
Process-Variation and Temperature Aware SoC Test
Scheduling Technique

Nima Aghaee & Zebo Peng & Petru Eles

Received: 10 July 2012 /Accepted: 12 March 2013 /Published online: 1 May 2013
Springer Science+Business Media New York 2013

Abstract High temperature and process variation are unde-
sirable phenomena affecting modern Systems-on-Chip
(SoC). High temperature is a well-known issue, in particular
during test, and should be taken care of in the test process.
Modern SoCs are affected by large process variation and
therefore experience large and time-variant temperature de-
viations. A traditional test schedule which ignores these
deviations will be suboptimal in terms of speed or thermal-
safety. This paper presents an adaptive test scheduling meth-
od which acts in response to the temperature deviations in
order to improve the test speed and thermal safety. The
method consists of an offline phase and an online phase.
In the offline phase a schedule tree is constructed and in the
online phase the appropriate path in the schedule tree is
traversed based on temperature sensor readings. The pro-
posed technique is designed to keep the online phase very
simple by shifting the complexity into the offline phase. In
order to efficiently produce high-quality schedules, an opti-
mization heuristic which utilizes a dedicated thermal simu-
lation is developed. Experiments are performed on a number
of SoCs including the ITC’02 benchmarks and the experi-
mental results demonstrate that the proposed technique sig-
nificantly improves the cost of the test in comparison with
the best existing test scheduling method.

Keywords SoCtest scheduling .Adaptive test .Temperature
awareness . Process variation . Thermal simulation

1 Introduction

Deep submicron integration causes high power densities and
large process variation [7, 18]. The power density for a
System-on-Chip (SoC) during test is considerably higher
compared to the normal operation [4, 5, 27, 28] and so is
the risk of overheating. Therefore, the temperature of the
chip under test should be taken into account when designing
the test process [5, 27]. Traditionally, thermal-aware test
schedules are optimized to achieve minimum test applica-
tion time while avoiding any overheating. Usually, this is
done offline by introducing cooling cycles into the test
schedule based on the thermal simulation data [10–12, 26].

A partitioning based approach is introduced in [26].
Selection of the start times for partitions is formulated as
an optimization problem and solved with list scheduling
[26]. The temperature is initially simulated using HotSpot
[14] and is constrained to avoid overheating [26]. During the
optimization, the list scheduler utilizes a superposition-
based method to assess the temperatures [26].

A partitioning and interleaving approach is introduced in
[12]. The suggested method in [12] formulates the number
of test partitions and the length of cooling intervals into an
optimization problem and then uses constrained logic pro-
gramming to solve it. The temperature is simulated using
HotSpot [14] and is constrained to avoid overheating. Since
constrained logic programming is too slow to handle long
test sets, a heuristic is proposed for test scheduling [12].

A partitioning and interleaving approach is introduced in
[11] which determines the partition lengths, the cooling
times, and the schedule, on-the-fly without iterating. The
proposed heuristic schedules the partitions based on the

Responsible Editor: Y. Zorian

N. Aghaee (*) : Z. Peng : P. Eles
Embedded Systems Laboratory (ESLAB), Department of
Computer and Information Science, Linkoping University,
58183 Linkoping, Sweden
e-mail: nima.aghaee@liu.se

Z. Peng
e-mail: zebo.peng@liu.se

P. Eles
e-mail: petru.eles@liu.se

J Electron Test (2013) 29:499–520
DOI 10.1007/s10836-013-5374-z

cores’ temperatures and remaining test sizes [11]. The par-
tition ends when its temperature approaches a high temper-
ature threshold and then a cooling interval starts. The
cooling interval may end when the core’s temperature is
lower than a low temperature threshold [11]. The optimal
value for low temperature threshold is found experimentally
so that the test application time is minimized. The temper-
ature is simulated using ISAC [23] and is constrained to
avoid overheating [11].

The focus of this paper is on thermal safety issues in the
SoC test process, but it is worth mentioning that there are
other thermal issues concerning the SoC test. For example,
there are defects which appear only in a special temperature
range and therefore the test to detect them should be carried
out in that special temperature range. The details of this
problem and solutions to it could be found in [9, 25].
Beside the thermal safety issues, modern SoCs are affected
by large process variation; this issue is discussed next.

The temperature at a certain test cycle is traditionally
assumed to be identical for identical chips. However identi-
cal chips manufactured with the state of the art technologies
are likely to have different temperatures at a certain test
cycle because of the process variation. Process variation
could be described as geometrical variations in the chips’
layouts and variations in materials properties. These phe-
nomena induce variations in the electrical characteristics of
the chip (e.g., threshold voltages and leakage currents).

The variations may also affect the thermal characteristics
of the chip (e.g., thermal resistances and capacitances). The
variation of the electrical characteristics causes power vari-
ations and thus temperature variations. The variation of the
thermal characteristics causes variation in the device tem-
peratures even if the power is identical for different chips.
The temperature variation as an effect of process variation is
studied in [8] for finFet devices.

In order to isolate the temperature uncertainty from other
thermal phenomena, temperature error is defined as the
difference between the expected temperature that is estimat-
ed by simulation and the actual temperature that is measured
by sensors. Temperature error captures uncertainties due to
different temperature related deviations, including ambient
temperature fluctuations, voltage variations, and in particu-
lar process variation.

For traditional technologies, temperature error is small
enough to be neglected or to allow worst case designs with
negligible overhead [10–12, 26]. But, for new technologies
the general trend of increase in power densities and process
variation will eventually lead to a situation where the temper-
ature error can no longer be ignored. Therefore, the negative
effect of process variation (i.e., large temperature error) should
be taken into account in developing efficient test solutions.

In [3], two process variation aware methods are proposed
to maximize the test throughput. These methods consider

thermal safety as a part of the optimization objective.
However, the first method proposed in [3] does not react
to temperature deviations, and the other method does not
handle intra-chip process variation effects and time-variant
temperature deviations. Based on [1, 2], in this paper an
adaptive test scheduling method is introduced to address the
intra-chip process variation. The proposed method adapts
the tests’ partitions, cooling intervals, and test schedule to
the current temperature situation in order to lower the cost of
test. The adaptive test schedule is achieved by selectively
reading the on-chip temperature sensors.

Integration of temperature sensors in a chip and their use
during both test and normal functionality are already prac-
tical. For example, the Power5 processor, manufactured in
2004, is reported to have 24 temperature sensors [6]. A
variety of mechanisms to access the sensors during test have
also been proposed [15, 24]. A thermal-aware test schedul-
ing technique using on-chip temperature sensors is proposed
in [24] which is based on a static schedule. Two heuristics
are suggested for generation of the static schedule, one of
which takes the temperature constraint into account. It as-
sumes that each individual test runs to completion [24]. This
means that a large cooling time is required before start of
each test in order to guarantee the thermal safety. This
approach leads to very long cooling times and does not
handle long and power intensive tests which will lead to
overheating if applied to completion [24].

The technique proposed in this paper is based on partitioning
and interleaving, as proposed in [11], and efficiently utilizes the
cooling times in order to decrease the overall test application
time. It also handles the long and power intensive tests which
are not thermally safe, per se. The proposed technique generates
a near optimal schedule tree in an offline phase. During testing
(online phase), a chip traverses the schedule tree, starting from
the tree’s root and ending at one of the tree’s leaves, depending
on the actual temperatures.

To our knowledge, we are the first to propose an ap-
proach which incorporates the on-chip temperature sensors
data during test, in order to adapt to the temperature de-
viations caused by process variation and to achieve a supe-
rior test performance [1, 2]. The methods proposed in [1, 2]
are enhanced to improve the test schedule quality, run faster,
and handle larger number of cores. In order to achieve these
improvements, in addition to the methods we proposed in
[1, 2], this paper presents a modified optimization approach
and a fast thermal simulation algorithm which is customized
for the test scheduling technique.

