Power Efficient Redundant Execution for Chip Multiprocessors

Pramod Subramanyan, Virendra Singh
Computer Design and Test Lab,
Supercomputer Education and Research Center,
Indian Institute of Science, Bangalore.

Abstract—This paper describes the design of a power efficient mi-
croarchitecture for transient fault detection in chip multiprocessors
(CMPs) We introduce a new per-core dynamic voltage and frequency
scaling (DVFS) algorithm for our architecture that significantly reduces
power dissipation for redundant execution with a minimal performance
overhead. Using cycle accurate simulation combined with a simple first
order power model, we estimate that our architecture reduces dynamic
power dissipation in the redundant core by an mean value of 79% and
a maximum of 85% with an associated mean performance overhead of
only 1.2%.

I. INTRODUCTION

Increasing levels of integration, reduced supply voltages and higher
frequencies are causing soft errors to become a significant problem
for high performance microprocessors [25], creating a need for
high performance, low power and fault tolerant microarchitectures.
While a low performance overhead due to fault tolerance is an
obvious requirement, a low power overhead is also just as important
because power dissipation and peak temperature are one of the key
performance limiters for modern processors [5]. Reducing power
dissipation also has the additional advantage of reducing operating
temperatures, which can significantly increase chip reliability [18].

One set of approaches to tackle the soft error problem attempt to
deduce the occurrence of an error by monitoring and identifying de-
viations or perturbations in program behavior [20l 30]. Another set of
approaches employ some form of redundant execution coupled with
input replication and output comparison [} [11} [16} 21} 22} 26]]. Ar-
chitectures like Restore [30] and Perturbation Based Fault Screening
[20] are attractive for applications that do not require comprehensive
transient fault coverage as they impose only a small overhead in
terms of performance and power. Conversely, architectures based on
redundant execution typically have a larger performance and power
penalty but usually provide higher transient fault coverage. An exam-
ple of this kind are architectures based on redundant multithreading
(RMT) which have a performance overhead that varies between 20-
30% [4) 111 [16) 21} 22].

While RMT remains an attractive option for transient fault tol-
erance, the base assumption made in RMT designs is a simulta-
neously multithreaded processor. However, SMT processors require
a wide and deep superscalar pipeline to achieve optimal power-
performance[12], which lead to large layout blocks and additional
circuit delays [17]. In some cases, destructive interference between
threads executing on an SMT processor can negate the performance
advantages of SMT [14]]. Therefore, we believe fault tolerant mi-
croarchitectures with small performance and power penalties which
are not based on RMT need to be studied.

Our architecture designates one of the cores of a CMP as the
primary-core (P-core), and the other core as a redundant core (R-
core). Branch outcomes, load values and fingerprints are transferred
over a dedicated interconnect between the P-core and the R-core.
Transient faults are detected by comparing fingerprints. Error cor-

Kewal K. Saluja
Electrical and Computer Engineering Dept.,
University of Wisconsin-Madison,
Madison, WI

Erik Larsson
Dept. of Computer and Info. Science,
Linkoping University,
Linkoping, Sweden.

rection is achieved by restoring the program state to most recent
validated checkpoint.

The key innovation introduced in our architecture is dynamic
frequency and voltage scaling based on the number of outstanding
entries in the branch outcome and load value queues. An increasing
number of outstanding entries in either one of the queues the means
that the P-core is executing instructions faster than the R-core,
therefore to avoid performance degradation due to the P-core filling
up the queues and stalling, the frequency of the R-core is increased.
On the other hand, in the common case, the number of outstanding
entries in the R-core is quite small. This is because in our architecture
the R-core does not misspeculate or access the data cache - obtaining
data from the P-core instead (see Section III), and hence it can operate
at a lower frequency than the P-core with only a small amount of
performance degradation.

The rest of this paper is structured as follows. Section II describes
related work. Sections III and IV describe the design and tackle some
implementation issues. Section V evaluates the design: Section V-A
describes our simulation methodology and Section V-C presents the
results of our evaluation. Finally section VI concludes.

II. RELATED WORK

Fault Tolerant Architectures: Todd Austin introduced DIVA [1]]
which is a novel fault detection and correction architecture which uses
an in-order checker processor to detect errors in a larger out-of-order
superscalar processor core. The checker processor is fabricated using
larger and more reliable transistors. Although using larger transistors
makes DIVA less susceptible to soft errors, DIVA cannot guarantee
the detection of all soft errors, especially those that occur in the
checker processor. In the Selective Series Duplex (SSD) architecture
[8], the main superscalar processor pipeline is duplicated selectively
to form the V-pipeline. The V-pipeline verifies the operation of
main CPU-pipeline by re-executing non-speculative instructions. One
disadvantage of the SSD architecture is that resources and functional
units allocated for re-execution are unavailable for normal execution
(i.e., when redundant execution is not being performed).

