
1

Heuristics for Adaptive Temperature-Aware SoC

Test Scheduling Considering Process Variation
Nima Aghaee, Zebo Peng, and Petru Eles

Embedded Systems Laboratory (ESLAB), Linkoping University, Sweden

{nima.aghaee, zebo.peng, petru.eles}@liu.se

Abstract—High working temperature and process variation are

undesirable effects for modern systems-on-chip. The high

temperature should be taken care of during the test. On the

other hand, large process variations induce rapid and large

temperature deviations causing the traditional static test

schedules to be suboptimal in terms of speed and/or thermal-

safety. A remedy to this problem is an adaptive test schedule

which addresses the temperature deviations by reacting to them.

Our adaptive method is divided into a computationally intense

offline-phase, and a very simple online-phase. In this paper,

heuristics are proposed for the offline phase in which the

optimized schedule tree is found. In the online-phase, based on

the temperature sensor readings the appropriate path in the

schedule tree is traversed. Experiments are made to tune the

proposed heuristics and to demonstrate their efficiency.

I. INTRODUCTION
Two challenges for deep submicron integration are high

power density and process variation [1]. The power density for
a System-on-Chip (SoC) during test compared to its normal
operation is high enough to put testing in trouble by
considerably raising the overheating risk [2]. Efficient
temperature-aware test scheduling techniques have been
developed in order to minimize the test application time and
avoid overheating [3, 4]. These methods neglect, however, the
thermal consequences of the process variation and focus only
on minimization of the test application time while maintaining
the chips temperature under a given limit [3, 4].

The negative thermal consequence of process variation is
unpredictability of the thermal behavior of the chip. It means
that identical test vectors will result in a variety of different
temperatures for different chips and cores. The difference
between the expected temperature (estimated by simulation)
and the actual temperature (measured by sensors) is called
temperature error, which captures all errors generated due to
different power/temperature-related effects. These negative
effects include ambient temperature fluctuations, voltage
variations, and process variation. For traditional technologies,
temperature error is small enough to be negligible or to allow
worst-case design with negligible performance penalty [3, 4]

The general trend of increase in power density and process
variation will eventually lead to a situation where temperature
errors cannot be ignored any longer. Therefore, the thermal
consequences of the process variation should be taken into
account in order to develop efficient test process. In [5], two
process variation aware methods are proposed in order to
maximize the test throughput by considering the thermal-
safety as a part of the test cost. However, one of the proposed
methods in [5] does not react to temperature deviations, and
the other does not handle intra-chip process variation and
rapid temperature error changes. In this paper an adaptive test
scheduling method is introduced which navigates the tests
according to the intra-chip process variation and temporal
deviations in temperature errors. It makes use of multiple on-
chip temperature sensors to provide on-line intra-chip
temperature information.

A dynamic thermal-aware test scheduling technique using
on-chip temperature sensors is proposed in [6] in order to cope

with the power/temperature simulation inaccuracies in static
scheduling. Thermal simulations are performed during the test
in order to enable the earliest thermal-safe start of the next test
[6]. This method does not handle the process variation and
besides, it requires excessive ATE resources to run the thermal
simulation during test. In this paper, we introduce a method to
address process variation with ATE resources as a constraint.

The proposed method in this paper generates a near
optimal schedule tree at design time (offline-phase). During
testing (online-phase), each chip traverses the schedule tree
depending on the actual temperatures. The schedule indicates
when a core is testing and when it is in the cooling state. The
order of the test sequences is untouched and the schedule tree
occupies a relatively small memory. Traversing the schedule
tree requires a very small delay overhead for jumping from
one point in the schedule tables to another point. This way, the
complexity for the online-phase is substantially reduced. To
our knowledge, this paper is the first work to present an
approach which incorporates the on-chip temperature sensors
data, repetitively during test, in order to adapt to the
temperature deviations caused by process variation and to
achieve a superior test performance.