The rest of the paper is organized as follows. Section 2
presents a motivational example. Section 3 provides the
problem formulation and introduces the cost function.
Section 4 describes the temperature error model. Section 5
presents the main body of the proposed method. Section 6
explains the thermal simulation approach. Section 7 presents

500 J Electron Test (2013) 29:499–520

the experimental results and Section 8 presents the conclu-
sion. A quick reference guide (Section 9) including abbre-
viations and notations is given at the end of the paper.

2 Motivational Example

Assume that there are two instances, Cw and Cn, from a set of
chips manufactured for a given design. When the temperature
error is negligible, the temperatures of Cw and Cn during a test
process are equal and the same offline test schedule S1 is used
for both of them. As illustrated in Fig. 1a, both Cw and Cn are
tested without overheating, since the test schedule includes
cooling periods whenever the thermal simulator indicates that
the chip temperature will exceed the limit.

Under a certain temperature error condition, due to pro-
cess variation, the thermal responses of the different chips to
the same test sequence will be different. Now, assume that
chip Cw is warmer than expected, while chip Cn behaves
normally. As illustrated in Fig. 1b, Cw will overheat. To
prevent this, a more conservative offline schedule S2 has
to be designed based on the thermal profile of Cw, for both
chips, as illustrated in Fig. 1c.

This new schedule will avoid overheating, but will lead
to longer test application time TAT2 compared with TAT1.
For chip Cn, this test application time is unnecessarily long,
since the original schedule, S1, in Fig. 1a is a safe schedule
for this particular chip. For a set of manufactured chips with
large temperature variations, in order to generate a globally
conservative offline schedule, the hottest chip will be used
to determine the test schedule. This test schedule will intro-
duce too long cooling periods for most of the chips, leading
to an inefficient test process.

In [3], we have proposed a technique to address the above
problem with the help of a chip classification scheme. This
scheme consists of several test schedules for different tem-
perature error ranges. After applying a short test sequence,
the actual temperature of the chip under test is measured
using a sensor and depending on its value, the proper test
schedule is selected. Therefore, the hotter chips will use a
test schedule with more cooling, while the colder chips will
have less cooling. The overheating issue is solved and the
test application time will not be made unnecessarily long.
This approach works fine under the assumption that the
thermal behavior of the chips is time invariant.

However, in the case of large process variation, the
thermal behavior is time variant and the technique presented
in [3] will not be able to achieve high quality schedules. The
variation of thermal response with time is illustrated in Fig.
1d. In this case, the temperature of chip Cw gradually lifts up
compared to chip Cn, and Cw eventually overheats. A sched-
uling method capable of capturing temporal deviations is
therefore required to deal with this new situation.

The temperature behavior given in Fig. 1d is captured in
Fig. 2a with more details. The lift up of the temperatures of
chip Cw starts at time i3, as shown in Fig. 2a. Since Cw will
only overheat after i4, both chips can be safely tested with
schedule S1 up to i4. At i4, the actual temperature of the chip
under test, θ4, can be obtained via sensors. The actual
temperature can then be compared to a Threshold and two
different situations can be identified:

Cw if θ4 > Threshold
Cn if θ4≤Threshold

�

For the rest of the test, after i4, two dedicated schedules,
S2 and S3, are generated in the offline phase for Cn and Cw,
respectively. Therefore, in the online phase the test of Cn

continues with schedule S2, as in Fig. 2a, and the test of Cw

continues with schedule S3, as in Fig. 2b.

a

b

c

d

Time

Time

Temperature of

Testing

Cooling

Temperature of

Temperature Limit

Time State
S1

Time State
S2

Fig. 1 Test schedule examples (curves are only illustrative). Temper-
ature curves a when there is no temperature error; b when there is time-
invariant temperature error and schedule S1 is used; c when there is
time-invariant temperature error and schedule S2 is used; d when there
is time-variant temperature error

J Electron Test (2013) 29:499–520 501

In this illustrative example, at the end of S1, the schedule
does a branching to either S2 or S3 based on the actual
temperature. This information and the branching condition
can be captured in a branching table, B1 in Fig. 2. As shown
in Fig. 2a, Cn is tested initially with S1 and then with S2,
while, as shown in Fig. 2b, Cw is initially tested with S1 and
then with a more conservative schedule, S3. The segments of
the schedule which are executed sequentially without
branching are called linear schedules. An adaptive test
schedule consists therefore of a number of branching tables
in addition to multiple linear schedule tables.

The focus of this paper is multi-core SoC, although the
above illustrative example was about a single-core design. It

is assumed that, due to the intra-chip process variation, each
core has its own thermal behavior similar to what is de-
scribed above for a chip. Moreover, multi-core designs usu-
ally are affected by lateral heat dissipation among the cores
and also by the limited test bus width which is shared by
different cores.

Temperature curves for a SoC with four cores, as an exam-
ple, are given in Fig. 3 [11], which shows how the temperatures
of the different cores change over time. For a given core, when
it is tested, its temperature increases (usually rapidly as shown
by the curves).When a core is not tested, there are no switching
activities, and it starts to cool down, as shown by the temper-
ature curve going down. To guarantee thermal safety, testing is
interruptedwhen a core reaches the high temperature threshold.
As shown in Fig. 3, more than one core may be tested at the
same time (e.g., core 1 and core 3 at 20 us—the temperature
curves for core 1 and 3 are sharply going up). Cores will utilize
the available test buswhich is freed during the cooling intervals
of other cores (e.g., at time 80 us core 1 and core 2 are utilizing
the cooling time of core 3 and core 4) [11].

3 Problem Formulation

Our goal, as discussed in the previous section, is to generate an
efficient adaptive test schedule offline. This is formulated as an
optimization problem. The input consists of a SoC design with
its set of cores and their corresponding test sequences. The
floor plan, the thermal parameters, the static power parameters,
and the dynamic power parameters for the chip are given as
inputs. The statistical data that models the temperature devia-
tions are also given as input. The adaptive test schedule should
be generated to minimize the test application time and the
probability of overheating. These objectives are captured by
a cost function which expresses the overall efficiency of the
generated test schedule, as discussed in the following.

The test schedule should be generated under two con-
straints. The first constraint is the available test bus width.

Temperature of

Testing

Cooling

Temperature of

Temperature Limit

a

b

Linear Schedule Table S3

Time State
Branching
Table ID

—
—
—
—
—
—
—

Time

Linear Schedule Table S2

State Branching
Table ID

—
—
—

Branching
Table ID

Time State

Linear Schedule Table S1

—

B1

—
—
—

Condition Linear Schedule Table ID
Branching Table B1

Temperature ≤
Temperature >

S2

S3

Fig. 2 Schedule and branching tables (curves are only illustrative).
Temperature curves when there is time-variant temperature error a
when both chips are tested with linear schedules S1 and S2; b when
by referring to the branching table, B1, test of chip Cw continues with
linear schedule S3 after time i4

Fig. 3 Temperature curves for a chip under test with four cores [11]

502 J Electron Test (2013) 29:499–520

The test bus width limits the number of cores that can be
tested in parallel. The second constraint is the available
Automatic Test Equipment (ATE) memory which limits
the size and the number of the linear schedule tables and
branching tables. It is assumed that the available memory
after loading the test patterns will be utilized for storing the
schedule and therefore the amount of memory dedicated to
the schedule will not introduce new costs.

In this paper a comprehensive cost function is defined by
combining the cost of the overheated chips and the cost of
the test facility operation, as follows:

cost ¼ CTF

TT
þ POC � TOP

1−TOPð Þ ð1Þ

The first term in the cost function is related to the test
facility operation cost, which is defined as the operational
Cost of the Test Facility per time unit (CTF) divided by the
Test Throughput (TT). The cost of the test facility operation
per time unit depends on the cost of the ATE machines, their
maintenance costs, and other operation costs. The test
throughput is explained later.

The second term of the cost function is related to the cost
of the overheated chips, which is the product of the Price of
One Chip (POC) and the expected number of overheated
chips. The expected number of overheated chips is calculat-
ed based on the Test Overheating Probability (TOP) which
represents the number of overheated chips per number of
chips entering the test facility.

