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Abstract—High working temperature and process variation are 

undesirable effects for modern systems-on-chip. The high 

temperature should be taken care of during the test. On the 

other hand, large process variations induce rapid and large 

temperature deviations causing the traditional static test 

schedules to be suboptimal in terms of speed and/or thermal-

safety. A remedy to this problem is an adaptive test schedule 

which addresses the temperature deviations by reacting to them. 

Our adaptive method is divided into a computationally intense 

offline-phase, and a very simple online-phase. In this paper, 

heuristics are proposed for the offline phase in which the 

optimized schedule tree is found. In the online-phase, based on 

the temperature sensor readings the appropriate path in the 

schedule tree is traversed. Experiments are made to tune the 

proposed heuristics and to demonstrate their efficiency. 

I. INTRODUCTION 
Two challenges for deep submicron integration are high 

power density and process variation [1]. The power density for 
a System-on-Chip (SoC) during test compared to its normal 
operation is high enough to put testing in trouble by 
considerably raising the overheating risk [2]. Efficient 
temperature-aware test scheduling techniques have been 
developed in order to minimize the test application time and 
avoid overheating [3, 4]. These methods neglect, however, the 
thermal consequences of the process variation and focus only 
on minimization of the test application time while maintaining 
the chips temperature under a given limit [3, 4]. 

The negative thermal consequence of process variation is 
unpredictability of the thermal behavior of the chip. It means 
that identical test vectors will result in a variety of different 
temperatures for different chips and cores. The difference 
between the expected temperature (estimated by simulation) 
and the actual temperature (measured by sensors) is called 
temperature error, which captures all errors generated due to 
different power/temperature-related effects. These negative 
effects include ambient temperature fluctuations, voltage 
variations, and process variation. For traditional technologies, 
temperature error is small enough to be negligible or to allow 
worst-case design with negligible performance penalty [3, 4] 

The general trend of increase in power density and process 
variation will eventually lead to a situation where temperature 
errors cannot be ignored any longer. Therefore, the thermal 
consequences of the process variation should be taken into 
account in order to develop efficient test process. In [5], two 
process variation aware methods are proposed in order to 
maximize the test throughput by considering the thermal-
safety as a part of the test cost. However, one of the proposed 
methods in [5] does not react to temperature deviations, and 
the other does not handle intra-chip process variation and 
rapid temperature error changes. In this paper an adaptive test 
scheduling method is introduced which navigates the tests 
according to the intra-chip process variation and temporal 
deviations in temperature errors. It makes use of multiple on-
chip temperature sensors to provide on-line intra-chip 
temperature information. 

A dynamic thermal-aware test scheduling technique using 
on-chip temperature sensors is proposed in [6] in order to cope 

with the power/temperature simulation inaccuracies in static 
scheduling. Thermal simulations are performed during the test 
in order to enable the earliest thermal-safe start of the next test 
[6]. This method does not handle the process variation and 
besides, it requires excessive ATE resources to run the thermal 
simulation during test. In this paper, we introduce a method to 
address process variation with ATE resources as a constraint. 

The proposed method in this paper generates a near 
optimal schedule tree at design time (offline-phase). During 
testing (online-phase), each chip traverses the schedule tree 
depending on the actual temperatures. The schedule indicates 
when a core is testing and when it is in the cooling state. The 
order of the test sequences is untouched and the schedule tree 
occupies a relatively small memory. Traversing the schedule 
tree requires a very small delay overhead for jumping from 
one point in the schedule tables to another point. This way, the 
complexity for the online-phase is substantially reduced. To 
our knowledge, this paper is the first work to present an 
approach which incorporates the on-chip temperature sensors 
data, repetitively during test, in order to adapt to the 
temperature deviations caused by process variation and to 
achieve a superior test performance. 

