
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 8, AUGUST 2004 793

Scheduling and Mapping in an Incremental Design
Methodology for Distributed Real-Time

Embedded Systems
Paul Pop, Petru Eles, Zebo Peng, Senior Member, IEEE, and Traian Pop

Abstract—In this paper, we present an approach to mapping and
scheduling of distributed embedded systems for hard real-time ap-
plications, aiming at a minimization of the system modification
cost. We consider an incremental design process that starts from
an already existing system running a set of applications. We are
interested in implementing new functionality such that the timing
requirements are fulfilled and the following two requirements are
also satisfied: 1) the already running applications are disturbed as
little as possible and 2) there is a good chance that later, new func-
tionality can easily be added to the resulted system. Thus, we pro-
pose a heuristic that finds the set of already running applications
which have to be remapped and rescheduled at the same time with
mapping and scheduling the new application, such that the distur-
bance on the running system (expressed as the total cost implied by
the modifications) is minimized. Once this set of applications has
been determined, we outline a mapping and scheduling algorithm
aimed at fulfilling the requirements stated above. The approaches
have been evaluated based on extensive experiments using a large
number of generated benchmarks as well as a real-life example.

Index Terms—Distributed embedded systems, incremental de-
sign, process mapping, process scheduling, real-time systems.

I. INTRODUCTION

COMPLEX embedded systems with multiple processing
elements are becoming common in various applica-

tion areas from telecommunications, automotive electronics,
robotics, industrial control, to medical equipment and mul-
timedia. Such systems have to fulfill strong requirements in
terms of performance and cost efficiency. There are several
complex design steps to be considered during the development
of such a system: the underlying architecture has to be allocated
(which implies the allocation of components like processors,
memories, and buses, together with the decision on a certain
interconnection topology), tasks and communication channels
have to be mapped on the architecture, and all the activities in
the system have to be scheduled. The design process usually
implies an iterative execution of these steps until a solution
is found such that the resulted system satisfies certain design
constraints [10], [12], [24], [25], [39], [42].

Several notable results have been reported, aimed at sup-
porting the designer with methodologies and tools during the
hardware/software cosynthesis of embedded systems. Initially,
researchers have considered architectures consisting of a single

Manuscript received December 18, 2002; revised September 29, 2003.
The authors are with the Department of Computer and Information Science,

Linköping University, Linköping SE-581 83 Sweden (e-mail: paupo@ida.liu.se,
petel@ida.liu.se, zebpe@ida.liu.se, trapo@ida.liu.se).

Digital Object Identifier 10.1109/TVLSI.2004.831467

programmable processor and an ASIC. Their goal was to
partition the application between the hardware and software
domain, such that performance constraints are satisfied while
the total hardware cost is kept at a minimum [7], [9], [11],
[15]. Currently, similar architectures are becoming increasingly
interesting, with the ASIC replaced by a dynamically reconfig-
urable hardware coprocessor [21].

As a result of fast technological development and of an in-
creasing demand for reliable embedded systems with highly
complex functionality, new, more sophisticated architectures,
consisting of a large number of interconnected programmable
components and ASICs, are now widely used. Such complex
systems can be integrated on a single chip (systems on chip) or
can be physically distributed over a smaller or wider area (dis-
tributed embedded systems). One of the first attempts to address
the problems of allocation, mapping, and scheduling in the con-
text of such a complex architecture has been published in [33].
The approach is based on a mixed integer linear programming
(MILP) formulation and has the disadvantage of the huge com-
plexity inherent to solving such a model. Therefore, alternative
problem formulations and solutions based on efficient heuristics
have been proposed [1], [2], [5], [20], [40], [41].

Although much of the above work is dedicated to specific
aspects of distributed systems, researchers have often ignored
or very much simplified issues concerning the communication
infrastructure. One notable exception is [37], in which system
synthesis is discussed in the context of a distributed architecture
based on arbitrated buses. Many efforts dedicated to communi-
cation synthesis have concentrated on the synthesis support for
the communication infrastructure but without considering hard
real-time constraints and system level scheduling aspects [16],
[26], [27].

Another characteristic of research efforts concerning the
codesign of embedded systems is that authors concentrate on
the design, from scratch, of a new system optimized for a par-
ticular application. For many application areas, however, such
a situation is extremely uncommon and only rarely appears in
design practice. It is much more likely that one has to start from
an already existing system running a certain application and
the design problem is to implement new functionality on this
system. In such a context it is very important to operate none,
or as few as possible, modifications to the already running
application. The main reason for this is to avoid unnecessarily
large design and testing times. Performing modifications on
the (potentially large) existing application increases design
time and even more testing time (instead of only testing the

1063-8210/04$20.00 © 2004 IEEE

794 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 8, AUGUST 2004

newly implemented functionality, the old application, or at
least a part of it, has also to be retested). However, this is not
the only aspect to be considered. Such an incremental design
process, in which a design is periodically upgraded with new
features, is going through several iterations. Therefore, after
new functionality has been implemented, the resulting system
has to be structured such that additional functionality, later to
be mapped, can easily be accommodated [31], [32].

In a recent paper [14], Haubelt et al. consider the requirement
of flexibility as a parameter during design space exploration.
However, their goal is not incremental design, but the genera-
tion of an architecture which, at an acceptable cost, is able to
implement different applications or variants of a certain appli-
cation.

In this paper, we use a nonpreemptive static-cyclic sched-
uling policy for processes and messages. Using such a sched-
uling policy is strongly recommended for many types of appli-
cations, e.g., hard real-time safety critical applications [17]. In
[29] we have discussed the implications of an incremental de-
sign process in the context of a fixed-priority preemptive sched-
uling policy.

A. Contributions

The contribution of the present paper is twofold.

1) First, we consider mapping and scheduling for hard real-
time embedded systems in the context of a realistic com-
munication model based on a time-division multiple-access
(TDMA) protocol as recommended for applications in areas
like, for example, automotive electronics [18]. We accurately
take into consideration overheads due to communication and
consider, during the mapping and scheduling process, the par-
ticular requirements of the communication protocol.
2) As our main contribution, we have considered, for the first

time to our knowledge, the design of distributed embedded
systems in the context of an incremental design process as
outlined above. This implies that we perform mapping and
scheduling of new functionality on a given distributed em-
bedded system, so that certain design constraints are satisfied,
and in addition: 1) the already running applications are dis-
turbed as little as possible and 2) there is a good chance that
later, new functionality can easily be mapped on the resulted
system.

We propose a new heuristic, together with the corre-
sponding design criteria, which finds the set of old applica-
tions that have to be remapped and rescheduled at the same
time with mapping and scheduling the new application, such
that the disturbance on the running system (expressed as the
total cost implied by the modifications) is minimized. Once
this set of applications has been determined, mapping and
scheduling is performed according to the requirements stated
above.
Supporting such a design process is of critical importance for

current and future industrial practice, as the time interval be-
tween successive generations of a product is continuously de-
creasing, while the complexity due to increased sophistication
of new functionality is growing rapidly. The goal of reducing
the overall cost of successive product generations has been one

Fig. 1. System architecture.

of the main motors behind the currently very popular concept of
platform-based design [19], [23]. Although in this paper we are
not explicitly dealing with platform-based systems, most of the
results are also valid in the context of this design paradigm.

This paper is organized as follows. Section II presents prelim-
inary discussions concerning the system architecture we con-
sider and our abstract system representation. In Section III, we
formulate the problem we are going to solve. Section IV intro-
duces our approach to quantitatively characterize certain fea-
tures of both currently running and future applications. In Sec-
tion V, we introduce the metrics we have defined in order to
capture the quality of a given design alternative, and based on
these metrics we give an exact problem formulation. Our map-
ping and scheduling strategy is described in Section VI, and the
experimental results are presented in Section VII. Finally, Sec-
tion VIII presents our conclusions.

II. PRELIMINARIES

A. System Architecture

1) Hardware Architecture: We consider architectures con-
sisting of nodes connected by a broadcast communication
channel [Fig. 1(a)]. Every node consists of a TTP controller,
processor, memory, and an I/O interface to sensors and actua-
tors.

Communication between nodes is based on the TTP [18].
TTP was designed for distributed real-time applications that re-
quire predictability and reliability (e.g., drive-by-wire). It inte-
grates all the services necessary for fault-tolerant real-time sys-
tems.

The communication channel is a broadcast channel, so a mes-
sage sent by a node is received by all the other nodes. The bus
access scheme is TDMA [Fig. 1(b)]. Each node can transmit
only during a predetermined time interval, the so called TDMA
slot . In such a slot, a node can send several messages packed
in a frame. A sequence of slots corresponding to all the nodes
in the architecture is called a TDMA round. A node can have
only one slot in a TDMA round. Several TDMA rounds can be
combined together in a cycle that is repeated periodically. The
sequence and length of the slots are the same for all TDMA
rounds. However, the length and contents of the frames may
differ.

Every node has a TTP controller that implements the protocol
services and runs independently of the node’s CPU. Commu-
nication with the CPU is performed through a shared memory
which is the message base interface (MBI) in Fig. 2. The TDMA
access scheme is imposed by a so called message descriptor list

POP et al.: SCHEDULING AND MAPPING IN AN INCREMENTAL DESIGN METHODOLOGY 795

Fig. 2. Message passing mechanism.

(MEDL) that is located in every TTP controller. The MEDL
serves as a schedule table for the TTP controller which has to
know when to send or receive a frame to or from the commu-
nication channel. The TTP controller provides each CPU with
a timer interrupt based on a local clock synchronized with the
local clocks of the other nodes. Clock synchronization is done
by comparing the a priori known time of arrival of a frame with
the observed arrival time. Thus, TTP provides a global time-base
of known precision, without any overhead on the communica-
tion.

2) Software Architecture: We have designed a software ar-
chitecture which runs on the CPU in each node, which has a real-
time kernel as its main component. Each kernel has a schedule
table that contains all the information needed to take decisions
on activation of processes and transmission of messages, at the
predetermined time moments.