Transient fault detection using simultaneous multithreading was in-
troduced by Rotenberg in AR-SMT [22]] and Reinhardt and Mukher-
jee in SRT [21]]. A simultaneous and redundantly threaded (SRT)
processor augments SMT processors with additional architectural
structures like the branch outcome queue and load value queue to
enable transient fault detection. The branch outcome queue enhances
the performance of the redundant thread, while the load value queue
provides input replication. Muhkerjee et al. also introduced chip level
redundant threading (CRT) [16]], which extends SRT to simultane-
ously multithreaded chip multiprocessors. Gomaa et al. studied Chip
Level Redundant Threading with Recovery (CRTR) [4], which uses
the state of the trailing thread to recover from an error. Since the
primary and redundant threads are executed on different cores in
CRT and CRTR, they reduce the amount of data transmitted over the

interconnect between cores by the method of Dead and Dependence
Based Checking Elision (DDBCE).

A number of variants based on SRT processors have been proposed.
An example is Speculative Instruction Validation (SpecIV) [11] which
reduces the performance overhead of SRT by predicting the expected
values of instruction results and re-executing only those instructions
whose results differ from the expected values. By reducing the
number of instructions re-executed, SpeclV will also reduce the
power overhead of the redundant thread. Note that SpeclV fetches
and decodes all instructions even if they are not re-executed in the
redundant thread, decreasing potential power savings.

DIVA, SSD, SRT and its variants all use some form of redundant
execution to detect the occurrence of an error. An alternate approach
introduced by Razor [2] is circuit level augmentation of a processor
design to detect transient errors. Razor replicates critical pipeline reg-
isters and detect transient errors by comparing the value stored in the
two registers. A similar architecture is SPRIT>E[28], which improves
performance by operating by the processor a clock frequency that is
higher than the worst-case frequency. The SPRIT®E architecture also
augments all time-critical pipeline registers with a backup register.
The clock input to the backup register is a phase-shifted version of the
main clock. Comparison of the main and backup registers can detect
timing errors. SPRIT®E is able to increase significantly increase the
performance of a superscalar processor but this increase comes at the
cost of additional area and power.

While schemes based on RMT are attractive as they provide
complete transient fault coverage with only small performance and
power penalty, the base assumption made in RMT designs is a
simultaneously multithreaded processor. Lee and Brooks [12] studied
power-performance efficiency for CMP and SMT processors and
found that efficient SMT processors require wider (e.g., 8-way) and
deeper pipelines. Since many microarchitectural structures scale in a
non-linear fashion with increasing issue width [[17], wider pipelines
require larger area and lead to lower clock rates. A study by Sasanka
et al. [23] found that CMPs outperform SMT architectures for
multimedia workloads. Another study by Li et al. [13] found that
CPU bound workloads perform better on CMP architectures while
SMT architectures perform better on memory bound workloads. A
further problem with SMT architectures is the destructive interference
among threads that sometimes causes performance degradation [14].

The above results indicate that alternative architecture that can
provide transient tolerance with performance/power overheads similar
to those of SRT or its derivatives might be appealing. Hence, our work
targets improving power-efficiency of redundant execution schemes
on CMPs using an architecture that is not based on SMT processors.

Smolens et al. [27] introduced fingerprinting, which reduces the
bandwidth required for state comparison. Fingerprinting summarizes
the execution history and current state of a processor using a hash
value. Transient faults are detected by differences in the hash value
computed by the two cores. A related architecture is Reunion [26]
which provides input replication in chip multiprocessors without
the requirement of lockstepped execution by reusing the soft error
handling mechanisms for dealing with input incoherence. Reunion
requires changes to cache coherence controller which is a component
that is difficult to design and verify.

Dynamic Voltage and Frequency Scaling (DVFS): Isci et al. [5]
introduced a set of policies to manage per-core voltage and power
levels in CMPs. Their policies aim to maximize performance while
keeping power dissipation under the power budget. These are man-
aged either by a dedicated micro-controller, or a daemon running on a
dedicated core. In contrast, our design utilizes occupancy information

of the structures added for redundant execution to manage the power
level of the redundant core without software intervention and very
little additional hardware. Kim et al. [9]] described the detailed design
of on-chip regulators showing that it is possible to perform voltage
changes in time periods of the order of a few hundred nanoseconds.
Although current commercial processors do not yet have the ability to
set per-core voltage levels, the AMD Quad Core Opteron [6] allows
the frequency of each core to be set independently.