The rest of the paper is organized as follows. A 
motivational example is given in section II. Section III 
provides the problem formulation and then it introduces the 
cost function. Section IV describes the temperature error 
model. The linear schedule tables are discussed in section V. 
The proposed method is presented in section VI. The proposed 
heuristics are discussed in details in section VII. Experimental 
results are represented in section VIII. Section IX presents the 
conclusion. 

II. MOTIVATIONAL EXAMPLE 
Assume that there are two instances, o and x, from a set of 

chips manufactured for a given design. When the temperature 
error is negligible, the temperatures of o and x are equal and 
the same offline test schedule S1 is safely used for both of 
them, Fig. 1(a). Cooling periods for S1 are determined using 
thermal simulation. The simplest model of process variation 
only models the time invariant temperature errors. Assume 
that chip x is warmer than expected while chip o is normal; the 
result is overheating of chip x as shown in Fig. 1(b). To 
prevent overheating, a more conservative offline schedule S2 
has to be designed considering x for both chips as illustrated in 
Fig. 1(c). S2 will lead to a longer test application time (TAT2 
vs. TAT1). For chip o, S2 is unnecessarily long, since S1 was 
a safe schedule for o. In case of a set of manufactured chips 
with large temperature variations, a global thermal-safe offline 
schedule will be based on the hottest chip in the set. This test 
schedule will introduce unnecessary cooling time for most of 
the chips, leading to a very slow test. 

We have proposed a technique, in [5], to address the above 
problem with the help of a chip classification scheme. This 
scheme consists of several test schedules for different 
temperature error ranges. After applying a short test sequence 
for warm up, the actual temperature is sensed and the proper 
test schedule is selected. Therefore, the hotter chips will test 
with a slower schedule, while the colder chips will test faster. 
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The overheating issue is solved and the test application time is 
not unnecessarily long. This approach works fine assuming the 
simplest model of process variation (time invariant 
temperature error), as shown in Fig. 1(a-c). 

However, in the real world with large process variation, 
the thermal behavior is time variant and the technique 
presented in [5] will not be able to achieve high-quality 
schedules. The variation of thermal response with time is 
illustrated in Fig. 1(d). In this case, the temperature of chip x 
gradually lifts up compared to chip o. A scheduling method 
capable of capturing temporal deviations is therefore required. 
The temperature behavior shown in Fig. 1(d) is captured in 
Fig. 2(a) with more details. The lift up of the temperatures of 
chip x starts at t3, as shown in Fig. 2(a). Since x will only 
overheat after t4, both chips can be safely tested with schedule 
S1 up to t4. At t4, the actual temperature of the chip under test 
can be obtained via sensors. The actual temperature can then 
be compared to a Threshold and two different situations can 
be identified: 

 
                                       
                                      

  

For the rest of the test, after t4, two dedicated schedules, 
S2 and S3, are generated in the offline-phase for o and x, 
respectively. Therefore, in the online-phase the test of o 
continues using schedule S2, as in Fig. 2(a), and the test of x 
continues using schedule S3, as in Fig. 2(b). In this illustrative 
example, at the end of S1, the schedule does a branching to 
either S2 or S3 based on the actual temperature. This 
information and the branching condition can be captured in a 
branching table, B1 in Fig. 2. The segments of the schedule 
which are executed sequentially without branching are called 
linear schedules. An adaptive test schedule consists therefore 
of a number of branching tables in addition to multiple linear 
schedule tables.  

III. PROBLEM FORMULATION AND COST FUNCTION 
Our goal is to generate an optimal adaptive test schedule, 

offline. The input consists of a SoC design with a set of cores 
and their corresponding test sequences. The floor plan, the 
thermal parameters, and the static/dynamic power parameters 
for the chip are given. The probability distributions that 
represent the deviations are also given. The desired adaptive 
schedule minimizes the test application time and overheating. 

These objectives are encapsulated into a cost function which is 
introduced later in this section. The desired schedule satisfies 
the two following constraints. The first constraint is the 
available test bus width; it limits the number of simultaneously 
active cores. The second constraint is the available ATE 
memory which limits the schedule size; indirectly, it also 
limits the total number of sensor accesses. 