In (1) the test overheating probability, TOP, is divided by
(1−TOP) in order to give the expected number of overheat-
ed chips per number of non-overheated chips. The cost of
the test facility per time unit, CTF, and the price of one chip,
POC, depend on the particular manufacturing and test facil-
ity and on the particular SoC. To have a simple model for
the test throughput, TT, assume that the given test facility is
characterized by its overall Effective Test Time per Second
(ETTpS) and Test Handling Time (THT).

The effective test time per second is the total test time
that the test facility provides. For example if there are two
ATE machines working in parallel, the ETTpS could be as
high as two. Therefore, the ETTpS depends on the number
and specification of the ATE machines and possibly other
test facility specifications. The test handling time represents
the wasted times that chips are not actually under test (e.g.,
placing, connecting, and detaching the chips) and therefore,
it depends on the test facility specifications. The test
throughput, TT, which depends on the Applied Test Size
(ATS) and Test Application Time (TAT), is calculated as:

TT ¼ ETTpS � ATS

TAT þ THT
� 1−TOPð Þ ð2Þ

In order to gain a better understanding of the test through-
put, the Normalized Test Throughput (NTT) is defined by
normalizing the test throughput, TT, to the effective test time
per second, ETTpS, and assuming that the test handling
time, THT, is negligible, as follows:

NTT ¼ ATS

TAT
� 1−TOPð Þ ð3Þ

The normalized test throughput, NTT, is proportional to the
applied test size divided by the test application time. It is also
proportional to the percentage of the chips that have complet-
ed the test without overheating. Therefore large test applica-
tion time and large test overheating probability will result in
small test throughput and consequently the cost component
related to the test facility operation will be higher.

In this paper, CTF, POC, and ETTpS do not depend on
the test schedule and therefore they are considered to be
constants. The cost function is then normalized so that all
constants are lumped into one new constant, the Balancing
Coefficient (BC). The result is the Normalized Cost
Function (NCF) which is expressed as:

NCF ¼ 1

NTT
þ BC � TOP

1−TOPð Þ ¼

¼ TAT

ATS � 1−TOPð Þ þ BC � TOP

1−TOPð Þ
ð4Þ

The balancing coefficient, BC, is in direct proportion to
the price of one chip, POC, and in inverse proportion to the
cost of the test facility per time unit, CTF. The first term in
the above equation (normalized cost function) represents the
test facility operation cost and shows what volume of test
could be applied by the test facility per time unit. The
second term represents the balanced cost of the overheated
chips and is proportional to the test overheating probability,
TOP, and the balancing coefficient. The balancing coeffi-
cient balances the cost of the overheated chips against the
cost of the test facility operation. Expensive chips will re-
sults in a larger balancing coefficient and expensive test
facility will result in a smaller balancing coefficient.

4 Temperature Error Model

In order to distinguish between the effects of the process
variation and other undesirable thermal effects, four different
temperatures are defined. The first one is expected tempera-
ture, that is the temperature of a normal chip which is not
affected by undesirable thermal effects (including process
variation). The expected temperature is an abstract concept
and its exact value could not be acquired. The second one is
simulated temperature, that is the temperature computed by

J Electron Test (2013) 29:499–520 503

simulation. The aim of simulation is to compute the expected
temperature and therefore, ideally, the simulated temperature
is equal to the expected temperature. The third one is actual
temperature, that is the actual real-world temperature. The
actual temperature is physical, but its exact value is usually
impossible to acquire due to measurement errors. The forth
and last one is measured temperature, that is the measured
temperature using temperature sensors.

Based on the above definitions, three different temperature
errors can be defined. The first one is simulator error, that is
the difference between the expected temperature and the sim-
ulated temperature. The inaccuracies in the simulation model
and algorithms contribute to this error. The second one is
measurement error, that is the difference between the actual
temperature and the measured temperature. The inaccuracies
in the sensor technologies contribute to it. The third and last
one is variation error, that is defined as the difference between
the actual temperature and the expected temperature. This
error has various sources including process variation, ambient
temperature fluctuations, and voltage variations.

The focus of this paper is process variation which mainly
contributes to the variation error and therefore in this paper
we focus on variation error. In the rest of this paper, the
temperature error is considered to be the difference between
the expected temperature which is estimated by simulation
and the actual temperature which is measured by sensors.

Temperature error is discussed above based on its origins
but there still is another important point of view, the way it
affects the cores. Therefore, temperature error is further
categorized into spatial temperature error and temporal tem-
perature error. Spatial temperature error shows that different
cores have different temperature errors while the temporal
temperature error shows that the same core has different
errors at different times. A temperature error model gives
the probabilities of the temperature errors for every core in
every test cycle. The spatial error model gives the initial error
distribution and then the temporal error model is used to
recursively estimate the error distribution for the next cycle.

For example, a spatial temperature error model which
consists of a discrete distribution shows that at the very
beginning of the test the probability of an error equal to
−2.3 °C in core 1 is 0.001 while the probability for the same
error in core 2 is 0.02. The spatial error model, in this paper,
is specified using a look up table which is assumed to be
given as one of the inputs. Assuming that the error for a SoC
design may range from −20 °C to +20 °C by a resolution of
0.5 °C, the number of the look up table entries (M) would be
80 for a core and M ×C for a SoC with C cores.

Our temporal temperature error model is assumed to be a
discrete-time model which means that the temperature error
is fixed during a period and then it changes discretely from
one period to the next. Therefore, the temporal temperature
error model specification has two parts, the period which is

called temporal error period and a table of error change
probabilities. The temporal temperature error table gives
the probability of a particular change in error.

For example, a temporal temperature error model shows
that the probability that the error increases by +0.6 °C is 0.015.
Assume that the temporal error period is 1ms and the error is
measured to be −5.3 °C at time 0, as shown in Fig. 4. The error
will remain −5.3 °C up to 1ms (0 + temporal error period).
Then after 1ms the exact error is not known any more.
However the probability of a certain error can be estimat-
ed using the temporal temperature error model. In this
example, the probability of a temperature error equal to
(−5.3 °C + 0.6 °C) = −4.7 °C, between 1ms and 2ms is
0.015. Without a measurement at 2ms, the only available
information is that the probability of a temperature error
equal to (−4.7 °C + 0.6 °C) = −3.1 °C is 0.015×0.015,
between 2ms and 3ms. In Fig. 4, a new measurement is
done at time 3ms and the actual error is −4.7 °C.

The size of the temperature error data set, given as input,
might be quite large. In such a case it is necessary to extract a
smaller set of data which is representative of the original data in
accordance with the accuracy and speed requirements. This is
done by clustering the errors into error clusters. The error
clusters are characterized by temperature Error-clusters
Borders (EB). The temperature error range, resolution, and error
clusters are assumed to be identical for all cores, in this paper.

The Temperature Error Values (TEVm(1 ≤ m ≤M)) and the
Spatial Temperature Error Probabilities (STEPc,m(1 ≤ c ≤ C;
1 ≤m ≤M)) are original inputs which are given for a SoCwith
C cores for M temperature error samples. The Temporal
Temperature Error Probability (TTEP) is the other input and
it gives the probability for a certain change in the error value.
The probability that the temperature error value changes from
TEVi to TEVj is

P error valuechangefromTEV i toTEV j

� �
¼ TTEP TEV j − TEV i

� �
: ð5Þ

The error clustering is assumed to be uniform and the error-
clusters borders, EBl(0 ≤ l ≤ L), are identical for all cores.
Assuming L error clusters, the size of the original data set

Fig. 4 An example for temporal temperature error probabilities

504 J Electron Test (2013) 29:499–520

reduces to L×C. Error clustering will divide the C-dimension-
al error space into error cells indexed using Cartesian system
(i.e., [l0,l1,…, lC−1]). For example assume that for a SoC with
two cores, each core has two error clusters. The 2-dimensional
error space is divided into four error cells, indexed with [0,0],
[0,1], [1,0], and [1,1]. While the original size of error space is
MC, the number of error cells is LC. AssumingM=80 and C=
2, the original size is 802=6,400 while the size of the clustered
error space, with L=3, is 32=9.

