds, then the solution for the minimal configuration {NC}
is used at runtime with control cost 7.4. In that case, the operational
nodes NA and NB are not utilized. Alternatively, more memory can be
used to store additional tasks on nodes NA and NB, in order to realize
the mapping at runtime without or with reduced task migration. In this
way, we avoid the excessive amount of migration time and we can real-
ize the mapping, although at the cost of larger required memory space
to achieve the better control cost of 4.3 in configuration {NA, NB , NC}.
In the following section, we present a formal statement of the design-
space exploration problem for control-quality optimization. Thereafter,
in Section 6.8, we present an optimization approach that synthesizes se-
lected configurations and considers the trade-off between control quality,
memory cost, and synthesis time.

6.7 Problem Formulation
Given is a distributed platform with computation nodesN, a set of plants
P, and their control applications Λ. We consider that a task mapping
mapX : TΛ −→ X, as well as corresponding schedules and controllers,
have been generated for each minimal configuration X ∈ Xmin as dis-
cussed in Section 6.5. We consider that tasks are stored permanently on
appropriate computation nodes to realize the task mappings for the min-
imal configurations (i.e., no task migration is needed at runtime to adapt
to solutions for minimal configurations). Thus, to realize the mappings
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for minimal configurations, each task τ ∈ TΛ is stored on nodes
⋃

X∈Xmin

{mapX(τ)}.

The set of tasks that are stored on node Nd ∈ N is

T(d) =
⋃

X∈Xmin

{τ ∈ TΛ : mapX(τ) = Nd} . (6.7)

In addition, the inputs specific to the optimization step discussed in this
section are

■ the time µ(τ) required to migrate task τ from a node to any other
node in the platform;

■ the maximum amount of migration time µmaxi for plant Pi (this
constraint is based on the maximum amount of time that a plant
Pi can stay in open loop without leading to instability [Tab07] or
degradation of control quality below a specified threshold, as well
as the actual time to detect faults [Kop97, KK07]);

■ the memory spacememd(τ) required to store task τ ∈ TΛ on node
Nd (d ∈ IN);

■ the additional available memory memmax
d of each node Nd in the

platform (note that this does not include the memory consumed for
the minimal configurations, as these are mandatory to implement
and sufficient dedicated memory is assumed to be provided); and

■ the failure probability p(N) per time unit for each node N ∈N.

The failure probability p(N) depends on the mean time to failure (MTFF)
of the computation node. The MTFF is decided by the technology of
the production process, the ambient temperature of the components, and
voltage or physical shocks that the components may suffer in the opera-
tional environment of the system [KK07].

The decision variables of the optimization problem are a subset of
configurations X impl ⊆ X oper \ Xmin and a mapping mapX, schedule,
and controllers for each X ∈ X impl. Thus, in addition to the minimal
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configurations, we generate mappings for the other feasible configura-
tions X impl. We require that N ∈ X impl, which means that it is manda-
tory to generate solutions for the case when all nodes in the system are
operational.

Let us now define the cost that characterizes the overall control qual-
ity of the system in any feasible configuration based on the solutions
(mappings, schedules, and controllers) for the selected set of configu-
rations. We shall associate a cost JX for each feasible configuration
X ∈ X oper. If X ∈ Xmin ∪ X impl, a customized mapping for that con-
figuration has been generated with a cost JX given by Equation 6.3. If
X /∈ Xmin ∪ X impl and X ∈ X oper, then at runtime the system uses the
mapping of a configurationX′ for whichX′ ∈ Xmin∪X impl andX′ ⊂ X.
It is guaranteed that such a configuration X′ can be found in the set of
minimal configurations Xmin (Equation 6.6). If such a configuration is
also included in X impl, then the control quality is better than in the corre-
sponding minimal configuration because of better utilization of the oper-
ational computation nodes. Thus, for the caseX ∈ X oper\(Xmin∪X impl),
the cost of the feasible configuration X is

JX = min
X′ ∈ Xmin ∪ X impl

X′ ⊂ X

JX′

, (6.8)

which means that the best functionally correct solution—in terms of con-
trol quality—is used to operate the system in configuration X. The cost
to minimize when selecting the set of additional feasible configurations
X impl ⊆ X oper \ Xmin \ {N} to synthesize is defined as

J =
∑

X∈X oper\Xmin\{N}

pXJX, (6.9)

where pX is the probability of node failures that lead the system to config-
uration X (we shall discuss the computation of this probability in Equa-
tion 6.10 on page 107). Towards this, we shall consider the given failure
probability p(N) of each computation node N ∈ N.

The cost in Equation 6.9 characterizes the control quality of the sys-
tem as a function of the additional feasible configurations for which so-
lutions have been synthesized. If solutions are available only for the set
of minimal configurations, the system tolerates all node failures that lead
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the system to a configuration in X oper—however, at a large cost J in
Equation 6.9. This is because other feasible configurations operate at
runtime with solutions of minimal configurations. In those situations,
not all operational computation nodes are utilized, at the cost of reduced
overall control quality. By synthesizing solutions for additional feasible
configurations in X oper \Xmin \ {N}, the cost in Equation 6.9 is reduced
(i.e., the overall control quality is improved) due to the cost reduction in
the terms related to the selected set of configurations.

6.8 Optimization Approach
Figure 6.4 shows an overview of our proposed design approach. The first
component, which we discussed in Sections 6.3–6.5, is the identification
of base configurations and synthesis of minimal configurations (labeled
as “fault-tolerant design” in the figure). The second component (labeled
as “optimization”) comprises the exploration and synthesis of additional
configurations, as well as the mapping-realization step that considers the
constraints related to task migration and memory space. This second
component is the topic of this section and is our proposed solution to
the problem formulation in Section 6.7. The selection and synthesis of
additional feasible configurations is described in Section 6.8.1. For each
synthesized feasible configuration, it must be checked whether the so-
lution can be realized with regard to the memory consumption in the
platform and the amount of task migration required at runtime. Memory
and migration trade-offs, as well as memory-space and migration-time
constraints, are presented in Section 6.8.2.

6.8.1 Exploration of the Set of Configurations

Our optimization heuristic aims to minimize the cost in Equation 6.9 and
is based on a priority-based search of the Hasse diagram of configura-
tions. The priorities are computed iteratively as a step of the optimiza-
tion process based on probabilities for the system to reach the different
configurations. The heuristic belongs to the class of anytime algorithms,
meaning that it can be stopped at any point in time and return a feasible
solution. This is due to that minimal configurations already have been
synthesized and fault tolerance is achieved. The overall quality of the
system is improved as more optimization time is invested.
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Figure 6.4: Overview of the design framework. The first step
is to construct solutions for a set of minimal configurations,
which is based on the identification of base configurations, to
achieve fault-tolerance and a minimum control-quality level. In
the second step, the system is further optimized for additional
configurations.

Initially, as a mandatory step, we synthesize a mapping for the config-
urationN, in order to support the execution of the control system for the
case when all computation nodes are operational. During the exploration
process, a priority queue with configurations is maintained. Whenever a
mapping mapX : TΛ −→ X has been synthesized for a certain feasible
configuration X ∈ X oper (note that N is the first synthesized configura-
tion), each feasible configuration X′ ⊂ X with |X′| = |X|− 1 is added
to the priority queue with priority equal to the probability

pX
′

= pXp(N), (6.10)

where {N} = X \ X′. For the initial configuration N, we consider
pN = 1.

Subsequently, for configuration X, we check whether it is possible
to realize the generated mapping mapX : TΛ −→ X at runtime with
task migration and the available additional memory to store tasks. This
step is described in detail in the next subsection (Section 6.8.2). If this
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step succeeds, it means that the mapping can be realized at runtime and
we thus add X to the set X impl (this set is initially empty). Further in
that case, for each node Nd, the set of tasks T(d) stored on Nd and the
amount of additional consumed memory memd is updated. The set of
tasks T(d) that are stored on node Nd is initialized according to Equa-
tion 6.7. If the mapping realization does not succeed, the generated so-
lution for configuration X is excluded. This means that a solution for a
minimal configuration must be used at runtime to operate the system in
the feasible configurationX. Independently of whether the mapping real-
ization ofX succeeds, the exploration continues by generating a solution
for the next configuration in the maintained priority queue of configura-
tions. The exploration terminates when the additional memory space on
all computation nodes has been consumed, or when a specified design
time has passed (e.g., the designer stops the exploration process). Let us
now discuss the mapping-realization step that deals with the memory and
migration-time constraints for a given solution of a configuration.

6.8.2 Mapping Realization

In the previous subsection (Section 6.8.1), we proposed a search order
to explore and synthesize solutions for other feasible configurations than
the minimal configurations. For each configurationX ∈ X oper\Xmin that
is considered in the exploration process, a mapping mapX : TΛ −→ X

is constructed (along with customized schedules and controllers). We
shall in the remainder of this section focus on whether and how this map-
ping can be realized at runtime in case the system reaches configura-
tion X. We first check whether there is sufficient memory to store infor-
mation related to the solution (mapping, schedules, and controllers) for
the configuration. The required memory for this information is denoted
memX

d and is an output of the mapping and synthesis step for configu-
ration X (Section 6.4). Let us denote with memd the amount of addi-
tional memory that is already consumed on Nd for other configurations
in X impl ⊂ X oper \ Xmin. If

memd + memX
d > memmax

d

for some d ∈ IN, it means that the information related to the map-
ping, schedules, and controllers for configuration X cannot be stored on
the computation platform. For such cases, we declare that the mapping
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mapX cannot be realized (we remind that solutions for minimal configu-
rations, however, can be used to operate the system in configuration X).

If the solution forX can be stored within the given memory limit, we
check whether migration of tasks that are needed to realize the mapping
can be done within the maximum allowed migration time

µmax = min
i∈IP

µmaxi .