In this paper, a comprehensive cost function is introduced 
by combining the cost of the overheated chips and the cost of 
the test application. These two contributors to cost go against 
each other. In order to prevent the overheating for chips with 
large negative temperature error, more cooling is required. 
The extra cooling cycles increase the test application time as 
shown in Fig. 1 (c) in comparison with (a), and lead to 
underutilization of the test facility. On the other hand, without 
enough cooling some chips will overheat. The Cost Function 
(CF) is defined as follows: 

                  

The CF consists of two terms; the first one represents the 
test application cost and is equal to Test Application Time 
(TAT) divided by the Applied Test Size (ATS). This term 
shows what volume of test could be applied by test facility per 
time unit. The second term represents the overheated chips 
cost and is equal to Test Overheating Probability (TOP) 
multiplied with a Balancing Coefficient (BC). The TOP is the 
number of overheated chips per number of chips entering the 
test facility. The BC is used in order to balance the cost of the 
overheated chips against the cost of the test facility. Expensive 
chips will results in a larger BC and expensive test facility will 
result in a smaller BC. The exact reasoning behind the CF is 
not of our interest in this paper and is not explained here. 

IV. TEMPERATURE ERROR MODEL 
The temperature error has various sources including 

process variation, ambient temperature fluctuations, voltage 
variations, simulator errors, and the temperature dependent 
errors, e.g. static power (leakage). Temperature error is 

 
Figure 2.  Schedule and  branching tables (curves are only illustrative). 

 
Figure 1.  Test schedule examples (curves are only illustrative). 
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broadly categorized into spatial error and temporal error. A 
temperature error model gives the probabilities of the 
temperature error values for each core (spatial) and for each 
test cycle (temporal). The spatial temperature error model 
gives the initial error distribution and the temporal temperature 
error model is used to recursively estimate the error 
distribution for the next test cycle.  

The spatial temperature error is a discrete statistical 
distribution, which assigns probabilities to temperature error 
ranges known as error clusters. The temporal temperature 
error is a discrete-time model, i.e., the temperature error is 
fixed during a period and then it changes discretely from one 
period to the next. Therefore, the temporal temperature error 
model has two pieces of information, the period which is 
called temporal error period and a table of error change 
probabilities.  

For a SoC with as many as C cores, the error clusters 
divide the C-dimensional error space into error cluster cells 
indexed using Cartesian system, i.e.               . For 
example assume that in a 2-core SoC, each core has 2 error 
clusters. The 2-dimensional error space is divided into 4 error 
cluster cells, indexed with (0, 0), (0, 1), (1, 0), and (1, 1). 

V. LINEAR SCHEDULE TABLES 
A linear schedule table, as discussed in section II, captures 

a schedule without branching (offline). The linear schedule 
table entries (time) should be optimized in the offline-phase. 
In order to simplify the search space, the possible times are 
assumed to be multiples of a constant, denoted by linear 
scheduling period. The states in the linear schedule tables are 
generated using the heuristic proposed in [4]. 

The estimated temperature is updated periodically with 
linear scheduling period by correcting the cores’ simulated 
temperatures with representative temperature error value for 
each core. The estimated temperature is then used to compute 
the static power and to determine the “state” of the cores for 
the next linear scheduling period. The representative 
temperature error is updated periodically with temporal error 
period while the estimated temperature, static power, and state 
of the cores are updated periodically with linear scheduling 
period. After updating the state of cores, the dynamic cycle-
accurate power sequence for the next linear scheduling period 
is computed. Having dynamic and static power sequences, the 
next linear scheduling period is thermally simulated. A 
number of linear schedule tables (edges) which are connected 
using a number of branching tables (nodes) will form the 
schedule tree, as shown in Fig. 3(a). 