Reducing Energy Consumption in Fault Tolerant Architectures:
Montensinos et al. [15] use register lifetime prediction to provide
ECC protection to a small subset of the physical register file. Their
approach reduces the power dissipation of the register file at the cost
of additional area for the ECC table. To the best of our knowledge,
this is the only work that attempts to decrease power consumption
in the context of transient fault detection.

III. PROPOSED DESIGN
A. Base Architecture

Our architecture designates one of the cores of the CMP as a pri-
mary core (P-core), and another core as the redundant core (R-core).
The primary and secondary core execute the same instruction stream,
with the same input data stream, but the P-core is temporally “ahead”
of the R-core, i.e., the R-core executes a particular instructions after it
has been executed by the P-core. To enable power efficient redundant
execution, we augment the core with some additional structures. A
schematic of the modified core is shown in Figure [T] If redundant
execution is disabled, then the additional structures are not used and
core operates like a normal superscalar processor. The rest of this
section describes the architecture in detail.

‘ BPred }—)‘ Fetch ‘(—' BOQ |(—| From Interconnect
1

L A 1
ROB Issue Queue LSQ
‘ Reg File }—)‘ FUs ‘ ‘ D-cache | LVQ |
1

Fingerprint To

Fig. 1. Schematic diagram showing core augmented with structures required
for redundant execution. Newly added structures are shaded and not used
when redundant execution is not being performed.

Components Protected: Our mechanism detects errors that occur
within the fetch, decode and execution units, and the register file. We
assume that data cache, L2 cache and main memory are protected by
ECC.
Input Replication: Input replication is the mechanism to ensure that
the two cores see exactly the same input. Our architecture achieves
this by using the load value queue (LVQ) structure introduced by
Reinhardt and Mukherjee [21]. Loads from the P-core are transferred
over the interconnect and stored in the LVQ structure in the R-core.
Load values generated by instructions on wrong paths should not be
transferred over the interconnect, so values are transferred over the
interconnect only when the corresponding load instruction retires.
Load instructions executing in the R-core do not access the data
cache and instead obtain the load values from the LVQ. Note that

since the R-core never accesses the data cache, the data cache can
be completely shut down to reduce leakage power.

Although load values enter the LVQ in program order, load
instructions in the R-core may be issued out of program order.
Two solutions have been proposed to this problem: in [21] the
authors restrict load instructions to execute in program order, while
in [16] load instructions are associated with a tag generated by the
primary thread and this tag is used to select the value to be loaded
from the LVQ. Our solution is conceptually similar to the one in
[16]. However, since the P-core and R-core are spatially separated,
generating tags when the load value retires in the P-core will increase
interconnect traffic. Instead we assign tags to load values as they
enter the load value queue in the R-core. The tag is nothing but the
address of the location in the LVQ in which the value is stored. As
load instructions are decoded in the R-core, they are also assigned
a tag; this tag is carried along with the load instruction and is used
when the load instruction issued to read from the LVdH The above
scheme works because there is a one-to-one correspondence between
load instructions as they retire in the P-core and load instructions as
they are decoded in the R-core.

Entries are deleted from the LVQ only when the corresponding load
instruction retires. If the LVQ becomes full, then the P-core is unable
to retire instructions. If the LVQ is empty, and a load instruction is
issued then that load is tracked in a MSHR (Miss Status Holding
Register) structure and its value returned when the corresponding
load arrives from the P-core.

Information about external interrupts also needs to be transferred

from the P-core to the R-core over the interconnect to ensure precise
input replication. We also assume that TLB misses are handled in
software, and that the instructions which are used to read the page
table are also replicated like other load instructions.
Output Comparison: After the execution of every N instructions the
P-core and R-core compute a hash value that summarizes updates that
have been made to the state of a processor. (/N is the referred to as the
checkpointing interval). This hash value is referred to as a fingerprint
[27]. The two cores swap and compare fingerprints to detect soft
errors. If no soft error has occurred, the architectural updates will
be exactly the same, guaranteeing that the fingerprints will also be
equal. If a soft error occurs, the fingerprints are extremely likely
to be different. A mismatch in fingerprints necessarily indicates the
presence of a soft error.

As fingerprints capture updates to the architectural state of the
processor, they have to be computed after instruction retirement. In
addition to comparing fingerprints at the end of each checkpointing
interval, fingerprints are also compared before the execution of any
I/O operation or uncached load/store operation as these may have
side-effects outside the processor.

