

Abstract— Time-redundancy techniques are commonly used in

real-time systems to achieve fault tolerance without incurring
high energy overhead. However, reliability requirements of hard
real-time systems that are used in safety-critical applications are
so stringent that time-redundancy techniques are sometimes
unable to achieve them. Standby sparing as a hardware-
redundancy technique can be used to meet high reliability
requirements of safety-critical applications. However,
conventional standby-sparing techniques are not suitable for low-
energy hard real-time systems as they either impose considerable
energy overheads or are not proper for hard timing constraints.
In this paper we provide a technique to use standby sparing for
hard real-time systems with limited energy budgets. The
principal contribution of this work is an online energy-
management technique which is specifically developed for
standby-sparing systems that are used in hard real-time
applications. This technique operates at runtime and exploits
dynamic slacks to reduce the energy consumption while
guaranteeing hard deadlines. We compared the low-energy
standby-sparing (LESS) system with a low-energy time-
redundancy system (from a previous work). The results show
that for relaxed time constraints, the LESS system is more
reliable and provides about 26% energy saving as compared to
the time-redundancy system. For tight deadlines when the time-
redundancy system is not sufficiently reliable (for safety-critical
application), the LESS system preserves its reliability but with
about 49% more energy consumption.

Index Terms— Fault tolerance, Low-power design, Real-time
and embedded systems

I. INTRODUCTION
ime-redundancy techniques (e.g., rollback-recovery) [1-5]
and hardware-redundancy techniques (e.g., triple modular

redundancy) [7][16-18] are commonly used in real-time

Manuscript received on 5th May, 2011 and revised on 8th August, 2011. This
work was supported by Engineering and Physical Sciences Research Council
(EPSRC), UK, under grant no. EP/E035965/1. It is also partially supported by
the Research Vice-Presidency of Sharif University of Technology.
A. Ejlali is with the Department of Computer Engineering, Sharif University
of Technology, Tehran 14588-89694, Iran. E-mail: ejlali@sharif.edu.
B. M. Al-Hashimi is with the School of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ, U.K. E-mail:
bmah@ecs.soton.ac.uk.
P. Eles is with the Department of Computer and Information Science,
Linköping University, S-58333 Linköping, Sweden. E-mail:
petel@ida.liu.se.
Copyright (c) 2011 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending an email to pubs-permissions@ieee.org.

systems to achieve fault tolerance. One advantage of time
redundancy is that it usually requires less hardware as
compared to hardware redundancy [7][18], and hence from an
energy consumption point of view, time redundancy is
generally more preferable than hardware redundancy.
However, time-redundancy techniques may not be able to
achieve the required reliability of hard real-time systems that
are used in safety-critical applications [17]. To achieve the
high reliability requirements of these systems, the use of
hardware redundancy (also called hardware fault-tolerance [7]
or replication [16]) is a must [16]. Indeed, in time-redundancy
techniques, system reliability largely depends on the available
amount of slack time so that when deadlines are tight, the
reliability decreases significantly [6][7][17]. In contrast, the
use of hardware redundancy decouples the fault tolerance
from the slack time and can provide high reliability even when
deadlines are tight. However, hardware redundancy usually
incurs considerable energy overhead [7]. For example, triple
modular redundancy (TMR) and duplication are two well-
known hardware-redundancy techniques that clearly increase
the energy consumption by 200% and 100% respectively [18].
Therefore, in systems with limited energy budgets, if we want
to benefit from the high reliability offered by hardware
redundancy, energy consumption should be carefully taken
into account. In this paper we describe how a low-energy
hardware-redundancy technique, based on standby-sparing
[18], can be used for hard real-time systems. We will argue in
this paper (Section II) that conventional standby-sparing
techniques, i.e., hot and cold spares [18], cannot be used for
low-energy hard-real time systems, and hence we have
developed a different standby-sparing technique for this
purpose. In a system which uses our proposed technique
(throughout this paper we call this system LESS, which stands
for Low-Energy Standby-Sparing), dynamic voltage scaling
(DVS) is used to reduce the energy consumption of the
primary unit. However, we do not use DVS for the spare and
use dynamic power management (DPM) [10] instead. Indeed
we will argue (Sections II, V, and VI) that in the LESS
system, from both energy consumption and reliability
viewpoints, DVS is not suitable for the spare. In this paper we
provide an online energy-management technique which is
specifically developed for the LESS system and uses slack
reclamation (i.e., exploits dynamic slacks [2]) to reduce the
energy consumption.

Some research works, e.g., [2][3][8][29], have addressed

Low-Energy Standby-Sparing for Hard
Real-Time Systems

Alireza Ejlali, Bashir M. Al-Hashimi, Fellow, IEEE, and Petru Eles, Member, IEEE

T

both fault tolerance and low energy-consumption in fault-
tolerant real-time systems that are based on time-redundancy.
However, these works have focused on time redundancy and
have not considered hardware redundancy. [15] has proposed
a technique to exploit voltage scaling to reduce the energy
overhead of TMR when it is used for real-time systems. This
technique exploits system static slacks to reduce the energy
overhead of a TMR system to a level comparable to that of a
duplicated system and has not considered the use of dynamic
slacks (slack reclamation). To achieve energy-aware fault-
tolerance for hard real-time systems, [30] has proposed a static
scheduling technique for executing independent tasks on a
multi-processor system. This scheduling technique attempts to
reduce the need for executing secondary (backup) tasks to
conserve energy. However this work has not considered DVS
and also has not considered any slack reclamation scheme.
Furthermore, unlike our proposed technique, the technique of
[30] cannot be used for dependent tasks. [6] has proposed to
use a combination of information redundancy and time
redundancy to address the resource conflict between time-
redundancy and DVS on slack. However, this work has not
considered hardware redundancy and does not provide any
energy-management technique for fault-tolerant real-time
systems.

This paper substantially extends our previous work in [28],
where we proposed the basic idea of LESS, as follows:
1) We have considered the following five issues in the

proposed energy management technique: i) Voltage
transition overhead (both time and energy overheads)
imposed by DVS, ii) Activation overhead (both time and
energy overheads) imposed by DPM, iii) Static energy
consumption, iv) The time overhead of the energy manager
task itself, and v) The best-case execution times of the tasks.
To consider these five issues, we revised the analytical
energy models and the energy management algorithm.

2) By conducting new simulation experiments, we have
compared the LESS system (with the revised energy
management algorithm) with a recent low-energy time-
redundancy system (presented in [29]) with respect to the
energy consumption and reliability.

3) We have developed an analytical reliability model for the
LESS system. Using this model, we have evaluated the
reliability of the LESS system and compared it with the
time-redundancy system.

The results show that for relaxed time constraints, both the
LESS and time-redundancy systems can achieve the reliability
requirements of safety-critical applications (indeed the LESS
system is slightly more reliable in this case), but the LESS
system provides about 26% energy saving as compared to the
time-redundancy system. For tight deadlines, it can be
observed that while the time-redundancy system cannot
achieve the reliability requirement of safety-critical
applications, the LESS system preserves its high reliability but
with about 49% more energy consumption.

The rest of the paper is organized as follows. In Section II
we describe how the LESS system operates. In Section III, we

have developed analytical energy models for the LESS
system. In Section IV, we have used the analytical models of
Section III to provide an online energy management technique
for the LESS system. In Section V, we have developed
analytical reliability models for the LESS system. In Section
VI simulation results are presented and discussed. Finally,
Section VII concludes the paper.

II. PROPOSED LOW-ENERGY STANDBY-SPARING TECHNIQUE
In this paper we consider a standby-sparing system (called

the low-energy standby-sparing or the LESS system) which is
composed of two identical processors. One of them is called
the primary unit and operates as the main processor, while the
other one is called the spare unit and replaces the primary unit
when it becomes faulty. There are two conventional types of
standby sparing: hot and cold [18], but none of these two
techniques is suitable for low-energy hard real-time systems.
A hot spare unit operates in parallel with the primary unit and
therefore imposes considerable energy overhead as the spare
is always operational. In contrast to a hot spare, a cold spare is
idle until a fault is detected in the primary unit. Therefore a
cold spare does not consume power until needed to replace the
primary unit. However, we have shown in [28] that in a hard
real-time system, sometimes the spare must be activated even
before the primary unit becomes faulty; otherwise a fault in
the primary unit may result in missing a deadline. Therefore,
the cold standby-sparing technique is not proper for hard real-
time systems. In the LESS system, the spare is neither a cold
spare nor a hot one. Rather, dynamic power management
(DPM) [10] is used to reduce the energy consumption of the
spare, i.e., it is kept idle for as long as possible, taking into
account the hard real-time constraints. To reduce the energy
consumption of the primary unit, dynamic voltage scaling
(DVS) is used. However, we do not use DVS for the spare
because, as we will see later in this paper, unlike the primary
unit, the spare usually does not need to execute the tasks
completely and can be kept idle (i.e. DPM), which makes it
unnecessary for the spare to use DVS. Furthermore, we have
shown in Section V that the reliability of the spare is a lower
bound on the reliability of the whole LESS system and this
lower bound would be degraded if we used DVS for the spare.
For both the DVS and DPM techniques, we use a slack
reclamation scheme, i.e., dynamically created slacks are
exploited to achieve energy saving. Dynamic slacks result at
runtime when tasks consume less than their worst-case
execution time [2]. The use of dynamic slacks helps to achieve
more energy saving as compared to the techniques that only
use static slack time which is the difference between the
deadline and the worst-case execution time [2][19]. It should
be noted that the LESS system does not use its slack time for
fault tolerance. The fault tolerance is achieved by using the
spare and the slack time is only used for reducing the energy
consumption. Therefore, unlike time-redundancy techniques,
the LESS system preserves its fault-tolerance even when the
available slack is small.