The message passing mechanism is illustrated in Fig. 2,
where we have three processes, to . and are
mapped to node that transmits in slot , and is mapped
to node that transmits in slot . Message is transmitted
between and that are on the same node, while message

is transmitted from to between the two nodes. We
consider that each process has its own memory locations for
the messages it sends or receives and that the addresses of the
memory locations are known to the kernel through the schedule
table.

is activated according to the schedule table, and when it
finishes it calls the send kernel function in order to send ,
and then . Based on the schedule table, the kernel copies
from the corresponding memory location in to the memory
location in . When will be activated it finds the message in
the right location. According to our scheduling policy, whenever
a receiving process needs a message, the message is already
placed in the corresponding memory location. Thus, there is no
overhead on the receiving side for messages exchanged on the
same node.

Message has to be sent from node to node . At a
certain time, known from the schedule table, the kernel trans-
fers to the TTP controller by packaging it into a frame in
the MBI. Later on, the TTP controller knows from its MEDL
when it has to take the frame from the MBI, in order to broad-
cast it on the bus. In our example, the timing information in the

schedule table of the kernel and the MEDL is determined in such
a way that the broadcasting of the frame is done in the slot of
Round 2. The TTP controller of node knows from its MEDL
that it has to read a frame from slot of Round 2 and to transfer
it into the MBI. The kernel in node will read the message

from the MBI. When will be activated based on the local
schedule table of node , it will already have in its right
memory location.

In [30] we presented a detailed discussion concerning the
overheads due to the kernel and to every system call. We also
presented formulas for derivation of the worst-case execution
delay of a process, taking into account the overhead of the timer
interrupt, the worst-case overhead of the process activation and
message passing functions.

B. Abstract Representation

As the basis for abstract modeling we use a directed, acyclic,
polar graph , called process graph (Fig. 3). Each
node represents a process. A process is a sequence
of computations (corresponding to several building blocks in
a programming language), which starts when all its inputs
are available and it issues its outputs when it terminates. As
mentioned in the introduction, we consider safety-critical appli-
cations where not meeting a timing constraint could potentially
lead to catastrophic consequences. Hence, each process is
characterized by a worst-case execution time . Estimation
of the worst-case execution time for a given process has been
extensively discussed in the literature [34]. Moreover, we
consider a nonpreemptive execution environment. Hence, once
activated, a process executes until it completes.

An edge in the process graph, from to indicates
that the output of is the input of .

Each process graph is characterized by its period and
its deadline . Deadlines can also be placed locally on
processes. Release times of some processes as well as multiple
deadlines can be easily modeled by inserting dummy nodes be-
tween certain processes and the source or the sink node respec-
tively. These dummy nodes represent processes with a certain
execution time but that are not allocated to any processing ele-
ment.

A process graph is polar, which means that there are two
nodes, called source and sink, that conventionally represent the
first and last process. If needed, these nodes are introduced as
dummy processes so that all other nodes in the graph are suc-
cessors of the source and predecessors of the sink, respectively.

As shown in Fig. 3, an application is modeled as a set of
process graphs . The whole functionality of the system
is represented as a set of applications.

According to our representation model, all processes inter-
acting with each other through time critical messages belong
to the same process graph. If processes have different periods,
this is solved by generating several instances of processes and
building a process graph which corresponds to a set of processes
that occur within a time period equal to the least common mul-
tiple of the periods of the involved processes. Potential com-
munication between processes in different applications is not
part of the model. Technically, such a communication is imple-
mented by the kernels based on asynchronous nonblocking send

796 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 8, AUGUST 2004

Fig. 3. Abstract representation.

and receive primitives. Such messages are considered noncrit-
ical and are not affected by real-time constraints. They will use
bus slots that have not been assigned to time-critical messages.
Therefore, communications of this nature will not be addressed
in this paper.

C. Application Mapping and Scheduling

Considering a system architecture like the one pre-
sented in Section II-A, the mapping of a process graph

is given by a function , where
is the set of nodes (processing

elements). For a process , is the node to which
is assigned for execution. Each process can potentially be

mapped on several nodes. Let be the set of nodes
to which can potentially be mapped. For each ,
we know the worst-case execution time of process ,
when executed on . Messages transmitted between processes
mapped on different nodes are communicated through the bus,
in a slot corresponding to the sending node. The maximum
number of bits transferred in such a message is also known.

In order to implement an application, represented as a set of
process graphs, the designer has to map the processes to the
system nodes and to derive a static cyclic schedule such that all
deadlines are satisfied. We first illustrate some of the problems
related to mapping and scheduling, in the context of a system
based on a TDMA communication protocol, before going on
to explore further aspects specific to an incremental design ap-
proach.

Let us consider the example in Fig. 4 where we want to map
an application consisting of four processes to , with a pe-
riod and deadline of 50 ms. The architecture is composed of
three nodes that communicate according to a TDMA protocol,
such that transmits in slot . For this example, we sup-
pose that there is no other previous application running on the
system. According to the specification, processes and are
constrained to node , while and can be mapped on
nodes or , but not . The worst-case execution times of
processes on each potential node and the sequence and size of
TDMA slots, are presented in Fig. 4. In order to keep the ex-
ample simple, we suppose that the message sizes are such that
each message fits into one TDMA slot.

Fig. 4. Mapping and scheduling example.

We consider two alternative mappings. If we map and
on the faster processor , the resulting schedule length

[Fig. 4(a)] will be 52 ms which does not meet the deadline.
However, if we map and on the slower processor ,
the schedule length [Fig. 4(b)] is 48 ms, which meets the dead-
line. Note, that the total traffic on the bus is the same for both
mappings and the initial processor load is 0 on both and .
This result has its explanation in the impact of the communica-
tion protocol. cannot start before receiving messages
and . However, slot corresponding to node precedes
in the TDMA round slot on which node communicates.
Thus, the messages which needs are available sooner in the
case and are, counter intuitively, mapped on the slower
node.

But finding a valid schedule is not enough if we are to support
an incremental design process as discussed in the introduction.
In this case, starting from a valid design we have to improve the
mapping and scheduling so that not only the design constraints

POP et al.: SCHEDULING AND MAPPING IN AN INCREMENTAL DESIGN METHODOLOGY 797

Fig. 5. Application � implemented on top of 	 and � .

are satisfied, but also there is a good chance that later, new func-
tionality can easily be mapped on the resulted system.

To illustrate the role of mapping and scheduling in the context
of an incremental design process, let us consider the example in
Fig. 5. For simplicity, we consider an architecture consisting of
a single processor. The system is currently running application

[Fig. 5(a)]. At a particular moment application has to be
implemented on top of . Three possible implementation al-
ternatives for are depicted in Fig. 5(), 5(), and 5().
All three are meeting the imposed time constraint for . At
a later moment, application has to be implemented on the
system running and . If has been implemented as shown
in Fig. 5(), there is no possibility to map application on
the given system (in particular, there is no time slack available
for process). If has been implemented as in Fig. 5()
or 5(), can be correctly mapped and scheduled on top of

and . There are two aspects which should be highlighted
based on this example:

1) If application is implemented like in Fig. 5() or
5(), it is possible to implement on top of the existing
system, without performing any modifications on the imple-
mentation of previous applications. This could be the case if,
during implementation of , the designers have taken into

consideration the fact that, in future, an application having
the characteristics of will possibly be added to the system.
2) If has been implemented like in Fig. 5(), can be
added to the system only after performing certain modifica-
tions on the implementation of and/or . In this case, of
course, it is important to perform as few as possible modifi-
cations on previous applications, in order to reduce the devel-
opment costs.

III. PROBLEM FORMULATION

As shown in Section II, we capture the functionality of a
system as a set of applications. An application consists of
a set of process graphs . For each process in a
process graph we know the set of potential nodes on which
it could be mapped and its worst-case execution time on each
of these nodes. We also know the maximum number of bits to
be transmitted by each message. The underlying architecture
is as presented in Section II-A. We consider a nonpreemptive
static cyclic scheduling policy for both processes and message
passing.

Our goal is to map and schedule an application on a
system that already implements a set of applications, consid-
ering the following requirements:

• Requirement a: All constraints on are satisfied and
minimal modifications are performed to the implementa-
tion of applications in .

• Requirement b: New applications can be mapped
on top of the resulting system.

We illustrate such an incremental design process in Fig. 6.
The product is implemented as a three processor system and its
version consists of the set of two applications (the pro-
cesses belonging to these applications are represented as white
and black disks, respectively). At the current moment, applica-
tion is to be added to the system, resulting in version
of the product. However, a new version, , is very likely to
follow and this fact is to be considered during implementation
of .1

If it is not possible to map and schedule without mod-
ifying the implementation of the already running applications,
we have to change the scheduling and mapping of some appli-
cations in . However, even with remapping and rescheduling
all applications in , it is still possible that certain constraints
are not satisfied. In this case, the hardware architecture has to be
changed by, for example, adding a new processor, and the map-
ping and scheduling procedure for has to be restarted. In
this paper, we will not further elaborate on the aspect of adding
new resources to the architecture, but will concentrate on the
mapping and scheduling aspects. Thus, we consider that a pos-
sible mapping and scheduling of which satisfies the im-
posed constraints can be found (with minimizing the modifica-
tion of the already running applications), and this solution has

1The design process outlined here also applies when� is a new version
of an application � 2 	. In this case, all the processes and communications
belonging to � are eliminated from the running system	, before starting the
mapping and scheduling of � .

798 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 8, AUGUST 2004

Fig. 6. Incremental design process.

to be further improved in order to facilitate the implementation
of future applications.

In order to achieve our goal we need certain information to
be available concerning the set of applications as well as the
possible future applications . What exactly we have to
know about these applications will be discussed in Section IV.
In Section V, we then introduce the quality metrics which will
allow us to give a more rigorous formulation of the problem we
are going to solve.

The processes in application can interact with the
previously mapped applications by reading messages gen-
erated on the bus by processes in . In this case, the reading
process has to be synchronized with the arrival of the message
on the bus, which is easy to model as an additional time con-
straint on the particular receiving process. This constraint is
then considered (as any other deadline) during scheduling of

.

IV. CHARACTERIZING EXISTING AND FUTURE APPLICATIONS

A. Characterizing the Already Running Applications

To perform the mapping and scheduling of , the min-
imum information needed, concerning the already running ap-
plications , consists of the local schedule tables for each pro-
cessor node. Thus, we know the activation time for each process
previously mapped on the respective node and its worst-case ex-
ecution time. As for messages, their length as well as their place
in the particular TDMA frame are known.