If the migration-time constraint cannot be met, we reduce the migration
time below the threshold µmax by storing tasks in the memory of com-
putation nodes (this memory consumption is separate from the memory
space needed to store tasks for the realization of minimal configurations).
The main idea is to store as few tasks as possible to satisfy the migration-
time constraint. Towards this, let us consider the set of tasks

Ψd(X) =
{
τ ∈ TΛ \T(d) : mapX(τ) = Nd

}

that need to be migrated to node Nd at runtime in order to realize the
mapping mapX, given that T(d) is the set of tasks that are already stored
on node Nd. The objective is to find a set of tasks Sd ⊆ Ψd(X) to store
on each node Nd ∈ N such that the memory consumption is minimized
and the maximum allowed migration time is considered. We formulate
this problem as an integer linear program (ILP) by introducing a binary
variable bτd for each node Nd ∈ N and each task τ ∈ Ψd(X). Task
τ ∈ Ψd(X) is stored on Nd if bτd = 1, and migrated if bτd = 0. The
memory constraint is thus formulated as

memd + memX
d +

∑

τ∈Ψd(X)

bτdmemd(τ) " memmax
d , (6.11)

which models that the memory consumption memX
d of the solution to-

gether with the memory needed to store the selected tasks do not ex-
ceed the memory limitations. The migration-time constraint is formu-
lated similarly as

∑

d∈IN




∑

τ∈Ψd(X)

(1− bτd)µ(τ)



 " µmax. (6.12)
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The memory cost to minimize in the selection of Sd ⊆ Ψd(X) is given
by

∑

d∈IN




∑

τ∈Ψd(X)

bτdmemd(τ)



 . (6.13)

If a solution to the ILP formulation cannot be found, then the map-
ping cannot be realized. If a solution is found, we have

Sd = {τ ∈ Ψd(X) : bτd = 1}

and we update the set T(d) and the memory consumption memd, respec-
tively, according to

T(d) ←− T(d) ∪ Sd

and
memd ←− memd + memX

d +
∑

τ∈Sd

memd(τ).

Even for large systems, the ILP given by Equations 6.13, 6.11, and 6.12
can be solved optimally and efficiently with modern solvers. We have
used the eplex library for ILP in ECLiPSe [AW07], and it incurred
negligible time overhead—less than one second—in our experiments.

6.9 Experimental Results
We have conducted experiments to evaluate our proposed design frame-
work. We constructed a set of test cases with inverted pendulums, ball
and beam processes, DC servos, and harmonic oscillators [ÅW97]. The
test cases vary in size between 5 and 9 computation nodes with 4 to 6
control applications. All experiments were performed on a PC with a
quad-core CPU at 2.2 GHz, 8 GB of RAM, and running Linux.

As a baseline of comparison, we considered a straightforward design
approach for which we synthesize solutions for all minimal configura-
tions and the initial configuration N. This constitutes the mandatory set
of solutions to achieve fault tolerance in any feasible configuration, as
well as an optimized solution for the case when all nodes are operational.
We computed a cost Jmin according to Equation 6.9, considering that
solutions have been synthesized for minimal configurations and the ini-
tial configuration, and that all other feasible configurations run with the
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Figure 6.5: Relative cost improvements and runtimes of the
proposed design approach. The synthesis time related to zero
improvement corresponds to the construction of solutions for
the mandatory minimal configurations and the configuration in
which all nodes are operational. Additional design time for
other feasible configurations leads to improved control quality.

corresponding minimal configuration with the minimum level of control
quality given by Equation 6.8. The cost Jmin indicates the overall con-
trol quality of the fault-tolerant control system with only the mandatory
solutions synthesized.

Subsequently, we made experiments with our optimization heuris-
tic to select additional configurations for synthesis. For each feasible
configuration that is synthesized, individual cost terms in Equation 6.9
are decreased (control quality is improved compared to what is provided
by minimal configurations). The optimization phase was conducted for
varying amounts of design time. For each additional configuration that
was synthesized, the total cost in Equation 6.9 was updated. Reminding
that a small control cost indicates high control quality, and vice versa, we
are interested in the control-cost improvement

Jmin − J

Jmin

relative to the control cost Jmin that is obtained when only considering
the mandatory configurations.

Figure 6.5 shows the design time on the horizontal axis and the cor-
responding relative improvement on the vertical axis. The design time
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corresponding to the case of zero improvement refers to the mandatory
design phase of identification and synthesis of minimal configurations.
The mandatory design phase for minimal configurations is around only
10 minutes, which is sufficient to cover all fault scenarios and provide
a minimum level of control quality in any feasible configuration. Any
additional design time that is invested leads to improved control quality
compared to the already synthesized fault-tolerant solution. For exam-
ple, we can achieve an improvement of around 30 percent already after
20 minutes for systems with 5 and 7 computation nodes. We did not run
the heuristic for the case of 5 nodes for more than 23 minutes, because
at that time it has already synthesized all feasible configurations. For
the other cases, the problem size was too large to afford an exhaustive
exploration of all configurations. It should be noted that the quality im-
provement is smaller at large design times. At large design times, the
heuristic typically evaluates and optimizes control quality for configura-
tions with many failed nodes. However, these quality improvements do
not contribute significantly to the overall quality (Equation 6.9), because
the probability of many nodes failing is very small (Equation 6.10). We
conclude that the designer can stop the optimization process when the
improvement at each step is no longer considered significant.

6.10 Summary and Discussion
We proposed a design framework for distributed embedded control ap-
plications with support for execution even if some computation nodes in
the system fail. We presented an algorithm to identify base configurations
and construct mappings for minimal configurations of the distributed sys-
tem to achieve fault-tolerant operation. To improve the overall control
quality relative to the minimum level of quality provided by the minimal
configurations, we construct additional design solutions efficiently.

The system can adapt to situations in which nodes have failed by
switching to an appropriate solution that has been synthesized at design
time. Task replication and migration are mechanisms that are used to
implement remapping of control tasks. In this way, the system adapts
to different configurations as a response to failed components. These
mechanisms and the solutions prepared by our framework are sufficient
to operate the system in case computation nodes fail. The alternative to
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this software-based approach is hardware replication, which can be very
costly in some application domains; for example, the design of many
applications in the automotive domain are highly cost constrained.

We note that our framework is not restricted to control applications,
but can be adapted to other application domains for which distributed
platforms and fault-tolerance requirements are inherent. In particular,
our idea of base and minimal configurations is general and may be ap-
plied to any application area. The information regarding base and mini-
mal configurations also serves as an indication to the designer regarding
those computation nodes that are of particular importance. Hardware
replication of nodes in minimal configurations reduces the probability of
reaching infeasible configurations, or reaching configurations that are not
covered by minimal configurations, whereas all other fault scenarios are
handled with the less costly software-based approach that we presented
in this chapter. The design optimization problem is relevant for other
application domains for which performance metrics exist and depend on
the available computing and communication resources.





7
Scheduling of Self-Triggered

Control Systems

SCHEDULING of multiple self-triggered control tasks on uniproces-
sor platforms is the topic of this chapter. Self-triggered control
has been proposed recently as a resource-efficient alternative to

periodic control. The motivation is the need to reduce the number of
controller executions while still maintaining a certain level of control
performance. This requirement may be due to constraints and costs re-
lated to the allowed amount of sensing, actuation, as well as computation
and communication bandwidth. Energy consumption and resource band-
width are two examples of such costs. To exploit the advantages of self-
triggered control approaches, in the context of multiple control loops on a
shared computation infrastructure, we present a software-based schedul-
ing component for optimization of control performance and CPU usage.
Stability of the control system is guaranteed by a design-time verification
step and by construction of the scheduling heuristic.

This chapter is organized as follows. We present the system and plant
model in Section 7.1. In Section 7.2, we discuss temporal properties of
self-triggered control. Section 7.3 shows an example of the execution
of multiple self-triggered tasks on a uniprocessor platform. The exam-
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Figure 7.1: Control-system architecture. The three feedback-
control loops include three control tasks on a uniprocessor com-
putation platform. Deadlines are computed at runtime and
given to the scheduler.

ple further highlights the scheduling and optimization objectives of this
chapter. The scheduling problem is defined in Section 7.4 and is followed
by the scheduling heuristic in Sections 7.5 and 7.6. Experimental results
with comparisons to periodic control are presented in Section 7.7. We
summarize the contribution of this chapter in Section 7.8.

7.1 System Model
Let us in this section introduce the system model and components that
we shall consider throughout this chapter. Figure 7.1 shows an exam-
ple of a control system with a CPU hosting three control tasks τ1, τ2,
and τ3—depicted with white circles—that implement controllers for the
three plants P1, P2, and P3, respectively. The outputs of a plant are con-
nected to A/D converters and sampled by the corresponding control task.
The produced control signals are written to the actuators through D/A
converters and are held constant until the next execution of the task. The
tasks are scheduled on the CPU according to some scheduling policy, pri-
orities, and deadlines. The scheduler component is the main contribution
of this chapter.

The set of self-triggered control tasks and its index set are denoted
with T and IT, respectively. Each task τi ∈ T (i ∈ IT) implements
a given feedback controller of a plant. The dynamical properties of this
plant are given by a linear, continuous-time state-space model

ẋi(t) = Aixi(t) +Biui(t) (7.1)
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in which the vectors xi and ui are the plant state and controlled input,
respectively. The plant state is measured and sampled by the control task
τi. The controlled input ui is updated at time-varying sampling intervals
according to the control law

ui = Kixi (7.2)

and is held constant between executions of the control task. We thus con-
sider that it is possible to measure all components of the state vector xi.
The actual time instants of these updates are determined by the scheduler
at runtime, based on the deadlines and trade-offs between control quality
and CPU usage. The control gain Ki is given and is computed by con-
trol design for continuous-time controllers. The design of Ki typically
addresses some costs related to the plant state xi and controlled input
ui. Like in Equation 3.1 on page 27, we may add disturbances to Equa-
tion 7.1. However, unlike the stochastic model for disturbances assumed
in the previous chapters, the magnitudes of these disturbances are con-
sidered to be bounded and can be taken into account by a self-triggered
control task when computing deadlines for its future execution [MT09].
The worst-case execution time of task τi is denoted ci and is obtained at
design time with tools for worst-case execution time analysis [WEE+08].