Clearly, a standby-sparing system requires an error

detection mechanism to determine if a task finishes
successfully or not. In the context of fault-tolerant real-time
systems, an error detection mechanism is usually assumed to
be part of the software architecture and the error detection
overhead is considered as part of the task execution time
[1][5]. Similarly, in this paper we assume that an error
detection mechanism is part of the software architecture. We
focus only on transient faults as it has been observed that
transient faults are the major source of concern in safety-
critical applications [27][29][31]. In this paper, we consider
frame-based real-time applications [29][31] with hard timing
constraints where a set of dependent tasks, e.g., Γ={T1, T2, T3,
…, Tn}, is executed within each frame and must be completed
before the end of the frame (deadline) [31]. The LESS system
does not need any dedicated scheduler. Indeed it is assumed
that a static schedule, like the one shown in Fig. 1, already
exists for a single processor system which has no fault-
tolerance or energy-management mechanism and the LESS
system uses this same schedule to run the given application.
When the LESS system is executing such a schedule, it does
not change the temporal order of the tasks to avoid violating
task dependencies. It should be noted that as we consider
sequences of dependent tasks, different tasks (i.e., tasks Ti and
Tj, where i≠j) cannot be executed in parallel in the LESS
system. Therefore we do not use dual-processor scheduling
methods that schedule the tasks among the processors to
execute different tasks in parallel. In the following, we
describe how the LESS system operates.

Primary Unit: Suppose that a schedule like the one in Fig. 1
exists for a single processor system operating at the maximum
supply voltage VMAX. Fig. 2 shows how such a schedule is
executed on the LESS system. When tasks are executed at the
supply voltage VMAX, each task Ti has a worst-case execution
time WTi, and an actual execution time ATi. Each task Ti is
executed on the primary unit at a supply voltage Vi, which
may be less than VMAX. For each task Ti, we define the
normalized supply voltage ρi as follows:

MAX

i
i V

V
=ρ (1)

When a reduced supply voltage is used for a task Ti, the
worst-case execution time is prolonged from WTi to WTi/ρi
and the actual execution time is prolonged from ATi to ATi/ρi
[11]. Before starting each task Ti, we execute a relatively short
task, called energy manager, on the primary unit (hachured
tasks on the primary unit in Fig. 2) that determines the proper
supply voltage Vi for the task Ti. After the energy manager
determines the supply voltage Vi, the supply voltage must
change from Vi-1 to Vi. This voltage transition takes the time
[25]:

11 −− −⋅⋅=−⋅= iiMAXiii VKVVKTR ρρ (2)
where K is a constant factor.

To avoid additional voltage transitions, we never change
the supply voltage for executing the energy manager task
itself and it is executed at the same voltage as that of the
previous task, i.e., Vi-1. Let τEM be the time it takes to execute
the energy manager task at the supply voltage VMAX, then the
time overhead due to executing the energy manager task and
changing the supply voltage is:

1
11

−
−−

−⋅⋅+=+= iiMAX
i

EM
i

i

EM
i VKTR ρρ

ρ
τ

ρ
ττ (3)

Throughout this paper, we call τi the energy management
overhead for the task Ti.

As reducing the supply voltage increases the execution
time, the supply voltage of a task Ti cannot be reduced
arbitrarily as it may result in missing the deadline. To
guarantee that the supply voltage never decreases to a risky
level with the possibility of deadline miss, we use the
following rule:

Rule 1: The normalized supply voltage ρi for each task Ti
should be determined so that we can always meet the deadline
if we execute the subsequent tasks Ti+1 through Tn at the
maximum supply voltage.

Using this rule, we can provide a minimum value for ρi
which guarantees that the deadline will not be missed. Let STi
be the time at which the task Ti-1 finishes running on the
primary unit and the energy manager task starts running on
this unit to determine the supply voltage for the next task Ti
(Fig. 2). We have (Fig. 2):

∑
−

=

+=
1

1

)(
i

j j

j
ji

AT
ST

ρ
τ (4)

Let τM be the maximum possible value of τi. When the task
Ti finishes, if we want to execute the subsequent tasks Ti+1
through Tn at the maximum supply voltage VMAX, the task Ti+1
may take the worst-case time τM+WTi+1. However, each of the
tasks Ti+2 through Tn take the worst-case time τEM+WTj
(i+2≤j≤n). This is because when all the tasks Ti+1 through Tn
are executed at VMAX, no voltage transition occurs for the tasks
Ti+2 through Tn and the energy manager task takes the time
τEM when executed at VMAX. Therefore, the worst-case time it
takes to execute the subsequent tasks Ti+1 through Tn at VMAX
is:

∑
+=

+ +++=
n

ij
jEMiMi WTWTWCST

2
1)()(ττ (5)

From (4), and (5), we can conclude that the maximum
possible time which is available for executing the task Ti (and
its associated energy management overhead τi) without
violating Rule 1 is:

)()()(
2

1

1

1
∑∑

+=
+

−

=

+−+−+−

=−−=
n

ij
jEMiM

i

j j

j
j

iii

WTWT
AT

D

WCSTSTDMT

ττ
ρ

τ
 (6)

If we execute the task Ti at the maximum supply voltage,
the worst-case time it takes will be τM+WTi and since the time
which is available to execute the task Ti without violating

VMAX

WT1 WT2 WT3 WT4 WT5

Deadline = D

T1 T2 T3 T4 T5

Fig. 1. A simple static schedule for a single-processor system with five
dependent tasks and a common deadline (frame size) D

Rule 1 is MTi, the slack time which is available to the task Ti
and can be exploited by DVS to reduce the task energy
consumption is:

)(iMii WTMTSL +−= τ (7)
When we exploit DVS, the worst-case time τM+WTi

increases to τM+WTi/ρi, but this time increase should not be
greater than the available slack, i.e.:

ii
i

i SLWTWT
≤−)(

ρ
 (8)

Inequality (8) can also be rewritten as:

i
ii

i

SLWT
WT ρ≤

+
 (9)

which gives the minimum value of ρi. It should be noted that
for each task Ti, the slack time SLi is the entire slack which is
available to the task, i.e., it includes both the dynamic and
static slacks. To gain more insight into how the slack time SLi
includes both types of slack, we use (6) to rewrite (7) as
follows:

)()()()(
2

1

1

1
∑∑

+=
+

−

=

+−+−+−+−=
n

ij
jEMiMiM

i

j j

j
ji WTWTWT

AT
DSL τττ

ρ
τ (10)

Equation (10) implies that if the previous tasks (i.e., the
tasks T1 through Ti-1) consume less execution time (i.e., lower
ATj values, for 1≤j≤i-1), more slack SLi will be available to the
task Ti. The slack obtained in this way is by definition
dynamic [2][19] because the task Ti can use the slack time
which is obtained at runtime from its previous tasks. Equation
(10) also implies that if the worst-case execution times of the
tasks were smaller, more slack SLi would be available. This
slack is by definition static [2][19] as it depends on the worst-
case execution times of the tasks. Although in this paper we
exploit both dynamic and static slacks (i.e., the slack SLi) to
conserve energy, we do not need to provide separate analytical
models for dynamic and static slacks, because in our proposed
technique we do not intend to treat these two types of slack
differently.

Spare Unit: In the spare unit the backup copy of each task
Ti is executed at the maximum supply voltage, but with a
delay di. During the delay time di the spare unit is in idle mode
to conserve energy. As shown in Fig. 2, after the delay di, the
activation of the spare unit (for executing the backup task Ti)
takes the activation time τai. This activation time includes the
communication time ci which is required to communicate with
the spare in order to activate it, plus the wake-up delay dw
which is the time it takes to change the spare mode from idle

to operational, i.e., τai=ci+dw.
Whenever a task Ti which is being executed on the primary

unit finishes successfully, the backup copy of this task, which
is being executed on the spare unit, is dropped as it is no
longer required. In this case, regardless of the supply voltage
(energy consumption) of the primary unit, the later we start
the backup copy, the greater fraction of the backup copy is
dropped, which results in more energy saving. Therefore in
the LESS system we start backup copies as late as possible,
i.e., we always set di to the maximum possible delay. To
calculate the maximum possible delay di, it should be noted
that the delay cannot be increased arbitrarily as it may result in
missing the deadline if a fault occurs in the primary unit. To
guarantee that the delay never increases to a risky level with
the possibility of deadline miss, we use the following rule:

Rule 2: The delay di for each task Ti should be determined
so that if a fault occurs in the primary unit during the
execution of the original task Ti, we can always meet the
deadline if we continue executing (and do not drop) the
backup task Ti on the spare and execute the subsequent tasks
Ti+1 through Tn at the maximum supply voltage on the primary
unit.

Using this rule, we can find the maximum delay di which
guarantees that the deadline will not be missed. Suppose that
during the execution of the task Ti on the primary unit, a fault
occurs. In this case, the backup copy of the task Ti which is
being executed on the spare will not be dropped and its
execution will be continued. Once the backup copy Ti
finishes, it communicates back to the primary unit so that the
primary unit can start executing the next task Ti+1. As shown
in Fig. 2, this communication takes the time τci. Since the
backup task Ti starts at the time STi+di (Fig. 2), the time
duration D-(STi+di) should be enough to finish not only the
backup task Ti (with the worst-case time τai+WTi+τci), but
also all the subsequent tasks Ti+1 through Tn which are
executed on the primary unit at the maximum supply voltage
(with the worst-case execution time WCSTi given by (5)).
Therefore, we have:

)()(iiiiii dSTDWCSTcWTa +−≤+++ ττ (11)
From (11), we conclude that the maximum delay di is:

)(iiiiii cWTaWCSTSTDd ττ ++−−−= (12)
The execution of each backup task Ti on the spare should

be delayed by the time di (given by Eq. 4) to achieve energy
saving for the spare without missing the deadline. Although
the slack time SLi (given by (10)) has been defined for the
original tasks on the primary unit, it is noteworthy that the
slack time SLi is also quite important for the backup tasks on
the spare. This is because from (10) and (12) we can conclude
that:

)(iiMii caSLd τττ +−+= (13)
This implies that when more slack time is available to a task

Ti, di becomes greater, which results in more energy saving
for the backup task on the spare.