5 Adaptive Test Scheduling

The proposed adaptive method is based on the on-chip tem-
perature sensors implemented on each core. During test, the
actual temperatures of selected cores are read at certain select-
ed moments and the gap between sensor readouts is filled with
thermal simulation. A group of chips with similar thermal
behavior which are tested with the same schedule is called a
chip cluster. During the test, chips are dynamically classified
into one of the chip clusters and are tested using the corre-
sponding schedule. The chip clusters vary during the test, and
at every adaptation moment (time moment corresponding to a
certain branching table) the chip clusters change into a new
scheme which is suitable for the new situation.

The parameters that affect the efficiency of the adaptive
method are the moments when branching/adaptation happens,
the number of edges (i.e., linear schedule tables) and the
branching conditions (i.e., chip clustering). For the example
in Fig. 2, the adaptation is happening at i4, the number of
edges is two (two linear schedule tables, S2 and S3), and the
branching condition is a comparison with the Threshold.

Since the possible branching moments are multiples of
the temporal error period, the first design decision is wheth-
er to branch or not at a possible node in a schedule tree. This
design decision will be merged with the second design
decision which is the number of edges (i.e., the number of
chip clusters). The third design decision is the chip cluster-
ing for nodes. These problems are summarized into the
following two sub-problems.

1. How many chip clusters, at each possible node in the
schedule tree, is suitable? The special case of one edge
implies no branching, no sensor reading, and no extra
effort.

2. What is the proper chip clustering into the given number of
chip clusters? The number of chip clusters is known from
the answer to the previous question. Depending on the chip
clustering some cores may not need sensor readout.

The second question is only relevant when the answer to
the first question is larger than one. The above questions are
then formulated in two different forms, the first question is

described as a tree topology and the second question is the
chip clustering for the nodes of that tree topology.

A candidate schedule tree is generated by combining a
possible tree topology with a possible chip clustering. The
number of candidate tree topologies and the number of alter-
native chip clusterings grow very fast with parameters like
temporal error resolution and the number of cores. Since the
number of candidate trees is the product of the tree topology
alternatives and the chip clustering alternatives, the search
space is so huge that ordinary search approaches would not
work fast enough. Therefore a constructive method is
suggested to deal with this high complexity.

The schedule tree is constructed by adding small partial
trees to its leaves. These small partial trees which are the
building blocks of the schedule tree are called sub-trees. A
sub-tree consists of a small number of linear schedule and
branching tables which makes it possible to be clustered and
optimized (scheduled) at once. The tree that is under con-
struction with unfinished tests is called an unfinished tree.

For example, assume that there is an unfinished tree, Tree 1,
as shown in Fig. 5a. The linear schedule tables of Fig. 2
correspond to the edges of Tree 1 while the branching table
corresponds to node 1, as shown in Fig. 5a. Two sub-trees with
one and with two edges are shown in Fig. 5b. Tree 1 has two
leaves and combinations of the sub-trees are added to them in
order to generate the offspring as shown in Fig. 5c. Offspring 2
is generated by attaching the Sub-tree 1 to node 2 of Tree 1 and
attaching the Sub-tree 2 to node 3 of Tree 1.

The proposed constructive algorithm is shown in Fig. 6.
The inputs to the algorithm include the switching activities
of the tests in order to compute the dynamic power, the
thermal error model in order to estimate the temperature
errors, and the thermal model of the chip in order to predict
the temperatures. Furthermore, the algorithm requires the
electrical model of the chip in order to compute the static
power and the dynamic power and in order to be informed
about the test bus width limit. The test facility specification
is also an input to the algorithm which provides the knowl-
edge of the available ATE memory, delay overheads, and the
balancing coefficient (i.e., BC in Eq. 4).

Sub-trees

Sub-tree 1

Sub-tree 2

0 1

0
1
2

Unfinished Tree

Tree 1 0 1
B1

S1
S2

S3

2
3

Offspring Trees

Offspring 1

Offspring 2

Offspring 3

0 1
2
3

4
5

0 1
2

3

4
5
6

0 1
2

3

4
5
6

a

b

c

Fig. 5 Constructive method. Main components are a unfinished tree, b
sub-tree topologies, and c offspring trees (for S1, S2, S3, and B1 in (a)
refer to Fig. 2)

J Electron Test (2013) 29:499–520 505

The algorithm starts with an initialization phase, as shown
in Fig. 6. Here, the unfinished tree, sub-tree topologies, tem-
perature error model, and thermal simulator are initialized.
Then it proceeds with constructing the schedule tree as will
be explained in Section 5.1. The procedure of constructing the
schedule tree out of the sub-trees is presented in Section 5.1.
The linear schedule tables are discussed in Section 5.2. The
sub-tree evaluation is explained in Section 5.3. The sub-tree
scheduling which is based on an optimization heuristic is
explained in Section 5.4. Some remaining remarks are given
in Section 5.5.

5.1 Tree Construction

The schedule tree construction starts with a root node and in
each iteration an unfinished tree extends and multiplies by
adding possible combinations of sub-trees to its active leaf
nodes, as shown in Fig. 5. Then, a small number of promising
under-construction trees are selected as unfinished trees from
the offspring list for the next iteration. For example, an unfin-
ished tree list (similar to Fig. 5a) will be selected from the
offspring list (partially shown in Fig. 5c). The algorithm, as
shown in Fig. 6, ends when all the unfinished trees have
completed the test.

The selection process keeps the ATE memory constraint
satisfied by not selecting the candidates that will exceed the

memory limit. A naïve algorithm will have a tendency to
create many edges in all iterations at the beginning since it
reduces the cost. As a result of this naïve approach, if not
taken care of, the algorithm will put many edges near the
root of the tree and later on as the memory fills up there will
not be any possibility to add a new edge. In order to provide
the algorithm with the freedom to put more edges in the
more beneficial regions, in our proposed algorithm, the
selection is done based on the Scaled Cost Function (SCF)
as defined in the following.

SCF ¼ NCF � adjusting�offset þ number�of�nodesð Þð6Þ

The normalized cost function, NCF (Eq. 4), is scaled by
the tree’s number of nodes plus an adjusting offset. Now,
adding nodes to the tree is only beneficial if it gives a
reasonable cost reduction, otherwise a smaller tree may get
a lower scaled cost and manage to survive to the next
iteration, while bigger trees are discarded. The effect of the
number of nodes is adjusted by the adjusting offset. A small
adjusting offset promotes having fewer edges compared to a
large adjusting offset which promotes having more edges.

To satisfy the memory constraint, when unfinished tree is
selected based on its scaled cost function, it is scheduled for
the rest of test by just using the linear schedule tables which
mean no further branching. During this scheduling, the

Initialize

Initialize
unfinished trees

(shown in Fig. 5a)

Initialize sub-tree
topologies (shown

in Fig. 5b)

Initialize thermal
simulator

(discussed in
section 7)

Initialize temperature
error model (discussed

in section 4)

Generate offspring trees (shown in Fig. 5)

Schedule
AL1.StT1

Core clustering for errors
(discussed in section 6)

Schedule
AL1.StT2

Schedule
AL2.StT1

Schedule
ALlast.StTlast

Connect the scheduled sub-trees (ALi.StTj) to the corresponding leaf node

(ALi) in order to generate all possible combinations (discussed in section 5)

Select the unfinished trees from the offspring trees list
using (6) (discussed in section 5.1)

Is there any active leaf in
the unfinished trees?