The rest of the paper is organized as follows. A
motivational example is given in section II. Section III
provides the problem formulation and then it introduces the
cost function. Section IV describes the temperature error
model. The linear schedule tables are discussed in section V.
The proposed method is presented in section VI. The proposed
heuristics are discussed in details in section VII. Experimental
results are represented in section VIII. Section IX presents the
conclusion.

II. MOTIVATIONAL EXAMPLE
Assume that there are two instances, o and x, from a set of

chips manufactured for a given design. When the temperature
error is negligible, the temperatures of o and x are equal and
the same offline test schedule S1 is safely used for both of
them, Fig. 1(a). Cooling periods for S1 are determined using
thermal simulation. The simplest model of process variation
only models the time invariant temperature errors. Assume
that chip x is warmer than expected while chip o is normal; the
result is overheating of chip x as shown in Fig. 1(b). To
prevent overheating, a more conservative offline schedule S2
has to be designed considering x for both chips as illustrated in
Fig. 1(c). S2 will lead to a longer test application time (TAT2
vs. TAT1). For chip o, S2 is unnecessarily long, since S1 was
a safe schedule for o. In case of a set of manufactured chips
with large temperature variations, a global thermal-safe offline
schedule will be based on the hottest chip in the set. This test
schedule will introduce unnecessary cooling time for most of
the chips, leading to a very slow test.

We have proposed a technique, in [5], to address the above
problem with the help of a chip classification scheme. This
scheme consists of several test schedules for different
temperature error ranges. After applying a short test sequence
for warm up, the actual temperature is sensed and the proper
test schedule is selected. Therefore, the hotter chips will test
with a slower schedule, while the colder chips will test faster.

2

The overheating issue is solved and the test application time is
not unnecessarily long. This approach works fine assuming the
simplest model of process variation (time invariant
temperature error), as shown in Fig. 1(a-c).

However, in the real world with large process variation,
the thermal behavior is time variant and the technique
presented in [5] will not be able to achieve high-quality
schedules. The variation of thermal response with time is
illustrated in Fig. 1(d). In this case, the temperature of chip x
gradually lifts up compared to chip o. A scheduling method
capable of capturing temporal deviations is therefore required.
The temperature behavior shown in Fig. 1(d) is captured in
Fig. 2(a) with more details. The lift up of the temperatures of
chip x starts at t3, as shown in Fig. 2(a). Since x will only
overheat after t4, both chips can be safely tested with schedule
S1 up to t4. At t4, the actual temperature of the chip under test
can be obtained via sensors. The actual temperature can then
be compared to a Threshold and two different situations can
be identified:

  

For the rest of the test, after t4, two dedicated schedules,
S2 and S3, are generated in the offline-phase for o and x,
respectively. Therefore, in the online-phase the test of o
continues using schedule S2, as in Fig. 2(a), and the test of x
continues using schedule S3, as in Fig. 2(b). In this illustrative
example, at the end of S1, the schedule does a branching to
either S2 or S3 based on the actual temperature. This
information and the branching condition can be captured in a
branching table, B1 in Fig. 2. The segments of the schedule
which are executed sequentially without branching are called
linear schedules. An adaptive test schedule consists therefore
of a number of branching tables in addition to multiple linear
schedule tables.

III. PROBLEM FORMULATION AND COST FUNCTION
Our goal is to generate an optimal adaptive test schedule,

offline. The input consists of a SoC design with a set of cores
and their corresponding test sequences. The floor plan, the
thermal parameters, and the static/dynamic power parameters
for the chip are given. The probability distributions that
represent the deviations are also given. The desired adaptive
schedule minimizes the test application time and overheating.

These objectives are encapsulated into a cost function which is
introduced later in this section. The desired schedule satisfies
the two following constraints. The first constraint is the
available test bus width; it limits the number of simultaneously
active cores. The second constraint is the available ATE
memory which limits the schedule size; indirectly, it also
limits the total number of sensor accesses.