The energy manager task is not only responsible for
determining the proper value of ρi, but is also responsible for

Fig. 2. The schedule of Fig. 1 running on the low-energy standby-sparing
(LESS) system, which uses the proposed technique

determining the value of di using (12) (Section IV). The
problem which is considered in the rest of this paper is how,
for each task Ti, the parameters ρi should be determined by the
energy manager task so that the energy consumption becomes
minimized while guaranteeing that the deadline will not be
missed.

III. ENERGY CONSUMPTION MODEL
In this section we develop analytical models for the energy

consumption of the LESS system. It is argued in Appendix C
that to analyze the average energy consumption of a fault-
tolerant system, we do not need to consider the cases where
the system tolerates a fault. Therefore, in this section, we only
consider the fault-free scenario where no fault occurs in the
LESS system.

Primary Unit: In digital circuits, power consumption has
two main components: dynamic switching power and static
leakage power [26]. The dynamic power consumption of each
task Ti on the primary unit is [6][14]:

iieffiDynPR fVCP 2)T(=− (14)

where Ceff is the average switched capacitance for the primary
unit, and Vi and fi are respectively the supply voltage and the
operational frequency during the execution of the task Ti. The
static power consumption of each task Ti on the primary unit
can be written as [26]:

i
V

V

iSubiStatPR VeIVIP T

th

⋅==
−

−
η

0)T((15)
where ISub is the leakage current, I0 depends on technology
parameters and device geometries, η is a technology
parameter, Vth is the threshold voltage of transistors, and VT is
the thermal voltage. As mentioned in Section II, for each task
Ti on the primary unit, first the supply voltage changes from
Vi-1 to Vi and then the supply voltage Vi is used to execute the
task Ti along with the energy manager task that determines the
supply voltage Vi+1. Therefore, the energy consumption of
each task Ti on the primary unit, including the voltage
transition overhead and the energy consumption of the energy
manager task, is:

)()()T(2

i

EMi
iieffiSubiiPR

ATfVCVIETE
ρ

τ+
⋅++= (16)

where ETi is the energy consumed due to the voltage transition
from Vi-1 to Vi, and (ATi+τEM)/ρi is the time it takes to execute
the task Ti along with the subsequent energy manager task.
The energy overhead ETi is given by [25]:

2
1

22
1)()(−− −=−⋅= iiMAXriiri VCVVCET ρρ (17)

where Cr denotes power rail capacitance. For the DVS
technique, it can be assumed that there is an almost linear
relationship between Vi and fi [11], therefore using (1) we can
write ρi= Vi/VMAX = fi/fMAX, where fMAX is the operation
frequency associated to the supply voltage VMAX. Hence, the
energy EPR(Ti) of (16) can also be written as:

)()()T(22
EMiiMAXMAXeffMAXSubiiPR ATfVCVIETE τρ +⋅++= (18)

Let PS be ISubVMAX and PD be CeffV
2
MAXfMAX then we can

rewrite (18) as:

)()()T(2
EMiiDSiiPR ATPPETE τρ +⋅++= (19)

It should be noted that, based on (14) and (15), PS and PD
are respectively the static and dynamic power consumption of
the primary unit operating at the maximum supply voltage.

Spare Unit: To calculate the energy consumption of the
backup task Ti on the spare, we consider four possible cases:

Case 1: The original copy of Ti finishes before activating
the spare unit to execute the backup copy of Ti.

In this case, since "The finish time of the original copy of
Ti" ≤ "The time at which the spare starts becoming activated
to execute the backup copy of Ti", we have (Fig. 2):

i
i

i
iii

i

i
ii dATdSTATST ≤+≡+≤++

ρ
τ

ρ
τ (20)

In this case, if the original copy finishes successfully, the
spare unit will not be activated as the backup copy is not
required. Such a scenario has occurred for the task T5 in Fig.
2. For this case, the energy consumption of the spare is:

i
i

i
iiSPR dATwhenE ≤+=

ρ
τ0)T((21)

Case 2: The original copy of Ti finishes after the spare unit
starts becoming activated to execute the backup copy,
however the original copy finishes before the spare unit starts
executing the backup copy.

In this case, since "The time at which the spare starts
becoming activated to execute the backup copy of Ti" < "The
finish time of the original copy of Ti", we have (Fig. 2):

i

i
ii

i

i
iiii

ATdATSTdST
ρ

τ
ρ

τ +<≡++<+ (22)

Also, since "The finish time of the original copy of Ti" ≤
"The start time of the backup copy of Ti", we have (Fig. 2):

ii
i

i
iiii

i

i
ii daATadSTATST ≤−+≡++≤++ τ

ρ
ττ

ρ
τ (23)

Inequalities (22) and (23) can be written together as:

i

i
iii

i

i
i

ATdaAT
ρ

ττ
ρ

τ +<≤−+ (24)

In this case, the spare unit becomes activated which
requires the activation energy Eai. However, before the
backup copy starts, the original copy has finished successfully
and hence the backup copy is not required. Such a scenario
has occurred for the task T3 in Fig. 2. For this case, the energy
consumption of the spare is:

i

i
iii

i

i
iiiSPR

ATdaATwhenEaE
ρ

ττ
ρ

τ +<≤−+=)T((25)

The activation energy Eai includes both the communication
energy Ecmi which is required to communicate with the spare
in order to activate it, and the wake-up energy Ew which is
required to change the spare mode from idle to operational,
i.e., Eai = Ecmi+Ew.

Case 3: The original copy of Ti finishes after the backup
copy of Ti starts, however the original copy finishes before the
backup copy finishes and hence the rest of the backup copy is
dropped.

In this case, since "The start time of the backup copy of Ti"
< "The finish time of the original copy of Ti", we have (Fig.
2):

i
i

i
ii

i

i
iiiii aATdATSTadST τ

ρ
τ

ρ
ττ −+<≡++<++ (26)

Also, since "The finish time of the original copy of Ti" <
"The finish time of the backup copy of Ti", we have (Fig. 2):

iii
i

i
iiiii

i

i
ii daATATATadSTATST <−−+≡+++<++ τ

ρ
ττ

ρ
τ (27)

Inequalities (26) and (27) can be written together as:

i
i

i
iiii

i

i
i aATdaATAT

τ
ρ

ττ
ρ

τ −+<<−−+ (28)

In this case, unlike Cases 1 and 2, as the backup copy starts
before the original copy finishes, a part from the beginning of
the backup copy is executed (the shaded areas in Fig. 2).
However, as the original copy finishes before the backup copy
finishes, the backup copy is not executed completely and is
dropped once the original copy finishes so that the backup
copy is executed only for a duration (τi+ATi/ρi)-(di+τai). Such
a scenario has occurred for the tasks T1 and T4 in Fig. 2. For
this case, the energy consumption of the spare is:

i
i

i
iiii

i

i
i

ii
i

i
iiiSPR

a
AT

daAT
AT

whenad
AT

PEaE

τ
ρ

ττ
ρ

τ

τ
ρ

τ

−+<<−−+

−−+⋅+=)()T(
 (29)

where P is the power consumption of the spare unit when it is
active. It should be noted that as the spare does not exploit
DVS and always operates at the maximum supply voltage, we
have P=PS+PD=ISubVMAX+CeffV

2
MAXfMAX.

Case 4: The original copy does not finish before the backup
copy finishes.

In this case, since "The finish time of the backup copy of
Ti" ≤ "The finish time of the original copy of Ti", we have
(Fig. 2):

ii
i

i
ii

i

i
iiiiii aAT

AT
d

AT
STATadST τ

ρ
τ

ρ
ττ −−+≤≡++≤+++ (30)

We have also proved in Theorem 1 in Appendix A that di is
not less than τi+ATi/ρi-ATi-(τai+τci), i.e., we have:

iiii
i

i
i dcaATAT

≤+−−+)(ττ
ρ

τ (31)

Inequalities (30) and (31) can be written together as:

ii
i

i
iiiii

i

i
i aATATdcaATAT τ

ρ
τττ

ρ
τ −−+<≤+−−+)((32)

In this case, since the original copy does not finish before
the backup copy finishes, the backup copy is not dropped and
is executed completely. Also, once the backup copy Ti
finishes, it communicates back to the primary unit which
requires the communication energy Eci. Such a scenario has
occurred for the task T2 in Fig. 2. For this case, the energy
consumption of the spare is:

ii
i

i
iiiii

i

i
i

iiiiSPR

aATATdcaATAT

whenEcATPEaE

τ
ρ

τττ
ρ

τ −−+<≤+−−+

+⋅+=

)(

)T(
 (33)

It can be seen from the above discussion that in Cases 1, 2,
3, and 4 we have considered the values of di that are greater
than or equal to τi+ATi/ρi-ATi-(τai+τci). We have proved in
Theorem 1 in Appendix A that di is not less than

τi+ATi/ρi-ATi-(τai+τci), and hence we do not need to consider
the case where di <τi+ATi/ρi-ATi-(τai+τci). This means that all
the possible values of the parameter di have been considered
in the above four cases and hence these cases are collectively
exhaustive.