7.2 Timing of Self-Triggered Control
A self-triggered control task [VFM03, VMB08, AT08a, AT09, WL09,
MAT10] uses the sampled plant states not only to compute control sig-
nals, but also to compute a deadline for the next task execution. Stability
of the control system is guaranteed if this deadline is met at runtime. A
self-triggered control task comprises two execution segments. The first
execution segment consists of three sequential parts:

1. Sampling of the plant state x (possibly followed by some data pro-
cessing).

2. Computation of the control signal u.

3. Actuation of the control signal.

This first execution segment is similar to what is performed by a tradi-
tional periodic control task.
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Figure 7.2: Execution of a self-triggered control task. Each
job of the task computes a completion deadline for the next job.
The deadline is time varying and state dependent.

The second execution segment is characteristic to self-triggered con-
trol and computes temporal deadlines on task executions. As shown by
Anta and Tabuada [AT08a, AT09], the computation of the deadlines is
based on the sampled state, the control law, and the plant dynamics in
Equation 7.1. The computed deadlines are valid if there is no preemp-
tion between sampling and actuation (a constant delay between sampling
and actuation can be taken into consideration). The deadline of a task
execution is taken into account by the scheduler and must be met to guar-
antee stability of the control system. Thus, in addition to the first execu-
tion segment, which comprises sampling and actuation, a self-triggered
control task computes—in the second execution segment—a completion
deadline D on the next task execution. This deadline is relative to the
completion time of the task execution. The exact time instant of the next
task execution, however, is decided by the scheduler based on optimiza-
tions of control performance and CPU usage.

Figure 7.2 shows the execution of several jobs τ(q) of a control task
τ . After the first execution of τ (i.e., after the completion of job τ(0)), we
have a relative deadline D1 for the completion of the second execution
of τ . The deadline of τ(1) is denoted D1 and is relative to the comple-
tion time of job τ(0). Note that the deadline between two consecutive
job executions is varying; this shows that the control-task execution is
regulated by the dynamically changing plant state, rather than by a fixed
period. Note that the fourth execution of τ , job τ(3), starts and com-
pletes before the imposed deadline D3. The reason why this execution
is placed earlier than its deadline can be due to control-quality optimiza-
tions or conflicts with the execution of other control tasks. The deadline
D4 of the successive execution is relative to the completion time and not
relative to the previous deadline.

For a control task τi ∈ T, it is possible to compute a lower and
upper bound Dmin

i and Dmax
i , respectively, for the deadline of a task ex-
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Figure 7.3: Scheduling example. Tasks τ1 and τ3 have com-
pleted their execution before φ2 and their next execution in-
stants are t1 and t3, respectively. Task τ2 completes execution
at time φ2 and its next execution instant t2 has to be decided by
the scheduler. The imposed deadlines must be met to guarantee
stability.

ecution relative to the completion of its previous execution. We thus
have Di ∈ [Dmin

i ,Dmax
i ]. The minimum relative deadline Dmin

i bounds
the CPU requirement of the control task and is computed at design time
based on the plant dynamics and control law [AT08a, Tab07]. The max-
imum relative deadline is used to ensure that the control task executes
with a certain minimum rate (e.g., to achieve some level of robustness to
disturbances or a minimum amount of control quality).

7.3 Motivational Example
Figure 7.3 shows the execution of three self-triggered control tasks τ1, τ2,
and τ3. The time axes show the scheduled executions of the three tasks.
Considering that the current time is φ2, a dashed rectangle indicates a
completed task execution, where the length of the rectangle represents
the execution time of the task. The white rectangles show jobs that are
scheduled for execution after time moment φ2. The scenario is that task
τ2 has finished its execution at time φ2, including the computation of its
next deadline d2. The scheduler is activated at time φ2 to schedule the
next execution of τ2, considering the existing scheduled executions of
τ1 and τ3 (the white rectangles) and the deadlines d1, d2, and d3. Prior
to time φ2, task τ3 finished its execution at φ3 and its next execution
was placed at time t3 by the scheduler. In a similar way, the start time
t1 of task τ1 was decided at its most recent completion time φ1. Other
application tasks may execute in the time intervals in which no control
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Figure 7.4: Control and CPU costs. The two costs depend on
the next execution instant of the control task and are in general
conflicting objectives.

task is scheduled for execution.
The objective of the scheduler at time φ2 in Figure 7.3 is to schedule

the next execution of task τ2 (i.e., to decide the start time t2) such that
the task completes execution before or at the deadline d2. This decision
is in part based on trade-offs between control quality and CPU usage.
Figure 7.4 shows an example of the control and CPU costs—as functions
of t2—of task τ2 with solid and dashed lines, respectively. Note that a low
control cost in the figure indicates high control quality, and vice versa.
For this example, we have φ2 = 10 and d2 − c2 = 13 that bound the
start time t2 of the next execution of τ2. By only considering the control
cost, we observe that the optimal start time is 11.4. The intuition is that
it is not good to schedule a task immediately after its previous execution
(early start times), because the plant state has not changed much by that
time. It is also not good to execute the task very late, because this leads
to a longer time in which the plant is in open loop between actuations.

By only considering the CPU cost, the optimal start time is 13, which
means that the execution will complete exactly at the imposed deadline—
if the task experiences its worst-case execution time. As we have dis-
cussed, the objective is to consider both the control cost and CPU cost
during scheduling. The two costs can be combined together with weights
that are based on the required level of trade-off between control perfor-
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Figure 7.5: Combined control and CPU costs. Two different
combinations are shown with different weights between control
and CPU costs.

mance and resource usage, as well as the characteristics and temporal
requirements of other applications that execute on the uniprocessor plat-
form (e.g., best-effort applications). The solid line in Figure 7.5 shows
the sum of the control and CPU cost, indicating equal importance of
achieving high control quality and low CPU usage. The dashed line indi-
cates the sum of the two costs in which the CPU cost is included twice in
the summation. By considering the cost shown by the dashed line during
scheduling, the start time is chosen more in favor of low CPU usage than
high control performance. For the solid line, we can see that the optimal
start time is 11.8, whereas it is 12.1 for the dashed line. For systems with
multiple control tasks, the best start time in each case might be in conflict
with an already scheduled execution of another control task (e.g., with
task τ3 in Figure 7.3). In such cases, the scheduler can decide to move an
already scheduled execution, if this degradation of control performance
and resource usage for that execution is considered affordable.

7.4 Problem Formulation
We shall in this section present the specification and objective of the
runtime-scheduler component in Figure 7.1. The two following subsec-
tions present the scheduling constraints that are present at runtime, as
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well as the optimization objectives of the scheduler.

7.4.1 Scheduling Constraints

Let us first define non-preemptive scheduling of a task set T with index
set IT. We shall consider that each task τi ∈ T (i ∈ IT) has a worst-case
execution time ci and an absolute deadline di = φi + Di, where Di is
computed by the second execution segment of the control task and is the
deadline relative to the completion time φi of the task (Section 7.2). A
schedule of the task set T under consideration is an assignment of the
start time ti of the execution of each task τi ∈ T such that there exists a
bijection σ : {1, . . . , |T|} −→ IT that satisfies the following properties:

tσ(k) + cσ(k) " dσ(k) for k ∈ {1, . . . , |T|} (7.3)
tσ(k) + cσ(k) " tσ(k+1) for k ∈ {1, . . . , |T|− 1} (7.4)

The bijection σ gives the order of execution of the task set T: The tasks
are executed in the order τσ(1), . . . , τσ(|T|). Thus, task τi starts its execu-
tion at time ti and is preceded by executions of σ−1(i) − 1 tasks. Equa-
tion 7.3 models that the start times are chosen such that each task execu-
tion meets its imposed deadline. Equation 7.4 models that the scheduled
task executions do not overlap in time—that is, the CPU can execute at
most one task at any time instant.

Having introduced the scheduling constraints, let us proceed with the
problem definition. The initial schedule (the schedule at time zero) of the
set of control tasks T is given and determined offline. At runtime, when
a task completes its execution, the scheduler is activated to schedule the
next execution of that task by considering its deadline and the trade-off
between control quality and resource usage. Thus, when a task τi ∈ T

completes at time φi, we have at that time a schedule for the task set
T′ = T \ {τi} with index set IT′ = IT \ {i}. This means that we have a
bijection σ′ : {1, . . . , |T′|} −→ IT′ and an assignment of the start times

{tj}j∈IT′

such that
φi " tσ′(1)

and that Equations 7.3 and 7.4 hold, with T replaced by T′. At time
φi, task τi has a new deadline di and the scheduler must decide the start
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time ti of the next execution of τi to obtain a schedule for the entire set
of control tasks T. The scheduler is allowed to change the current order
and start times of the already scheduled tasks T′. Thus, after schedul-
ing, each task τj ∈ T has a start time tj # φi such that all start times
constitute a schedule for T, according to Equations 7.3 and 7.4. The
next subsection presents the optimization objectives that are taken into
consideration when determining the start time of a task.

7.4.2 Optimization Objective

The optimization objective of the scheduler at runtime is twofold: to
minimize the control cost (a small cost indicates high control quality)
and to minimize the CPU cost (the CPU cost indicates the CPU usage
of the control tasks). Let us recall that φi is the completion time of task
τi and di is the deadline of the next execution of τi. Because execution
is non-preemptive and the task must complete before its deadline, the
start time ti is allowed to be at most di − ci. Let us therefore define
the control and CPU costs for start times of task τi in the time interval
[φi, di − ci]. Thereafter, we shall define the overall cost to be minimized
by the scheduler.