VI. ADAPTIVE TEST SCHEDULING 
The adaptive method works as follows. During test, the 

actual temperatures (of carefully selected cores) are read (at 
carefully selected moments) and the gaps among sensor 
readouts are filled with thermal simulation. Chips are 
dynamically classified into one of the chip clusters and are 
tested using the corresponding schedule. At each adaptation 
moment the chip clusters change into a new scheme which is 
optimum for the new situation. The parameters that affect the 

efficiency of the adaptive method are the moments when 
branching/adaptation happens, the number of branches (linear 
schedule tables), and the branching condition (chip 
clustering). For example in Fig. 2, the adaptation is happening 
at t4, the number of branches is 2 (two linear schedule tables), 
and the branching condition is a comparison with the 
Threshold. The problem is summarized into the two following 
sub-problems. 

1. How many chip clusters (branches or linear schedule 
tables) at each possible adaptation point (node) are needed? 
One branch means no branching and no sensor reading. 

2. What is the proper chip clustering into the given number 
of chip clusters? The number of chip clusters is known from 
question 1. Depending on the chip clustering some cores may 
do not need sensor readout. 

When the answer to question 1 is one, question 2 is 
skipped. These two questions are then formulated into two 
different forms: the first question is described as a tree 
topology and the second question is to find the optimum chip 
clustering for the nodes of the specific tree topology.  

A candidate schedule tree is generated by putting a 
possible tree topology together with a possible corresponding 
clustering. Since the number of candidate trees is the product 
of the tree topology alternatives and the chip clustering 
alternatives, the search space is unacceptably large. In order to 
reduce the search space, a constructive method is used. The 
schedule tree is constructed by adding sub-trees (small partial 
trees) to its leaves. A sub-tree consists of a small number of 
linear schedule and branching tables which makes it possible 
to be clustered and optimized (scheduled) at once. For 
example, assume that there is a reproducing tree, Tree 1, as 
shown in Fig. 3(a). The linear schedule tables of Fig. 2 
correspond to the edges of Tree 1 while the branching table 
corresponds to node 1, as shown in Fig. 3(a). Two sub-trees 
with 1 and with 2 edges are shown in Fig. 3(b). Tree 1 has two 
leaves, which combinations of sub-trees are added to them in 
order to generate the offspring as shown in Fig. 3(c). Offspring 
2 is generated by attaching the Sub-tree 1 to node 2 of Tree 1 
and attaching the Sub-tree 2 to node 3 of Tree 1. The sub-tree 
scheduling is explained in section A. In section B, it is 
explained how the trees are constructed and selected. 

A. Sub-tree Scheduling 
A heuristic is used to find the near optimal sub-tree, by 

using the partial cost function of sub-tree clustering 
alternatives. When the schedule is a tree, the expected values 
of test application time (TAT), applied test size (ATS), and 
test overheating probability (TOP) which are denoted by 
ETAT, EATS, and ETOP should be used in the CF 
computation, Eq. (1), in order to utilize the temperature error 
statistics. The expected values are computed as each edge is 
being scheduled. The chip clustering at each node is done in a 
C-dimensional space and each chip cluster consists of a 
certain combination of error cluster cells. A candidate sub-
tree clustering is a set of node clustering alternatives. For each 
candidate sub-tree topology there are a number of candidate 
clustering alternatives, which labels the nodes’ error cluster 
cells with their corresponding chip clusters. Each chip cluster 
for a node corresponds to an edge branching out of that node 
(equivalent to a linear schedule table). Each node has its 
dedicated Error Cluster Cell Labeling (ECCL) as follows.  