It is noteworthy that in the LESS system we never have the
opportunity to drop original tasks that are executed on the
primary unit. This is because, as it can be seen from Fig. 2, the
backup copy of a task Ti finishes at the time STi+di+τai+ATi,
and then starts communicating back to the primary unit, which
finishes at the time STi+di+τai+ATi+τci. After the time
STi+di+τai+ATi+τci, if the original copy was still running, it
would be no longer required and could be dropped. Since the
finish time of the original copy is STi+τi+ATi/ρi, this case
could only occur if we had:

)(iii
i

i
ii

i

i
iiiiiii caAT

AT
d

AT
STcATadST ττ

ρ
τ

ρ
τττ +−−+<≡++<++++ (34)

However, we have proved in Theorem 1 in Appendix A that
di is not less than τi+ATi/ρi-ATi-(τai+τci). This means that in
the LESS system it is impossible that we can drop original
tasks. Considering all the four possible cases, the energy
consumption of each backup task Ti on the spare is:

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

−−+<≤+−−++⋅+

−+<≤−−+
−−+⋅

+

+<≤−+

≤+

=

ii
i

i
iiiii

i

i
iiii

i
i

i
iiii

i

i
i

ii
i

i
i

i

i

i
iii

i

i
ii

i
i

i
i

iSPR

aAT
AT

dcaAT
AT

EcATPEa

a
AT

daAT
AT

ad
AT

P

Ea

AT
da

AT
Ea

d
AT

E

τ
ρ

τττ
ρ

τ

τ
ρ

ττ
ρ

τ
τ

ρ
τ

ρ
ττ

ρ
τ

ρ
τ

)(

)(

0

)T(

(35)

Considering both the primary and spare units, the energy
which is consumed by the system to execute a task Ti is:

)T()T()T(iSPRiPRi EEE += (36)
where EPR(Ti) is given by (19) and ESPR(Ti) is given by (35).

IV. ENERGY MANAGEMENT TECHNIQUE
In this section we aim at providing a technique to determine

the parameters ρi and di to reduce the energy consumption of
the LESS system. As mentioned in Sections I and II, in the
proposed energy management technique, we want to exploit
dynamic slacks to save energy. Therefore, since dynamic
slacks result at runtime, the energy-management technique
should be online and applied at runtime. Thus, an important
requirement for the energy management technique is to incur a
low overhead. To deal with this issue, in the proposed
technique, we adopt a greedy strategy where for each task Ti,
the parameters ρi and di are determined at the start of the task
Ti with the aim of reducing the energy E(Ti). It is noteworthy
that the greedy strategy is not an optimal strategy and does not
result in the minimum energy consumption. In the greedy
strategy when we want to determine ρi and di, we only focus
on reducing the energy consumption of the task Ti. However,

in a more sophisticated strategy, to determine the optimum
values of ρi and di we not only consider the energy
consumption of Ti, but also we consider the energy
consumption of all the other tasks. This implies that an
optimal strategy is much more complex than the greedy
strategy. Since we want to exploit the strategy at runtime, the
overhead (both time and energy overheads) of the strategy is
very prominent. Therefore we have adopted a greedy strategy
as it is simpler. Despite the simplicity of the greedy strategy,
we will see in Section VI that it is quite effective to reduce the
system energy consumption.

To determine the parameter di, as mentioned in Section II,
we use (12), i.e., we set di to the maximum possible delay
value. It should be noted that when we use (12),
[D-WCSTi-(τai+WTi+τci)] is not needed to be calculated
online and can be easily calculated offline for each task and
stored to be used at runtime because D, τai, τci, and WTi are
known at design time and WCSTi can be calculated offline at
design time using (5). STi is the time at which the task Ti-1
finishes running on the primary unit and the energy manager
task starts running to determine ρi and di; hence STi is simply
the current time that the internal clock of the system shows at
the time the energy manager task starts.

While the parameter di can be simply determined at runtime
using (12), the online estimation of the parameter ρi is not
trivial. We have proved in Theorem 2 in Appendix A that the
optimum value of ρi which minimizes the energy E(Ti)
depends on the actual execution time ATi. However ATi is not
known at the start of the task Ti, which means that it is
impossible to calculate the optimum value of ρi at the start of
the task Ti. Therefore, the problem of minimizing the energy
E(Ti) by adjusting the parameter ρi is indeed an optimization
problem under stochastic uncertainties (we are uncertain about
the value of ATi). One effective way to minimize such a
function is to minimize the expected value of the function
rather than the function itself [12]. The expected value of the
energy E(Ti) is:

)]T([)]T([)]T([iSPRiPRi EEEEEE += (37)
Assuming that ATi is uniformly distributed between BTi and

WTi, the expected value of the energy EPR(Ti) of (19) is:

)
2

()()]T([2
EM

ii
iDSiiPR

WTBTPPETEE τρ +
+

⋅++= (38)

and the expected value of the energy ESPR(Ti) of (35) is (the
related calculations have been provided in Appendix B):

)()2()()()()]T([iiiiii
i

ii
i

iiiiSPR gEcPhPhPgEaEE γμγγμ
μ

γρ
ρ

δρ ++⋅+⋅+⋅=

(39)

where

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

<

<≤
−

−

≤

=

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

<−
+

<≤
−
−

≤

=

i

ii
ii

i

i

i
ii

ii
ii

i

i

BTt

WTtBT
BTWT

tWT

tWT

tg

BTtt
BTWT

WTtBT
BTWT
tWT

tWT

th

1

0

)(

2

)(2
)(

0

)(

2 (40)

)1/(,, iiiiiiiiii add ρρμττγτδ −=+−=−=
ΔΔΔ

 (41)

In DVS-enabled processors the supply voltage can only
take a value from a finite set of possible voltage values [20].
In our proposed online energy management technique, at the
start of each task, (37) (the sum of (38) and (39)) is calculated
for all the possible values of ρi, and then the parameter ρi is
set to the voltage value which gives the least value for
E[E(Ti)]. It should be noted that most of the calculations
required by (38), (39), (40) and (41) can be performed offline
for each task and stored to be used at runtime. For this
purpose, let p, qi, ri, si, ui, vi, wi, xi, yi, and zi be defined as
follows:

i

EM
i

ii
i

ii

i
i

ii
i

ii
i

ii

i
i

EM
ii

iDSi
i

i
i

i

z
BTWT

y
BTWT

WTx

BTWTw
BTWT

v
BTWT

WTu

WTBT
PPsPrPqPp

ρ
τ

τρ
μρ

ΔΔΔ

ΔΔΔ

ΔΔΔΔ

=
−
−

=
−

=

+
=

−

−
=

−
=

+
+

⋅+====

,1,

,
2

,
)(2

1,
)(2

)
2

()(,,,2 2

(42)

It can be concluded from (42) that the parameters p, qi, ri, si,
ui, vi, wi, xi, yi, and zi can be calculated offline for each task
and for each possible supply voltage (Note that all the possible
values of ρi are known at design time). Indeed to calculate
these ten parameters we need to know WTi (task worst-case
execution time), BTi (task best-case execution time), τEM

(execution time of the energy manager at VMAX), PS (static
power of the primary unit at VMAX), PD (dynamic power of the
primary unit at VMAX), and P (spare power consumption) that
all can be determined offline at design time. Using these ten
parameters, (38) can be rewritten as:

iiiPR sETEE +=)]T([(43)
(39) can be rewritten as:

)()()()()()]T([i iiiiiiiiiiiiiSPR gEcphrhqgEaEE γμγγμγρδρ ++⋅+⋅+⋅=

(44)

where μi (given by (41)) can be calculated offline for each
possible supply voltage, and δi and γi are:

iiiiiiiiiiii aadTRzdd τδττγτδ +=+−=+−=−= − ,)(1 (45)

TRi is given by (2), and zi is one of the ten parameters defined
in (42).
Also, (40) can be rewritten as:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<

<≤+

≤

=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

<−

<≤+

≤

=

i

iiii

i

ii

iiii

i

BTt

WTtBTtyx

tWT

tg

BTttw

WTtBTtvu

tWT

th

1

0

)()(

0

)(2

(46)

Clearly, the online calculation of (43), (44) and (46)
imposes less overhead as compared to (38), (39) and (40).
Fig. 3 shows the pseudo code of the proposed online energy
management technique. In this code, we first determine the
parameter di (line 1) using (12). Then we start from the
minimum possible value of ρi (calculated in line 2 using (9)
and (13)) and for each possible supply voltage we use (43)
and (44) to calculate the expected energies E[EPR(Ti)] (lines 7
and 8), and E[ESPR(Ti)] (lines 9-12) respectively. The expected
energy consumption of the whole system is
E[E(Ti)]=E[EPR(Ti)]+E[ESPR(Ti)] which is calculated in line

13. Then we find the ρi value which gives the least value for
the expected energy E[E(Ti)] (line 14). Finally, in line 15, we
set ρi to the normalized voltage that gives the least energy.
Line 15 is indeed the last line of the code of the energy
management technique and the next lines (lines 16-19) define
the functions h(t) and g(t) using (46) that are called in line 12
to calculate the expected energy E[ESPR(Ti)].

To detect transient faults during the execution of the energy
manager task, we use temporal duplication for this task
[7][18]. When a fault is detected, we do not use the results of
the energy manager task and to avoid violating Rules 1 and 2
(Section II), we set the supply voltage to its maximum value
(ρi=1) and set the delay di to its minimum value (di=0). Of
course, these values (for di and ρi) do not result in any energy
saving for the task Ti, but it should be noted that this situation
only happens when a fault occurs during the execution of the
energy manger task which is a rare event and, as mentioned in
Appendix C, does not have a considerable impact on the
system average energy consumption. It should also be noted
that, as we will see in Section VI, the energy manager task has
a negligible overhead, so that the temporal duplication of this
task imposes negligible time and energy overheads.

It can be concluded from Fig. 3 that τEM (the execution time
of the energy manager task at VMAX) is not constant and may
vary in different runs. However, for the sake of simplicity,
throughout this paper, we have always assumed that τEM is
constant. Indeed we have assumed that the energy manager
task always consumes its worst-case execution time which is
constant. It should be noted that as the energy manager task

has relatively short execution times (Section VI), it does not
make a significant difference if we assume that this task
always consumes its worst-case execution time. Furthermore,
our study has shown that if we considered the variations in
τEM, the energy manager task would be much more complex
and energy consuming, so that it is not worth considering the
variations in τEM. Another important issue is that although (38)
and (39) are derived with the assumption that ATi is uniformly
distributed, we will show in Section VI, through simulation,
that this technique is quite effective to reduce the energy
consumption of the LESS system even when ATi has other
distributions.