State Cost The state cost in the considered time interval [φi, di− ci] is
defined as

Jxi (ti) =

∫ di

φi

xT
i (t)Qixi(t)dt, (7.5)

where ti ∈ [φi, di − ci] is the start time of the next execution of τi. The
weight matrix Qi is used to assign weights to the individual state compo-
nents inxi. It can also be used to transform the cost to a common baseline
or to specify importance relative to other control loops. Note that a small
cost indicates high control performance, and vice versa. Unlike the sta-
tionary control cost defined in Equation 3.3 on page 28, the state cost in
Equation 7.5 is defined in terms of a finite time interval considering only
the next execution of task τi. The scheduler thus takes decisions based on
the state cost defined in terms of the next execution of each task. Future
deadlines and resource requirements are not known and depend on future
states. These are considered in future scheduling points of each task.

The dependence of the state cost on the start time ti is implicit in
Equation 7.5: The start time decides the time when the control signal
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is updated and thus affects the dynamics of the plant state xi according
to Equation 7.1. In some control problems (e.g., when computing the
actual state-feedback law in Equation 7.2), the cost in Equation 7.5 also
includes a term penalizing the controlled input ui. We do not include
this term, because the input is determined uniquely by the state through
the given control law ui = Kixi. The design of the actual control law,
however, typically addresses both the state and the input costs.

Control Cost Let us denote the minimum and maximum value of the
state cost Jxi in the time interval [φi, di − ci] with Jx,mini and Jx,maxi ,
respectively. We define the finite-horizon control cost

Jci : [φi, di − ci] −→ [0, 1]

as

Jci (ti) =
Jxi (ti)− Jx,mini

Jx,maxi − Jx,mini

. (7.6)

Note that this is a function from [φi, di − ci] to [0, 1], where 0 and 1,
respectively, indicate the best and worst possible control performance in
the considered time interval.

CPU Cost The CPU cost J ri : [φi, di − ci] −→ [0, 1] for task τi is
defined as the linear cost

J ri (ti) =
di − ci − ti
di − ci − φi

, (7.7)

which models a linear decrease between a CPU cost of 1 at ti = φi and a
cost of 0 at the latest possible start time ti = di− ci. The intuition is that
the CPU load can be decreased by postponing the next task execution.
An example of the control and CPU costs is shown in Figure 7.4, which
we discussed in the example in Section 7.3.

Overall Trade-Off There are many different possibilities to achieve
a trade-off between control performance and CPU usage of the control
tasks. Specifically, we define the cost Ji(ti) of the task τi under schedul-
ing as a linear combination of the control and CPU costs according to

Ji(ti) = Jci (ti) + ρJ ri (ti), (7.8)
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where ρ # 0 is a design parameter that is chosen offline to specify the re-
quired trade-off between achieving a low control cost versus reducing the
CPU usage. For example, by studying Figure 7.5 again, we observe that
the solid line shows the sum of the control and CPU costs in Figure 7.4
with ρ = 1. The dashed line shows the case for ρ = 2.

At each scheduling point (e.g., at time φi when task τi has completed
its execution), the optimization goal is to minimize the overall cost of all
control tasks; note that already scheduled executions may be moved in
time. The cost to be minimized is defined as

J =
∑

j∈IT

Jj(tj), (7.9)

which models the cumulative control and CPU cost of the task set T at a
given scheduling point.

7.5 Design Activities
To reduce the time complexity of the scheduling component, two main
activities are performed at design time. The first aims to reduce the com-
plexity of computing the state cost in Equation 7.5 at runtime. This is
addressed by constructing approximate cost functions, which can be eval-
uated efficiently at runtime during optimization. The second activity is
to verify that the platform has sufficient computation capacity to achieve
stability of the control loops in all possible execution scenarios. Given
these two steps, we shall discuss the scheduler component in Section 7.6.

7.5.1 Cost-Function Approximation

We consider that a task τi has completed its execution at time φi at which
its next execution is to be scheduled and completed before its imposed
deadline di. Thus, the start time ti must be chosen in the time interval
[φi, di−ci]. The most recent known state is xi,0 = xi(t′i), where t′i is the
start time of the just completed execution of τi. The control signal has
been updated by the task according to the control law ui = Kixi (Sec-
tion 7.1). By solving the differential equation in Equation 7.1 with the
theory presented by Åström and Wittenmark [ÅW97], we can describe
the cost in Equation 7.5 as

Jxi (φi, ti) = xT
i,0Mi(φi, ti)xi,0.
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The matrixMi includes matrix exponentials and integrals and is decided
by the plant, controller, and cost parameters. It further depends on the
difference di − φi, which is bounded by Dmin

i and Dmax
i (Section 7.2).

Each element in Mi(φi, ti) is a function of the completion time φi of
task τi and the start time ti ∈ [φi, di − ci] of the next execution of τi. An
important characteristic of Mi is that it depends only on the difference
ti − φi.

Due to time complexity, the computation of the matrix Mi(φi, ti) is
impractical to perform at runtime. To cope with this complexity, our ap-
proach is to use an approximation M̂i(φi, ti) ofMi(φi, ti). The scheduler
presented in Section 7.6 shall thus consider the approximate state cost

Ĵxi (ti) = xT
i,0M̂i(φi, ti)xi,0 (7.10)

in the optimization process. The approximation of Mi(φi, ti) is done at
design time by computing Mi for a number of values of the difference
di − φi. The matrix Mi(φi, ti), which depends only on the difference
ti − φi, is computed for equidistant values of ti − φi between 0 and
di− ci. The precalculated points are all stored in memory and are used at
runtime to compute M̂i(φi, ti). The granularity of the approximation is a
design parameter and is decided based on the required accuracy and the
memory space needed to store the information required to compute M̂i.

7.5.2 Verification of Computation Capacity

Before the control system is deployed, it must be made certain that sta-
bility of all control loops is guaranteed. This verification is twofold:

1. We must make sure that there is sufficient computation capacity to
achieve stability.

2. Wemust make sure that the scheduler—in any execution scenario—
finds a schedule that guarantees stability by meeting the imposed
deadlines.

The first step is to verify at design time that the condition
∑

j∈IT

cj " min
j∈IT

Dmin
j (7.11)

holds. The second step, which is guaranteed by construction of the sched-
uler, is described in Section 7.6.3. To understand Equation 7.11, let us
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consider that a task τi ∈ T has finished its execution at time φi and its
next execution is to be scheduled. The other tasks T \ {τi} are already
scheduled before their respective deadlines. The worst-case execution
scenario is characterized by two properties:

1. The next execution of τi is due within its minimum deadline Dmin
i ,

relative to time φi. This means that di = φi +Dmin
i .

2. Each scheduled task has its deadline within the minimum deadline
of τi. That is, for each scheduled task τj ∈ T \ {τi}, we have
dj " di = φi +Dmin

i .

In this execution scenario, each task must execute exactly once within
a time period of Dmin

i (i.e., in the time interval [φi,φi + Dmin
i ]). Equa-

tion 7.11 follows by considering that τi is the control task with the small-
est possible relative deadline. In Section 7.6.3, we describe how the
schedule is constructed to guarantee stability, provided that the property
in Equation 7.11 holds.

The time overhead of the scheduler described in the next section can
be bounded by computing its worst-case execution overhead at design
time (this is performed with tools for worst-case execution time anal-
ysis [WEE+08]). For simplicity of presentation in Equation 7.11, we
consider this overhead to be included in the worst-case execution time cj
of task τj . Independent of the scheduling heuristic, the test guarantees
not only that all stability-related deadlines can be met at runtime but also
that a minimum level of control performance is achieved. The scheduling
heuristic presented in the following section improves on these minimum
control-performance guarantees.

7.6 Runtime Scheduler
This section describes the scheduling heuristic that is to be implemented
by the scheduler component. We shall in this section consider that task
τi ∈ T has completed its execution at time φi and that its next execution
is to be scheduled before the computed deadline di. Each task τj ∈
T \ {τi} has already been scheduled for execution at start time tj # φi.
These start times constitute a schedule for the task setT\{τi}, according
to the definition of a schedule in Section 7.4.1 and Equations 7.3 and 7.4.
The scheduler must decide the start time ti of the next execution of τi
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Figure 7.6: Flowchart of the scheduling heuristic. The first step
finds candidate start times that, in the second step, are evaluated
with regard to scheduling. If needed, the third step is executed
to guarantee stability.

such that φi " ti " di− ci, possibly changing the start times of the other
task T \ {τi}. The condition is that the resulting start times {tj}j∈IT
constitute a schedule for the task set T.

Figure 7.6 shows a flowchart of our proposed scheduler. The first step
is to optimize the start time ti of the next execution of τi (Section 7.6.1).
In this step, we do not consider the existing start times of the other tasks
T\{τi} but merely focus on the cost Ji in Equation 7.8. Thus, in this first
step, we do not consider possible execution conflicts when optimizing the
schedule for task τi. The optimization is based on a search heuristic that
results in a set of candidate start times

Ξi =
{
t(1)i , . . . , t(n)i

}
⊂ [φi, di − ci].

After this step, the cost Ji(ti) has been computed for each ti ∈ Ξi. In
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the second step (Section 7.6.2), for each ti ∈ Ξi, we determine whether
it is possible to schedule the execution of task τi at time ti, considering
the existing start time tj of each task τj ∈ T \ {τi}. If necessary, this
may include a modification of the starting times of the already scheduled
tasks to accommodate the execution of τi at the candidate start time ti.
If the start times cannot be modified such that all imposed deadlines are
met, then task τi is not schedulable at the candidate start time ti. The
result of the second step (schedule realization) is a subset Ξ′

i ⊆ Ξi of the
candidate start times.

For each ti ∈ Ξ′
i, the execution of τi can be accommodated at that

time, possibly with a modification of the start times

{tj}j∈IT\{i}

such that the scheduling constraints in Equations 7.3 and 7.4 are satis-
fied for the whole task set T. For each ti ∈ Ξ′

i, the scheduler computes
the total control and CPU cost of all control tasks (Equation 7.9). The
scheduler chooses the start time ti ∈ Ξ′

i that gives the best overall cost.
If Ξ′

i = ∅—this means that task τi is not schedulable at any of the can-
didate start times in Ξi—the scheduler resorts to the third step (stable
scheduling), which guarantees to find a solution that meets all imposed
stability-related completion deadlines (Section 7.6.3). Let us, in the fol-
lowing three subsections, discuss the three steps in Figure 7.6 in more
detail.