In this paper, a comprehensive cost function is introduced
by combining the cost of the overheated chips and the cost of
the test application. These two contributors to cost go against
each other. In order to prevent the overheating for chips with
large negative temperature error, more cooling is required.
The extra cooling cycles increase the test application time as
shown in Fig. 1 (c) in comparison with (a), and lead to
underutilization of the test facility. On the other hand, without
enough cooling some chips will overheat. The Cost Function
(CF) is defined as follows:

  

The CF consists of two terms; the first one represents the
test application cost and is equal to Test Application Time
(TAT) divided by the Applied Test Size (ATS). This term
shows what volume of test could be applied by test facility per
time unit. The second term represents the overheated chips
cost and is equal to Test Overheating Probability (TOP)
multiplied with a Balancing Coefficient (BC). The TOP is the
number of overheated chips per number of chips entering the
test facility. The BC is used in order to balance the cost of the
overheated chips against the cost of the test facility. Expensive
chips will results in a larger BC and expensive test facility will
result in a smaller BC. The exact reasoning behind the CF is
not of our interest in this paper and is not explained here.

IV. TEMPERATURE ERROR MODEL
The temperature error has various sources including

process variation, ambient temperature fluctuations, voltage
variations, simulator errors, and the temperature dependent
errors, e.g. static power (leakage). Temperature error is

Figure 2. Schedule and branching tables (curves are only illustrative).

Figure 1. Test schedule examples (curves are only illustrative).

3

broadly categorized into spatial error and temporal error. A
temperature error model gives the probabilities of the
temperature error values for each core (spatial) and for each
test cycle (temporal). The spatial temperature error model
gives the initial error distribution and the temporal temperature
error model is used to recursively estimate the error
distribution for the next test cycle.

The spatial temperature error is a discrete statistical
distribution, which assigns probabilities to temperature error
ranges known as error clusters. The temporal temperature
error is a discrete-time model, i.e., the temperature error is
fixed during a period and then it changes discretely from one
period to the next. Therefore, the temporal temperature error
model has two pieces of information, the period which is
called temporal error period and a table of error change
probabilities.

For a SoC with as many as C cores, the error clusters
divide the C-dimensional error space into error cluster cells
indexed using Cartesian system, i.e. . For
example assume that in a 2-core SoC, each core has 2 error
clusters. The 2-dimensional error space is divided into 4 error
cluster cells, indexed with (0, 0), (0, 1), (1, 0), and (1, 1).

V. LINEAR SCHEDULE TABLES
A linear schedule table, as discussed in section II, captures

a schedule without branching (offline). The linear schedule
table entries (time) should be optimized in the offline-phase.
In order to simplify the search space, the possible times are
assumed to be multiples of a constant, denoted by linear
scheduling period. The states in the linear schedule tables are
generated using the heuristic proposed in [4].

The estimated temperature is updated periodically with
linear scheduling period by correcting the cores’ simulated
temperatures with representative temperature error value for
each core. The estimated temperature is then used to compute
the static power and to determine the “state” of the cores for
the next linear scheduling period. The representative
temperature error is updated periodically with temporal error
period while the estimated temperature, static power, and state
of the cores are updated periodically with linear scheduling
period. After updating the state of cores, the dynamic cycle-
accurate power sequence for the next linear scheduling period
is computed. Having dynamic and static power sequences, the
next linear scheduling period is thermally simulated. A
number of linear schedule tables (edges) which are connected
using a number of branching tables (nodes) will form the
schedule tree, as shown in Fig. 3(a).

VI. ADAPTIVE TEST SCHEDULING
The adaptive method works as follows. During test, the

actual temperatures (of carefully selected cores) are read (at
carefully selected moments) and the gaps among sensor
readouts are filled with thermal simulation. Chips are
dynamically classified into one of the chip clusters and are
tested using the corresponding schedule. At each adaptation
moment the chip clusters change into a new scheme which is
optimum for the new situation. The parameters that affect the

efficiency of the adaptive method are the moments when
branching/adaptation happens, the number of branches (linear
schedule tables), and the branching condition (chip
clustering). For example in Fig. 2, the adaptation is happening
at t4, the number of branches is 2 (two linear schedule tables),
and the branching condition is a comparison with the
Threshold. The problem is summarized into the two following
sub-problems.