V. RELIABILITY MODEL

By definition, if a safety-critical (hard) real-time system
fails, a catastrophe can result [17][18]. Therefore, the
probability that such a system fails, called “failure
probability” [7], must be kept very low, e.g., for some
applications the failure probability must be less than 10-9 [18].
In this section we develop an analytical model for the failure
probability of the LESS system. This analytical model is used
in Section VI to analyze the reliability of the LESS system and
to compare it with a time-redundancy system. Note that, as
discussed in Section II, here we focus only on transient faults.
The occurrence of transient faults in digital systems usually
follows a Poisson process [6][7][29]. It has been observed that
in DVS-enabled systems the rate of transient faults increases
exponentially as the supply voltage decreases, so that the fault
rate can be expressed as [32]:

Inputs:
- μ[j], qi[j], ri[j], si[j], and zi[j] where 1≤j≤NV and NV is the number of possible supply voltages.
- p, ui, vi, wi, xi, yi, BTi, WTi, ρi-1, Eai, Eci, τai, (D-WCSTi-τai-WTi-τci), (WTi-τM+τai+τci), (K·VMAX), (Cr·VMAX2), STi,
and P

Outputs:
- ρi and di
//ρ[j] (1≤j≤NV) is the array which holds the possible supply voltages in ascending order.
//m is the index of the voltage ρi in the array ρ[j], i.e., ρ[m]=ρi and pm is the index of the
//voltage ρi-1 in the array ρ[j], i.e., ρ[pm]=ρi-1.
//EP is the expected energy of the primary unit, ES is the expected energy of the spare, and E
//is the expected energy of the whole system.
//μ[j], qi[j], ri[j], si[j], and zi[j] have been calculated offline for 1≤j≤NV, using (41)and(42).
//p, ui, vi, wi, xi, yi, K1=(D-WCSTi-τai-WTi-τci), K2=(WTi-τM+τai+τci), K3=K·VMAX, K4=Cr·VMAX2 have been
//also calculated offline.
//STi is the current time and is received from the system internal clock.

1: di:=K1-STi; //Equation (12)
2: ρmin:=WTi/(di+K2); //Inequality (9) and Equation (13)
3: I:=1;
4: while(ρ[I]< ρmin){I:=I+1;}
5: E:=∞; // Initialize E with a very big value
6: for j:=I to NV {
7: dρ:=ρ[j]-ρi-1;
8: EP:=K4*dρ*dρ+si[j]; //Equations (17) and (43)
9: δi:=di-ri-1[pm]-K3*|dρ|; //Equations (2) and (45)
10: γi:=δi+τai; //Equation (45)
11: T1:=ρ[j]*δi; T2:=ρ[j]*γi; T3:=μ[j]*γi;
12: ES:= Eai*g(T1)+qi[j]*h(T2)+ri[j]*h(T3)+(P*γi+Eci)*g(T3); //Equation (44)
13: ETMP:=EP+ES; // Equation (37)
14: if(ETMP<E) {E:=ETMP; m:=j;}}
15: ρi=ρ[m]; //End of the energy manager
16: function h(t) {
17: if(WTi<=t) f:=0; elseif(BTi<=t) T:=ui+vi*t; f:=T*T; else f:=wi-t;} //Equation (46)
18: function g(t) {
19: if(WTi<=t) g:=0; elseif(BTi<=t) g:=xi+yi*t; else g:=1;} //Equation (46)

Fig. 3. The pseudo code of the proposed online energy management technique (The energy manager task)

TABLE 1
THE ENERGY CONSUMPTION AND EXECUTION TIME OF THE

BENCHMARK TASKS

Benchmark Voltage,
Frequency

Execution
time (ms)

Energy
Consumption

(μJ)

qsort
1V,200MHz 453.93 14065.11
0.58V,100MHz 881.56 4751.64

basicmath
1V,200MHz 707.61 20852.51
0.58V,100MHz 1310.29 7044.64

bitcount
1V,200MHz 497.21 15883.70
0.58V,100MHz 1009.17 5366.02

susan
(smoothing)

1V,200MHz 258.68 8047.77
0.58V,100MHz 503.35 2718.79

susan (edges)
1V,200MHz 18.89 588.03
0.58V,100MHz 37.32 198.66

susan (corners)
1V,200MHz 10.96 337.56
0.58V,100MHz 21.70 114.04

Energy manager
task (Fig. 3)*

1V,200MHz 0.0922 2.9359
0.58V,100Mz 0.1789 0.9658

 * The reported results are for the duplicated execution of this task (Section IV).

S
VV

i

iMAX

V
−

⋅= 10)(0λλ (47)
where λ0 is the fault rate corresponding to Vi= VMAX, and S is
the value that when the supply voltage decreases by, the fault
rate increases by one order of magnitude (we assume λ0=10-6
faults/s and S=1 V [6]). Let Pi(Vi) be the probability that the
execution of a task Ti at the supply voltage Vi becomes faulty.
Based on Poisson distribution, Pi(Vi) is given by [6][27]:

i

i
i

AT
V

ii eVP ρ
λ)(

1)(
−

−= (48)
where ATi/ρi is the actual execution time of the task Ti when
executed at the supply voltage Vi (Section II), and λ(Vi) is
given by (47). In the LESS system, the system fails to execute
a task Ti when the original copy of Ti on the primary unit
becomes faulty with the probability of Pi(Vi), and also the
backup copy of Ti on the spare becomes faulty with the
probability of Pi(VMAX) (note that the spare operates at VMAX
(Section II)). Therefore, the probability that the LESS system
fails to execute a task Ti is:

)()()T(MAXiiii VPVPFP ⋅= (49)
As 0≤Pi(Vi)≤1, we conclude from (49) that:

)(1)T(1)()T(MAXiiMAXii VPFPVPFP −≥−⇒≤ (50)
In (50), 1-FP(Ti) is the probability that the LESS system

successfully executes the task Ti, and 1-Pi(VMAX) is the
probability that when the backup copy of Ti is executed on the
spare, the spare successfully executes the backup task. Hence,
(50) indeed implies that the reliability of the spare is a lower
bound on the reliability of the whole LESS system. Since we
do not use DVS for the spare, this lower bound will not be
degraded by reduced supply voltages.

Using (49), when a group of n tasks T1 through Tn is
executed on the LESS system, the probability that the system
fails to execute the n tasks is:

∏
=

− −−=
n

i
iSparingStandby FPFP

1

)]T(1[1 (51)

We will use (51) in Section VI to calculate and compare the

failure probability of the LESS system with that of a time-
redundancy system.

VI. SIMULATION RESULTS

To evaluate the LESS system, we have conducted several
experiments using MiBench benchmarks (Auto./Industrial set)
[22], and numerous synthetic schedules. The MPARM tool
[21] (cycle-accurate simulator for ARM7TDMI processor
proposed in [23]) was used to obtain the power consumption
and execution times. In the experiments, the processor could
have five different supply voltages: 1V (200MHz), 0.86V
(167MHz), 0.76V (143MHz), 0.69V (125MHz), 0.58V
(100MHz), and it was assumed that the supply voltage of the
RAM and cache units is scaled in proportion to the supply
voltage of the processor core [11]. A 32-bit AMBA AHB
interconnect [21] was used for the communication between
the processors. To execute the benchmarks, we used the
RTEMS embedded operating system [24]. The first set of
experiments was conducted in order to investigate the energy
and execution time overhead of the proposed online energy
management technique. Table 1 shows the energy
consumption and execution time of the benchmark tasks when
executed at the supply voltages 1V, and 0.58V (the maximum
and minimum supply voltages). Although temporal
duplication is used for the energy manager task (Section IV),
it can be seen from Table 1 that, as compared to the MiBench
benchmarks, the energy and execution time overhead of this
task is always less than 0.91%, which is quite negligible.

To evaluate the effectiveness of the proposed technique, we
conducted another set of experiments where we compared the
LESS system with a time-redundancy system. In the related
literature, various implementations of time-redundancy
systems have been considered (e.g., [1][2][3][5][6]). These
various implementations differ in energy management
technique, recovery execution policy, and slack time
management. It is beyond the scope of this paper to compare
the LESS system with various implementations of time-
redundancy systems. Rather, we consider only one possible
implementation of time-redundancy, which has been recently
proposed in [29]. The main reason to choose this time-
redundancy system is that it has similar restrictions and
conditions to the LESS system, such as: hard real-time
constraints, the use of DVS, the use of dynamic slacks, the
execution of frame-based applications, and the simultaneous
consideration of low energy consumption and high reliability.
It is noteworthy that although [29] uses its proposed time-
redundancy system to execute independent tasks, it can also
be used to execute dependent tasks. Indeed, in our
experiments, we used this time-redundancy system to execute
dependent tasks without demanding any changes to its design.
Note that we do not compare the LESS system with other
hardware-redundancy techniques because: i) With respect to
reliability, we do not claim that our proposed technique
provides a better reliability than other hardware-redundancy
techniques, ii) With respect to energy consumption, there are

very few works that have simultaneously considered hardware
redundancy and low energy consumption (e.g., [15] and [30]),
and these works considerably differ from ours in assumptions
and application models (e.g., a single task within each frame
in [15] and the requirement of independent tasks in [30]), so
that it is not meaningful to compare theses works with the
LESS system.