If the initial attempt to schedule and map does not
succeed, we have to modify the schedule and, possibly, the map-
ping of applications belonging to , in the hope to find a valid
solution for . The goal is to find that minimal modifi-
cation to the existing system that leads to a correct implemen-
tation of . In our context, such a minimal modification
means remapping and/or rescheduling a subset of the old ap-
plications, , so that the total cost of reimplementing is
minimized.

Remapping and/or rescheduling a certain application
can trigger the need to also perform modifications of one or
several other applications because of the dependencies between
processes belonging to these applications. In order to capture
such dependencies between the applications in , as well as
their modification costs, we have introduced a representation
called the application graph. We represent a set of applications
as a directed acyclic graph , where each node
represents an application. An edge from to indi-
cates that any modification to would trigger the need to also
remap and/or reschedule , because of certain interactions be-
tween the applications.2 Each application in the graph has an
associated attribute specifying if that particular application is al-
lowed to be modified or not (in which case, it is called “frozen”).
To those nodes representing modifiable applications, the
designer has associated a cost of reimplementing . Given
a subset of applications , the total cost of modifying the
applications in is

Modifications of an already running application can only be
performed if the process graphs corresponding to that applica-
tion, as well as the related deadlines (which have to be satisfied
also after remapping and rescheduling) are available. However,
this is not always the case and in such situations that particular
application has to be considered frozen.

In Fig. 7, we present the graph corresponding to a set of
ten applications. Applications , , , and , depicted in
black, are frozen: no modifications are possible to them. The
rest of the applications have the modification cost depicted
on their left. can be remapped/rescheduled with a cost of 20.
If is to be reimplemented, this also requires the modifica-
tion of , with a total cost of 90. In the case of , although

2If a set of applications have a circular dependence, such that the modification
of any one implies the remapping of all the others in that set, the set will be
represented as a single node in the graph.

POP et al.: SCHEDULING AND MAPPING IN AN INCREMENTAL DESIGN METHODOLOGY 799

Fig. 7. Characterizing the set of already running applications.

not frozen, no remapping/rescheduling is possible as it would
trigger the need to modify , which is frozen.

To each application the designer has associated a
cost of reimplementing . Such a cost can typically be
expressed in man-hours needed to perform retesting of and
other tasks connected to the remapping and rescheduling of
the application. If an application is remapped or rescheduled,
it has to be validated again. Such a validation phase is very
time consuming. For example, in the automotive industry, the
time-to-market in the case of the powertrain unit is 24 months;
out of these, 5 months representing more than 20% are dedicated
to validation. In the case of the telematic unit, the time to market
is less than one year, while the validation time is two months
[38]. However, if an application is not modified during imple-
mentation of new functionality, only a small part of the valida-
tion tasks have to be reperformed (e.g., integration testing), thus
reducing significantly the time-to-market at no additional hard-
ware or development cost.

How to concretely perform the estimation of the modification
cost related to an application is beyond the topic of this paper.
Several approaches to cost estimation for different phases of the
software life cycle have been elaborated and are available in the
literature [6], [35]. One of the most influential software cost
models is the Constructive Cost Model (COCOMO) [3]. CO-
COMO is at the core of tools such as REVIC [43] and its newer
version SoftEST [44], which can produce cost estimations not
only for the total development but also for testing, integration,
or modification related retesting of embedded software. The re-
sults of such estimations can be used by the designer as the cost
metrics assigned to the nodes of an application graph.

In general, it can be the case that several alternative costs
are associated to a certain application, depending on the par-
ticular modification performed. Thus, for example, we can have
a certain cost if processes are only rescheduled, and another one
if they are also remapped on an alternative node. For different
modification alternatives considered during design space explo-
ration, the corresponding modification cost has to be selected.
In order to keep the discussion reasonably simple, we present
the case with one single modification cost associated with an
application. However, the generalization for several alternative
modification costs is straightforward.

B. Characterizing Future Applications

What do we suppose to know about the family of ap-
plications which do not exist yet? Given a certain limited ap-
plication area (e.g., automotive electronics), it is not unreason-
able to assume that, based on the designers’ previous experi-
ence, the nature of expected future functions to be implemented,

profiling of previous applications, available incomplete designs
for future versions of the product, etc., it is possible to charac-
terize the family of applications which possibly could be added
to the current implementation. This is an assumption which is
basic for the concept of incremental design. Thus, we consider
that, with respect to the future applications, we know the set

of possible worst-case execution
times for processes, and the set
of possible message sizes. We also assume that over these sets
we know the distributions of probability for and

for . For example, we might have predicted pos-
sible worst-case execution times of different processes in future
applications . If there is a
higher probability of having processes of 100 ms, and a very
low probability of having processes of 300 ms and 500 ms, then
our distribution function could look like this:

, , , ,
and .

Another information is related to the period of process graphs
which could be part of future applications. In particular, the
smallest expected period is assumed to be given, together
with the expected necessary processor time , and bus band-
width , inside such a period . As will be shown later,
this information is treated in a flexible way during the design
process and is used in order to provide a fair distribution of avail-
able resources.

The execution times in , as well as , are considered
relative to the slowest node in the system. All the other nodes are
characterized by a speedup factor relative to this slowest node. A
normalization with these factors is performed when computing
the metrics and introduced in Section V.

V. QUALITY METRICS AND OBJECTIVE FUNCTION

A designer will be able to map and schedule an application
on top of a system implementing and only

if there are sufficient resources available. In our case, the re-
sources are processor time and the bandwidth on the bus. In the
context of a nonpreemptive static scheduling policy, having free
resources translates into having free time slots on the processors
and having space left for messages in the bus slots. We call these
free slots of available time on the processor or on the bus, slack.
It is to be noted that the total quantity of computation and com-
munication power available on our system after we have mapped
and scheduled on top of is the same regardless of the
mapping and scheduling policies used. What depends on the
mapping and scheduling strategy is the distribution of slacks
along the time line and the size of the individual slacks. It is
exactly this size and distribution of the slacks that characterizes
the quality of a certain design alternative from the point of view
of flexibility for future upgrades. In this section, we introduce
two criteria in order to reflect the degree to which one design
alternative meets the requirement b presented in Section III. For
each criterion we provide metrics which quantify the degree to
which the criterion is met. The first criterion reflects how well
the resulted slack sizes fit a future application, and the second
criterion expresses how well the slack is distributed in time.

800 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 8, AUGUST 2004

A. Slack Sizes (The First Criterion)

The slack sizes resulted after implementation of on
top of should be such that they best accommodate a given
family of applications , characterized by the sets ,
and the probability distributions and , as outlined in Sec-
tion IV-B.

Let us go back to the example in Fig. 5 where is what we
now call , while , to be later implemented on top of

and , is . This consists of the two processes
and . It can be observed that the best configuration

from the point of view of accommodating , taking in
consideration only slack sizes, is to have a contiguous slack
after implementation of [Fig. 5()]. However, in
reality, it is almost impossible to map and schedule the current
application such that a contiguous slack is obtained. Not only
is it impossible, but it is also undesirable from the point of
view of the second design criterion, to be discussed next.
However, as we can see from Fig. 5(), if we schedule
such that it fragments too much the slack, it is impossible to
fit because there is no slack that can accommodate
process . A situation as the one depicted in Fig. 5() is
desirable, where the resulted slack sizes are adapted to the
characteristics of the application.

In order to measure the degree to which the slack sizes in
a given design alternative fit the future applications, we pro-
vide two metrics: and . captures how much of the
largest future application that theoretically could be mapped on
the system can be mapped on top of the current design alterna-
tive. is similar relative to the slacks in the bus slots.

How does the largest future application which theoretically
could be mapped on the system look like? The total processor
time and bus bandwidth available for this largest future appli-
cation is the total slack available on the processors and bus,
respectively, after implementing . Process and message
sizes of this hypothetical largest application are determined
knowing the total size of the available slack, and the charac-
teristics of the future applications as expressed by the sets
and , and the probability distributions and . Let us
consider, for example, that the total slack size on the processors
is of 2800 ms and the set of possible worst-case execution
times is . The probability
distribution function is defined as follows: ,

, , , and
. Under these circumstances, the largest

hypothetical future application will consist of 20 processes: 10
processes (half of the total,) with a worst-case
execution time of 100 ms, 4 processes with 50 ms, 4 with
200 ms, one with 300 and one with 500 ms.

After we have determined the number of processes of this
largest hypothetical and their worst-case execution
times, we apply a bin-packing algorithm [22] using the best-fit
policy in which we consider processes as the objects to be
packed, and the available slacks as containers. The total exe-
cution time of processes which are left unpacked, relative to
the total execution time of the whole process set, gives the
metric. The same is the case with the metric , but applied to
message sizes and available slacks in the bus slots.

LetusconsidertheexampleinFig.5andsupposeahypothetical
consisting of two processes like those of application .

ForthedesignalternativesinFig.5()and5(), (both
alternatives are perfect from the point of view of slack sizes). For
the alternative in Fig. 5(), however, —the
worst-case execution time of (which is left unpacked) relative
the total execution time of the two processes.

B. Distribution of Slacks (The Second Criterion)

In Section V-A, we defined a metric which captures how well
the sizes of the slacks fit a possible future application. A similar
metric is needed to characterize the distribution of slacks over
time.

Let be a process with period that belongs to a future ap-
plication, and the node on which will be mapped. The
worst-case execution time of is . In order to schedule

we need a slack of size that is available periodically,
within a period , on processor . If we consider a group
of processes with period , which are part of , in order
to implement them, a certain amount of slack is needed that
is available periodically, with a period , on the nodes imple-
menting the respective processes.

During implementation of we aim for a slack distri-
bution such that the future application with the smallest expected
period and with the necessary processor time , and bus
bandwidth , can be accommodated (see Section IV-B).

Thus, for each node, we compute the minimum periodic slack,
inside a period. By summing these minima, we obtain the
slack which is available periodically to . This is the
metric. The metric characterizes the minimum periodically
availablebandwidthonthebusand it iscomputed inasimilarway.