7.6.1 Optimization of Start Time

As we have mentioned, in this step, we consider the minimization of
the cost Ji(ti) in Equation 7.8, which is the combined control and CPU
cost of task τi. Let us first, however, consider the approximation Ĵxi (ti)
(Equation 7.10) of the state cost Jxi (ti) in Equation 7.5. The scheduler
performs a minimization of this approximate cost by a golden-section
search [PTVF07, GW04]. The search is iterative and maintains, in each
iteration, three points

ω1,ω2,ω3 ∈ [φi, di − ci]

for which the cost Ĵxi has been evaluated at previous iterations of the
search. For the first iteration, the initial values of the end points are
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ω1 = φi and ω3 = di − ci. The middle point ω2 is initially chosen
according to the golden ratio as

ω3 − ω2

ω2 − ω1
=

1 +
√
5

2
.

The next step is to evaluate the function value for a point ω4 in the largest
of the two intervals [ω1,ω2] and [ω2,ω3]. This point ω4 is chosen such
that ω4−ω1 = ω3−ω2. If Ĵxi (ω4) < Ĵxi (ω2), we update the three points
ω1, ω2, and ω3 according to




ω1

ω2

ω3



←−




ω2

ω4

ω3





and then repeat the golden-section search. If Ĵxi (ω4) > Ĵxi (ω2), we per-
form the update 


ω1

ω2

ω3



←−




ω1

ω2

ω4





and proceed with the next iteration. The cost Ĵxi is computed efficiently
for each point based on the latest sampled state and the precalculated
values ofMi, which are stored in memory before runtime (Section 7.5.1).
The search ends after a given number of iterations. We shall consider this
design parameter in the experimental evaluation.

The result of the search is a set of visited points

Ωi =
{
t(1)i , . . . , t(n)i

}

for which we have

{φi, di − ci} ⊂ Ωi ⊂ [φi, di − ci].

The number of iterations of the search is n− 3. The search has evaluated
Ĵxi (ti) for each ti ∈ Ωi. Let us introduce the minimum and maximum
approximate state costs Ĵx,mini and Ĵx,maxi , respectively, as

Ĵx,mini = min
ti∈Ωi

Ĵxi (ti) and Ĵ
x,max
i = max

ti∈Ωi

Ĵxi (ti).
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We define the approximate control cost Ĵci (ti)—compare to Equation 7.6
on page 124—for each ti ∈ Ωi as

Ĵci (ti) =
Ĵxi (ti)− Ĵx,mini

Ĵx,maxi − Ĵx,mini

. (7.12)

Let us now extend {
Ĵci (t

(1)
i ), . . . , Ĵci (t

(n)
i )
}

to define Ĵci (ti) for an arbitrary ti ∈ [φi, di − ci]. Without loss of gener-
ality, we assume that

φi = t(1)i < t(2)i < · · · < t(n)i = di − ci.

For any q ∈ {1, . . . , n− 1}, we use linear interpolation in the open time
interval

(
t(q)i , t(q+1)

i

)
, resulting in

Ĵci (ti) =

(
1− ti − t(q)i

t(q+1)
i − t(q)i

)
Ĵci (t

(q)
i ) +

ti − t(q)i

t(q+1)
i − t(q)i

Ĵci (t
(q+1)
i )

(7.13)
for t(q)i < ti < t(q+1)

i . Equations 7.12 and 7.13 define, for the complete
time interval [φi, di − ci], the approximation Ĵci of the control cost in
Equation 7.6.

We can now define the approximation Ĵi of the overall cost Ji in
Equation 7.8 as

Ĵi(ti) = Ĵci (ti) + ρJ ri (ti).

To consider the twofold optimization objective of control quality and
CPU usage, we perform the golden-section search in the time interval
[φi, di − ci] for the function Ĵi(ti). The cost evaluations are in this step
merely based on Equations 7.12, 7.13, and 7.7, which do not involve
any computations based on the sampled state or the precalculated val-
ues ofMi. This last search results in a finite set of candidate start times
Ξi ⊂ [φi, di − ci] to be considered in the next step.

7.6.2 Schedule Realization

We shall consider the given start time tj for each task τj ∈ T \ {τi}.
These start times have been chosen under the consideration of the schedul-
ing constraints in Equations 7.3 and 7.4. We thus have a bijection

σ : {1, . . . , |T|− 1} −→ IT \ {i}
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that gives the order of execution of the task set T \ {τi} (Section 7.4.1).
We shall now describe the scheduling procedure to be performed for each
candidate start time ti ∈ Ξi of task τi obtained in the previous step. The
scheduler first checks whether the execution of τi at the candidate start
time ti overlaps with any existing scheduled task execution. If there is an
overlap, the second step is to move the existing overlapping executions
forward in time. If this modification leads to a satisfaction of the timing
constraints (Equation 7.3), or if no overlapping execution was found at
all, this start time is declared schedulable. We shall in the remainder of
this section provide detailed descriptions of the steps to be performed for
each candidate start time.

Let us consider a candidate start time ti ∈ Ξi and discuss how to
identify and move overlapping executions of T \ {τi}. The idea is to
identify the first overlapping execution, considering that τi starts its ex-
ecution at ti. If such an overlap exists, the overlapping execution and
its successive executions are pushed forward in time by the minimum
amount of time that is required to schedule τi at time ti and to satisfy the
scheduling constraint in Equation 7.4 for the entire task set T. To find
the first overlapping execution, the scheduler searches for the smallest
k ∈ {1, . . . , |T|− 1} for which

[
tσ(k), tσ(k) + cσ(k)

]
∩ [ti, ti + ci] )= ∅. (7.14)

If no overlapping execution is found, meaning that Equation 7.14 is not
satisfied for any k ∈ {1, . . . , |T| − 1}, the candidate start time ti is
declared schedulable. In this case, the execution of τi can be scheduled
at time ti without any modification of the schedule of T \ {τi}. If, on
the other hand, an overlap is found, we have the smallest k that satisfies
Equation 7.14. The schedule is modified in that case as follows; note that
the schedule of the task set {τσ(1), . . . , τσ(k−1)} is not modified. First,
the scheduler computes the minimum amount of time

∆ = ti + ci − tσ(k) (7.15)

to shift the execution of τσ(k) forward. The new start time of τσ(k) is thus

t′σ(k) = tσ(k) +∆. (7.16)

This modification can introduce new overlapping executions or change
the order of the schedule. To avoid this situation, we consider the suc-
cessive executions τσ(k+1), . . . , τσ(|T|−1) by iteratively computing a new
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Figure 7.7: Schedule realization. The upper schedule shows a
candidate start time t1 for τ1 that is in conflict with the existing
schedule. The conflict is solved by pushing the current sched-
ule forward in time by an amount ∆, resulting in the schedule
shown in the lower part.

start time t′σ(q) for task τσ(q) according to

t′σ(q) = max
(
tσ(q), t

′
σ(q−1) + cσ(q−1)

)
, (7.17)

where q ranges from k + 1 to |T| − 1 in increasing order. The maxi-
mum value is taken over the current start time tσ(q) of task τσ(q) and the
completion time that task τσ(q−1) will have if it executes at the modified
starting time t′σ(q−1). Note that the iteration can be stopped at the first q
for which tσ(q) = t′σ(q). The reason is that the schedule for the task set
{τσ(q), . . . , τσ(|T|−1)} is unchanged by the modification process given by
Equation 7.17. The candidate start time ti is declared schedulable if, after
the updates in Equations 7.16 and 7.17, we have

t′σ(q) + cσ(q) " dσ(q)

for each q ∈ {k, . . . , |T| − 1}. We denote the set of schedulable candi-
date start times with Ξ′

i.
Let us study Figure 7.7 and discuss how Equations 7.16 and 7.17 are

used to schedule a task τ1 for a given candidate start time t1. The schedul-
ing is done at time φ1 at which the execution of the tasks τ2, . . . , τ6 are
already scheduled. The upper chart in the figure shows that the candi-
date start time t1 is in conflict with the scheduled execution of τ4. In
the lower chart, it is shown that the scheduler has used Equation 7.16 to
move τ4 forward by∆. This is indicated in the figure and computed with
Equation 7.15 to∆ = t4+ c4− t1. Tasks τ3 and τ5 are moved iteratively
according to Equation 7.17 by an amount less than or equal to∆. Task τ2
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is not affected because the change in execution of τ4 does not introduce
an execution overlap with τ2.

Let us consider that Ξ′
i )= ∅, which means that at least one candidate

start time in Ξi is schedulable. For each schedulable candidate start time
ti ∈ Ξ′

i, we shall associate a cost Ψi(ti) that represents the overall cost
(Equation 7.9) of scheduling τi at time ti and possibly moving other tasks
according to Equations 7.16 and 7.17. This cost is defined as

Ψi(ti) =
k−1∑

q=1

Ĵσ(q)(tσ(q)) + Ĵi(ti) +

|T|−1∑

q=k

Ĵσ(q)(t
′
σ(q)),

where the notation and new start times t′σ(q) are the same as our dis-
cussion around Equations 7.16 and 7.17. The costs in the first summa-
tion have already been computed at previous scheduling points, because
the start time of each task τσ(q) is not modified (1 " q < k). Further,
the cost Ĵi(ti) has been computed at the current scheduling point (Sec-
tion 7.6.1). Finally, each cost Ĵσ(q)(t′σ(q)) in the last summation can be
computed efficiently, because the scheduler has—at a previous schedul-
ing point—already performed the optimizations in Section 7.6.1 for each
task τσ(q) ∈ T \ {τi}.

The final solution chosen by the scheduler is the best schedulable
candidate start time in terms of the cost Ψi(ti). The scheduler thus as-
signs the start time ti of task τi to any start time in

argmin
t∈Ξ′

i

Ψi(t).