1. How many chip clusters (branches or linear schedule
tables) at each possible adaptation point (node) are needed?
One branch means no branching and no sensor reading.

2. What is the proper chip clustering into the given number
of chip clusters? The number of chip clusters is known from
question 1. Depending on the chip clustering some cores may
do not need sensor readout.

When the answer to question 1 is one, question 2 is
skipped. These two questions are then formulated into two
different forms: the first question is described as a tree
topology and the second question is to find the optimum chip
clustering for the nodes of the specific tree topology.

A candidate schedule tree is generated by putting a
possible tree topology together with a possible corresponding
clustering. Since the number of candidate trees is the product
of the tree topology alternatives and the chip clustering
alternatives, the search space is unacceptably large. In order to
reduce the search space, a constructive method is used. The
schedule tree is constructed by adding sub-trees (small partial
trees) to its leaves. A sub-tree consists of a small number of
linear schedule and branching tables which makes it possible
to be clustered and optimized (scheduled) at once. For
example, assume that there is a reproducing tree, Tree 1, as
shown in Fig. 3(a). The linear schedule tables of Fig. 2
correspond to the edges of Tree 1 while the branching table
corresponds to node 1, as shown in Fig. 3(a). Two sub-trees
with 1 and with 2 edges are shown in Fig. 3(b). Tree 1 has two
leaves, which combinations of sub-trees are added to them in
order to generate the offspring as shown in Fig. 3(c). Offspring
2 is generated by attaching the Sub-tree 1 to node 2 of Tree 1
and attaching the Sub-tree 2 to node 3 of Tree 1. The sub-tree
scheduling is explained in section A. In section B, it is
explained how the trees are constructed and selected.

A. Sub-tree Scheduling
A heuristic is used to find the near optimal sub-tree, by

using the partial cost function of sub-tree clustering
alternatives. When the schedule is a tree, the expected values
of test application time (TAT), applied test size (ATS), and
test overheating probability (TOP) which are denoted by
ETAT, EATS, and ETOP should be used in the CF
computation, Eq. (1), in order to utilize the temperature error
statistics. The expected values are computed as each edge is
being scheduled. The chip clustering at each node is done in a
C-dimensional space and each chip cluster consists of a
certain combination of error cluster cells. A candidate sub-
tree clustering is a set of node clustering alternatives. For each
candidate sub-tree topology there are a number of candidate
clustering alternatives, which labels the nodes’ error cluster
cells with their corresponding chip clusters. Each chip cluster
for a node corresponds to an edge branching out of that node
(equivalent to a linear schedule table). Each node has its
dedicated Error Cluster Cell Labeling (ECCL) as follows.

  

Having the error cluster cell labeling corresponding to an
edge, the edge is scheduled (linear schedule table is
determined). The candidate sub-tree clustering is evaluated
based on the optimized linear schedule tables and optimized
branching conditions. A heuristic explores the candidate
clustering alternatives to find the optimum clustering. The

Figure 3. Reproducing tree, sub trees, and candidate offspring trees. For S1,

S2, S3, and B1 in (a) refer to Fig. 2.

4

Error Cluster Cell Probabilities of nodes and the nodes
probabilities are computed using the temperature error model
and based on the clustering of the ancestor nodes. This
information is then used to compute ETAT, EATS, and ETOP.
Since the way Error Cluster Cell Probabilities are computed,
is not of our interest in this paper, it is not explained here.
Having the ETAT, EATS, and ETOP values, the partial cost
function is computed. Two different heuristics, a Genetic
Algorithm (GA) and a Particle Swarm Optimization (PSO) are
used to explore the clustering alternatives. The search space is
the collection of different alternatives of Eq. (2). For example
for a SoC with 2 cores and for a sub-tree similar to offspring 3
in Fig. 3, an alternative solution is the following. (More details
are given in section VII.)