In Fig. 8 we consider an example with ms,
ms, and ms. The length of the schedule table of the

system implementing and is 360 ms (in Section VI we
willelaborateon the lengthof theglobal schedule table).Thus,we
have to investigate three periods of length each. The system
consists of three nodes. Let us consider the situation in Fig. 8(a).
In the first period, Period 0, there are 40 ms of slack available on

, in thesecondperiod80ms,and in the thirdperiodnoslack
is available on . Thus, the total slack a future application of
period can use on is ms. Neither
can provide slack for this application, as in Period 1 there
is no slack available. However, on there are at least 40 ms
of slack available in each period. Thus, with the configuration in
Fig. 8(a) we have ms, which is not sufficient to accom-
modate ms. The available periodic slack on the bus is
also insufficient: ms . However, in the situa-
tion presented in Fig. 8(b), we have ms , and

ms .

C. Objective Function and Exact Problem Formulation

In order to capture how well a certain design alternative meets
the requirement (b) stated in Section III, the metrics discussed
before are combined in an objective function, as follows:

POP et al.: SCHEDULING AND MAPPING IN AN INCREMENTAL DESIGN METHODOLOGY 801

Fig. 8. Example for the second design criterion.

where the metric values introduced in the previous section are
weighted by the constants , , , and . Our mapping
and scheduling strategy will try to minimize this function.

The first two terms measure how well the resulted slack sizes
fit to a future application (the first criterion), while the second
two terms reflect the distribution of slacks (the second criterion).
In order to obtain a balanced solution, that favors a good fitting
both on the processors and on the bus, we have used the squares
of the metrics.

We call a valid solution, that mapping and scheduling which
satisfies all the design constraints (in our case the deadlines) and
meets the second criterion (and).3

At this point we can give an exact formulation of our
problem. Given an existing set of applications which are
already mapped and scheduled, and an application to
be implemented on top of , we are interested to find the subset

of old applications to be remapped and rescheduled
such that we produce a valid solution for and the
total cost of modification is minimized. Once such a set

of applications is found, we are interested to optimize the
implementation of such that the objective function

is minimized, considering a family of future applications
characterized by the sets and , the functions and
as well as the parameters , , and .

A mapping and scheduling strategy based on this problem
formulation is presented in the following section.

VI. MAPPING AND SCHEDULING STRATEGY

As shown in the algorithm in Fig. 9, our mapping and sched-
uling strategy (MS) consists of two steps. In the first step, we
try to obtain a valid solution for the mapping and scheduling of

so that the modification cost is minimized.
Starting from such a solution, the second step iteratively im-
proves the design in order to minimize the objective function

3This definition of a valid solution can be relaxed by imposing only the satis-
faction of deadlines. In this case, the algorithm in Fig. 9 will look after a solution
which satisfies the deadlines andR(
) is minimized; the additional second cri-
terion is, in this case, only considered optionally.

Fig. 9. Mapping and scheduling strategy (MS).

. In the context in which the second criterion is satisfied after
the first step, improving the cost function during the second step
aims at minimizing the value of .

If the first step has not succeeded in finding a solution such
that the imposed time constraints are satisfied, this means that
there are not sufficient resources available to implement the ap-
plication . Thus, modifications of the system architec-
ture have to be performed before restarting the mapping and
scheduling procedure. If, however, the timing constraints are
met but the second design criterion is not satisfied, a larger

(smallest expected period of a future application, see Sec-
tion IV-B) or smaller values for and/or are suggested
to the designer. This, of course, reduces the frequency of pos-
sible future applications and the amount of processor and bus
resources available to them.

In Section VI-A, we briefly discuss the basic mapping and
scheduling algorithm we have used in order to generate an initial
solution. The heuristic used to iteratively improve the design
with regard to the first and the second design criteria is presented
in Section VI-B. In Section VI-C, we describe three alternative

802 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 8, AUGUST 2004

Fig. 10. Graph merging.

heuristics that can be used during the first step in order to find
the optimal subset of applications to be modified.

A. The Initial Mapping and Scheduling

As shown in Fig. 11, the first step of MS consists of an it-
eration that tries different subsets with the intention to
find that subset of old applications to be remapped
and rescheduled which produces a valid solution for

such that is minimized. Given a subset , the Ini-
tialMappingScheduling function (IMS) constructs a mapping
and a schedule for the applications on top of ,
that meets the deadlines, without worrying about the two criteria
introduced in Section V.

The IMS is a classical mapping and scheduling algorithm for
which we have used as a starting point the heterogeneous critical
path (HCP) algorithm, introduced in [13]. HCP is based on a list
scheduling approach [4]. We have modified the HCP algorithm
in three main regards.

1) We consider that mapping and scheduling does not start
with an empty system but a system on which a certain number
of processes already are mapped.
2) Messages are scheduled into bus slots according to the

TDMA protocol. The TDMA-based message scheduling
technique has been presented by us in [8].
3) As a priority function for list scheduling we use, instead

of the critical path (CP) priority function employed in [13],
the modified partial critical path (MPCP) function introduced
by us in [8]. MPCP takes into consideration the particularities
of the communication protocol for calculation of communi-
cation delays. These delays are not estimated based only on
the message length, but also on the time when slots assigned
to the particular node which generates the message will be
available.
For the example in Fig. 4, our initial mapping and scheduling

algorithm will be able to produce the optimal solution with a
schedule length of 48 ms.

However, before performing the effective mapping and
scheduling with IMS, two aspects have to be addressed. First,
the process graphs have to be merged into
a single graph , by unrolling of process graphs and

Fig. 11. Steps 1 and 2 of the mapping and scheduling strategy in Fig. 9.

insertion of dummy nodes as shown in Fig. 10. The period
of is equal to the least common multiplier

of the periods of the graphs . Dummy nodes (depicted
as black disks in Fig. 10) represent processes with a certain
execution time but that are not to be mapped to any processor

POP et al.: SCHEDULING AND MAPPING IN AN INCREMENTAL DESIGN METHODOLOGY 803

or bus. In addition, we have to consider during scheduling the
mismatch between the periods of the already existing system
and those of the current application. The schedule table into
which we would like to schedule has a length of
which is the global period of the system after extraction of
the applications in . However, the period of
can be different from . Thus, before scheduling
into the existing schedule table, the schedule table is expanded
to the least common multiplier of the two periods. A similar
procedure is followed in the case .

B. Iterative Design Transformations

Once IMS has produced a mapping and scheduling which sat-
isfies the timing constraints, the next goal of Step 1 is to im-
prove the design in order to satisfy the second-design criterion
(and). During the second step, the
design is then further transformed with the goal of minimizing
the value of , according to the require-
ments of the first criterion, without invalidating the second cri-
terion achieved in the first step. In both steps, we iteratively im-
prove the design using a transformational approach. These suc-
cessive transformations are performed inside the (innermost) re-
peat loops of the first and second step, respectively (Fig. 11). A
new design is obtained from the current one by performing a
transformation called move. We consider the following two cat-
egories of moves:

1) moving a process to a different slack found on the same
node or on a different node;
2) moving a message to a different slack on the bus.

In order to eliminate those moves that will lead to an infea-
sible design (that violates deadlines), we do as follows. For each
process , we calculate the and times
considering the resources of the given hardware architecture.

is the earliest time can start its execution, while
is the latest time can start its execution without

causing the application to miss its deadline. When moving
we will consider slacks on the target processor only inside the
[,] interval. The same reasoning holds
for messages, with the addition that a message can only be
moved to slacks belonging to a slot that corresponds to the
sender node (see Section II-A). Any violation of the data-de-
pendency constraints caused by a move is rectified by shifting
processes or messages concerned in an appropriate way. If such
a shift produces a deadline violation, the move is rejected.

At each step, our heuristic tries to find those moves that have
the highest potential to improve the design. For each iteration a
set of potential moves is selected by the PotentialMoveX func-
tions. SelectMoveX then evaluates these moves with regard to
the respective metrics and selects the best one to be performed.
We now briefly discuss the four PotentialMoveX functions with
the corresponding moves.

1) PotentialMove and PotentialMove : Consider
Fig. 8(a). In Period 2 on there is no available slack.
However, if we move process with 40 ms to the left into Pe-
riod 1, as depicted in Fig. 8(b), we create a slack in Period 2 and
the periodic slack on node will be ms,
instead of 0 ms.

Potential moves aimed at improving the metric will be
the shifting of processes inside their [,] interval in
order to improve the periodic slack. The move can be performed
on the same node or to the less loaded nodes. The same is true
for moving messages in order to improve the metric . For
the improvement of the periodic bandwidth on the bus, we also
consider movement of processes, trying to place the sender and
receiver of a message on the same processor and, thus, reducing
the bus load.

2) PotentialMove and PotentialMove : The moves
suggested by these two functions aim at improving the
metric through reducing the slack fragmentation. The heuristic
is to evaluate only those moves that iteratively eliminate the
smallest slack in the schedule. Let us consider the example in
Fig. 12 where we have three applications mapped on a single
processor: , consisting of and , , having pro-
cesses , , and , and , with , , and . Fig. 12
presents three possible schedules; processes are depicted with
rectangles, the width of a rectangle representing the worst-case
execution time of that process. The func-
tions start by identifying the smallest slack in the schedule table.
In Fig. 12(a), the smallest slack is the slack between and .
Once the smallest slack has been identified, potential moves
are investigated which either remove or enlarge the slack. For
example, the slack between and can be removed by
attaching to , and it can be enlarged by moving to the
right in the schedule table. Moves that remove the slack are
considered only if they do not lead to an invalidation of the
second design criterion, measured by the metric improved
in the previous step (see Fig. 11, Step 1). Also, the slack can be
enlarged only if it does not create, as a result, other unusable
slack. A slack is unusable if it cannot hold the smallest object
of the future application, in our case . In Fig. 12(a), the slack
can be removed by moving such that it starts from time 20,
immediately after , and it can be enlarged by moving so
that it starts from 30, 40, or 50 (considering an increment which
here was set by us to 10, the size of , the smallest object in

). For each move, the improvement on the metric
is calculated, and that move is selected by the
function to be performed, which leads to the largest improve-
ment on (which means the smallest value). For all the
previously considered moves of , we are not able to map
which represents 50% of the , therefore, .
Consequently, we can perform any of the mentioned moves,
and our algorithm selects the first one investigated, the move
to start from 20, thus removing the slack. As a result of
this move, the new schedule table is the one in Fig. 12(b).
In the next call of the function, the slack
between and is identified as the smallest slack. Out of
the potential moves that eliminate this slack, listed in Fig. 12
for case b, several lead to , the largest improvement.

selects moving to start from 90, and thus we
are able to map process of the future application, leading to
a successful implementation in Fig. 12(c).