Like in [26] we assume that fingerprints capture all register
updates, branch targets, load and store addresses and store values.

The frequency of fingerprint comparisons affects the performance
overhead of our scheme. The P-core is stalled after the computation of
the fingerprint is completed and before the corresponding fingerprint
is computed and returned from the R-core, so smaller fingerprint
comparison intervals lead to a greater performance overhead. Smolens
et al. [27] reported that for I/O intensive workloads, I/O operations
occur approximately every 50,000 instructions. Based on this result,

The scheme assumes that two in-flight load instructions cannot have the
same tag; this assumption is guaranteed to be valid if the size of the ROB is
less than the size of the LVQ - this is true for all the LVQ sizes considered
in this paper.

we conservatively assume a fingerprint comparison interval of 50,000
instructions.

Core to Core Interconnect: We assume that each processor has a
dedicated bidirectional interconnect with an adjacent processor, and
this interconnect is used for transferring the load values and branch
outcomes from the primary to the redundant core. This interconnec-
tion strategy implies that the choice of primary and redundant cores
is restricted to one of four pairs in the 8-core CMP. While this does
decrease scheduling flexibility, it also reduces interconnect area and
power requirements.

Among the pair of cores linked by the interconnect, the choice

of primary and secondary cores may be made arbitrarily if all cores
can operate at the same supply voltage/frequency. However, process
variations can have the effect of rendering some cores to be unable
to operate at the maximum voltage-frequency level [29]. In such a
situation it may be beneficial to use the lower frequency core as the
redundant core.
Branch Outcome Queue: Branch outcomes from the P-core are
forwarded to the R-core to prevent the R-core from misspeculating.
At the time of retirement, the target address of each branch instruction
is transmitted over the interconnect to the R-core. At the R-core the
branch instruction is added to the branch outcome queue (BOQ).
During instruction fetch, the R-core does not use the branch predictor,
but instead accesses the branch outcome queue to get the direction
and target address of the branch. If the branch outcome queue is
empty, then instruction fetching stalls.

B. Voltage and Frequency Control

A reduction in the frequency of operation of the R-core, does not
significantly affect performance in our architecture. To understand
why this is so, let us analyze R-core performance using the method
of interval analysis described by Eyerman et al. [3]

Eyerman et al. found that performance of superscalar processors
can be analyzed by dividing time into intervals between miss events.

R /I\/ﬁss Events\
EREAW \ I

Time

Fig. 2. Interval Analysis of Superscalar Performance. Time increases along
the x-axis, and the y-axis shows the number of instructions issued.

The base assumption of the model is that superscalar processors

are designed to smoothly stream instructions through the pipeline at
a rate that is more or less equal to the issue width in the absence
of miss events. This smooth flow instructions is interrupted by miss
events like cache misses, branch mispredictions and TLB misses. The
effect of miss events is to first stop the dispatch of useful instructions.
Next, there is a period during which no useful instructions are issued,
and finally when the miss event is resolved, the smooth flow of
instructions resumes. Figure [2] depicts this interval behavior.
Miss Events in the R-core: An important observation here is that
unlike the P-core where a variety of miss events can disrupt smooth
instruction flow, there are only a few different miss events that affect
the R-core: I-cache misses, BOQ stalls and LVQ misses. Recall that
BOQ stalls occur when the target for a branch instruction is not
available in the BOQ, and fetching is stalled until this outcome
arrives. An LVQ miss is similar event which indicates that the R-
core is attempting to obtain the value of a load instruction whose
value has not arrived over the interconnect.

The key insight here is that the resolution time of the BOQ stalls
and LVQ misses depends on when the corresponding instructions
retire in the P-core and so does not change if the frequency of the R-
core is reduced. Reducing the frequency of the R-core has the effect
of decreasing the number of instructions issued in the R-core per unit
time. This causes the length of the intervals in which useful work is
performed to increase. However, this increased interval length need
not have an adverse effect on performance if the size of the interval
does not increase beyond the resolution time of the next miss event.
This is depicted graphically in Figure [3]

We define the lowest frequency at which the R-core can operate
without any performance degradation as its optimal frequency.

A

M =

Time

Fig. 3. Interval Analysis of the Effect of Reducing R-core Frequency. The
black line shows the performance of the R-core when operating at the same
frequency as the P-core. The blue line shows the performance of the R-core
when operating at a reduced frequency.