To measure the reliability of the LESS system, we have
developed a software program that calculates the failure
probability of the system using the analytical models provided
in Section V. This software takes the required information
(e.g., task supply voltages) as input from the MPARM
simulator and calculates the failure probabilities. We have also
developed a similar software program to measure the failure
probability of the time-redundancy system. To compare the
two systems, 99 static schedules similar to the schedule of Fig.
1 were generated randomly and used in the experiments. Out
of these 99 random schedules, one third were generated with 5
tasks within each frame, one third with 10 tasks within each
frame, and one third with 15 tasks within each frame. To
generate random schedules, the worst-case execution times of
the tasks were generated randomly using uniform distribution.
It was assumed that the worst-case execution times of the
tasks could be any value from 20ms to 1500ms. It was also
assumed that the best-case execution time of each task is
uniformly distributed from 0 to its worst-case execution time.
For the static slack times we considered two cases: 1) relaxed
time constraints: when the static slack is equal to the biggest
worst-case task execution time. In this case the time-
redundancy system will have enough time to re-execute any of
the tasks if a fault occurs [29], 2) tight time constraints: when
the static slack is so small that the time-redundancy system
cannot use the static slack to re-execute any of the tasks.

For generating random static schedules we used uniform
distribution (for WTi and BTi) as we wanted all schedules to be

equally probable to be considered. However, for a specific
schedule, the actual execution times of the tasks ATi may have
different probability distributions based on the system
application [13]. Some research works have considered the
uniform, normal, or exponential distributions for the actual
execution times of the tasks [13][14]. Similarly, in our
experiments, we considered these three distributions for the
actual execution times ATi. It should be noted that in the
experiments the same static schedules were used for all the
three distributions. Indeed at first we randomly generated 99
static schedules and then we used these static schedules with
various distributions for the actual execution times ATi. We
randomly generated ATi values before conducting simulations
and then during the simulations we used these values that had
been generated offline. However, during simulation
experiments, the energy manager task never used these ATi
values, since we discussed in Section IV that in reality the
actual execution time ATi is not known at the start of the task
Ti. Indeed, during simulation experiments, whenever a task Ti
finished, it released the dynamic slack WTi-ATi, and this
dynamic slack was exploited by the energy manager task as
explained in Section IV. In all the experiments, the tasks in
the synthetic schedules were selected from the MiBench
benchmarks; however as we wanted to evaluate the impact of
ATi distribution, each task Ti was executed only for a duration
of ATi (ATi /ρi when voltage scaling is used). With respect to
the transition and activation overheads, we assumed that
Cr=10μF (Equation (17)), K=10μS/V (Equation (2)), Ew=2μJ,
and dw=1ms (Section II). It should be noted that these
assumptions are only used by way of example and as observed
in Section IV the proposed energy management technique
does not require any specific assumption about transition and
activation overhead values. With respect to the
communication overheads (Ecmi, ci, Eci and τci in Section II),
it is noteworthy that our experiments show that for MiBench

TABLE 2

THE ENERGY CONSUMPTION AND FAILURE PROBABILITY OF THE LESS AND TIME-REDUNDANCY SYSTEMS*

 Relaxed time constraints: Static Slack= the biggest WT
(worst case execution time) in the schedule

Tight time constraints: Static Slack= 0

 Energy Consumption Failure Probability Energy Consumption Failure Probability

Distribution of the
actual execution

time

of
tasks in

the
schedule

Time-
Redundancy
system (mJ)

LESS
System

(mJ)

Energy
RatioΨ

Time-
Redundancy

System

LESS
System

Time-
Redundancy
system (mJ)

LESS
System

(mJ)

Energy
RatioΨ

Time-
Redundancy

System

LESS
System

Uniform from BT
to WT

5 54.96 37.82 0.69 10-11.06 10-11.33 54.96 89.93 1.64 10-5.27 10-11.68
10 89.17 65.85 0.74 10-10.47 10-11.00 89.17 130.42 1.46 10-4.86 10-11.19
15 118.11 94.15 0.80 10-10.14 10-10.84 118.11 157.73 1.34 10-4.67 10-10.98

Exponential♦
Mean=(BT+WT)/2

5 54.51 35.63 0.65 10-11.12 10-11.37 54.51 93.95 1.72 10-5.23 10-11.65
10 90.64 68.55 0.76 10-10.43 10-10.99 90.64 135.94 1.50 10-4.89 10-11.21
15 117.27 93.64 0.80 10-10.03 10-10.79 117.27 158.33 1.35 10-4.65 10-10.96

Normal♦
Mean=(BT+WT)/2
σ =(WT-BT)/6

5 51.41 35.73 0.70 10-11.03 10-11.36 51.41 86.28 1.68 10-5.24 10-11.70
10 85.63 65.05 0.76 10-10.45 10-11.02 85.63 123.42 1.44 10-4.89 10-11.26
15 118.46 93.83 0.79 10-10.12 10-10.82 118.46 150.18 1.27 10-4.67 10-11.00

* For all the three distributions, it was assumed that the task worst-case execution times (i.e., WT) are uniformly distributed from 20ms to 1500ms and the
task best-case execution times (i.e., BT) are uniformly distributed from 0 to WT.
♦ Exponentially and normally distributed execution times were assumed to be bounded between BT and WT [14].
Ψ Energy Ratio = Energy of the LESS system / Energy of the time-redundancy system.

benchmarks, the communication energies (Ecmi and Eci) vary
between 28.8 pJ (for bitcount) and 57.6 nJ (for susan). Also
the communication time overheads (ci and τci) vary between
20ns (for bitcount) and 41μs (for susan). Table 2 shows the
energy consumption and the reliability (failure probability) of
the schedules when executed on the LESS and time-
redundancy systems. The following three interesting
observations can be made from Table 2:
• For tight deadlines, the LESS system consumes in average

49% more energy than the time-redundancy system.
However, in this case, the LESS system is far more reliable
than the time-redundancy system, so that the failure
probability of the LESS system is smaller than that of the
time-redundancy system by a factor of about 1 million. This
is because when deadlines are tight, the time-redundancy
system does not have enough time for re-executing the tasks,
while the LESS system is still fault tolerant as its fault-
tolerance is achieved through the use of the spare and is
independent from the available amount of slack time
(Section II). To underline the difference between the
reliabilities of the two systems, note that safety-critical real-
time systems may easily require failure probabilities be less
than 10-9 [18]. It can be seen from Table 2 that when
deadlines are tight, the time-redundancy system cannot
achieve the reliability required by safety-critical
applications, whereas the LESS system can.

• For relaxed time constraints, both the systems can achieve
the reliability required by safety-critical applications.
However, the LESS system provides in average about 26%
(up to 36%) energy saving as compared to the time-
redundancy system. This is because, in this case, the time-
redundancy system does not exploit much of its static slack
and reserves it for fault tolerance (re-execution). However,
in the LESS system, fault tolerance is decoupled from the
slack time (Section II), hence the static slack is exploited
only to reduce the energy consumption. It should also be
noted that, for relaxed time constraints, the spare can be
usually kept idle; hence it consumes very little energy.
Indeed our experiments show that for relaxed time
constraints the energy consumption of the spare is less than
3% of the whole LESS system energy consumption. This
indicates how DPM is effective for the spare and we do not
need to use DVS for the spare.

• Even when timing constraints are relaxed and the time-
redundancy system has enough time to re-execute any of the
tasks, the LESS system is still more reliable than the time-
redundancy system (the failure probability of the LESS
system is between 2 to 6 times smaller than that of the time-
redundancy system). This is because, in the time-redundancy
system, slack time is a limited resource which is shared
among the tasks of a schedule [29], so that if one task
consumes more slack (for re-executions), less slack will be
left for the fault tolerance of the other tasks. However, in the
LESS system, the spare is always available for each task to
tolerate its faults, regardless of whether the spare is used for

the other tasks or not. Indeed, unlike the slack time, the
spare is not a consumable resource and may not be used up.

While in the experiments, we used random schedules
(applications), the LESS system can be used for practical
applications that require high reliability, hard real-time
operation and low energy consumption. Examples of these
applications are autonomous airborne (or seaborne) systems
working on limited battery supply [2], automated surveillance
systems [2], and implantable devices [33]. For example, many
implantable devices can be considered as frame-based real-
time systems where during each frame (period) a sequence of
dependent tasks must be executed. For instance, a sequence of
dependent tasks that must be executed on the processor of a
typical implantable device, used for heart disease, is [33]: 1)
Filtering, 2) Preprocessing, 3) Detection and measurement of
QRS, 4) Detection of abnormalities, 5) Compression and
transmission (or storage) of the results. We believe that the
LESS system is a possible design candidate to implement such
systems. Nevertheless, in this paper, we do not aim at
providing a case study. Instead, we aim at analyzing how
effective, in general, the LESS system is and this is why we
have evaluated the LESS system for numerous random
schedules (applications) with different number of tasks and
various task execution times.
It is also worth mentioning that, while the observations in this
section show that the LESS system is preferable to the time-
redundancy system from energy-consumption and reliability
viewpoints, this superiority comes at the price of redundant
hardware resources that the LESS system uses as compared to
the time-redundancy system. However, for the applications
where both fault-tolerance (high reliability) and low energy
consumption are required (e.g., implantable devices [33]), we
believe that we have to pay this price.

VII. SUMMARY AND CONCLUSION
The use of hardware-redundancy techniques for real-time

systems is necessary when high reliability is the primary
concern. However, hardware-redundancy (e.g., duplication and
TMR [18]) can increase the energy consumption by a factor of 2
or 3. In this paper we describe how a low-energy hardware-
redundancy technique based on standby-sparing [18] can be
used for hard real-time systems. Through an analytical
approach, we have developed an online energy management
technique for the low-energy standby-sparing (LESS) system
which can exploit dynamic slacks to reduce the energy
consumption. In this online energy management technique, we
have considered voltage transition and activation overheads
imposed by DVS and DPM. We have also considered both the
dynamic and static energy consumptions. The experimental
results show that the energy and execution time overhead of the
proposed online energy management technique when applied to
MiBench benchmarks (Auto./Industrial set) is always less than
0.91%, which is quite negligible. We also compared the LESS
system with a low-energy time-redundancy system proposed
in [29]. The results show that for relaxed time constraints, the

LESS system consumes about 26% less energy than the time-
redundancy system. For tight deadlines when the time-
redundancy system cannot achieve high reliability requirements
of safety-critical applications, the LESS system still preserves
its fault tolerance and can be used for safety-critical
applications, but consumes about 49% more energy than the
time-redundancy system.