The previous example has only illustrated movements of
processes. Similarly, in , we also consider
moves of messages in order to improve . However, the
movement of messages is restricted by the TDMA bus access

804 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 8, AUGUST 2004

Fig. 12. Successive steps with potential moves for improving C .

scheme, such that a message can only be moved into a slot
corresponding to the node on which it is generated.

C. Minimizing the Total Modification Cost

Thefirststepofourmappingandschedulingstrategy,described
inFig.11, iteratesonsuccessivesubsets searchingforavalidso-
lution which also minimizes the total modification cost . As
a first attempt, the algorithm searches for a valid implementation
of without disturbing the existing applications .
Ifnovalidsolution is found, successivesubsets producedby the
functionNextSubsetareconsidered,until a terminationcondition
is met. The performance of the algorithm, in terms of runtime and
quality of the solutions produced, is strongly influenced by the
strategy employed for the function NextSubset and the termina-
tion condition. They determine how the design space is explored
while testing different subsets of applications. In the following
wepresent threealternativestrategies.Thefirst twocanbeconsid-
ered as situated at opposite extremes: The first one is potentially
very slow but produces the optimal result while the second is very
fast and possibly low quality. The third alternative is a heuristic
able to produce good quality results in relatively short time, as
willbedemonstratedbytheexperimentalresultspresentedinSec-
tion VII.

1) Exhaustive Search (ES): In order to find , the sim-
plest solution is to try successively all the possible subsets

. These subsets are generated in the ascending order of the
total modification cost, starting from . The termination condi-
tion is fulfilled when the first valid solution is found or no new
subsets are to be generated. Since the subsets are generated in
ascending order, according to their cost, the subset that first

produces a valid solution is also the subset with the minimum
modification cost.

The generation of subsets is performed according to the
graph that characterizes the existing applications (see
Section IV-A). Finding the next subset , starting from the
current one, is achieved by a branch and bound algorithm
that, in the worst case, grows exponentially in time with the
number of applications. For the example in Fig. 7, the call to

will generate which has the smallest
nonzero modification cost . The next gener-
ated subsets, in order, together with their corresponding total
modification cost are: , ,

(the inclusion of triggers the inclu-
sion of), , ,

, , and so on. The total
number of possible subsets according to the graph in Fig. 7 is
16.

This approach, while finding the optimal subset , requires a
large amount of computation time and can be used only with a
small number of applications.

2) Greedy Heuristic (GH): If the number of applications is
larger, a possible solution could be based on a simple greedy
heuristic which, starting from , progressively enlarges
the subset until a valid solution is produced. The algorithm looks
at all the nonfrozen applications and picks that one which, to-
gether with its dependencies, has the smallest modification cost.
If the new subset does not produce a valid solution, it is en-
larged by including, in the same fashion, the next application
with its dependencies. This greedy expansion of the subset is
continued until the set is large enough to lead to a valid solution
or no application is left. For the example in Fig. 7 the call to

will produce , and will be suc-

POP et al.: SCHEDULING AND MAPPING IN AN INCREMENTAL DESIGN METHODOLOGY 805

Fig. 13. Metric for the subset selection heuristic.

cessively enlarged to ,
(could have been picked as well in this step because it

has the same modification cost of 70 as and its dependence
is already in the subset), , and so

on.
While this approach finds very quickly a valid solution, if one

exists, it is possible that the resulted total modification cost is
much higher than the optimal one.

3) Subset Selection Heuristic (SH): An intelligent selection
heuristic should be able to identify the reasons due to which
a valid solution has not been produced and to find the set of
candidate applications which, if modified, could eliminate the
problem. The failure to produce a valid solution can have two
possible causes: an initial mapping which meets the deadlines
has not been found, or the second criterion is not satisfied.

Let us investigate the first reason. If an application is
to meet its deadline , all its processes have to be
scheduled inside their [,] intervals. InitialMap-
pingScheduling (IMS) fails to schedule a process inside its
[,] interval if there is not enough slack available
on any processor, due to other processes scheduled in the same
interval. In this situation we say that there is a conflict with
processes belonging to other applications. We are interested
to find out which applications are responsible for conflicts
encountered during the mapping and scheduling of ,
and not only that, but also which ones are flexible enough to be
moved away in order to avoid these conflicts.

If it is not able to find a solution that satisfies the deadlines,
IMS will determine a metric that characterizes both the de-
gree of conflict and the flexibility of each application
in relation to . A set of applications will be character-
ized, in relation to , by the following metric:

This metric will be used by our subset selection
heuristic in the case IMS has failed to produce a solution which
satisfies the deadlines. An application with a larger is more
likely to lead to a valid schedule if included in .

In Fig. 13, we illustrate how this metric is calculated. Appli-
cations , and are implemented on a system consisting
of the three processors , and . The current
application to be implemented is . At a certain moment, IMS
comes to the point to map and schedule process . How-
ever, it is not able to place it inside its [,] interval,
denoted in Fig. 13 as . The reason is that there is not enough
slack available inside on any of the processors, because pro-
cesses , , , , and are scheduled
inside that interval. We are interested to determine which of the
applications , , and are more likely to lend free slack for

, if remapped and rescheduled. Therefore, we calculate the
slack resulted after we move away processes belonging to these
applications from the interval . For example, the resulted slack
available after modifying application (moving either to the
left or to the right inside its own [,] interval) is of
size . With we denote that slice
of process which remains inside the interval after has
been moved to the extreme left (right) inside its own [,

] interval. represents the length of slice . Thus,
when considering process , will be incremented with

. This value shows
the maximum theoretical slack usable for , that can be pro-
duced by modifying application . By relating this slack to the
length of , the value also captures the amount of flexi-
bility provided by that modification.

The increments and to be added to the values of
and respectively, are also presented in Fig. 13. IMS

then continues the evaluation of the metrics with the other
processes belonging to the current application D (with the as-
sumption that process has been scheduled at the beginning
of interval). Thus, as result of the failed attempt to map and
schedule application , the metrics , , and will be
produced.

If the initial mapping was successful, the first step of MS
could fail during the attempt to satisfy the second criterion
(Fig. 11). In this case, the metric is computed in a dif-
ferent way. What will capture in this case, is the potential
of an application to improve the metric if remapped

806 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 8, AUGUST 2004

together with . Therefore, we consider a total number
of moves from all the nonfrozen applications. These moves are
determined using the functions presented in
Section VI-B. Each such move will lead to a different mapping
and schedule, and thus to a different value. Let us consider

as the improvement on produced by the currently
considered move. If there is no improvement, . Thus,
for each move that has as subject or , we increment
the metric with the improvement on .

As shown in the algorithm in Fig. 11, MS starts by trying
an implementation of with . If this attempt
fails, because of one of the two reasons mentioned above, the
corresponding metrics are computed for all . Our
heuristic SH will then start by finding the solution pro-
duced with the greedy heuristic GH (this will succeed if there
exists any solution). The total modification cost corresponding
to this solution is and the value of the metric
is . SH now continues by trying to find a solu-
tion with a more favorable than (a smaller total cost).
Therefore, the thresholds and
(for our experiments we considered) are set. Sets of ap-
plications not fulfilling these thresholds will not be investigated
by MS. For generating new subsets , the function NextSubset
now follows a similar approach like in the exhaustive search ap-
proach ES, but in a reverse direction, toward smaller subsets
(starting with the set containing all nonfrozen applications), and
it will consider only subsets with a smaller total cost then
and a larger than (a small means a reduced potential
to eliminate the cause of the initial failure). Each time a valid
solution is found, the current values of and are up-
dated in order to further restrict the search space. The heuristic
stops when no subset can be found with , or a certain
imposed limit has been reached (e.g., on the total number of at-
tempts to find new subsets).

VII. EXPERIMENTAL RESULTS

In Section VII-A–C, we show a series of experiments that
demonstrate the effectiveness of the proposed approach and al-
gorithms. The first set of results is related to the efficiency of
our mapping and scheduling algorithm and the iterative design
transformations proposed in Sections VI-A and B. The second
set of experiments evaluates our heuristics for minimization of
the total modification cost presented in Section VI-C. As a gen-
eral strategy, we have evaluated our algorithms performing ex-
periments on a large number of test cases generated for exper-
imental purpose. Finally, we have validated the proposed ap-
proach using a real-life example. All experiments were run on a
SUN Ultra 10 workstation.

A. Evaluation of the IMS Algorithm and the Iterative Design
Transformations

For an evaluation of our approach we used process graphs of
80, 160, 240, 320, and 400 processes, representing the appli-
cation , randomly generated for experimental purpose.
Thirty graphs were generated for each graph dimension, thus a
total of 150 graphs were used for experimental evaluation.

TABLE I
EVALUATION OF THE INITIAL MAPPING AND SCHEDULING

We generated both graphs with random structure and graphs
based on more regular structures like trees and groups of chains.
We generated a random structure graph deciding for each pair
of two processes if they should be connected or not. Two pro-
cesses in the graph were connected with a certain probability
(between 0.05 and 0.15, depending on the graph dimension) on
the condition that the dependency would not introduce a loop in
the graph. The width of the tree-like structures was controlled
by the maximum number of direct successors a process can have
in the tree (from 2 to 6), while the graphs consisting of groups
of chains had 2 to 12 parallel chains of processes. Furthermore,
the regular structures were modified by adding a number of 3 to
30 random cross-connections.

Execution times and message lengths were assigned ran-
domly using both uniform and exponential distribution within
the 10 to 100 ms, and 2 to 8 bytes ranges, respectively.

We considered an architecture consisting of 10 nodes of dif-
ferent speeds. For the communication channel we considered a
transmission speed of 256 kBps and a length below 20 m. The
maximum length of the data field in a bus slot was 8 bytes.

Throughout the experiments presented in this section we have
considered an existing set of applications consisting of 400
processes, with a schedule table of 6 s on each processor, and a
slack of about 50% of the total schedule size. The mapping of
the existing applications has been done using a simple heuristic
that tries to balance the utilization of processors while mini-
mizing communication. The scheduling of the applications
has been performed using list scheduling, and the schedules ob-
tained have then been stretched to their deadline by introducing
slacks distributed uniformly over the schedule table.