 

B. Tree Construction
The construction starts with a root node and in each

iteration the reproducing candidate tree extends and multiplies
by adding possible combinations of sub-trees to its active leaf
nodes, as shown in Fig. 3. Then, a small number of promising
reproducing candidates (similar to Fig. 3(a)) are selected out
of the candidate offspring trees (partially shown in Fig. 3(c)).
The selection process guarantees the ATE memory constraint
and provides the freedom to put more clusters in the more
beneficial regions. Such a freedom is provided by the virtue of
a Scaled Cost Function (SCF) which is used as the selection
criterion. SCF is defined as:

  

The cost function (CF) is scaled by the tree’s number of
nodes plus adjusting offset. Now, adding nodes to the tree is
only beneficial if it gives a reasonable cost reduction
otherwise a smaller tree may get a lower scaled cost function
and be selected, while bigger trees are discarded. The effect of
the number of nodes is adjusted by adjusting offset. A larger
adjusting offset promotes having more branches, especially
near the tree’s root.

The number of the sub-tree topologies is controlled with
the sub-tree length and the maximum allowed number of
branches per node. Increase in the sub-tree length will
improve the global optimality and increase in the allowed
number of branches per node improves the chip clustering
resolution, but both will increase the CPU time.

VII. PROPOSED HEURISTICS
This work is based on a number of heuristics, broadly

categorized into tree construction and sub-tree scheduling. The
tree construction is introduced in section VI-B in good details.
The explanation of the sub-tree scheduling which is
introduced in section VI-A needs more details which are
presented here.

As it is introduced in section VI-A, for sub-tree scheduling
a possible solution is coded by labeling the temperature error
cells with a cluster label for each branching node in that sub-
tree. An example of solution coding for a single node sub-tree
similar to sub-tree 2 in Fig. 3 (b) is illustrated in Fig. 4. The
solution belongs to a 2-core design with 3 temperature error
clusters per core and the number of branches, i.e. number of
chip clusters, in the corresponding sub-tree is 2. As it is shown

in Fig. 4, the cell order is static and there is no need to include
it in every solution vector. (This is also true for the nodes and
their order.) An example of solution coding for a sub-tree with
more than one branching node, in contrast with the previous
example, is given at the end of section VI-A. The possible
solutions are then explored with GA or with PSO in order to
find a near optimal solution. The implementations of these
methods are discussed in the following.

GA mimics the evolution process of a population. Each
individual member of the population is a possible solution
which is represented by its chromosome. Therefore the
chromosome should represent a solution in a comprehensive
and unique way. The chromosome, ideally, is a minimal tuple
of orthogonal quanta called gene. There are three kind of
populations based on their origins, elite, crossover, and
mutated. The elite population is initially generated using a
simple heuristic and/or randomly. For next iterations, the elite
population is selected to generate the new population, similar
to natural selection phenomena. The crossover population is
generated by mixing two elite chromosomes and the mutated
population is generated by randomly altering some of the
genes in an elite chromosome. The probability that a gene
commits mutation is a characteristic of the GA. This
probability is represented by MutationProbability in the
following. The genetic algorithm is presented below as a
pseudo code.

1. Generate the initial population of elites.
2. Generate crossover population as follows.

a. Generate scrambled list of elites.
b. Loop and traverse the scrambled list of elites.

i. Loop for nodes.
1. Generate a random crossover point.
2. Crossover the solution which scrambled list index

shows with the next solution in the scrambled list.
3. If a chip cluster is missing go to 2-b-i-1 in order to try

a new crossover point.
3. Generate mutated population as follows.

a. Loop and traverse the elite list.
i. Loop for nodes.

1. Loop for cells (genes).
a. Generate a random number smaller than

 (numberOfClusters - 1) / MutationProbability.
b. If the random number is smaller than the number

of branches, then copy the random number to this
gene (cell), otherwise copy it from the current elite
(given in 3-a).