Select the final schedule tree from the
offspring trees list using (4)

(discussed in section 5)

Final schedule tree

Schedule the sub-trees (discussed in section 5.4)

The j-th Sub-tree Topology to be
connected to the i-th Active Leaf node
of the unfinished tree

ALi.StTj

Yes No

Thermal
model

Test
switching
activities

Thermal
error model

Electrical
model

Test facility
specification

Fig. 6 The proposed
constructive method

506 J Electron Test (2013) 29:499–520

linear scheduling aborts as soon as the memory limit is
violated. If the linear scheduling succeeds in respecting the
memory limit, the iterations continue. Otherwise, the cur-
rently chosen unfinished tree is dropped and the next can-
didate with larger or equal scaled cost is tested for its
compliance with memory limit. The scheduling will fail if
no candidate could meet the memory limit, meaning that the
limit is too tight even for a linear schedule.

5.2 Linear Schedule Tables

A linear schedule table, as discussed in Section 2, captures a
schedule without branching. The linear schedule table en-
tries (start/stop times for each and all cores) are optimized in
the offline phase to reduce the probability of overheating.
The temperatures are checked frequently in order to keep the
overheating probability small.

The start/stop states in the linear schedule tables are
generated using the heuristic proposed in [11]. According
to this heuristic, the test of the cores with lower temperature
and higher remaining test size will be started or resumed
earlier. Activating the cores with lower temperature is desira-
ble because it provides longer testing states and therefore
reduces the number of test partitions and their corresponding
overheads.

By choosing the colder cores while the effect of adjacent
cores are taken into account by thermal simulation, in fact,
the algorithm activates the cores which are far from the
current active cores. This will save the newly activated cores
from the accumulated heat in their possible neighbors and
furthermore by not activating the adjacent cores, the newly
deactivated cores will experience a faster cooling. The heu-
ristic gives also advantage to the cores with longer
remaining tests, thus maximizing the interleaving opportu-
nities and also to avoid the situation that a long test se-
quence leads to a long total test application time.

As mentioned before, each chip cluster is tested with a
dedicated linear schedule. Every chip cluster is represented
by an error value which will be used to estimate the actual
temperature based on the simulated temperature; this error
value is called representative temperature error. The estimated
temperature is updated periodically by correcting the cores’
simulated temperatures with the representative temperature
error. The estimated temperature is then used to compute the
static power and to determine the ‘state’ of the cores.

For example, assume that there are two chips {D0, D1} in
a certain chip cluster and chips consist of only one core.
Therefore, at a certain moment in time, there are two error
values {E0, E1} corresponding to the two chips. But the
linear scheduling heuristic works with one error value for
one chip cluster. Therefore, the representative temperature
error, r, which is a real number (r ∈ R) is defined as a value
which represents chips error values, {E0, E1}.

The representative temperature error is updated periodi-
cally with the temporal error period (see Section 4) while the
estimated temperature, static power, and state of the cores
are updated more frequently. After updating the state of the
cores, the dynamic power sequence is computed. The initial
temperatures are available as the results of the previous
thermal simulation. Having dynamic and static power se-
quences in addition to the initial temperatures, the next
thermal simulation is performed.

The representative temperature error for a chip cluster is
viewed as a safety margin in [3] and its optimal value is
experimentally computed for a number of examples. These
experiments suggest that the optimal value for a representa-
tive temperature error is equal to the border between the
chip cluster and the adjacent chip cluster that has larger error
(i.e., hottest possible chip in the chip cluster). This is true for
all chip clusters except the last one that has the largest error.
For example, for a chip cluster stretching from EBi to EBj

(EBi < EBj; j < L), EBj would be a good choice to be the
representative temperature error for this chip cluster. The
representative temperature errors are assigned in a similar
way in this paper.

To have an example from a different point of view, assume
that in total there are four chips {D0, D1, D2, D3} and chips
consist of only one core. Therefore, at a certain moment in
time, there are four error values {E0, E1,E2,E3} corresponding
to the four chips. Assume that E0 < E1 < E2 < E3. Assume that
the chip-clustering algorithm (will be explained in
Section 5.4) has generated two chip clusters {D0, D1} and
{D2, D3}. The representative temperature error for the chip
cluster that has smaller errors (i.e., {D0, D1}) is r

0 = E1 and
the representative temperature error for the last chip cluster,
r1, is formulated as an optimization variable along with the
chip-clusters borders in the chip-clustering algorithm.

A new sub-tree optimization method is proposed in this
paper that encodes the problem based on chip-clusters bor-
ders. The representative temperature errors are defined as
chip-clusters borders for all chip clusters but the last one.
For the last error cluster (one with the largest errors), the
representative temperature errors are encoded along with the
chip-clusters borders as the sub-tree optimization variables.
This will be explained in Section 5.4.

The optimization problem for a linear schedule table is
to minimize the partial normalized cost function by find-
ing the proper start/stop times. This is done based on the
heuristic proposed in [11]. The utilized test bus width is
the sum of the Test Access Mechanism (TAM) widths of
the active cores for tests which utilize the TAM. The
schedule size is the product of the number of the linear
schedule table entries and the record size. The schedule
tree is equivalent to a number of linear schedule tables
(edges) in addition to a number of branching tables
(nodes), as shown in Fig. 5a. The linear schedule table

J Electron Test (2013) 29:499–520 507

is explained above and the rest of the construction pro-
cess will be explained in the following sections.

5.3 Sub-Tree Evaluation

The schedule tree is constructed by attaching sub-trees to the
leaves of the unfinished trees (See Fig. 5). For this purpose,
the proper schedule for a sub-tree topology should be found.
In a sense, a sub-tree is a tree and the cost function intro-
duced in Section 3 should be usable. However, there is a
subtle difference between their objectives. For the schedule
tree the objective is its very own cost. For a sub-tree the
objective is, on the other hand, the cost of the schedule tree
that is to be constructed. Therefore, the cost of the final
schedule tree should be estimated assuming that this partic-
ular sub-tree is used in its construction. This makes the cost
evaluation different for the sub-trees.

To find the near optimal schedule for a sub-tree topology,
the partial cost function must be evaluated for different sub-
tree clustering alternatives. For the evaluation of the cost
function (i.e., NCF in (4)), the expected values of the test
application time, TAT, the applied test size, ATS, and the test
overheating probability, TOP, (denoted by ETAT, EATS, and
ETOP, respectively) should be computed by utilizing the
temperature error statistics.

The expected values are computed while each edge is being
scheduled. In the formulation of the schedule tree, an edge is
represented by its destination node. Assuming that the number
of nodes is N, the Nodes’ Probabilities (NPn(1 ≤ n ≤ N)), the
Nodes’ Applied Test Sizes (NATSn(1 ≤ n ≤ N)), and the
Nodes’ Test Application Times (NTATn(1 ≤ n ≤ N)) are used
to compute the expected applied test size and the expected test
application time as follows:

EATS ¼
XN

n¼1
NATSn � NPnð Þ ð7Þ

ETAT ¼
XN

n¼1
NTATn � NPnð Þ ð8Þ

In order to explain the expected test overheating probabil-
ity, ETOP, and understand how nodes’ probabilities are com-
puted, the notion of nodes’ clustering and error cells are
introduced here. Temperature errors of cores constitute a C-
dimensional errors space (C is the number of cores). For
example in Fig. 7, there are two cores and therefore the error
space is two dimensional. The horizontal axis represents the
error values of the first core and the vertical axis represents the
error values of the second core. There are four error clusters
for each core and therefore there are 16 error-cells in the Fig. 7.

This is specifically important for the nodes at which
branching takes place. Branching at a node is, in fact, a chip
clustering to a number of groups, so that each chip cluster

corresponds to an exclusive edge branching out of that node.
Chips are identified by their cores’ errors and therefore a
chip clustering is a partitioning of the C-dimensional error
space into a number of chip clusters.

This means that a chip cluster is a combination of specific
error intervals of the cores. A candidate ‘sub-tree clustering’ is
a set of chip clustering alternatives for nodes. Furthermore, a
candidate ‘sub-tree clustering’ could be viewed as a set of
nodes’ clustering alternatives for a sub-tree topology. An error
cell is a cell in C-dimensional error space separated by cores’
error-clusters borders and therefore its projection on a core
error axis is an error cluster for that core. Therefore, a node
clustering could be seen as assigning error cells to chip clus-
ters or equivalently labeling error cells with chip clusters. An
example for labeling of the error cells is shown in Fig. 7. There
are two cores (C=2) in the figure, and the numbers inside the
rectangular error cells are labels.