If an overlapping execution exists, its start time and the start times of its
subsequent executions are updated according to Equations 7.16 and 7.17.
In that case, the update

tσ(q) ←− t′σ(q)

is made iteratively from q = k to q = |T|− 1 in increasing order, where
τσ(k) is the first overlapping execution according to Equation 7.14 and
t′σ(q) is given by Equations 7.16 and 7.17. We have now completed our
discussion to choose a start time ti for task τi in the set of schedulable
candidate start times Ξ′

i. However, at runtime, it can be the case that
none of the candidate start times Ξi from the first step (Section 7.6.1)
are schedulable. Thus, if Ξ′

i = ∅, the scheduler must find an assignment
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of start times such that all tasks complete their execution before or at the
deadlines, which are imposed by the self-triggered control tasks based on
requirements on stability and a minimum level of control performance.
Such a procedure is described in the next subsection.

7.6.3 Stability Guarantee

The scheduling and optimization step in Sections 7.6.1 and 7.6.2 can fail
to find a valid schedule for the task set T. To ensure stability of the con-
trol system in such cases, the scheduler must find a schedule that meets
the imposed deadlines, without necessarily considering any optimization
of control performance and resource usage. Thus, the scheduler is al-
lowed in such critical situations to use the full computation capacity in
order to meet the timing constraints imposed by the self-triggered con-
trol tasks. Let us describe how to construct such a schedule at an arbitrary
scheduling point.

At a given time instant φi, task τi has completed its execution and its
next execution must be scheduled to complete before the deadline di. A
schedule for the other tasks T \ {τi} exists at time φi. We thus have a
bijection

σ : {1, . . . , |T|− 1} −→ IT \ {i}

and a start time tσ(q) for the next execution of task τσ(q) ∈ T \ {τi}
(1 " q < |T|). Because the start time of a task cannot be smaller than
the completion time of its preceding task in the schedule (Equation 7.4),
we have

tσ(k) # φi +
k−1∑

q=1

cσ(q) (7.18)

for 1 < k < |T| and tσ(1) # φi for the first task τσ(1) in the schedule.
In Equation 7.18, the sum models the cumulative worst-case execution
time of the k − 1 executions that precede task τσ(k). Note that the dead-
line constraints (Equation 7.3 on page 122) for the task set T \ {τi} are
satisfied, considering the given start times. Important also to highlight is
that the deadline of a task τj ∈ T \ {τi} is not violated by scheduling its
execution earlier than the assigned start time tj . To accommodate the ex-
ecution of the task under scheduling τi, we shall thus modify the existing
start times for the task set T \ {τi} to achieve equality in Equation 7.18.
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For the first task, the scheduler performs the assignment

tσ(1) ←− φi, (7.19)

and for each task τσ(k) (1 < k < |T|), it assigns

tσ(k) ←− φi +
k−1∑

q=1

cσ(q). (7.20)

As we have discussed, these modifications do not violate the timing con-
straints for the task set T \ {τi}. The start time ti of task τi is assigned
as

ti ←− φi +

|T|−1∑

q=1

cσ(q). (7.21)

This completes the schedule for T. With this assignment of start times,
the worst-case completion time of τi is

ti + ci = φi +

|T|−1∑

q=1

cσ(q) + ci = φi +
∑

j∈IT

cj ,

which, if Equation 7.11 on page 126 holds, is smaller than or equal to
any possible deadline di for τi, because

ti + ci = φi +
∑

j∈IT

cj " φi +Dmin
i " di.

With Equations 7.19–7.21, provided that Equation 7.11 holds (to be veri-
fied at design time), the scheduler can meet all deadlines in any execution
scenario.

Let us consider Figure 7.8 to illustrate the scheduling policy given by
Equations 7.19–7.21. In the schedule on the left side, task τ2 completes
its execution at time φ2 and the scheduler must find a placement of the
next execution of τ2 such that it completes before its imposed deadline
d2. Tasks τ1 and τ3 are already scheduled to execute at times t1 and t3,
respectively, such that the deadlines d1 and d3 are met. In the schedule
on the right side, it is shown that the executions of τ1 and τ3 are moved
towards earlier start times (Equations 7.19 and 7.20) to accommodate the
execution of τ2. Since the deadlines already have been met by the start
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Figure 7.8: Stable scheduling. The left schedule shows a sce-
nario in which, at time φ2, the scheduler must accommodate
CPU time to the next execution of τ2. In the right schedule,
CPU time for this execution is accommodated by moving the
scheduled executions of τ1 and τ3 to earlier start times.

times in the left schedule, this change in start times t1 and t3 does not
violate the imposed deadlines of τ1 and τ3, since the order of the two
tasks is preserved. Task τ2 is then scheduled immediately after τ3 (Equa-
tion 7.21) and its deadline is met, provided that Equation 7.11 holds.

7.7 Experimental Results
We have evaluated the proposed scheduling heuristic with simulations of
50 systems comprising 2 to 5 control tasks that control plants with given
initial conditions of the state equations in Equation 7.1. We have run
experiments for several values of the design constant ρ in Equation 7.8
(the trade-off between control quality and CPU usage) in order to obtain
simulations with different amounts of CPU usage. For each simulation,
we computed the total control cost of the entire task set T as

Jc,sim =
∑

j∈IT

∫ tsim

0
xT
j (t)Qjxj(t)dt, (7.22)

where tsim is the amount of simulated time. This cost represents the
control performance during the whole simulated time interval; a low
cost Jc,sim indicates high control performance. For each experiment, we
recorded the amount of CPU usage of all control tasks, including the
time overhead of the scheduling heuristic; the time overhead was esti-
mated based on its runtime on the host machine of the experiments. The
baseline of comparison is a periodic implementation for which the pe-
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Figure 7.9: Scaling of the control cost. Our approach is com-
pared to a periodic implementation for different CPU-usage
levels. Periodic control uses more CPU bandwidth to achieve
the same level of control performance as our approach with re-
duced CPU usage.

riods are chosen to achieve the measured CPU usage. For this periodic
implementation, we computed the corresponding total control cost Jc,simper
in Equation 7.22.

Figure 7.9 shows on the vertical axis the total control costs Jc,sim
and Jc,simper for our scheduling approach and a periodic implementation,
respectively. On the horizontal axis, we show the corresponding CPU
usage. The main message conveyed by the results in Figure 7.9 is that the
self-triggered implementation with our proposed scheduling approach
results in a smaller total control cost (i.e., better control performance)
compared to a periodic implementation that uses the same amount of
CPU time. The designer can regulate the CPU usage of the control tasks
within a wide range (30 to 60 percent of CPU usage) to obtain solutions
with better control performance, compared to solutions based on periodic
control. For example, for a CPU usage of 44 percent, the total control
costs of our approach and a periodic implementation are 8.7 and 15.3, re-
spectively (in this case, our approach improves the control performance
by 43 percent, relative to the periodic implementation). The average cost
reduction

Jc,simper − Jc,sim

Jc,simper
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of our approach, relative to the periodic implementation, is 41 percent
for the experiments with 30 to 60 percent of CPU usage. Note that for
high levels of CPU usage in Figure 7.9, a periodic implementation sam-
ples and actuates the controlled plants very often, which in turns leads to
similar control performance as a self-triggered implementation.

The time overhead has been included in the simulations by scaling the
measured execution time of the scheduling heuristic relative to the execu-
tion times of the control tasks. The main parameter that decides the time
overhead of the scheduler is the number of iterations to be implemented
by the golden-section search in Section 7.6.1. Based on experiments, we
have found that a relatively small number of iterations are sufficient to
achieve good results in terms of our two optimization objectives; the ex-
periments have been conducted with four iterations of the golden-section
search. The results presented in this section show that the proposed solu-
tion outperforms a periodic solution in terms of control performance and
CPU usage.

7.8 Summary and Discussion
We presented a framework for dynamic scheduling of multiple control
tasks on uniprocessor platforms. The self-triggered control tasks com-
pute their CPU needs at runtime and are scheduled with the objective
of finding trade-offs between control quality and CPU usage. The solu-
tion in this chapter is based on runtime heuristics aided by design-time
approximation and verification. Our results show that high control per-
formance can be achieved with reduced CPU usage.

The weight between control cost and CPU cost has been considered
as constant. However, this weight is a parameter that—instead of treating
it as fixed—can be adjusted at runtime to achieve high control perfor-
mance at a certain level of CPU usage. A typical scenario and motivation
for nonperiodic control approaches is in the context of resource sharing
among multiple control applications and a best-effort partition compris-
ing several applications with varying resource demand. In this context,
feedback control-based approaches for resource management in real-time
systems [LSST02, ASL+03, HDPT04, AHSG07, BBE+11] can, for ex-
ample, be used to adjust the weight between control and CPU cost based
on the desired level of CPU usage of the best-effort applications that are
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running on the same platform as the self-triggered control tasks.



8
Conclusions

SYNTHESIS and control-quality optimization can be performed ef-
ficiently for embedded control systems with multiple operation
modes, computation components with susceptibility to permanent

faults, and multiple control applications with state-triggered execution
in resource-constrained environments. The complex temporal proper-
ties of the execution and communication in modern embedded control
systems are acknowledged as major factors to consider during control
synthesis, computer-systems design, and control-quality optimization in
an integrated manner. In Chapter 4, we presented such a synthesis and
optimization framework for multiple control applications on distributed
embedded platforms. The framework supports several scheduling poli-
cies (static cyclic scheduling and priority-based scheduling) and commu-
nication protocols (TTP, CAN, and FlexRay) of the underlying execution
platform.

Embedded control systems must be able to react and adapt to various
changes in the operational environment at runtime. Such requirements
lead to scaling problems because of the very large number of situations
that may occur at runtime. In Chapters 5–7, we have approached the
synthesis problem for adaptive embedded systems by optimizations and
approximations to be performed at design time, as well as efficient solu-

141
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tions for decisions to be taken at runtime as a response to several sources
of runtime variability. We have taken several approaches to the design
of adaptive embedded systems for control applications, motivated by the
presence of multiple operation modes, probabilities of component fail-
ures, and varying requirements on the level of resource usage at runtime.