In this section, we have also considered that no modifications
of the existing set of applications are allowed when imple-
menting a new application. We will concentrate on the aspects
related to the modification of existing applications, in the fol-
lowing section.Our heuristic (MS), proposed in VI-B, as well
as SA and AH have been used to map and schedule each of the
150 process graphs on the target system. For each of the resulted
designs, the objective function has been computed. Very long
and expensive runs have been performed with the SA algorithm
for each graph and the best ever solution produced has been con-
sidered as the near optimum for that graph. We have compared
the objective function obtained for the 150 process graphs con-
sidering each of the three heuristics. Fig. 14(a) presents the av-
erage percentage deviation of the objective function obtained
with the MS and AH from the value of the objective function
obtained with the near-optimal scheme (SA). We have excluded

POP et al.: SCHEDULING AND MAPPING IN AN INCREMENTAL DESIGN METHODOLOGY 807

Fig. 14. Evaluation of the design transformation heuristics: a) deviation of the objective function obtained with MS and AH from that obtained with SA and b)
execution times.

from the results in Fig. 14(a), 37 solutions obtained with AH for
which the second design criterion has not been met, and thus
the objective function has been strongly penalized. The average
run-times of the algorithms are presented in Fig. 14(b). The SA
approach performs best in terms of quality at the expense of a
large execution time: The execution time can be up to 45 min for
large graphs of 400 processes. The important aspect is that MS
performs very well, and is able to obtain good quality solutions,
very close to those produced with SA, in a very short time. AH
is, of course, very fast, but since it does not address explicitly
the two design criteria presented in Section V it has the worst
quality of solutions, as expressed by the objective function.

The first result concerns the quality of the designs produced by
our initial mapping and scheduling algorithm IMS. As discussed
inSectionVI-A, IMSuses theMPCPpriority functionwhichcon-
siders particularities of the TDMA protocol. In our experiments
we compared the quality of designs (in terms of schedule length)
produced by IMS with those generated with the original HCP al-
gorithm proposed in [13]. Results are depicted in Table I where
we have three columns for both HCP and IMS. In the columns la-
beled “average” we present the average percentage deviations of
the schedule length produced with HCP and IMS from the length
of the best schedule among the two. In the “maximum” column
we have the maximum percentage deviation, and the column with
the heading “better” shows the percentage of cases in which HCP
or IMS was better than the other. For example, for 240 processes,
HCP had an average percentage deviation from the best result of
5.53%, compared to 1.38% for IMS. Also, in the worst case, the
schedule length obtained with HCP was 61.27% larger than the
one obtained with IMS. There were four cases (13.33%) in which
HCP has obtained a better result than IMS, compared to 11 cases
(36.66%) where IMS has obtained a better result. For the rest of
the15cases, theschedule lengthsobtainedwereequal.Wecanob-
servethat,inaverage,thedeviationfromthebestresultis3.28times
smaller with IMS than with HCP. The averageexecution times for
both algorithms are under half a second for graphs with 400 pro-
cesses.

For thenextsetofexperimentswewereinterestedtoinvestigate
thequalityofthedesigntransformationheuristicdiscussedinSec-
tion VI-B, aiming at the optimization of the objective function .
In order to compare this heuristic, implemented in our mapping

Fig. 15. Percentage of future applications successfully implemented.

and scheduling approach MS, we have developed two additional
heuristics:

1) Asimulatedannealingstrategy(SA)[36],basedonthesame
moves as described in Section VI-B. SA is applied on the solu-
tionproducedbyIMSandaimsatfindingthenear-optimalmap-
pingandschedule thatminimizes theobjective function .The
maindrawbackoftheSAstrategyisthatinordertofindthenear-
optimal solution it needs very large computation times. Such a
strategy, although useful for the final stages of the system syn-
thesis, cannot be used inside a design space exploration cycle.
2) A so called ad hoc approach (AH) which is a simple,
straight-forward solution to produce designs that, to a certain
degree, support an incremental process. Starting from the
initial valid schedule of length obtained by IMS for a graph

with processes, AH uses a simple scheme to redistribute
the processes inside the interval, where is the deadline
of process graph . AH starts by considering the first process
in topological order, let it be . It introduces after a slack
of size max(smallest process size of ,),
thus shifting all descendants of to the right (toward the end
of the schedule table). The insertion of slacks is repeated for
the next process, with the current, larger value of , as long
as the resulted schedule has a length . Processes are
moved only as long as their individual deadlines (if any) are not
violated.

The most important aspect of the experiments is determining
to which extent the design transformations proposed by us, and

808 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 8, AUGUST 2004

Fig. 16. Evaluation of the modification cost minimization. a) Modification cost obtained with the GH, SH, and ES heuristics and b) execution times.

the related heuristic, really facilitate the implementation of fu-
ture applications. To find this out, we have mapped graphs of 80,
160, 240, and 320 nodes representing the application
on top of (the same as defined for the previous set of ex-
periments). After mapping and scheduling each of these graphs
we have tried to add a new application to the resulted
system. consists of a process graph of 80 processes, ran-
domly generated according to the following specifications:

, ,
, ,

ms, and ms. The experiments have
been performed three times: using MS, SA, and AH for mapping

. In all three cases, we were interested if it is possible to
find a correct implementation for on top of using
the initial mapping and scheduling algorithm IMS (without any
modification of or). Fig. 15 shows the percentage of
successful implementations of for each the three cases.
In the case has been implemented with MS and SA,
this means using the design criteria and metrics proposed in
the paper, we were able to find a valid schedule for 65% and
68% of the total cases, respectively. However, using AH to map

, has led to a situation where IMS is able to find cor-
rect solutions in only 21% of the cases. Another conclusion
from Fig. 15 is that when the total slack available is large, as
in the case has only 80 processes, it is easy for MS and,
to a certain extent, even for AH to find a mapping that allows
adding future applications. However, as grows to 240
processes, only MS and SA are able to find an implementation
of that supports an incremental design process, accom-
modating the future application in more than 60% of the cases.
If the remaining slack is very small, after we map a of
320 processes, it becomes practically impossible to map new
applications without modifying the current system. Moreover,
our mapping heuristic MH performs very well compared to the
simulated annealing approach SA which aims for the near-op-
timal value of the objective function.

B. Evaluation of the Modification Cost Minimization
Heuristics

For this set of experiments we first used the same 150 process
graphs as in the previous section, consisting of 80, 160, 240,

320, and 400 processes, for the application . We also
considered the same system architecture as presented there.

The first results concern the quality of the solution obtained
with our mapping strategy MS using the search heuristic SH
compared to the case when the simple greedy approach GH and
the exhaustive search ES are used. For the existing applications
we have generated five different sets , consisting of different
numbers of applications and processes, as follows: 6 applica-
tions (320 processes), 8 applications (400 processes), 10 appli-
cations (480 processes), 12 applications (560 processes), and 14
applications (640 processes). The process graphs in the applica-
tions as well as their mapping and scheduling were generated as
described in the introduction of Section VII-A.

After generating the applications we have manually as-
signed modification costs in the range 10 to 100, depending
on their size. The dependencies between applications (in the
sense introduced in Section IV-A) were such that the total
number of possible subsets resulted for each set were 32,
128, 256, 1024, and 4096, respectively. We have considered
that the future applications, , are characterized by the
following parameters: ,

, ,
, ms, ms

and ms.
MShasbeenused toproduceavalidsolutionforeachof the150

process graphs representing , on each of the target config-
urations , using the ES, GH, and SH approaches to subset selec-
tion. Fig. 16(a) compares the three approaches based on the total
modificationcostneededinordertoobtainavalidsolution.Theex-
haustive approach ES is able to obtain valid solutions with an op-
timal (smallest) modificationcost, while the greedy approachGH
produces inaverage3.12timesmorecostlymodifications inorder
to obtain valid solutions. However, in order to find the optimal so-
lution, ES needs large computation times, as shown in Fig. 16(b).
For example, it can take more than an average of 2 h to find the
smallest cost subset to be remapped that leads to a valid solution
in the case of 14 applications (640 processes). We can see that the
proposed heuristic SH performs well, producing close to optimal
resultswithagoodscalingforlargeapplicationsets.Fortheresults
inFig.16,wehaveeliminatedthosesituationsinwhichnovalidso-
lution could be produced by MS.

Finally, we have repeated the last set of experiments discussed
in the previous section (the experiments leading to the results

POP et al.: SCHEDULING AND MAPPING IN AN INCREMENTAL DESIGN METHODOLOGY 809

in Fig. 15). However, in this case, we have allowed the current
system (consisting of) to be modified when im-
plementing . If the mapping and scheduling heuristic is
allowed to modify the existing system then we are able to in-
crease the total number of successful attempts to implement ap-
plication from 65% to 77.5%. For the case with
consisting of 160 processes (when the amount of available re-
sources for is small) the increase is from 60% to 92%.
Such an increase is, of course, expected. The important aspect,
however, is that it is obtained not by randomly selecting old ap-
plications to be modified, but by performing this selection such
that the total modification cost is minimized.

C. The Vehicle Cruise Controller

A typical safety critical application with hard real-time con-
straints, to be implemented on a TTP based architecture, is a ve-
hicle cruise controller (CC). We have considered a CC system
derived from a requirement specification provided by the in-
dustry. The CC delivers the following functionality: it maintains
a constant speed for speeds over 35 km/h and under 200 km/h,
offers an interface (buttons) to increase or decrease the refer-
ence speed, and is able to resume its operation at the previous
reference speed. The CC operation is suspended when the driver
presses the brake pedal. The specification assumes that the CC
will operate in an environment consisting of several nodes in-
terconnected by a TTP channel (Fig. 17). There are four nodes
which functionally interact with the CC system: the anti-lock
braking system (ABS), the transmission control module (TCM),
the engine control module (ECM), and the electronic throttle
module (ETM). It has been decided to map the functionality
(processes) of the CC over these four nodes. The ECM and ETM
nodes have an 8-bit Motorola M68HC11 family CPU with 128
kB of memory, while the ABS and TCM are equipped with a
16-bit Motorola M68HC12 CPU and 256 kB of memory. The
16-bit CPUs are twice faster than the 8-bit ones. The transmis-
sion speed of the communication channel is 256 kb/s and the
frequency of the TTP controller was chosen to be 20 MHz. We
have modeled the specification of the CC system using a set of
32 processes and 17 messages as described in [28]. The period
was 300 ms, equal to the deadline.