A candidate sub-tree topology will have a number of
candidate clustering alternatives which label the nodes’
error cells with the relevant chip clusters. Each chip
cluster for a node corresponds to an edge branching out
of that node and corresponds to a linear schedule table.
Each node has its own dedicated Error-Cell Labeling

ECLn;l1;l2;…;lC 1≤n≤N ; 1≤ li≤Lð Þ� �
. Looking from a

branching node, a succeeding node corresponds to a chip
cluster and therefore it receives a Node’s Cluster Label
(NCLn(1 ≤ n ≤ N)) to represent that chip cluster (or equiva-
lently the preceding edge and corresponding linear schedule).
This label indicates which of the branching node’s chip clus-
ters will lead to a certain succeeding node.

The probabilities of error cells for different nodes and
consequently the probabilities of those nodes are computed
based on the temperature error model and based on the chip
clusterings of the preceding nodes. In order to speed up the
computation of the Error-Cells Probabilities (ECP) the Error
Cell Change Probabilities (ECCP) are pre-computed as
shown in (10). The error cell change probabilities are, in
fact, the concentrated effect of the temporal error model
which is repeatedly used to compute the error-cells and
nodes probabilities.

0

Core 1 error clusters

C
or

e
2

er
ro

r
cl

us
te

rs

0 1 2
0

1

2

0 1

0 0 1

1 1 1

1 1 1

1

1

1

1

3

3

Fig. 7 An example for error-cells labeling. Four error-cells are labeled
with 0 that is the ID of the chip cluster number 0 and the remaining 12
error-cells are labeled with 1 that is the ID of the chip cluster number 1

508 J Electron Test (2013) 29:499–520

It is assumed that the variation in the probabilities inside
an error cluster is negligible. Furthermore, it is assumed that
the error change probabilities for different cores are inde-
pendent. The error-cell probabilities change from node to
node and therefore most of the time the equations are about
two nodes, the origin and the destination. The error cells for
the origin node are superscripted with O and for the desti-
nation node with D. ECCP is computed as follows:

ECCPbefore normalization
lO1 ;l

O
2 ;…;lOC ;l

D
1 ;l

D
2 ;…;lDC

¼ ∏C
c¼1

XEB lOcð Þ
i¼EB lOc −1ð Þ

XEB lDcð Þ
j¼EB lDc −1ð ÞTTEP TEV j − TEV i

� �
ð9Þ

TTEP is the temporal temperature error probability, TEV
is temperature error value, and EB is error cluster border.
ECCP is computed as follows:

ECCPlO1 ;l
O
2 ;…;lOC ;l

D
1 ;l

D
2 ;…;lDC

¼
ECCPbefore normalization

lO1 ;l
O
2 ;…;lOC ;l

D
1 ;l

D
2 ;…;lDCX L;L;…;L½ �

i1;i2;…;iC½ �¼ 0;0;…;0½ �ECCP
before normalization
lO1 ;l

O
2 ;…;lOC ;l

D
1 ;l

D
2 ;…;lDC

ð10Þ
The error-cell probabilities for the root node (i.e., n=0)

are computed based on the spatial temperature error proba-
bilities (STEP) as follows:

ECPn;l1;l2;…;lC ¼ ∏C
c¼1

XEB lcð Þ
i¼EB lc−1ð ÞSTEPc;i; forn ¼ 0

ð11Þ
The error-cell probabilities for non-root nodes (i.e.,

n>0) are computed based on the predecessor node which is
denoted by pn. First, error-cell probabilities just after the
branching are extracted from the predecessor node as follows:

ECPafter branching
n;l1;l2;…;lC

¼ ECPpn;l1;l2;…;lC ; if ECLpn;l1;l2;…;lC ¼ NCLn
0; otherwise

�

ð12Þ

While scheduling an edge, overheating may occur to
some of the cells (ranges of chips) which have larger tem-
perature errors. Consequently, the probability of these cells
at the end of the edge (after the corresponding chunk of the
test is applied) is considered to be zero. The error-cell prob-
abilities, ECP, after overheating are computed based on
Representative Temperature Error (RTE) (RTE is introduced
in Section 5.2) as represented in Eq. 13. Overheating of a core
occurs when the core’s actual temperature which is estimated

by adding RTE to the Simulated Temperature (ST) exceeds the
High Temperature Threshold (HTT). A chip is considered as
being overheated if at least one of its cores overheat.

ECPafter overheating
n;l1;l2;…;lC

¼ ECPafter branching
n;l1;l2;…;lC

; if ∀c RTEc
n þ STc

n

� �
< HTT

0; otherwise

�

ð13Þ

According to the temperature error models (introduced in
Section 4) the error-cell probabilities, ECP, after temporal
changes are computed as:

ECPafter temporal changes
n;lD1 ;l

D
2 ;…;lDC

¼
X L;L;…;L½ �

l1;l2;…;lC½ �¼ 0;0;…;0½ �ECP
after overheating
n;l1;l2;…;lC

�ECCPl1;l2;…;lC ;l
D
1 ;l

D
2 ;…;lDC

ð14Þ

The node’s probability, NP, is computed as follows:

NPn ¼
X L;L;…;L½ �

l1;l2;…;lC½ �¼ 0;0;…;0½ �ECP
after branching
n;l1;l2;…;lC

ð15Þ

Node’s not Overheating Probability (NnOP) is the proba-
bility that a chip which corresponds to this edge according to
the chip clustering scheme, is not overheated after traversing
this edge. NnOP for a node, n, is computed as follows:

NnOPn ¼
X L;L;…;L½ �

l1;l2;…;lC½ �¼ 0;0;…;0½ �ECP
after overheating
n;l1;l2;…;lC

NPn
ð16Þ

Finally, error-cell probabilities, ECP, are computed as:

ECPn;l1;l2;…;lC ¼ ECPafter temporal changes
n;l1;l2;…;lC

NPn
; for n > 0 ð17Þ

Edges are scheduled by determining the linear schedule
tables as explained in Section 5.2. Then the candidate sub-
tree clustering is evaluated using the partial cost function
which is based on the expected applied test size, the
expected test application time, and the predicted test
overheating probability. The first two are already introduced
in (7–8), and the last one is explained below.

Evaluation of a partial tree is in fact an attempt to predict
the cost of the completed schedule tree, based on the current
situation of that partial tree. For this purpose, it is assumed
that the final schedule tree will be composed of a number of
similar partial trees (building blocks for the final schedule
tree). These partial trees are assumed to have similar

J Electron Test (2013) 29:499–520 509

expected applied test size, expected test application time, and
expected test overheating probability. These expected values
are assumed to be similar to those of the partial tree that we
are evaluating.

Therefore, a good prediction for the test application time
and the applied test size would be their current expected
values multiplied by the predicted total number of partial
trees. Since only the ratio of the predicted test application
time to the predicted applied test size matters in the cost
function (the first term in Eq. 4), a good choice for predicted
values of these variables is their expected values. But the
situation for Predicted Test Overheating Probability (PTOP)
is different since its value does not change linearly when a
number of similar partial trees (building blocks) are put one
after the other (unlike EATS and ETAT).