                                           

Having the error cluster cell labeling corresponding to an 
edge, the edge is scheduled (linear schedule table is 
determined). The candidate sub-tree clustering is evaluated 
based on the optimized linear schedule tables and optimized 
branching conditions. A heuristic explores the candidate 
clustering alternatives to find the optimum clustering. The 

 
Figure 3.  Reproducing tree, sub trees, and candidate offspring trees. For S1, 

S2, S3, and B1 in (a) refer to Fig. 2. 
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Error Cluster Cell Probabilities of nodes and the nodes 
probabilities are computed using the temperature error model 
and based on the clustering of the ancestor nodes. This 
information is then used to compute ETAT, EATS, and ETOP. 
Since the way Error Cluster Cell Probabilities are computed, 
is not of our interest in this paper, it is not explained here. 
Having the ETAT, EATS, and ETOP values, the partial cost 
function is computed. Two different heuristics, a Genetic 
Algorithm (GA) and a Particle Swarm Optimization (PSO) are 
used to explore the clustering alternatives. The search space is 
the collection of different alternatives of Eq. (2). For example 
for a SoC with 2 cores and for a sub-tree similar to offspring 3 
in Fig. 3, an alternative solution is the following. (More details 
are given in section VII.) 

                                                  
                                                
                                

B. Tree Construction  
The construction starts with a root node and in each 

iteration the reproducing candidate tree extends and multiplies 
by adding possible combinations of sub-trees to its active leaf 
nodes, as shown in Fig. 3. Then, a small number of promising 
reproducing candidates (similar to Fig. 3(a)) are selected out 
of the candidate offspring trees (partially shown in Fig. 3(c)). 
The selection process guarantees the ATE memory constraint 
and provides the freedom to put more clusters in the more 
beneficial regions. Such a freedom is provided by the virtue of 
a Scaled Cost Function (SCF) which is used as the selection 
criterion. SCF is defined as:  

                                          

The cost function (CF) is scaled by the tree’s number of 
nodes plus adjusting offset. Now, adding nodes to the tree is 
only beneficial if it gives a reasonable cost reduction 
otherwise a smaller tree may get a lower scaled cost function 
and be selected, while bigger trees are discarded. The effect of 
the number of nodes is adjusted by adjusting offset. A larger 
adjusting offset promotes having more branches, especially 
near the tree’s root.  

The number of the sub-tree topologies is controlled with 
the sub-tree length and the maximum allowed number of 
branches per node. Increase in the sub-tree length will 
improve the global optimality and increase in the allowed 
number of branches per node improves the chip clustering 
resolution, but both will increase the CPU time.  

VII. PROPOSED HEURISTICS 
This work is based on a number of heuristics, broadly 

categorized into tree construction and sub-tree scheduling. The 
tree construction is introduced in section VI-B in good details. 
The explanation of the sub-tree scheduling which is 
introduced in section VI-A needs more details which are 
presented here.  

As it is introduced in section VI-A, for sub-tree scheduling 
a possible solution is coded by labeling the temperature error 
cells with a cluster label for each branching node in that sub-
tree. An example of solution coding for a single node sub-tree 
similar to sub-tree 2 in Fig. 3 (b) is illustrated in Fig. 4. The 
solution belongs to a 2-core design with 3 temperature error 
clusters per core and the number of branches, i.e. number of 
chip clusters, in the corresponding sub-tree is 2. As it is shown 

in Fig. 4, the cell order is static and there is no need to include 
it in every solution vector. (This is also true for the nodes and 
their order.) An example of solution coding for a sub-tree with 
more than one branching node, in contrast with the previous 
example, is given at the end of section VI-A. The possible 
solutions are then explored with GA or with PSO in order to 
find a near optimal solution. The implementations of these 
methods are discussed in the following. 

GA mimics the evolution process of a population. Each 
individual member of the population is a possible solution 
which is represented by its chromosome. Therefore the 
chromosome should represent a solution in a comprehensive 
and unique way. The chromosome, ideally, is a minimal tuple 
of orthogonal quanta called gene. There are three kind of 
populations based on their origins, elite, crossover, and 
mutated. The elite population is initially generated using a 
simple heuristic and/or randomly. For next iterations, the elite 
population is selected to generate the new population, similar 
to natural selection phenomena. The crossover population is 
generated by mixing two elite chromosomes and the mutated 
population is generated by randomly altering some of the 
genes in an elite chromosome. The probability that a gene 
commits mutation is a characteristic of the GA. This 
probability is represented by MutationProbability in the 
following. The genetic algorithm is presented below as a 
pseudo code. 