2. If a chip cluster is missing go to 3-a-i-1 in order to try
a new set of random numbers.

4. Evaluate the solutions. This is the most time consuming step.
5. If the termination condition is met, exit with the best elite as final

solution.
6. Select the new elite population; they are candidates with lower

costs.
7. GO TO point 2.

The PSO mimics the social behavior of a swarm searching
for food. Each individual member of the swarm is called a
particle. A particle is represented by two attributes, its
location and its velocity. The location in fact is a solution
which, usually, is represented by Cartesian coordinate system.
The dimensions in the coordinate system are analogous to the
genes in a chromosome. The velocity keeps the particles
moving in the search space. Each particle remembers its
previous best location, and in addition to this individual
memory, the swarm remembers the best location any of its
particles have visited before, the global best. The previous
bests and the global best are then used to give a hint to the
random velocities. A canonical form of the PSO uses Eq. (4)
to update the velocity. The coefficients in Eq. (4) are given as
a part of the chosen canonical form [7]. The random1 and
random2 are two distinct randomly generated numbers
between 0 and 1. The solution and velocity on the right hand

Figure 4. Solution encoding for sub-tree scheduling.

5

side of Eq. (4) are the current values, and the left hand side
velocity is the next value. Since the solution, in this paper, is a
natural number, the next solution is the rounded sum of the
current solution and next velocity, as represented in Eq. (5).
The particle swarm optimization heuristic is presented in the
following as a pseudo code.





1. Generate the initial swarm.
2. Generate random initial velocities

a. Limit the range of the random number to the number of chip
clusters for the corresponding node.

3. Evaluate the solutions. This is the most time consuming step.
4. Find the best solutions as follows.

a. Loop for all particles.
i. If the current location is better than the previous best

location replace it and check if it is better than the global
best, if so, replace the global best. (For the first iteration,
copy the current solution as previous best, and find the
global best among the previous best solutions.)

5. If the termination condition is met, exit with the global best as final
solution.

6. Update the Swarm as follows.
a. Loop for particles.

i. Loop for cells (similar to genes in GA).
1. Update the velocities according to Eq. (4).
2. Update the solution (particle’s location) according to

Eq. (5).
3. Saturate (limit) the solution. It means that if the

location is outside the valid search space, make it
equal to the corresponding extreme and reset the
corresponding component of the velocity to 0.

7. Check if all clusters exist, as follows.
a. Loop for all particles.

i. Loop for nodes.
1. If a chip cluster is missing, move the particle to its

previous best location.
8. GO TO point 3.

VIII. EXPERIMENTAL RESULTS
In our experiments, the temperature simulation is done

using HotSpot [8]. The static power is computed using the
method given in [9]. Other elements of the experimental setup
are the same elements used in [5]. Experiments are performed
with one SoC build out of ITC’02 benchmark cores. In this
section, the different sets of experiments (given in separate
tables) are done with different settings and details which are
selected in accordance with the requirements of that specific
experiment. Separate tables are not meant to be compared.

Scheduling for a SoC, requires a large number of sub-trees
to be optimized, however, only some of them are used in the
construction of the finally selected tree. Each sub-tree is
optimized using a GA (PSO) and as a result, a single SoC test
scheduling includes a large number of executions of the GA
(PSO). A number of experiments with different heuristics and
population sizes are performed and are reported in Table I.
The exact settings and details of the algorithms are not of our
interest here and are not discussed. In the following tables, CF
is the cost of the schedule as given in Eq. (1) and size is the
ATE memory volume which is required to store the schedule
(not the test sequences). The PSO is able to find the best
schedule with the lowest cost equal to 5.409 and size equal to
1880. A commonly found schedule with medium quality has a
higher cost equal to 5.497. The PSO is able to find it with a
population size as small as 5 and with a CPU time as short as
5 hours in contrast with the GA which requires 11 hours.