Assuming that there are Q leaves in the tree, the Leaf’s
Overheating Probability (LOPq(1 ≤ q ≤ Q)) is the
overheating probability for the path from the root node to
the specified leaf node. Its computation includes multiplica-
tion over nodes that belong to the specified root-to-leaf path.
The overheating probability for leaf q is computed as:

LOPq ¼ 1−∏nNnOPn;
q is a leaf node

for all nodes; n; belonging to the root–to–q path

ð18Þ

The expected test overheating, assuming a total of Q leaf
nodes, is computed as:

ETOP ¼
XQ

q¼1
LOPq � NPq

� � ð19Þ

ETOP can be used in Eq. 4 to evaluate a fully constructed
schedule tree, but for partial cost function when the tree is not
yet fully constructed, the predicted test overheating probabil-
ity, PTOP, is used in Eq. 6 to evaluate the partial cost function.
PTOP is computed as:

PTOP ¼ 1− 1−ETOPð Þl ð20Þ

Think of l as the total number of partial trees (building
blocks) that are assumed to be similar to the current partial
tree and will construct the final schedule tree. ETOP is
computed for the partial tree as expressed in Eq. 19 and
then the predicted test overheating probability is computed
by assuming that these l partial trees have overheating rates
equal to the current partial tree’s overheating rate. l is
computed based on the expected Number of Partial Trees
(NPT) which is defined as the total test size divided by the
expected applied test size, EATS, for the current partial tree.

A naïve algorithm will use the NPT instead of the l in
(20). But, because of the localities in the schedule tree,
partial trees (building blocks) with a lot of cooling may exist.

For these partial trees, the expected applied test size is small
and consequently the expected number of partial trees, NPT,
will be estimated pessimistically. This unrealistic estimation
may result in exceedingly large predicted test overheating
probabilities, PTOP, and consequently a long schedule tree
with too much of cooling may receive a low cost and be
selected.

Therefore, limiting the expected number of partial trees,
NPT, would be helpful for good schedules to receive a more
realistic cost. A reciprocal limiter is used here which am-
plifies small inputs and attenuates large inputs. In the pro-
posed reciprocal limiter, the output is always one when the
input is one and the output is equal to the input in a point
that is called Knee. The output will be always smaller than
the limit which is (Knee + 1). The relation of the limited
output (λ) to the relaxed input (NPT) is

l ¼ Kneeþ 1ð Þ− Knee

NPT
: ð21Þ

A larger Knee promotes lower overheating since the max-
imal value of λ increases and also because of the increased
limiter’s amplification for the NPT values which are less than
Knee. On the other hand, a smaller Knee will result in sched-
ules with shorter test application time. Other types of limiters
might be used provided that they do not cause difficulties for
the convergence of the Particle Swarm Optimization (PSO) by
introducing abrupt changes in the cost and consequently in the
velocities when particles travel throughout the search space.
PSO is explained in more details in Section 5.4.

At this point, the introduction to computation of the
expected test application time, expected applied test size,
expected test overheating probability, and predicted test
overheating probability is completed and the expected cost
for a sub-tree could be computed using them. Therefore, the
clustering alternatives for a sub-tree topology could be eval-
uated using the scaled cost (Eq. 6). The clustering alterna-
tives are explored by Particle Swarm Optimization (PSO)
and the best scheduled sub-tree is selected at the end. This
optimization is further discussed in Section 5.4.

5.4 Sub-Tree Scheduling

As mentioned before, the schedule tree is constructed by
attaching sub-trees to unfinished trees’ leaves (See Fig. 5).
For this purpose, the proper schedule for a sub-tree topology
should be found. In order to schedule a sub-tree topology
which is going to be connected to the specified leaf node of
the unfinished tree (ALi.StTj in Fig. 6) a heuristic, as shown
in Fig. 8, iteratively generates alternative chip clustering
schemes and evaluates them. The evaluation is explained
in Section 5.3 and requires the sub-trees’ edges to be sched-
uled as explained in Section 5.2.

510 J Electron Test (2013) 29:499–520

A chip clustering scheme for a sub-tree specifies which
chips will take which edges. The chips are specified by their
cores’ errors and therefore the problem could be seen as
assigning chip clusters to the error cells located in the C-
dimensional error space. The search space could be seen as
the collection of different alternatives forECLn;l1;l2;…;lC . For
example for a chip with two cores, the general form is EC
Ln;l1;l2 and therefore, for a sub-tree with two nodes, the solu-
tions will be similar to the two alternatives given in Fig. 9.

A solution encoding scheme is suggested in [1, 2] which
labels the error cells with chip clusters. The number of the
decision variables grows exponentially with the number of
cores and therefore the computational complexity is very
high. In this paper, we suggest a solution encoding scheme
which encodes the chip-cluster borders instead of the error
cells. For a node with S succeeding chip clusters the number
of decision variables is S × C. For S chip clusters, there are

(S−1) chip-clusters borders and the S-th value is the represen-
tative temperature error for the last cluster. Here, the number
of the decision variables grows in proportion to the number of
cores and therefore the computational complexity is much
smaller compared with the scheme suggested in [1, 2].

Two examples for the suggested solution encoding for
a sub-tree with only one node, similar to sub-tree 2 in
Fig. 5b, are illustrated in Fig. 10. The solutions corre-
spond to a SoC which has two cores. There are three
temperature error clusters per core and the number of
edges (i.e., number of chip clusters) in the corresponding
sub-tree is two. r1 and r2 are representative temperature
errors for the last chip cluster. The 0-th chip cluster in
Fig. 10a is larger than the 0-th chip cluster in Fig. 10b;
one could realize by counting the number of error cells

Initialize the swarm:
generate particles’ locations and velocities

Schedule the sub-tree’s
edges for particle1

Select local and global bests (evaluate according to section 5.3)

Report global best as
the final chip clustering

Schedule the edges of the sub-tree ALi.StTj for different chip clustering alternatives
(explained in section 5.2)

The j-th Sub-tree Topology to be connected to the i-th
Active Leaf node of the unfinished tree

ALi.StTj

Are particles in valid range and
Do required chip clusters exist?

Yes

Update particles’ velocities using (22)
Update particles’ locations using (23)

Are particles in valid range and
Do required chip clusters exist?

Fix for admissibility
(explained in section 5.4)

Is convergence condition met?

Scheduled ALi.StTj

Schedule the sub-tree’s
edges for particle2

Schedule the sub-tree’s
edges for particlelast

Schedule ALi.StTj

No

YesNo

Yes No

Fig. 8 Sub-tree optimization
algorithm

Alternative 1

Alternative 2

Fig. 9 Two error-cell labeling alternatives for a chip with two cores
and a sub-tree with two nodes. The general form is ECLn;l1 ;l2 , n being
the node index. Cells are indexed by l1 and l2

Solution encoding
is

b

0

Core 1 error clusters

C
or

e
2

er
ro

r
cl

us
te

rs

0 1 2
0

1

2

0 1

1 1 1

1 1 1

Solution encoding
is

a

0

Core 1 error clusters

C
or

e
2

er
ro

r
cl

us
te

rs

0 1 2
0

1

2

0 1

0 0 1

1 1 1

Fig. 10 Two examples for error-cells labeling. Error cells are labeled
with chip clusters’ IDs (numbers inside the small rectangles). The
solution encodings are given below the error spaces

J Electron Test (2013) 29:499–520 511

which are indexed by 0 or equivalently by comparing the
chip-clusters borders for the vertical axes (third element in
the solutions encodings).

The possible solutions are then explored using particle
swarm optimization that is a meta-heuristic. A candidate
solution is called a particle and is represented by its location
and its velocity. The locations are the encoded solutions and
the velocities are used to determine the next candidate
solutions. Each particle remembers its previous best loca-
tion, and the swarm remembers the global best solution that
is the best location any of its particles have visited ever. The

previous bests and the global best are then used to give a
hint to the random velocities.

A canonical form of PSO uses Eq. (22) to update the
velocities. The coefficients in (22) are given as a part of the
chosen canonical form [20]. random0 and random1 are two
distinct randomly generated numbers between 0 and 1. The
location and the velocity on the right hand side of (22) are
the current values, and the left hand side velocity is the next
value. Since the location, in this paper, is a natural number,
the next location is the rounded sum of the current location
and the next velocity, as expressed in Eq. (23).

velocity ¼ 0:7298� velocityþ 2:05� random0 � previousBest−locationð Þ þ 2:05� random1 � globalBest−locationð Þð Þ ð22Þ

location ¼ Round locationþ velocityð Þ ð23Þ

There are two admissibility conditions to ensure that
the particles are valid solutions. The first condition is
the valid range and the other is the presence of required
chip clusters. For example assume that errors range
from −10 to +10 and therefore smaller or larger errors
will never happen in practice. If it happens that one
element in the next particle’s location is +11, then this
particle is out of range. An example for a required chip
cluster not being present is as follows. Assume that
there are three edges in a certain node and therefore
three chip clusters are necessary for that node. It may
happen that in the next particle’s location, the first and
the second chip-cluster borders are assigned with iden-
tical values and therefore the second chip cluster is
missing.