Exploiting the Effects of Time-Varying Phase Behavior: It is well
known that programs have time-varying phase behavior [24], causing
the IPC of the P-core to vary over time. A lower IPC for the P-core
has the effect of increasing the durations of the miss events in the
R-core, while a higher IPC has the opposite effect. This means that
when the program is executing a phase of low IPC, then the R-core
can operate at low frequency, and during phases of high IPC, the
R-core can increase its frequency.

The question now becomes how do we identify these phases of

low/high IPC in the programs during execution. In this context we
make the observation that the sizes of the BOQ and LVQ are an
indication of the difference in execution speed between the P-core
and the R-core. To understand why, let us assume for the moment
that the R-core has infinite sized BOQ and LVQ structures. If the
R-core is operating at a lower than its the optimal frequency, then it
will not suffer any miss events due to BOQ stalls or LVQ misses (as
it much “behind” the P-core), and the number of elements in the LVQ
and BOQ will continuously increase. On the other hand, if the R-
core is operating at higher than its optimal frequency, the LVQ/BOQ
structures will mostly be empty, as the R-core will consume these
entries very quickly after they enter the structures. This suggests
that an algorithm which varies the frequency of the R-core based
on the number of entries in the queues will be able to track IPC
variations in P-core; reducing power dissipation without adversely
affecting performance.
DVFS Algorithm: Our algorithm periodically samples the size of
the BOQ and LVQ after a fixed time interval 7. There are two
thresholds associated with the BOQ and LVQ - a high threshold and
a low threshold. If the occupancy of any one structure is greater than
its high threshold, then the frequency of operation is increased. If
the occupancy of one of the structures is less than the low threshold,
then the frequency of operation is decreased. In effect the algorithm
attempts to maintain the occupancy of the structures in between the
low and high thresholds.

The thresholds can be set either statically or dynamically. Our
results in section V-C show that a single static threshold provides
significant power savings with only a small performance degradation,
so in this paper we only use a single statically set threshold value.
The effect of different threshold values is explored in section V-C.

IV. DISCUSSION OF FAULT RECOVERY AND COVERAGE

There are two ways in which faults can be detected by our design.
One is through the comparison of fingerprints yielding fingerprints
which do not match. In this case, control is transferred to the OS
which restores execution to a previously taken checkpoint. Alterna-
tively, since during fault-free execution the R-core always gets perfect
branch predictions from the P-core, the detection of a misspeculation
in the R-core indicates the occurrence of a transient fault. This is
handled in the same way as a mismatch in fingerprints. A mismatch
in the fingerprints calculated by the two cores necessarily implies a
soft error, but a soft error may be such that the fingerprints computed
at the two cores still match. This situation referred to as fingerprint
aliasing and occurs with probability 2~ (=1 where p is the width of
the fingerprint, and hence larger fingerprints can be used to reduce
the probability of aliasing to an acceptably low level.

Our design does not require the BOQ to be protected with ECC
for correct operation as a soft error in the BOQ can be detected in the
R-core. However, protecting the BOQ reduces the likelihood of an
unnecessary recovery operation by a small amount. Whether the LVQ
requires protection with ECC for correct operation depends on how
the fingerprint computation is implemented. If we use the scheme
suggested in [26] where fingerprints are computed using instruction
results stored in the ROB, the value stored in the P-core ROB as well
as values stored in the LVQ need to be protected with ECC.

We assume that caches are protected with ECC. Our design detects
faults in all other parts of the processor core. Note that reducing the
voltage and frequency cause a small increase the rate of occurrence of
soft errors. The detection and subsequent recovery due to soft error
impose an additional energy and performance overhead. However
current soft error rates are still sufficiently low enough that this
additional power and performance overhead is negligible.

V. EVALUATION
A. Simulation Methodology

We use a modified version of the SESC cycle accurate simulator
[7]. Each program is simulated in two steps. The first step uses
SESC as an execution driven simulator to provide a trace of load
and branch instruction retirement events, and fingerprint generation
events from the primary core. The second step uses SESC for trace
based simulation of the redundant core. If during the simulation of the
redundant core, any of the storage structures like the branch outcome
queue or the load value queue become full, then we assume that the
primary core is completely stalled for the duration for which the
queue is full and delay all events generated by the primary core by
the duration of the stalﬂ Instructions executing on misspeculated
paths are fully simulated.

A source of inaccuracy in our trace based simulation is that it fails
to account for contention for the shared bus that connects the L2
caches to memoqﬂ

Power estimation is carried out using a simple first order model.
It is well known that dynamic power dissipation in a CMOS circuit
[31] is given by:

P=ACV*f M

Note that this is a conservative assumption as a queue full event will only
prevent the primary core from retiring instructions; execution of instructions
can still continue. Our simulations show that the average duration of stalls
due to queue full events is only a few tens of cycles, making it quite likely
that the latency of many of these stalls can be completely hidden.