APPENDIX A
Theorem 1. For each task Ti, di (given by (12)) is not less

than τi+ATi/ρi-ATi-(τai+τci).
Proof. Using (9) we can write:

)()(iiiiiii
i

i
iii

i

i caSLcaWTWTSLWTWT
τττττ

ρ
τ

ρ
+−+≤+−−+⇒≤−

(52)

Considering that τi≤τM (Section II), we conclude from (52):

)()(iiiMiii
i

i
i caSLcaWTWT τττττ

ρ
τ +−+≤+−−+ (53)

The right hand side of (53) is equal to di (Equation (13)).
Therefore, we have:

iiii
i

i
i dcaWT

WT
≤+−−+)(ττ

ρ
τ (54)

It can be simply shown that:

)()(iii
i

i
iiii

i

i
iii caWTWTcaATATWTAT ττ

ρ
τττ

ρ
τ +−−+≤+−−+⇒≤ (55)

Based on (54) and (55), we have:

iiii
i

i
i dcaATAT

≤+−−+)(ττ
ρ

τ (56)

and the theorem is proved. g
Theorem 2: The optimum value of ρi which minimizes the

energy E(Ti) (given by (36)) cannot be calculated at the start
of the task Ti.

Proof: Let iρ̂ be the optimum value of ρi which minimizes
the energy E(Ti). From calculus we know that this optimum
value is obtained either when the derivative of E(Ti) with
respect to ρi does not exist or when this derivative is 0. From
(35), it can be concluded that the values of ρi at which the
derivative does not exist are given by:

i
i

i
i d

AT
=+

ρ
τ (57)

ii
i

i
i daAT

=−+ τ
ρ

τ (58)

iii
i

i
i daATAT

=−−+ τ
ρ

τ (59)

iiii
i

i
i dcaAT

AT
=+−−+)(ττ

ρ
τ (60)

Also, from (19), (35), and (36), it can be concluded that the
values of ρi at which the derivative is 0 are given by:

0
2

)sgn(
2

)(2 =−+++
i

i
iMAXiEMiDiMAXr

AT
PKVPATPVC

ρ
ρρτρ (61)

We know from calculus that the optimum value iρ̂ must
satisfy one of the equations (57), (58), (59), (60) or (61). Now
we prove that regardless of which equation ((57), (58), (59),
(60) or (61)) is satisfied by

iρ̂ , the value of
iρ̂ depends on the

parameter ATi (actual execution time). We know from calculus

that when a variable y is independent of a variable x, we have
0/ =∂∂ xy . Therefore, to see if iρ̂ is independent of ATi, we

calculate ii AT∂∂ /ρ̂ for all Equations (57), (58), (59), (60), and
(61). By calculating ii AT∂∂ /ρ̂ for (57), and (58), we obtain:

i

i

i

i

ATAT
ρρ ˆˆ

=
∂
∂ (62)

which can never be 0 as we never have 0ˆ =iρ . By calculating

ii AT∂∂ /ρ̂ for (59), and (60), we obtain:

i

i

i

i

ATAT
1ˆˆ −

=
∂
∂ ρρ (63)

which can be 0 only when 1ˆ =iρ . However, when the value
1ˆ =iρ satisfies (59) or (60), by substituting 1 for iρ̂ in (59)

and (60), we respectively obtain:
iii da =−ττ (64)

iiii dca =+−)(τττ (65)
It can be simply concluded from (13) (Section II) that the

necessary condition for (64) holds is SLi≤τci, and the
necessary condition for (65) holds is SLi=0. This implies that
one possible case where iρ̂ is independent of ATi is when no
slack time is available (or the slack time is very small) and
hence the supply voltage must be set to its maximum value

1ˆ =iρ regardless of the value of ATi.
Finally, by calculating ii AT∂∂ /ρ̂ for (61), we obtain:

)(22
ˆ/ˆ2ˆ 2

EMiDMAXr

iiD

i

i

ATPVC
PP

AT τ
ρρρ

++
−

=
∂
∂ (66)

which would be 0, if the optimum value could be
3 2/ˆ Di PP=ρ . However, 3 2/ˆ Di PP=ρ does not satisfy (61) and

hence (66) never becomes 0.
In short, except for when there is no slack time (or the slack

time is very small and SLi≤τci), we have 0/ˆ ≠∂∂ ii ATρ , which
means that the optimum value iρ̂ depends on the actual
execution time ATi. However the actual execution time is not
known at the start of the task Ti. Hence, it is impossible to
calculate the optimum value iρ̂ at the start of the task Ti. g

APPENDIX B
In this appendix, we consider the energy ESPR(Ti) of (35) as

a function of the random variable ATi and calculate the
expected value of ESPR(Ti). For simplicity, let δi be defined as
δi =di-τi, γi be defined as γi =di-τi+τai, ηi be defined as
ηi=di-τi+(τai+τci), and μi be defined as μi=ρi/(1-ρi), then we
can rewrite (37) as:

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

≤<+⋅+

≤<−+

≤<

≤

=

iiiiiiii

iiiiii
i

i
i

iiiiii

iii

iSPR

ATEcATPEa

AT
AT

PEa

ATEa

AT

E

ημγμ

γμγργ
ρ

γρδρ

δρ

)(

0

)T(
 (67)

Let u(t) and r(t) be the unit step and unit ramp functions
respectively, i.e.:

)()(
00
01

)(tuttr
t
t

tu ⋅=
⎩
⎨
⎧

≤
>

=
ΔΔ

 (68)

Using the u(t) and r(t) functions we can rewrite (67) as:

)()2()(

)()()T(

iiiiiiii
i

iii
i

iiiiiSPR

ATuEcPATrP

ATrPATuEaE

γμγγμ
μ

γρ
ρ

δρ

−++−

+−⋅+−⋅=
 (69)

(69) has been obtained with the assumption that ATi is
never greater than μiηi. This assumption is valid because we
have:

iiii
i

i
iiii dcaATATAT ≤+−−+≡≤)(ττ

ρ
τημ (70)

and we have proved in Theorem 1 in Appendix A that this
inequality always holds.

Let T be a random variable with the probability density
function f(t) and t0 be a possible value of T. Then the expected
values of u(T-t0) and r(T-t0) can be calculated as follows:

)()()()()]([000

0

tTPdttfdtttutftTuE
t

>==−=− ∫∫
+∞+∞

∞−

(71)

)(]|[

)(0)(]|[

0
)]([

000

0000

0

00
0

tTPtTtTE

tTPtTPtTtTE

tT
tTtT

EtTrE

>⋅>−

=≤⋅+>⋅>−

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎩
⎨
⎧

≤
>−

=−

(72)

where P(I) is the probability that the inequality I holds.
We use (71) and (72) to calculate the expected value of the

energy ESPR(Ti) of (69) as follows:

)()2()(]|[

)(]|[)(

)]T([

iiiiiiiiiiiiii
i

iiiiiiiii
i

iiii

iSPR

ATPEcPATPATATEP

ATPATATEPATPEa

EE

γμγγμγμγμ
μ

γργργρ
ρ

δρ

>++>⋅>−⋅

+>⋅>−⋅+>⋅

=

(73)

Assuming that ATi is uniformly distributed between BTi and
WTi, we have:

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

<

<≤
−

−

≤

=>

i

ii
ii

i

i

i

BTt

WTtBT
BTWT

tWT

tWT

tATP

1

0

)(

(74)

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<−
+

<≤
−

≤

=>−

i
ii

ii
i

i

ii

BTtt
BTWT

WTtBT
tWT

tWT

tATtATE

2

2

0

]|[
 (75)

and hence we have:

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

<−
+

<≤
−
−

≤

=>⋅>−

i
ii

ii
ii

i

i

iii

BTtt
BTWT

WTtBT
BTWT
tWT

tWT

tATPtATtATE

2

)(2
)(

0

)(]|[

2 (76)

Let g(t) be defined as P(ATi>t) and h(t) be defined as
E[ATi-t|ATi>t].P(ATi>t), then we can rewrite (73) as:

)()2()()()()]T([iiiiii
i

ii
i

iiiiSPR gEcPhPhPgEaEE γμγγμ
μ

γρ
ρ

δρ ++⋅+⋅+⋅=

(77)

APPENDIX C
In this appendix, by means of a numerical example, we

show that to calculate the energy consumption of fault-tolerant
systems, we do not need to consider the cases where the
system tolerates a fault, because such cases are rare and hence
have a negligible impact on the average energy consumption.
Suppose that a fault tolerant system consumes 5mJ to execute
a task T, and if a fault occurs during the execution of this task,
the system requires an extra energy of 7mJ to tolerate the
fault. Also assume that the probability that a fault occurs
during the execution of this task is 10-6. This assumption
means that if no fault-tolerance mechanism were used, the
failure probability would be 10-6 which is a reasonable
assumptions based on the observations in Section VI. In this
example, considering the extra energy consumption of fault
tolerance, the expected value (average) of the energy which is
consumed by the system to execute the task is:

mJ000007.5mJ1210mJ5)101(66 =×+×−= −−E

which is almost equal to the energy consumed in the fault-free
case, i.e. 5mJ. It is noteworthy that while a failure probability
of 10-6 is considerable from a reliability point of view (quite
bigger than acceptable values of failure probability [18]), it is
negligible from an energy consumption point of view so that
we can assume no fault occurs when analyzing the energy
consumption.

REFERENCES

[1] V. Izosimov, P. Pop, P. Eles, and Z. Peng, "Scheduling of Fault-Tolerant
Embedded Systems with Soft and Hard Timing Constraints", in Proc.
Design, Automation and Test in Europe (DATE '08), pp. 915-920, 2008.

[2] R. Melhem, D. Mosse, and E. Elnozahy, "The interplay of power
management and fault recovery in real-time systems," IEEE Trans.
Computers, vol. 53, no. 2, pp. 217-231, 2004.