The system , representing the applications already running
on the four nodes mentioned earlier, has been modeled as a set
of 80 processes with a schedule table of 300 ms and leaving a
total of 40% slack. We have assigned to each application a mod-
ification cost proportional to the number and size of processes.
The CC is the application to be implemented. We have
also generated 30 future applications of 40 processes each, with
the general characteristics close to those of the CC, which are
typical for automotive applications. We have first mapped and
scheduled the CC on top of , using the ad-hoc strategy (AH)
and then our MS algorithm. On the resulted systems, consisting
of , we tried to implement each of the 30 future applica-
tions. First we considered a situation in which no modifications
of the existing system are allowed when implementing the fu-
ture applications. In this case, we were able to implement 21 of
the 30 future applications after implementing the CC with MS,
while using AH to implement the CC, only 4 of the future ap-

Fig. 17. Implementation of the cruise controller.

plications could be mapped. When modifications of the current
system were allowed, using MS, we were able to map 24 of the
30 future applications on top of the CC. For the CC example SA
has obtained the same results as MS.

VIII. CONCLUSIONS

We have presented an approach to the incremental design
of distributed hard real-time embedded systems. Such a design
process satisfies two main requirements when adding new func-
tionality: already running applications are disturbed as little as
possible, and there is a good chance that, later, new function-
ality can easily be mapped on the resulted system. Our approach
assumes a nonpreemptive static cyclic scheduling policy and a
realistic communication model based on a TDMA scheme.

We have introduced two design criteria with their corre-
sponding metrics that drive our mapping strategy to solutions
supporting an incremental design process. These solutions are
obtained using an efficient transformation based heuristic.

Three algorithms have been proposed to produce a minimal
subset of applications which have to be remapped and resched-
uled in order to implement the new functionality. ES is based
on a, potentially slow, branch and bound strategy which finds
an optimal solution. GH is very fast but produces solutions that
could be of too high cost, while SH is able to quickly produce
good quality results.

The approach has been evaluated based on extensive experi-
ments using a large number of generated benchmarks as well as
a real-life example.

Although the concrete architecture used to illustrate our ap-
proach is a distributed embedded system, typically used in au-
tomotive applications, the proposed strategy and heuristics can
as well be used for on-chip architectures and platforms.

There are several aspects that have been omitted from the dis-
cussion in this paper. In [29], we have extended our approach to
real-time systems where process scheduling is based on a static
priority preemptive approach. For the sake of simplifying the dis-
cussion, we have also not addressed here the memory constraints
during process mapping and the implications of memory space in
the incremental design process. An extension of the approach in
order to consider memory space as another resource in addition to
processor time and bus bandwidth is, however, straightforward.
We have also not discussed in this paper the issue of architecture
selection, considering that the designer has taken the appropriate
decisions before starting the mapping and scheduling procedure.

810 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 8, AUGUST 2004

REFERENCES

[1] J. E. Beck and D. P. Siewiorek, “Automatic configuration of embedded
multicomputer systems,” IEEE Trans. Computer-Aided Design, vol. 17,
pp. 84–95, Feb. 1998.

[2] T. Blicke, J. Teich, and L. Thiele, “System-level synthesis using evo-
lutionary algorithms,” Des. Autom. Embedded Syst., vol. 4, no. 1, pp.
23–58, 1998.

[3] B. W. Boehm et al., Software Cost Estimation With COCOMO II. En-
glewood Cliffs, NJ: Prentice-Hall, 2000.

[4] E. G. Coffman Jr. and R. L. Graham, “Optimal scheduling for two pro-
cessor systems,” Acta Informatica, no. 1, pp. 200–213, 1972.

[5] B. P. Dave, G. Lakshminarayana, and N. K. Jha, “COSYN: hardware-
software co-synthesis of heterogeneous distributed embedded systems,”
IEEE Trans. VLSI Syst., vol. 7, pp. 92–104, Mar. 1999.

[6] J. A. Debardelaben, V. K. Madiseti, and A. J. Gadient, “Incorporating
cost modeling in embedded-system design,” IEEE Des. Test Comput.,
pp. 24–35, July–Sept. 1997.

[7] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “System level hard-
ware/software partitioning based on simulated annealing and tabu
search,” Des. Autom. Embedded Syst., vol. 2, no. 1, pp. 5–32, 1997.

[8] P. Eles, A. Doboli, P. Pop, and Z. Peng, “Scheduling with bus access op-
timization for distributed embedded systems,” IEEE Trans. VLSI Syst.,
vol. 8, pp. 472–491, Oct. 2000.

[9] R. Ernst, J. Henkel, and T. Benner, “Hardware-software cosynthesis for
microcontrollers,” IEEE Des. Test Comput., vol. 10, pp. 64–75, Sept.
1993.

[10] R. Ernst, “Codesign of embedded systems: status and trends,” IEEE Des.
Test Comput., pp. 45–54, Apr.–June 1998.

[11] D. D. Gajski and F. Vahid, “Specification and design of embedded hard-
ware-software systems,” IEEE Des. Test Comput., pp. 53–67, Spring
1995.

[12] R. K. Gupta and G. De Micheli, “Hardware-software cosynthesis for
digital systems,” IEEE Des. Test Comput., vol. 10, pp. 29–41, Sept. 1993.

[13] P. B. Jorgensen and J. Madsen, “Critical path driven cosynthesis for
heterogeneous target architectures,” in Proc. Int. Workshop on Hard-
ware-Software Co-Design, 1997, pp. 15–19.

[14] C. Haubelt, J. Teich, K. Richter, and R. Ernst, “System design for
flexibility,” in Proc. Design, Automation and Test Eur. Conf., 2002, pp.
854–861.

[15] A. Kalawade and E. A. Lee, “The extended partitioning problem: hard-
ware/software mapping, scheduling, and implementation-bin selection,”
Des. Autom. Embedded Syst., vol. 2, pp. 125–163, 1997.

[16] P. V. Knudsen and J. Madsen, “Integrating communication protocol se-
lection with hardware/software codesign,” IEEE Trans. Computer-Aided
Design, vol. 18, no. 8, pp. 1077–1095, 1999.

[17] H. Kopetz, Real-Time Systems-Design Principles for Distributed Em-
bedded Applications. Norwell, MA: Kluwer , 1997.

[18] H. Kopetz and G. Grünsteidl, “TTP-a protocol for fault-tolerant real-
time systems,” IEEE Comput., vol. 27, pp. 14–23, Jan. 1994.

[19] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-Vin-
centelli, “System-level design: orthogonalization of concerns and plat-
form-based design,” IEEE Trans. Computer-Aided Design, vol. 19, no.
12, pp. 1523–1543, Dec. 2000.

[20] C. Lee, M. Potkonjak, and W. Wolf, “Synthesis of hard real-time appli-
cation specific systems,” Des. Autom. Embedded Syst., vol. 4, no. 4, pp.
215–241, 1999.

[21] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J. Stockwood,
“Hardware-software co-design of embedded reconfigurable architec-
tures,” in Proc. Design Automation Conf., 2000, pp. 507–512.

[22] S. Martello and P. Toth, Kanpsack Problems: Algorithms and Computer
Implementations. New York: Wiley, 1990.

[23] G. Martin and F. Schirrmeister, “A design chain for embedded systems,”
Computer, vol. 35, no. 3, pp. 100–103, Mar. 2002.

[24] G. De Micheli and M. G. Sami, Eds., Hardware/Software Co-De-
sign. Norwell, MA: Kluwer, 1996.

[25] G. De Micheli and R. K. Gupta, “Hardware/software co-design,” Proc.
IEEE, vol. 85, pp. 349–365, 1997.

[26] S. Narayan and D. D. Gajski, “Synthesis of system-level bus interfaces,”
in Proc. Eur. Desing and Test Conf., 1994, pp. 395–399.

[27] R. B. Ortega and G. Borriello, “Communication synthesis for distributed
embedded systems,” in Proc. Int. Conf. CAD, 1998, pp. 437–444.

[28] P. Pop, “Analysis and Synthesis of Communication-Intensive Hetero-
geneous Real-Time Systems,” Ph.D. dissertation, Linköping Studies in
Science and Technology, Linköping, Sweden.

[29] P. Pop, P. Eles, and Z. Peng, “Flexibility driven scheduling and mapping
for distributed real-time systems,” in Proc. Int. Conf. Real-Time Com-
puting Systems and Applications, 2002, pp. 337–346.

[30] , “Scheduling with optimized communication for time-triggered
embedded systems,” in Proc. Int. Workshop on Hardware-Software
Co-Design, 1999, pp. 178–182.

[31] P. Pop, P. Eles, T. Pop, and Z. Peng, “An approach to incremental design
of distributed embedded systems,” in Proc. Design Automation Conf.,
2001, pp. 450–455.

[32] , “Minimizing system modification in an incremental design ap-
proach,” in Proc. Int. Workshop on Hardware/Software Codesign, 2001,
pp. 183–188.

[33] S. Prakash and A. Parker, “SOS: synthesis of application-specific het-
erogeneous multiprocessor systems,” J. Parallel Distrib. Comput., vol.
V16, pp. 338–351, 1992.

[34] P. Puschner and A. Burns, “A review of worst-case execution-time ana-
lyzes,” Real-Time Syst. J., vol. 18, no. 2/3, pp. 115–128, May 2000.

[35] D. Ragan, P. Sandborn, and P. Stoaks, “A detailed cost model for concur-
rent use with hardware/software co-design,” in Proc. Design Automation
Conf., 2002, pp. 269–274.

[36] C. R. Reevs, Modern Heuristic Techniques for Combinatorial Prob-
lems. Oxford, U.K: Blackwell, 1993.

[37] D. L. Rhodes and W. Wolf, “Co-synthesis of heterogeneous multipro-
cessor systems using arbitrated communication,” in Proc. Int. Conf.
CAD, 1999, pp. 339–342.

[38] A. Sangiovanni-Vincentelli, “Electronic-system design in the automo-
bile industry,” IEEE Micro, vol. 23, pp. 8–18, May–June 2003.

[39] J. Staunstrup and W. Wolf, Eds., Hardware/Software Co-Design: Prin-
ciples and Practice. Norwell, MA: Kluwer, 1997.