3 All traffic between L2 and memory for the R-core is due to I-cache
misses.

£ BOQ, LVQ Size = 256 £21 BOQ, LVQ Size = 256

B 80Q, LVQ Size = 512

. 50Q, LVQ Size = 1024

f
l
f
i
i

g
f
/
9
/
/
i
/

(a) Normalized execution time vs (b) Normalized energy vs Queue (c) Normalized ED? vs Queue sizes

Queue sizes sizes

Fig. 4.

£21 BOQ, LVQ Size = 256
B BOQ, LVQ Size = 512

. BOQ, LVO Size = 1024

Bandvidth (Bytes/Cycl)

/
/
/
/
/
)

(d) Interconnect Bandwidth

Performance, Energy and ED? for different queue sizes. In all cases: LowThreshold = 16, and HighThreshold = Size/8. Interconnect

bandwidth requirements are shown for the case when queue sizes are all set to 1024 elements.

Here A is the switching factor, C' is the effective switching capac-
itance, V' is the supply voltage and f is operating frequency. A
common assumption is that voltage scales linearly with frequency
(50 191 1291

If the execution is divided into NV intervals 1,2,3...¢... N, each
of length AT;, and interval i operates at frequency k; f and voltage
k;V, where k; is the scaling factor for interval ¢, then the ratio of
E/E’, where E is the energy consumed after frequency scaling and
E' is the energy consumed without frequency scaling, is given by:

Zé\; k?ATi
N
Zi:l AT;

Our simulation tool estimates the ratio E’/E using the above
equation. Results in [5]] show that the above is a fairly accurate model
for dynamic power estimation. The assumption made by this simple
model is that power consumption in the LVQ and BOQ is equal to the
power consumption in the data cache and branch predictor structures.
This is a conservative and reasonable assumption because the size of
the LVQ and BOQ is less than the size of the data cache and branch
predictor, which are turned-off and not accessed.

E'/E = (2)

B. Workload

We use three integer and three floating point benchmarks from the
SPEC CPU 2000 benchmark suite. To reduce simulation times, the
integer benchmarks mcf, parser and vpr are simulated using
MinneSPEC [10] reduced input sets. The floating point benchmarks
applu, mgrid and swim are simulated using the early SimPoints
given in [19].

C. Results

Effect of Queue Sizes on Performance: Figure fi(a)] shows the ratio
of execution time with redundant execution to execution when no
redundant execution is performed (normalized execution time) for
different BOQ and LVQ sizes. The mean performance degradation
across all workloads for a 256, 512 and 1024 entry sized queues
are 2.0%, 1.6% and 1.2% respectively. It can be seen that the integer
workloads suffer greater performance degradation as compared to the
floating point workloads. The least performance overhead of less than
0.1% is seen in swim. The highest performance overhead is 4.5%
for vpr.

As expected, for most benchmarks the performance overhead
decreases when the sizes of the queues are increased. However for
the benchmark swim, there is an decrease in performance for larger
queue sizes - queue sizes of 256, 512 and 1024 have performance
overheads of 0.2%, 0.3% and 0.4% respectively. It will be shown
in the next subsection that increasing the threshold values tends to

increase the performance overhead. For the results in shown in Figure
B()] as the queue sizes are increased the high threshold is also
proportionally increased. Our simulation with queue sizes of 512 and
1024 with the high threshold set to 32 had a performance overhead
of 0.2% only; showing that for swim the increase in performance
due to larger queue sizes is negated by the decrease in performance
due to higher thresholds.

Effect of Queue sizes on Energy: Figure [(b)] shows the normalized
energy metric defined in equation @) The mean normalized energy
for BOQ and LVQ sizes of 256, 512 and 1024 are 0.22, 0.21 and
0.21 respectively, showing that our scheme achieves an mean energy
reduction of almost 80%.

The highest savings are achieved in mgrid, which shows a
decrease in energy of about 85%, while the lowest savings are seen
in applu, which shows energy savings between 72-75%.

Effect of Queue Sizes on ED?: Figure shows the variation of
the Energy x Delay® metric for different BOQ and LVQ sizes.

These results are similar to the results for energy because the
normalized execution times (delay) are very close to 1. We observe
that the mean reduction in ED? is 77%, 78%, and 79% for BOQ
and LVQ sizes of 256, 512 and 1024 respectively.