The traditional and the proposed test scheduling methods
are compared and the comparison results are reported in Table

II. The traditional methods include the Offline method (only
one linear schedule is used) and the Hybrid method (similar to
[5]). Our proposed adaptive method has reduced the cost to
80% relative to the offline method, while the cost achieved by
the hybrid method is 87%. This difference demonstrates the
advantage of the proposed adaptive method.

The reduction of the cost with the increase of the memory
limit is shown in Table III. It is expected that the increase in
the memory limit improves the cost before it saturates at
memory limit equal to 1500. The CPU time increases with the
increase of memory limit. This trend continues even after cost
saturation because the algorithm has larger space to search (for
example when memory limit is equal to 2000).

IX. CONCLUSION
This paper presents an adaptive SoC test scheduling

technique in order to deal with spatial and temporal
temperature deviations, caused by large process variations. A
technique is proposed to generate an efficient test schedule
tree, using a number of heuristics. During the test, on-chip
temperature sensors are used to monitor the actual
temperatures of the different cores and to guide the selection
of proper test schedules accordingly. In this way, the overall
test cost will be minimized. Experiments are made in order to
select the proper heuristics and to tune them. The experiments,
also, demonstrate the superiority of the proposed approach
over the traditional methods.

REFERENCES
[1] K.-T. Cheng, S. Dey, M. Rodgers, and K. Roy. “Test challenges for

deep sub-micron technologies.” pp. 142–149, DAC 2000.

[2] D.R. Bild et Al. “Temperature-aware test scheduling for multiprocessor
systems-on-chip.” pp.59-66, ICCAD 2008.

[3] C. Yao, K. K. Saluja, P. Ramanathan. “Partition based SoC test
scheduling with thermal and power constraints under deep submicron
technologies.” pp. 281-286, ATS 2009.

[4] Z. He, Z. Peng, P. Eles. “Simulation-driven thermal-safe test time
minimization for System-on-Chip.” pp. 283-288, ATS 2008.

[5] N. Aghaee, Z. He, Z. Peng, and P. Eles. “Temperature-aware SoC test
scheduling considering inter-chip process variation.” ATS 2010.

[6] C. Yao, K. K. Saluja, P. Ramanathan. “Thermal-aware test scheduling
using on-chip temperature sensors.” VLSI Design 2011.

[7] R. Poli, J. Kennedy, and T. Blackwell. “Particle swarm optimization,
An overview.” Swarm Intell., Vol. 1, No. 1, pp. 33-57, 2007.

[8] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh,
and S. Velusamy. “Compact thermal modeling for temperature-aware
design.” DAC 2004.

[9] W. P. Liao, L. He, K. M. Lepak. “Temperature and supply voltage
aware performance and power modeling at microarchitecture level.”
IEEE Trans. CAD, Vol. 24, No. 7, pp. 1042- 1053, 2005.

TABLE I. COMPARISON OF GA WITH PSO
Population Heuristic CF Size CPU Time (H:M:S)

50 PSO 5.497 1800 21 : 43 : 5

30 GA 5.497 1800 10 : 54 : 39

20 PSO 5.409 1880 11 : 19 : 56

10 PSO 5.497 1800 6 : 46 : 57

6 GA 5.835 2000 15 : 12 : 37

5 PSO 5.497 1800 4 : 54 : 22

TABLE II. COMPARISON OF TRADITIONAL AND PROPOSED METHOD

Methods
Results

CF Size CF Size

Offline 3.3875 460 Relative to the Offline

Hybrid 2.9389 920 86.76% 200.00%

Adaptive 2.7170 1320 80.21% 286.96%

TABLE III. EXPERIMENTS WITH DIFFERENT MEMORY LIMITS

Memory

 Limit

Results

CF Size
CF size CPU Time

 (H:M:S) Relative to Limit = 500

300 Aborted, Mem. Limit is too tight 1:03:42

500 3.3875 460 100.00% 100.00% 3:15:21

1000 2.9389 920 86.76% 200.00% 3:41:03

1500 2.7170 1320 80.21% 286.96% 3:53:52

2000 2.7170 1320 80.21% 286.96% 4:04:16