1. Generate the initial population of elites. 
2. Generate crossover population as follows. 

a. Generate scrambled list of elites. 
b. Loop and traverse the scrambled list of elites. 

i. Loop for nodes. 
1. Generate a random crossover point. 
2. Crossover the solution which scrambled list index 

shows with the next solution in the scrambled list. 
3. If a chip cluster is missing go to 2-b-i-1 in order to try 

a new crossover point. 
3. Generate mutated population as follows. 

a. Loop and traverse the elite list. 
i. Loop for nodes. 

1. Loop for cells (genes). 
a.  Generate a random number smaller than 

 (numberOfClusters - 1) / MutationProbability. 
b.  If the random number is smaller than the number 

of branches, then copy the random number to this 
gene (cell), otherwise copy it from the current elite 
(given in 3-a). 

2. If a chip cluster is missing go to 3-a-i-1 in order to try 
a new set of random numbers. 

4. Evaluate the solutions. This is the most time consuming step. 
5. If the termination condition is met, exit with the best elite as final 

solution. 
6. Select the new elite population; they are candidates with lower 

costs. 
7. GO TO point 2. 

The PSO mimics the social behavior of a swarm searching 
for food. Each individual member of the swarm is called a 
particle. A particle is represented by two attributes, its 
location and its velocity. The location in fact is a solution 
which, usually, is represented by Cartesian coordinate system. 
The dimensions in the coordinate system are analogous to the 
genes in a chromosome. The velocity keeps the particles 
moving in the search space. Each particle remembers its 
previous best location, and in addition to this individual 
memory, the swarm remembers the best location any of its 
particles have visited before, the global best. The previous 
bests and the global best are then used to give a hint to the 
random velocities. A canonical form of the PSO uses Eq. (4) 
to update the velocity. The coefficients in Eq. (4) are given as 
a part of the chosen canonical form [7]. The random1 and 
random2 are two distinct randomly generated numbers 
between 0 and 1. The solution and velocity on the right hand 

 

Figure 4.  Solution encoding for sub-tree scheduling. 
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side of Eq. (4) are the current values, and the left hand side 
velocity is the next value. Since the solution, in this paper, is a 
natural number, the next solution is the rounded sum of the 
current solution and next velocity, as represented in Eq. (5). 
The particle swarm optimization heuristic is presented in the 
following as a pseudo code. 

 


 


1. Generate the initial swarm. 
2. Generate random initial velocities 

a. Limit the range of the random number to the number of chip 
clusters for the corresponding node. 

3. Evaluate the solutions. This is the most time consuming step. 
4. Find the best solutions as follows. 

a. Loop for all particles. 
i. If the current location is better than the previous best 

location replace it and check if it is better than the global 
best, if so, replace the global best. (For the first iteration, 
copy the current solution as previous best, and find the 
global best among the previous best solutions.) 

5. If the termination condition is met, exit with the global best as final 
solution. 

6. Update the Swarm as follows. 
a. Loop for particles. 

i. Loop for cells (similar to genes in GA). 
1. Update the velocities according to Eq. (4). 
2. Update the solution (particle’s location) according to 

Eq. (5).  
3. Saturate (limit) the solution. It means that if the 

location is outside the valid search space, make it 
equal to the corresponding extreme and reset the 
corresponding component of the velocity to 0. 

7. Check if all clusters exist, as follows. 
a. Loop for all particles. 

i. Loop for nodes. 
1. If a chip cluster is missing, move the particle to its 

previous best location. 
8. GO TO point 3. 