TABLE 1
PROCESSOR AND MEMORY SYSTEM MODELED

Fetch/Issue/Retire width ~ 6/3/3
ROB size 128
I-window 64

LD/ST queue 48

Men/Int/FP Units ~ 2/3/2
Branch Predictor ~ Hybrid
BTB 2k, 2-way
I-cache 32k/64B/4-way/2 cycles
D-cache 64k/64B/4-way/2 cycles

L2 512k/64B/16-way/14 cycles
Unified, Private

Memory 450 cycles
Vpbp 0.5-1V, steps of 0.125V
Frequency max 3 GHz; scaled linearly with Vpp

Interconnect Latency
Queue size sampling interval (7%)
Vpp change latency

16 cycles
8.33 s (25,000 cycles at 3 GHz)
0.125V / 100 ns

Effect of Different High Thresholds on Performance: Table |E| shows
the effect of increasing the high thresholds on performance. The
numbers presented here are the mean normalized execution times
across all benchmarks. We see that a higher threshold actually has
an adverse effect on performance. The reason is that when the P-

core switches from a phase of low IPC to one of higher IPC, the
queue sizes start building up. By setting the thresholds lower, we
react faster to a potential change of program phase, and so this has
a lower overhead on performance.

Queue Size | Size/8 | Size/4 | Size/2
256 1.020 1.023 1.026
512 1.016 1.017 1.020
1024 1.012 1.013 1.019

TABLE I

NORMALIZED EXECUTION TIME VS. QUEUE SIZES. THE THREE COLUMNS
SHOW NORMALIZED EXECUTION FOR DIFFERENT THRESHOLD VALUES.

We found that changing the low thresholds did not have any
significant effect on performance.
Bandwidth Requirements: Figure shows the bandwidth require-
ments of our scheme. The average bandwidth requirement is about
1.4 bytes per cycle for the benchmarks we study.

VI. CONCLUSION AND FUTURE WORK

This paper has presented an initial investigation of a power-
efficient microarchitecture for redundant execution on CMPs. Our
results indicate that this architecture combined with our simple DVFS
algorithm can achieve energy savings of up to 85%, mean savings
being 79% with a mean performance overhead of only 1.2%.

In future work we intend to explore more sophisticated algorithms
for DVFS, examine the effects of using DVFS on the P-core and
build an execution driven simulator for our approach to obtain more
accurate performance and power estimates.

VII. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their com-
ments and suggestions which helped improve the quality of this
paper. This work is partially supported by the Swedish Foundation
for International Cooperation in Research and Higher Education.

REFERENCES

[1] Todd Austin. DIVA: A Reliable Substrate For Deep Submicron Microar-
chitecture Design. Proceedings of the 32nd MICRO, Nov 1999.

Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao,
Toan Pham, Conrad Ziesler, David Blaauw, Todd Austin, Krisztian
Flautner, and Trevor Mudge. Razor: A Low-Power Pipeline Based on
Circuit-Level Timing Speculation. In Proceedings of the 36th MICRO,
Dec. 2003.

[3] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith.
A Performance Counter Architecture for Computing Accurate CPI
Components. Proceedings of the 12th International Conference on Ar-
chitectural support for Programming Languages and Operating Systems,
Oct. 2006.

Mohamed Gomma, Chad Scarbrough, T. N. Vijaykumar, and Irith
Pomeranz. Transient-Fault Recovery for Chip Multiprocessors. Pro-
ceedings of the 30th ISCA, June 2003.

Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose,
and Margaret Martonosi. An analysis of efficient multi-core global
power management policies: Maximizing performance for a given power
budget. Proceedings of the 39th MICRO, Dec. 2006.

J. Dorsey et al. An Integrated Quad-core Opteron processor. Interna-
tional Solid State Circuits Conference, 2007.

[71 J. Renau et al. SESC Simulator. http://sesc.sourceforge.net/, 2005.

[8] Seongwoo Kim and Arun K. Somani. SSD: An Affordable Fault Tolerant
Architecture for Superscalar Processors. In PRDC ’01: Proceedings of
the 2001 Pacific Rim International Symposium on Dependable Comput-
ing.

Wonyoung Kim, Meeta S. Gupta, Wei Gu-Yeon, and David Brooks.
System level analysis of fast, per-core DVFS using on-chip switching
regulators. Proceedings of the 14th HPCA, Feb. 2008.

[2

—

[4

=

[5

=

[6

i}

[9

—

[10]

(11]
[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

A. J. KleinOsowski and David J. Lilja. MinneSPEC: A New SPEC
Benchmark Workload for Simulation-Based Computer Architecture Re-
search. IEEE Computer Architecture Letters, Jan. 2002.