Chapter 5 presents a problem formulation and solution for the syn-
thesis of embedded control systems with multiple operation modes. The
main design and optimization difficulty is raised by the very large num-
ber of modes that the system may switch to at runtime. We have de-
veloped heuristics for trade-offs between several competing objectives:
control quality, optimization time, and the platform memory needed to
store design solutions for multiple operation modes. In Chapter 6, we
considered a similar problem as in Chapter 5 for systems in which com-
putation nodes may fail at runtime. A similar design difficulty, although
one that must be approached differently than in Chapter 5, is due to the
large number of combinations of operational computation components
at runtime. The main objective is to find optimized solutions for fault-
tolerant execution of the control applications for a set of fault scenarios.
The approach taken in Chapter 6 is based on synthesis of solutions for a
limited number of situations that may occur at runtime due to permanent
faults, as well as trade-offs between task migration and memory space.

Periodic control is the underlying execution model of control appli-
cations considered in Chapters 4–6. In Chapter 7, we considered self-
triggered control as an alternative execution model. The main advantage
of self-triggered control is its ability to reduce the number of controller
executions compared to periodic implementations. This is motivated in
any environment in which tight constraints are imposed on the amount of
sensor measurements, actuations, and resource usage related to computa-
tion and communication. For example, this is the case in systems where
control applications coexist with other application tasks with varying re-
source demand, or when the requirements on energy consumption are
changing at runtime. We proposed a scheduling component for runtime-
management of computation resources shared by multiple self-triggered
control applications. The solution is based on design-time approxima-
tions and a runtime-scheduling heuristic.

In the remainder of this chapter, we shall summarize the research
contributions and conclusions separately for the problems and solutions
presented in this thesis. The chapter organization follows the order in
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which the contributions are presented throughout the thesis.

8.1 Integrated Control and Scheduling
In Chapter 4, we proposed a system-level design approach for integrated
period assignment, controller synthesis, and scheduling of tasks and mes-
sages on distributed embedded systems. The construction of design so-
lutions is an optimization process that is driven by control quality. We
considered several decision variables that affect the performance of the
multiple control loops in the system. These variables are the execution
period of each application and its control law. Further, the periods and
the scheduling of tasks and messages on the individual computation and
communication components in the system influence the control quality
through the delay characteristics. This is the key issue that has been con-
sidered in the integrated design framework.

Our solution to the problem of integrated control and scheduling for
distributed embedded systems is based on the integration of several opti-
mization methods. We used genetic algorithms for period and priority as-
signment to the tasks and messages constituting the control applications.
For the case of static cyclic scheduling of tasks and messages, we used
a framework for constraint logic programming and a cost function that
combines average sensor–actuator delays and their variance. Controller
synthesis with delay compensation is integrated with the solutions for pe-
riod assignment and scheduling. Experimental results have demonstrated
significant quality improvements when using the synthesis framework in
Chapter 4, instead of a traditional approach for which control design and
computer-systems optimization are separated.

8.2 Multi-Mode Control Systems
Multiple operation modes of distributed embedded control systems is the
topic of Chapter 5. We considered that the set of controlled plants may
change during operation. To achieve optimal usage of the computation
and communication resources of the underlying execution platform, cus-
tomized solutions (schedules and controllers) must be synthesized for
each possible operation mode at design time. The large and complex
design space, which is an inherent property for design problems of adap-
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tive embedded systems, leads to long design times and requirements on
large amount of platform memory, if optimal solutions are required to be
implemented.

We proposed techniques to find appropriate trade-offs among several
competing parameters: control quality, design time, and the amount of
memory required to store the design solutions generated by our frame-
work. The techniques are based on the synthesis of a set of mandatory
solutions for a proper operation of the system in all possible functional
modes, as well as an optimization process that produces additional, in-
cremental improvements of the overall control quality of the system. As
a last step of the optimization process, for the case of limited memory
space of the execution platform, we formulated an integer linear pro-
gram to be solved at design time. Experimental results have validated
that high-quality solutions for multi-mode control systems can be syn-
thesized efficiently. If the synthesis problem for multi-mode systems has
very tight memory constraints, we have demonstrated that virtual modes,
which do not occur at runtime, can be considered during synthesis to gen-
erate design solutions that cover several functional modes in a memory-
efficient manner.

8.3 System Synthesis and Permanent Faults
The work in Chapter 6 is motivated by the need to tolerate and adapt
to component faults at runtime. We considered situations that occur at
runtime as a consequence of failed computation nodes in the underlying
distributed execution platform. The design space is complex because of
the many different sets of failed components at runtime. To give guar-
antees on fault tolerance, we considered the mandatory synthesis of a
set of minimal configurations of the system. By supporting execution in
such configurations, the system is able to operate in a large set of addi-
tional configurations that arise when computation nodes fail. Solutions
for minimal configurations enable the system to be resilient to many sce-
narios with failed computation nodes by operating with a minimum level
of control quality.

To improve control quality relative to the minimum level of qual-
ity given by the solutions for minimal configurations, we proposed an
optimization approach that considers additional configurations in an in-
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cremental manner. The search order is based on probabilities that are
associated to each configuration. We have also elaborated on the trade-
off between migration time and memory usage for the implementation
of design solutions on the execution platform. This trade-off between
task migration and task replication is formulated as an integer linear pro-
gram and is solved efficiently with negligible time overhead. Supported
by the presented experimental results, we conclude that we can construct
design solutions efficiently to guarantee fault-tolerant operation at run-
time. We have also demonstrated that significant quality improvements
can be achieved with relatively little additional design time. In addition to
this design time, a limiting factor for quality improvement is the memory
space that is available for task replication and storage of design solutions.

8.4 Self-Triggered Control Applications
Self-triggered control is an execution paradigm that has been developed
with the main motivation to decrease the number of controller executions
compared to traditional periodic control. Nevertheless, there has been
little work on the deployment of multiple such control applications on a
shared computation platform. In Chapter 7, we discussed scheduling of
the execution of multiple self-triggered control tasks on a uniprocessor
platform. Self-triggered control tasks compute deadlines for their future
executions based on the sampled plant states. Therefore, scheduling deci-
sions for task execution need to be done at runtime. Further, the need for
optimization and trade-off between control quality and CPU usage raises
additional difficulties when developing efficient scheduling policies.

The scheduling approach presented in Chapter 7 is based on design-
time approximations to avoid time-consuming computations at runtime.
At runtime, the scheduling policy is based on a fast search procedure and
a heuristic to solve conflicts in task executions. The scheduling decisions
are guided by control quality and CPU usage. We have also discussed a
complementary scheduling policy to guarantee that stability and a mini-
mum level of control performance is maintained during system operation.
Experimental results have demonstrated that control quality and resource
usage can be optimized for multiple self-triggered control applications
with low time overhead.





9
Future Work

THERE are certainly several directions for future studies and re-
search in the area of integrated control and computing. This
chapter outlines possible research directions based on the ma-

terial presented in this thesis. We shall discuss two main categories of
future work: First, we shall outline several directions related to inte-
grated communication synthesis and control in Section 9.1. Second, in
Section 9.2, we shall motivate and discuss the integration of embedded
real-time computing with event-based and self-triggered control.

9.1 Communication Synthesis and Control
We have in this thesis considered schedule tables and priorities as deci-
sion variables in the integrated optimization frameworks for distributed
control systems. This is applicable to systems with TTP, CAN, and
FlexRay. We have not, however, considered any further details regard-
ing bus-access configuration for these particular communication proto-
cols. FlexRay is a hybrid communication protocol that comprises a static
and a dynamic communication phase, each with its own configuration
parameters. There are thus several parameters that affect temporal be-
havior and control performance. The optimization of these, integrated
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with system-level scheduling and control synthesis, would be an impor-
tant research contribution. Its practical relevance is exemplified by the
increased use of FlexRay in the automotive systems domain. A first at-
tempt, considering only frame identifiers during optimization, has been
published recently [SEPC11]. Several other parameters must be con-
sidered before efficient solutions can be implemented. Such parameters
are the lengths of the static and dynamic phases, slot sizes, the minislot
length, and the mapping of frame identifiers to messages and computa-
tion nodes. This research direction could lead to better exploitation and
utilization of the underlying communication infrastructure, as well as a
tighter integration of real-time communication and control for improved
control quality. Last, multiple control-performance metrics could be con-
sidered during design-space exploration for embedded control systems.
Voit et al. [VSG+10] have taken a step in this direction by considering
performance metrics related to transient and steady-state control perfor-
mance, as well as the delay in the control loop. This can be important
to consider in the context of joint synthesis and optimization of multiple
types of embedded feedback-control applications.

Another research direction related to communication and control may
be taken for systems where the communication infrastructure leads to oc-
casional corruption or loss of transmitted data (e.g., due to transient faults
in communication links or the inherent characteristics of wireless con-
trol). Goswami et al. [GSC11a] presented communication synthesis for
FlexRay-based embedded control systems with guarantees on stability
based on the ratio between successful and lost samples. Fundamental the-
ory of control over lossy networks [SSF+07], as well as recent research
results on wireless networked control in the context of data-corrupting
channels [SCV+11] and packet dropouts [LH11], have raised interest-
ing control-quality optimization problems for control applications closed
over communication networks.

9.2 Nonperiodic Control and Computing
Nonperiodic control approaches like event-based and self-triggered con-
trol generally reduce the number of controller executions compared to
periodic execution. Such control paradigms are important for systems
with tight constraints on the amount of sensor measurements and actua-
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tions, as well as on the computation and communication bandwidth that
is occupied by the control application. Event-based and self-triggered
control can thus be important in the context of energy-constrained and
battery-powered computing systems. Other examples are when the use
of sensing and actuation devices incurs high cost—for example, energy
consumption, wear out, or the lifetime of the devices. In the automo-
tive systems domain, we see a huge increase in software on platforms
with limited computation and communication resources. In such con-
texts, it is important to find solutions that not only provide high qual-
ity of service but also are efficient in terms of their resource utilization.
Event-based and self-triggered control are promising solutions in highly
resource-constrained environments.