VIII. EXPERIMENTAL RESULTS 
In our experiments, the temperature simulation is done 

using HotSpot [8]. The static power is computed using the 
method given in [9]. Other elements of the experimental setup 
are the same elements used in [5]. Experiments are performed 
with one SoC build out of ITC’02 benchmark cores. In this 
section, the different sets of experiments (given in separate 
tables) are done with different settings and details which are 
selected in accordance with the requirements of that specific 
experiment. Separate tables are not meant to be compared. 

Scheduling for a SoC, requires a large number of sub-trees 
to be optimized, however, only some of them are used in the 
construction of the finally selected tree. Each sub-tree is 
optimized using a GA (PSO) and as a result, a single SoC test 
scheduling includes a large number of executions of the GA 
(PSO). A number of experiments with different heuristics and 
population sizes are performed and are reported in Table I. 
The exact settings and details of the algorithms are not of our 
interest here and are not discussed. In the following tables, CF 
is the cost of the schedule as given in Eq. (1) and size is the 
ATE memory volume which is required to store the schedule 
(not the test sequences). The PSO is able to find the best 
schedule with the lowest cost equal to 5.409 and size equal to 
1880. A commonly found schedule with medium quality has a 
higher cost equal to 5.497. The PSO is able to find it with a 
population size as small as 5 and with a CPU time as short as 
5 hours in contrast with the GA which requires 11 hours.  

The traditional and the proposed test scheduling methods 
are compared and the comparison results are reported in Table 

II. The traditional methods include the Offline method (only 
one linear schedule is used) and the Hybrid method (similar to 
[5]). Our proposed adaptive method has reduced the cost to 
80% relative to the offline method, while the cost achieved by 
the hybrid method is 87%. This difference demonstrates the 
advantage of the proposed adaptive method.  

The reduction of the cost with the increase of the memory 
limit is shown in Table III. It is expected that the increase in 
the memory limit improves the cost before it saturates at 
memory limit equal to 1500. The CPU time increases with the 
increase of memory limit. This trend continues even after cost 
saturation because the algorithm has larger space to search (for 
example when memory limit is equal to 2000). 

IX. CONCLUSION 
This paper presents an adaptive SoC test scheduling 

technique in order to deal with spatial and temporal 
temperature deviations, caused by large process variations. A 
technique is proposed to generate an efficient test schedule 
tree, using a number of heuristics. During the test, on-chip 
temperature sensors are used to monitor the actual 
temperatures of the different cores and to guide the selection 
of proper test schedules accordingly. In this way, the overall 
test cost will be minimized. Experiments are made in order to 
select the proper heuristics and to tune them. The experiments, 
also, demonstrate the superiority of the proposed approach 
over the traditional methods. 
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TABLE I.  COMPARISON OF GA WITH PSO 
Population Heuristic CF Size CPU Time (H:M:S) 

50 PSO 5.497 1800 21 : 43 : 5 

30 GA 5.497 1800 10 : 54 : 39 

20 PSO 5.409 1880 11 : 19 : 56 

10 PSO 5.497 1800 6 : 46 : 57 

6 GA 5.835 2000 15 : 12 : 37 

5 PSO 5.497 1800 4 : 54 : 22 

 

 

 

TABLE II.  COMPARISON OF TRADITIONAL AND PROPOSED METHOD 

Methods 
Results 

CF Size CF Size 

Offline 3.3875 460 Relative to the Offline 

Hybrid 2.9389 920 86.76% 200.00% 

Adaptive 2.7170 1320 80.21% 286.96% 

 

 

 

TABLE III.  EXPERIMENTS WITH DIFFERENT MEMORY LIMITS 

Memory 

 Limit 

Results 

CF Size 
CF size CPU Time 

 (H:M:S) Relative to Limit = 500 

300 Aborted, Mem. Limit is too tight 1:03:42 

500 3.3875 460 100.00% 100.00% 3:15:21 

1000 2.9389 920 86.76% 200.00% 3:41:03  

1500 2.7170 1320 80.21% 286.96% 3:53:52 

2000 2.7170 1320 80.21% 286.96% 4:04:16 

 