[40] W. Wolf, “An architectural co-synthesis algorithm for distributed, em-
bedded computing systems,” IEEE Trans. VLSI Syst., pp. 218–229, June
1997.

[41] T. Y. Yen and W. Wolf, Hardware-Software Co-Synthesis of Distributed
Embedded Systems. Norwell, MA: Kluwer, 1997.

[42] W. Wolf, “Hardware-software co-design of embedded systems,” Proc.
IEEE, vol. 82, no. 7, pp. 967–989, 1994.

[43] REVIC Software Cost Estimating Model, User’s Manual, V9.0-9.2,
U.S. Air Force Analysis Agency, 1994.

[44] SoftEST—Version 1.1, U.S. Air Force Analysis Agency, 1997.

Paul Pop received the Ph.D. in computer science
from Linköping University, Sweden, in 2003.

He is a Junior Research Fellow with the Embedded
Systems Laboratory, in the Department of Computer
and Information Science, Linköping University.

His research interests include design of embedded
real-time systems, electronic design automation and
hardware/software codesign.

Petru Eles (M’99) received the M.Sc. degree in com-
puter science from the “Politehnica” University of
Timisoara, Romania, in 1979, and the Ph.D. degree
in computer science from the “Politehnica” Univer-
sity of Bucharest, Romania, in 1993.

He is currently a Professor with the Department
of Computer and Information Science at Linköping
University, Sweden. His research interests include
design of embedded systems, hardware/software
co-design, real-time systems, system specification
and testing, CAD for digital systems. He has pub-

lished extensively in these areas and has coauthored several books including
System Synthesis with VHDL (Norwell, MA: Kluwer, 1997) and System-Level
Design Techniques for Energy-Efficient Embedded Systems (Norwell, MA:
Kluwer, 2004).

Prof. Eles was a corecipient of Best Paper Awards at the 1992 and 1994 Eu-
ropean Design Automation Conference (EURO-DAC), and of the Best Presen-
tation Award at the 2003 IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis. He is an Associate Editor of
the IEE Proceedings—Computers and Digital Techniques. He has served as a
Program Committee Member for numerous International Conferences such as
DATE, ICCAD, ECRTS, CASES, EMSOFT, RTSS, and as the Technical Pro-
gram Chair of the IEEE/ACM/IFIP International Conference on Hardware/Soft-
ware Codesign and System Synthesis (CODES+ISSS).

POP et al.: SCHEDULING AND MAPPING IN AN INCREMENTAL DESIGN METHODOLOGY 811

Zebo Peng (M’91–SM’02) received the Ph.D. de-
gree in computer science from Linköping University,
Sweden, in 1987.

Currently, he is Professor and Chair in the De-
partment of Computer Systems; he is Director of the
Embedded Systems Laboratory; and Chairman of
the Division for Software and Systems at Linköping
University. His current research interests include de-
sign and test of embedded systems, electronic design
automation, design for testability, hardware/software
codesign, and real-time systems. He has published

over 170 journal and conference papers in these areas and is coauthor of System
Synthesis with VHDL (Norwell, MA: Kluwer, 1997).

Prof. Peng was corecipient of two Best Paper Awards at the European Design
Automation Conferences in 1992 and 1994, and the Best Presentation Award
at the 2003 IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis. He has served on the program committees of
a dozen technical conferences and workshops, including DATE, DDECS, DFT,
ECS, ETW, ITSW, FDL, and MEMOCDE, and was the General Chair of the
6th IEEE European Test Workshop (ETW’01) and the Program Chair of the
7th IEEE Design and Diagnostics of Electronic Circuits & Systems Workshop
(DDECS’04). He is coeditor of a special issue on Design Methodologies and
Tools for Real-Time Embedded Systems in the Journal on Design Automation
for Embedded Systems. He is a member of ACM.

Traian Pop received the M.Sc. degree in software
and computer engineering from the Politehnica
University of Timisoara, Timisoara, Romania, in
1999, and the Licentiate of Engineering degree from
Linköping University, Linköping, Sweden, in 2003,
where he is currently pursuing the Ph.D. degree in
computer science.

His research interests include real-time systems
and design of embedded systems.

Mr. Pop was a corecipient of the Best Presenta-
tion Award at the 2003 IEEE/ACM/IFIP International

Conference on Hardware/Software Codesign and System Synthesis.

	toc
	Scheduling and Mapping in an Incremental Design Methodology for
	Paul Pop, Petru Eles, Zebo Peng, Senior Member, IEEE, and Traian
	I. I NTRODUCTION
	A. Contributions

	Fig. 1. System architecture.
	II. P RELIMINARIES
	A. System Architecture
	1) Hardware Architecture: We consider architectures consisting o

	Fig. 2. Message passing mechanism.
	2) Software Architecture: We have designed a software architectu
	B. Abstract Representation
	Fig. 3. Abstract representation.

	C. Application Mapping and Scheduling

	Fig. 4. Mapping and scheduling example.
	Fig. 5. Application Γ_{2} implemented on top of Ψ an
	III. P ROBLEM F ORMULATION
	Fig. 6. Incremental design process.

	IV. C HARACTERIZING E XISTING AND F UTURE A PPLICATIONS
	A. Characterizing the Already Running Applications

	Fig. 7. Characterizing the set of already running applications.
	B. Characterizing Future Applications
	V. Q UALITY M ETRICS AND O BJECTIVE F UNCTION
	A. Slack Sizes (The First Criterion)
	B. Distribution of Slacks (The Second Criterion)
	C. Objective Function and Exact Problem Formulation

	Fig. 8. Example for the second design criterion.
	VI. M APPING AND S CHEDULING S TRATEGY

	Fig. 9. Mapping and scheduling strategy (MS).
	Fig. 10. Graph merging.
	A. The Initial Mapping and Scheduling

	Fig. 11. Steps 1 and 2 of the mapping and scheduling strategy in
	B. Iterative Design Transformations
	1) PotentialMove ${ C}_{2}^{P}$ and PotentialMove C_{2}^{m}: C
	2) PotentialMove ${ C}_{1}^{P}$ and PotentialMove ${C}_{1}^{m}$:

	Fig. 12. Successive steps with potential moves for improving ${\
	C. Minimizing the Total Modification Cost
	1) Exhaustive Search (ES): In order to find $\Omega_{\rm min}$,
	2) Greedy Heuristic (GH): If the number of applications is large

	Fig. 13. Metric for the subset selection heuristic.
	3) Subset Selection Heuristic (SH): An intelligent selection heu
	VII. E XPERIMENTAL R ESULTS
	A. Evaluation of the IMS Algorithm and the Iterative Design Tran

	TABLE€I E VALUATION OF THE I NITIAL M APPING AND S CHEDULING
	Fig. 14. Evaluation of the design transformation heuristics: a)
	Fig. 15. Percentage of future applications successfully implemen
	Fig. 16. Evaluation of the modification cost minimization. a) Mo
	B. Evaluation of the Modification Cost Minimization Heuristics
	C. The Vehicle Cruise Controller

	Fig. 17. Implementation of the cruise controller.
	VIII. C ONCLUSIONS
	J. E. Beck and D. P. Siewiorek, Automatic configuration of embed
	T. Blicke, J. Teich, and L. Thiele, System-level synthesis using
	B. W. Boehm et al., Software Cost Estimation With COCOMO II . En
	E. G. Coffman Jr. and R. L. Graham, Optimal scheduling for two p
	B. P. Dave, G. Lakshminarayana, and N. K. Jha, COSYN: hardware-s
	J. A. Debardelaben, V. K. Madiseti, and A. J. Gadient, Incorpora
	P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, System level har
	P. Eles, A. Doboli, P. Pop, and Z. Peng, Scheduling with bus acc
	R. Ernst, J. Henkel, and T. Benner, Hardware-software cosynthesi
	R. Ernst, Codesign of embedded systems: status and trends, IEEE
	D. D. Gajski and F. Vahid, Specification and design of embedded
	R. K. Gupta and G. De Micheli, Hardware-software cosynthesis for
	P. B. Jorgensen and J. Madsen, Critical path driven cosynthesis
	C. Haubelt, J. Teich, K. Richter, and R. Ernst, System design fo
	A. Kalawade and E. A. Lee, The extended partitioning problem: ha
	P. V. Knudsen and J. Madsen, Integrating communication protocol
	H. Kopetz, Real-Time Systems-Design Principles for Distributed E
	H. Kopetz and G. Grünsteidl, TTP-a protocol for fault-tolerant r
	K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-V
	C. Lee, M. Potkonjak, and W. Wolf, Synthesis of hard real-time a
	Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J. Stoc
	S. Martello and P. Toth, Kanpsack Problems: Algorithms and Compu
	G. Martin and F. Schirrmeister, A design chain for embedded syst

	G. De Micheli and M. G. Sami, Eds., Hardware/Software Co-Design
	G. De Micheli and R. K. Gupta, Hardware/software co-design, Proc
	S. Narayan and D. D. Gajski, Synthesis of system-level bus inter
	R. B. Ortega and G. Borriello, Communication synthesis for distr
	P. Pop, Analysis and Synthesis of Communication-Intensive Hetero
	P. Pop, P. Eles, and Z. Peng, Flexibility driven scheduling and
	P. Pop, P. Eles, T. Pop, and Z. Peng, An approach to incremental
	S. Prakash and A. Parker, SOS: synthesis of application-specific
	P. Puschner and A. Burns, A review of worst-case execution-time
	D. Ragan, P. Sandborn, and P. Stoaks, A detailed cost model for
	C. R. Reevs, Modern Heuristic Techniques for Combinatorial Probl
	D. L. Rhodes and W. Wolf, Co-synthesis of heterogeneous multipro
	A. Sangiovanni-Vincentelli, Electronic-system design in the auto

	J. Staunstrup and W. Wolf, Eds., Hardware/Software Co-Design: Pr
	W. Wolf, An architectural co-synthesis algorithm for distributed
	T. Y. Yen and W. Wolf, Hardware-Software Co-Synthesis of Distrib
	W. Wolf, Hardware-software co-design of embedded systems, Proc.

	REVIC Software Cost Estimating Model, User's Manual, V9.0-9.2, U
	SoftEST Version 1.1, U.S. Air Force Analysis Agency, 1997.