To implement nonperiodic control applications on embedded com-
puting platforms, we need methods for integration of multiple event-
based or self-triggered control applications on uniprocessor and multi-
processor systems. Several problems related to task mapping, schedul-
ing, and communication synthesis are interesting to study in more detail.
Further, the effect of delay and jitter may potentially be more dramatic
on control performance as compared to delay and jitter in systems with
periodic execution. The relation between delay sensitivity and the event-
triggering condition is an interesting research question; for periodic con-
trol, the important relation is the one between the delay characteristics
and the chosen control period for sampling and actuation.

The nature of event-based and self-triggered control is that the exe-
cution is triggered based on the runtime state of the controlled processes.
The execution of multiple such control applications on a shared compu-
tation and communication infrastructure needs to be supported by adap-
tive resource management policies. In addition to finding high-quality
solutions, these policies have to be executed on the platform with low
time overhead and without excessive resource usage. These are inter-
esting and challenging research questions that may lead to efficient uti-
lization of computation and communication resources, as well as bet-
ter control performance than periodic control. Research in this direction
can thus lead to important results of both theoretical and practical rel-
evance. Steps towards this direction have been made for event-based
controllers on a shared communication link [CH08, HC10] and for self-
triggered control applications communicating on CAN [AT09] or wire-
less networks [TFJD10, AAM+11]. However, there is much research that
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remains to be done in order to develop a complete design and runtime
framework for nonperiodic control applications on modern computing
platforms.
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[CMV+06] R. Castañé, P. Martı́, M. Velasco, A. Cervin, and D. Hen-
riksson. Resource management for control tasks based on
the transient dynamics of closed-loop systems. In Proceed-
ings of the 18th Euromicro Conference on Real-Time Sys-
tems, pages 171–182, 2006.

[Cog09] R. Cogill. Event-based control using quadratic approximate
value functions. In Proceedings of the 48th IEEE Confer-
ence on Decision and Control, pages 5883–5888, 2009.

[CVMC10] A. Cervin, M. Velasco, P. Martı́, and A. Camacho. Opti-
mal online sampling period assignment: Theory and exper-
iments. IEEE Transactions on Control Systems Technology,
2010.

[DBBL07] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien. Con-
troller Area Network (CAN) schedulability analysis: Re-
futed, revisited and revised. Real-Time Systems, 35(3):239–
272, 2007.

[DS00] M. Di Natale and J. A. Stankovic. Scheduling distributed
real-time tasks with minimum jitter. IEEE Transactions on
Computers, 49(4):303–316, 2000.

[DZD+07] A. Davare, Q. Zhu, M. Di Natale, C. Pinello, S. Kanajan,
and A. Sangiovanni-Vincentelli. Period optimization for
hard real-time distributed automotive systems. In Proceed-
ings of the 44th Design Automation Conference, pages 278–
283, 2007.

[EDPP00] P. Eles, A. Doboli, P. Pop, and Z. Peng. Scheduling with
bus access optimization for distributed embedded systems.
IEEE Transactions on Very Large Scale Integrated Systems,
8(5):472–491, 2000.



156 BIBLIOGRAPHY
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Fuertes. A CAN application profile for control optimiza-
tion in networked embedded systems. In Proceedings of
the 32nd IEEE Annual Conference on Industrial Electron-
ics, pages 4638–4643, 2006.

[VSG+10] H. Voit, R. Schneider, D. Goswami, A. Annaswamy, and
S. Chakraborty. Optimizing hierarchical schedules for im-
proved control performance. In Proceedings of the Interna-
tional Symposium on Industrial Embedded Systems, pages
9–16, 2010.

[WBBC10] Y. Wu, G. Buttazzo, E. Bini, and A. Cervin. Parameter
selection for real-time controllers in resource-constrained
systems. IEEE Transactions on Industrial Informatics,
6(4):610–620, 2010.

[WEE+08] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand, R. Heck-
mann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschu-
lat, and P. Stenström. The worst-case execution time prob-
lem – overview of methods and survey of tools. ACM
Transactions on Embedded Computing Systems, 7(3):36:1–
36:53, 2008.



BIBLIOGRAPHY 167

[WL09] X. Wang and M. Lemmon. Self-triggered feedback control
systems with finite-gain L2 stability. IEEE Transactions on
Automatic Control, 45(3):452–467, 2009.

[WMF05] W. Wang, A. K. Mok, and G. Fohler. Pre-scheduling. Real-
Time Systems, 30(1–2):83–103, 2005.

[WNT95] B. Wittenmark, J. Nilsson, and M. Törngren. Timing prob-
lems in real-time control systems. In Proceedings of the
American Control Conference, pages 2000–2004, 1995.

[Wol09] W. Wolf. Cyber-physical systems. IEEE Computer,
42(9):88–89, 2009.
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Birkhäuser, 2005.
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A
Notation

THIS appendix lists symbols that appear often throughout this the-
sis. The symbols are grouped together according to relevance
and topic. For each symbol, we present a short description and

a reference to the page where that symbol is introduced and defined for
the first time. For the general mathematical notation used throughout this
thesis, no page references are given.

Mathematics
N Set of natural numbers, 0, 1, 2, . . .
R Set of real numbers
Rn Set of vectors of n real numbers, n > 0
[a, b] Closed interval between the real numbers a and b
[a, b) Half-open interval between the real numbers a and b
/ · 0 Floor of a real number
1 · 2 Ceiling of a real number
AT The transpose of the matrix (or vector) A
E {·} Expected value of a stochastic variable
D {·} Standard deviation of a stochastic variable
←− Assignment or initialization
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f : X −→ Y Function from the set X to the set Y
f−1 : Y −→ X Inverse of the function f
× Cartesian product of sets
| · | Cardinality of a finite set
∪ Union of sets
∩ Intersection of sets
\ Set difference
⊂ Subset relation
⊆ Subset-or-equality relation
∅ The empty set
2X Power set of the set X
{ai}i∈I Set of items indexed by I

Control Applications
P Set of plants, page 27
IP Index set of P, page 27
Pi Plant (i ∈ IP), page 27
xi Plant state, page 27
ui Plant input (actuators), page 27
yi Plant output (sensors), page 27
Λ Set of control applications, page 32
Λi Control application (i ∈ IP), page 32
Ti Set of tasks in control application Λi, page 32
Ii Index set of Ti, page 32
Γi Set of messages of control application Λi, page 32
TΛ Set of all tasks

⋃
i∈IP

Ti, page 33
τ Task, page 33
τij Arbitrary task of application Λi (i ∈ IP, j ∈ Ii), page 33
τ (q)ij Job q of task τij , page 34
γijk Message between tasks τij and τik in application Λi, page 33
γ(q)ijk Instance q of message γijk, page 34
Ji Control cost for plant Pi (quality metric), page 28
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Platform
N Set of computation nodes, page 32
IN Index set ofN, page 32
map Task mapping to computation nodes, page 34
Π Specification of allowed nodes for each task, page 34
memmax

d Memory on node Nd (d ∈ IN) for design solutions, page 74

Control Timing
hi Period of control application Λi, page 33
hΛ Hyper period of the system, page 34
Hi Set of allowed periods of application Λi, page 43
h Period assignment of the application set Λ, page 44
cbcij Best-case execution time of τij , page 35
cwcij Worst-case execution time of τij , page 35
ξcij Probability function of the execution time of τij , page 35
cijk Communication time of γijk on the bus, page 35
δsai Sensor–actuator delay, page 30
∆sa

i Stochastic variable representing sensor–actuator delay, page 31
ξsa∆i

Probability function of ∆sa
i , page 31

Multi-Mode Systems
M Set of modes, page 67
Mfunc Set of functional modes, page 68
Mvirt Set of virtual modes, page 68
M Mode, page 67
IM Index set of modeM, page 67
M(M) Supermodes ofM, page 67
M(M) Submodes ofM, page 67
M′

↑ Top modes of the set of modesM′ ⊆M, page 75
Mimpl Set of implemented modes, page 68
JM Total control cost in modeM, page 68
JM
i Control cost of Λi in modeM, page 68
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JM(M′) Control cost ofM with the solution ofM′, page 74
memM

d Memory space on Nd for the solution ofM, page 68

Fault-Tolerant Systems
X Set of configurations, page 89
X Configuration, page 89
X feas Set of feasible configurations, page 94
X base Set of base configurations, page 94
Xmin Set of minimal configurations, page 99
X oper Set of configurations with resilience to faults, page 99
mapX Task mapping to configuration X, page 97
µ(τ) Migration time of task τ , page 104
µmax Maximum allowed migration time, page 109
memX

d Memory space on Nd for the solution of X, page 98
memd(τ) Memory space of τ on Nd, page 104
X impl Set of synthesized optional configurations, page 104
JX Overall control cost in configuration X, page 97
p(N) Failure probability of node N ∈ N, page 104
pX Probability of reaching configuration X, page 105
T(d) Set of tasks that are stored on node Nd (d ∈ IN), page 104

Self-Triggered Control
T Set of self-triggered control tasks, page 116
IT Index set of T, page 116
di Absolute deadline of the next execution of τi, page 122
Di Relative deadline of the next execution of τi, page 122
Dmin

i Minimum relative deadline of τi, page 118
Dmax

i Maximum relative deadline of τi, page 118
φi Completion time of the latest execution of τi, page 122
ti Start time of the next execution of τi, page 122
Jxi State cost of τi in the time interval [φi, di], page 123
Jci Control cost of τi in the time interval [φi, di], page 124
J ri CPU cost of τi in the time interval [φi, di], page 124
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Ji Combined control and CPU cost of τi, page 124
ρ Trade-off between control and CPU cost, page 125
Ĵxi Approximate state cost of τi, page 126
Ĵci Approximate control cost of τi, page 131
Ĵi Approximate combined control and CPU cost of τi, page 131
Ξi Set of candidate start times of task τi, page 128
Ξ′

i Set of schedulable candidate start times of task τi, page 133
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