[3] Y. Zhang and K. Chakrabarty, "Dynamic adaptation for fault tolerance
and power management in embedded real-time systems," ACM Tran.
Embedded Computing Systems, vol. 3, no. 2, pp. 336-360, 2004.

[4] F. Liberato, R. Melhem, and D. Mosse, "Tolerance to multiple transient
faults for aperiodic tasks in hard real-time systems," IEEE Trans.
Computers, vol. 49, no. 9, pp. 906-914, 2000.

[5] P. Eles, V. Izosimov, P. Pop, and Z. Peng, "Synthesis of Fault-Tolerant
Embedded Systems", in Proc. Design, Automation and Test in Europe
(DATE '08), pp. 1117-1122, 2008.

[6] A. Ejlali, B.M. Al-Hashimi, M.T. Schmitz, P. Rosinger, and S.G.
Miremadi, "Combined Time and Information Redundancy for SEU-
Tolerance in Energy-Efficient Real-Time Systems", IEEE Trans. VLSI
Sys., vol. 14, no. 4, pp. 323-335, 2006.

[7] I. Koren, and C. M. Krishna, Fault-Tolerant Systems, Morgan
Kaufmann, Elsevier, 2007.

[8] Y. Zhang and K. Chakrabarty, "A Unified Approach for Fault Tolerance
and Dynamic Power Management in Fixed-Priority Real-Time
Embedded Systems", IEEE Trans. CAD, vol. 25, no. 1, pp. 111-125,
2006.

[9] F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri, Scheduling in Real-
Time Systems, John Wiley & Sons, 2002.

[10] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles, System-Level Design
Techniques for Energy-Efficient Embedded Systems, Norwell, MA:
Kluwer, 2004.

[11] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen, "A
dynamic voltage scaled microprocessor system," IEEE J. Solid-State
Circuits, vol. 35, no. 11, pp. 1571-1580, 2000.

[12] K. Marti, Stochastic Optimization Methods, Second Edition, Springer,
2008.

[13] P. Li, and B. Ravindran, "Fast, Best-Effort Real-Time Scheduling
Algorithm", IEEE Trans. Computers, vol. 53, no. 9, pp. 1159-1175,
2004.

[14] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, "Power-Aware
Scheduling for Periodic Real-Time Tasks", IEEE Trans. Computers, vol.
53, no. 5, pp. 584-600, 2004.

[15] D. Zhu, R. Melhem, D. Mosse, and E. Elnozahy, "Analysis of an energy
efficient optimistic TMR scheme", in Proc. 10th Int'l Conf. Parallel and
Distributed Systems (ICPADS 2004), pp. 559-568, 2004.

[16] S. Poledna, Fault-tolerant real-time systems: The problem of replica
determinism, Kluwer Academic Publishers, 1996.

[17] H. Kopetz, Real-time systems: Design principles for distributed
embedded applications, Kluwer Academic Publishers, 2002.

[18] D.K. Pradhan, Fault-tolerant computer system design, Prentice-Hall,
1996.

[19] R. Jejurikar, and R. Gupta, "Dynamic slack reclamation with
procrastination scheduling in real time embedded systems", in Proc.
Design Automation Conference (DAC 2005), pp. 111-116, 2005.

[20] TM5400/TM5600 Data Book, Transmeta Corp., Santa Clara, CA, 2000.
[21] MPARM Tool,

http://www-micrel.deis.unibo.it/sitonew/research/mparm.html. 2005.
[22] M. R. Guthaus, J. S. Ringenberg, D. Ernst,T. M. Austin, T. Mudge, and

R. B. Brown, "MiBench: A free, commercially representative embedded
benchmark suite", in Proc. IEEE 4th annual Workshop on Workload
Characterization, pp. 83-94, 2001.

[23] L. Benini, D. Bertozzi, A. Bogoliolo, F. Menichelli, and M. Olivieri.,
"MPARM: Exploring the Multi-Processor SoC Design Space with
SystemC", The Journal of VLSI Signal Processing, vol. 41, no. 2, pp.
169-182, 2005.

[24] RTEMS Operating System, http://www.rtems.com. 2010.
[25] A. Andrei, P. Eles, Z. Peng, M.T. Schmitz, and B.M. Al-Hashimi,

“Energy Optimization of Multiprocessor Systems on Chip by Voltage
Selection”, IEEE Trans. VLSI Sys., vol. 15, no. 3, pp. 262-275, 2007.

[26] J. Luo, L. Yan, and N. Jha. "Combined Dynamic Voltage Scaling and
Adaptive Body Biasing for Heterogeneous Distributed Real-time
Embedded Systems", in Proc. Int’l Conf. Computer-Aided Design
(ICCAD’03), pp. 30-37, 2003.

[27] P. Pop, K.H. Poulsen, V. Izosimov, and P. Eles, “Scheduling and
Voltage Scaling for Energy/Reliability Trade-offs in Fault-Tolerant
Time-Triggered Embedded Systems”, in Proc. Int’l Conf. Hardware-
Software Codesign and System Synthesis (CODES+ISSS’07), pp. 233-
238, 2007.

[28] A. Ejlali, B.M. Al-Hashimi, and P. Eles, “A Standby-Sparing Technique
with Low Energy-Overhead for Fault-Tolerant Hard Real-Time
Systems”, in Proc. 7th Int’l Conf. Hardware/Software Codesign and Sys.
Synthesis (CODES+ISSS’09), pp. 193-202, 2009.

[29] B. Zhao, H. Aydin, and D. Zhu, "Enhanced Reliability-Aware Power
Management through Shared Recovery Technique", in Proc. Int’l Conf.
Computer-Aided Design (ICCAD’09), pp. 63-70, 2009.

[30] O.S. Unsal, I. Koren, and C.M. Krishna, "Towards Energy-Aware
Software-Based Fault Tolerance in Real-Time Systems", in Proc.
ACM/IEEE Int’l Symp. Low Power Electronics and Design
(ISLPED’02), pp. 124-129, 2002.

[31] Y. Liu, H. Liang, and K. Wu, "Scheduling for Energy Efficiency and
Fault Tolerance in Hard Real-Time Systems", in Proc. Design,
Automation & Test in Europe (DATE 2010), pp. 1444-1449, 2010.

[32] D. Zhu, R. Melhem, and D. Mosse, "The Effects of Energy Management
on Reliability in Real-Time Embedded Systems," in Proc. Intl. Conf.
Computer Aided Design (ICCAD 2004), pp. 35-40, 2004.

[33] M. Kumar Das, Modern Pacemakers - Present and Future, Intech
Publisher, 2011.

Alireza Ejlali received the PhD degree in
computer engineering from Sharif University
of Technology in 2006. He is an associate
professor of Computer Engineering at Sharif
University of Technology, Tehran, Iran. From
2005 to 2006, he was a visiting researcher in
the Electronic Systems Design Group,
University of Southampton, United Kingdom.
He is now the director of Computer
Architecture Group and the director of the
Embedded Systems Research Laboratory
(ESR-LAB) at the Department of computer
engineering, Sharif University of Technology.

His research interests include low power design, real-time embedded systems,
and fault tolerant embedded systems.

Bashir M. Al-Hashimi (M’99-SM’01-F’09)
received the B.Sc. degree (with 1st-class
classification) in Electrical and Electronics
Engineering from the University of Bath, UK,
in 1984 and the Ph.D. degree from York
University, UK, in 1989. Following this he
worked in the microelectronics design industry
and in 1999, he joined the School of
Electronics and Computer Science,
Southampton University, UK, where he holds
the Endowment ARM Chair in Computer
Engineering, Director of the Pervasive Systems
Center, and Dean of Research, Faculty of

Physical and Applied Sciences. He has authored one book on SPICE
simulation, (CRC Press, 1995), and coauthored two books, Power Constrained
Testing of VLSI circuits (Springer, 2002), and System-Level Design
Techniques for Energy-Efficient Embedded Systems (Springer, 2004). He
edited the book, System-on-Chip: Next Generation Electronics (IEE Press,
2006). He has published over 250 refereed papers in journals conference
proceedings.
Prof. Al-Hashimi is a Fellow of the IEE and a Fellow of the British Computer
Society. He is the Editor-in-Chief of the IEE Proceedings: Computers and
Digital Techniques, and a member of the editorial board of the Journal of
Electronic Testing: Theory and Applications (JETTA), and Journal of Low
Power Electronics. He was the General Chair of the 11th IEEE European Test
Symposium (UK 2006), Technical-Programme Chair of DATE 2009, and the
General Chair of DATE 2011. He is the coauthor of two Best Paper Awards:
the James Beausang at the ITC 2000, relating to low power BIST for RTL
data paths, and at the CODES-ISSS Symposium 2009, relating to low-energy
fault-tolerance techniques. He is a co-author of a paper on test data
compression which has been selected for a Springer book featuring the most
influential work over the ten years of the DATE conference.

Dr. Petru Eles is Professor of Embedded
Computer Systems with the Department of
Computer and Information Science (IDA),
Linköping University. Petru Eles' current
research interests include embedded systems,
real-time systems, electronic design
automation, cyber-physical systems,
hardware/software codesign, low power system
design, fault-tolerant systems, design for test.
He has published a large number of technical
papers in these areas and co-authored several
books. Petru Eles received two best paper
awards at the European Design Automation

Conferences (EURO-DAC) in 1992 and 1994, a best paper award at the
Design Automation and Test in Europe Conference (DATE) in 2005, a best
paper award at the International Conference on Hardware/Software Codesign
and System Synthesis (CODES/ISSS) in 2009, and a best presentation award
at the 2003 CODES/ISSS.
Petru Eles is an Associate Editor of the IEEE Transactions on Computers, the
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, and of the IET Proceedings - Computers and Digital Techniques.
Petru Eles has been an IEEE CAS Distinguished Lecturer for 2004 - 2005.