Sumeet Kumar and A. Aggarwal. Speculative instruction validation for
performance-reliability trade-off. Proc. of the 14th HPCA, Feb. 2008.
Benjamin Lee and David Brooks. Effects of Pipeline Complexity on
SMT/CMP Power-Performance Efficiency. Workshop on Complexity
Effective Design in conjunction with 32nd ISCA, June 2005.

Yingmin Li, David Brooks, Zhigang Hu, and Kevin Skadron. Per-
formance, Energy, and Thermal Considerations for SMT and CMP
Architectures. Proceedings of the 11th International Symposium on
High-Performance Computer Architecture Feb 2005.

H. M. Mathis, A. E. Mericas, J. D. McCalpin, R. J. Eickemeyer, and
S. R. Kunkel. Characterization of simultaneous multithreading (SMT)
efficiency in POWERS. [BM Journal of Research and Development,
July/Sept 2005.

Pablo Montesinos, Wei Liu, and Josep Torrellas. Using Register
Lifetime Predictions to Protect Register Files against Soft Errors. IEEE
Transactions on Dependable and Secure Computing, 2008.

S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed Design and
Evaluation of Redundant Multithreading Alternatives. Proceedings of
the 29th ISCA, May 2002.

Kunle Olukotun, Basem Nayfeh, Lance Hammond, Ken Wilson, and
Kunyung Chang. The Case for a Single-Chip Multiprocessor. Proceed-
ings of the 7th International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct. 1996.

Ishwar Parulkar, Alan Wood, James C. Hoe, Babak Falsafi, Sarita V.
Adve, and Josep Torrellas. OpenSPARC: An Open Platform for Hard-
ware Reliability Experimentation. Fourth Workshop on Silicon Errors
in Logic-System Effects (SELSE), April 2008.

Erez Perelman, Greg Hamerly, and Brad Calder. Picking Statistically
Valid and Early Simulation Points. Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques,
September 2003.

P. Racunas, K. Constantinides, S. Manne, and S. S. Mukherjee.
Perturbation-based Fault Screening. Proceedings of the 13th HPCA,
Feb. 2007.

S. K. Reinhardt and S. S. Mukherjee. Transient Fault Detection via
Simultaneous Multithreading. Proceedings of the 27th ISCA, June 2000.
Eric Rotenberg. AR-SMT: A Microarchitectural Approach to Fault
Tolerance in a Microprocessor. Proceedings of Fault-Tolerant Computing
Systems (FTCS), 1999.

Ruchira Sasanka, Sarita V. Adve, Yen-Kuang Chen, and Eric Debes. The
energy efficiency of CMP vs. SMT for multimedia workloads. Proceed-
ings of the 18th Annual International Conference on Supercomputing,
2004,.

Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically Characterizing Large Scale Program Behavior. Proceed-
ings of the 10th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2002), Oct.
2002.

P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi.
Modeling the Effect of Technology Trends on the Soft Error Rate of
Combinational Logic. Proceedings of the International Conference on
Dependable Systems and Networks, 2002.

J. C. Smolens, Brian T. Gold, Babak Falsafi, and James C. Hoe. Reunion:
Complexity-Effective Multicore Redundancy. Proceedings of the 39th
MICRO, Dec 2006, .

Jared C. Smolens, Brian T. Gold, Jangwoo Kim, Babak Falsafi, James C.
Hoe, and Andreas G. Nowatzyk. Fingerprinting: Bounding soft error
detection latency and bandwidth. Proceedings of the 9th ASPLOS, Oct.
2004, .

Viswanathan Subramanian, Mikel Bezdek, Naga D. Avirneni, and Arun
Somani. Superscalar Processor Performance Enhancement through
Reliable Dynamic Clock Frequency Tuning. In DSN ’07: Proceedings
of the 37th DSN.

Radu Teodorescu and Josep Torrellas. Variation-Aware Application
Scheduling and Power Management for Chip Multiprocessors. Proceed-
ings of the 35th ISCA, June 2008.

N. Wang and S. Patel. ReStore: Symptom Based Soft Error Detection
in Microprocessors. Proceedings of the International Conference on
Dependable Systems and Networks, 2005.

N. H. E. Weste and D. Harris. CMOS VLSI Design: A Circuits and
Systems Perspective. Addison Wesley, 2005.

	Introduction
	Related Work
	Proposed Design
	Base Architecture
	Voltage and Frequency Control

	Discussion of Fault Recovery and Coverage
	Evaluation
	Simulation Methodology
	Workload
	Results

	Conclusion and Future Work
	Acknowledgments