The proposed solution encoding which is based on
chip-clusters borders works well with particle swarm
optimization, since the location and velocity in particle
swarm optimization’s terms correspond to the location
and velocity for chip-clusters borders. A typical particle
in the beginning is far from being good and experiences
a high velocity towards the better location since typi-
cally the difference between the best location and the
current location is large at the beginning. Therefore a
rapid convergence towards the preferred value for the
chip cluster border will take place.

Later on, a typical particle will be close to the optimal
location and according to (22) it will move slower, thus pin
pointing the preferred value for the chip cluster border.
Some experiments, for chip clustering optimization for
sub-trees using particle swarm optimization, are reported
in [2]. The experiments showed that the particle swarm
optimization performs well for this purpose; therefore, it is
used in this paper as a part of the proposed SoC test sched-
uling technique.

5.5 Remarks

Even though the thermal simulator errors and sensor mea-
surement errors are not addressed explicitly in this paper, in
practice when the temperature error model is being tuned
empirically, a great amount of these errors will also be
covered. There still might be small residual errors which
are not captured by the temperature error model. These
small residual errors are addressed by introducing a small
safety margin (a slightly lower temperature limit is used in
practice). The effect of this small safety margin on cost is
negligible as shown in [3].

In this paper it is assumed that different cores may have
different errors and every core has a temperature sensor. The
sensor readings may take place only on multiples of the
temporal error period. The proposed approach takes the
overhead of sensor access and the overhead of reacting to
the readout value (i.e., jumping to a new schedule table) into
account and, therefore, the number of sensor accesses is
automatically kept within a reasonable size.

The proposed optimization technique is structured so that
it enables parallel implementations with different granular-
ities. The alternative sub-tree topologies (ALi.StTj in Fig. 6)
as described in Section 5.1, could be optimized in parallel.
For example, assuming one unfinished tree with two leaf
nodes and three sub-tree topologies, there will be 32=9
combinations to optimize in parallel.

Furthermore, at the lower level of sub-tree scheduling,
each alternative chip clustering in particle swarm optimiza-
tion (particlei in Fig. 8), as described in Section 5.4, could be
generated (corresponding edges being scheduled) in parallel
with other alternative schedules. The scheduling of the
edges (i.e., optimizing the linear schedule tables) is the part
that requires thermal simulation (dashed-line blocks in
Fig. 8). Therefore, these most computationally expensive
parts could be implemented in parallel in two different
nested levels. The main structure of this work is presented

512 J Electron Test (2013) 29:499–520

by this point. There remains the proposed thermal simula-
tion approach which helps to efficiently simulate the
temperatures.

The proposed adaptive approach in this paper combines the
benefits of an online scheduling technique with the benefits of
an offline scheduling approach and avoids their shortcomings.
An online schedule will introduce very large overheads that
are associated with sensor readouts, decision making process,
and pausing/resuming the tests. An offline schedule, on the
other hand, is not capable of reacting to variations but has no
run-time overheads. In a fully online approach, reading the
temperature sensors for all cores as often as it is necessary and
making the corresponding decisions for the acquired data will
cause a very large load on the test access mechanism and will
introduce large delays to the schedule. Our proposed approach
uses temperature simulations as much as possible offline and
accesses carefully-selected cores’ sensors at carefully-selected
times during the test.

There is one schedule tree for a chip that addresses all
cores individually. For example, in a linear schedule table
that corresponds to an edge, it is stated that at time t1
cores C0 and C2 are being tested, while cores C1 and C3

are cooling. It might be that in another time, t5, cores C1

and C2 are being tested, while cores C0 and C3 are
cooling. The linear schedule table is similar to S1 in
Fig. 2, but instead of the second column that shows only
one column for state (in Fig. 2), there are as many state
columns as the number of cores. There is only one
branching table for one node in the schedule tree (similar
to B1 in Fig. 2) but it contains, in every row, conditions
that include at least one core and at most as many cores
as the total number of cores.

6 Thermal Simulation Approach

In order to evaluate the candidates, the test application time
and the test overheating probability should be computed as
explained in Section 5. In order to calculate the test appli-
cation time and the test overheating probability, the temper-
atures of the cores are required. Therefore, for every
candidate schedule which is examined by the meta-
heuristic (particlei in Fig. 8), thermal simulation should be
performed. Thermal simulation is in the main loop in Fig.
8 which itself is in the main loop in Fig. 6. This means that
the thermal simulation which is performed inside the opti-
mization loop is repeated numerously.

On the other hand, the thermal simulation is the slowest
step in the iterative part of the algorithm. Therefore, the
thermal simulation is the bottleneck for the number of the
SoC cores which can be handled by the proposed method.
In addition to being the limiting factor for the number of
cores, the slow thermal simulation is also a bottleneck for

the quality of the schedules. Since the optimization meta-
heuristic will have a time consuming process inside its
main loop, the time required to achieve a quality schedule
will be excessively large and impractical, thus the quality
should be sacrificed by ending the optimization process
prematurely. It is, therefore, important to use a fast thermal
simulation approach. In the following, the generic thermal
simulation scheme is reviewed and then a fast solution is
proposed.

The thermal simulation involves two parts, the thermal
model and a way to solve the model response to the
given input power. A widely used thermal model for
chips is a lumped element model. It means that the chip
is modeled as a combination of thermal resistances and
thermal capacitances. As an example, HotSpot which is a
thermal simulation tool uses such a model [14]. An
example for such a thermal model is given in Fig. 11.
A typical thermal model consists of a number of thermal
elements connected to each other. A connection point of
thermal elements is called a node. In Fig. 11, two cores
are modeled as two nodes which are connected to two
exclusive power sources. Power sources represent the
power consumed by the cores.

The input power consists of the static power and the
dynamic power. The static power depends on the chip
and on the temperature, while the dynamic power de-
pends on the chip and on the input test sequence. Both
of the static power and the dynamic power are time-
variant, but for practicality reasons, it is assumed that
the power is constant during a simulation cycle (a
discrete-time model is assumed). Therefore, in the fol-
lowing we focus on a single simulation cycle in which
the input power is constant. The input power is updated
with new static and dynamic power values, based on the
results of the previous simulation cycle and then the
simulation for the next cycle is performed.

Assume that the thermal model consists of W nodes
and C is the number of cores. In a good thermal model,
usually the number of nodes is much larger than the
number of cores, C ≤ W, (e.g., six thermal nodes for
two cores) as shown in Fig. 11. Assume that P is the
power vector and Θ is the temperature vector. The
mathematical representation of the thermal model is a

Core 1

Core 2

Resistance

Capacitance

Ambient

Power Source

Fig. 11 An example of a lumped element thermal model

J Electron Test (2013) 29:499–520 513

system of ordinary differential equations as shown in
the following.

A� d

dt
Θþ B�Θ ¼ P ð24Þ

The properties of the thermal model are encapsulated into
twoW ×W matrices A and B.Θ and P areW × 1 temperature
and power vectors. The model which is used in this paper is
similar to what described here and its corresponding character-

istic Eq. (24) is identical to HotSpot’s [14]. The mathematical
representation of this model, Eq. (24), is a system of linear
constant-coefficient differential equations and therefore it is a
Linear Time-Invariant (LTI) system [19]. In fact the thermal
model is a linear time-invariant lumped element model and the
thermal elements are linear and time invariant.

As an example, assume that a SoC has two cores (C=2)
and assume that the model has four nodes (W=4). The
expanded characteristic equation of the model is

a0 0
0 a1

0 0
0 0

0 0
0 0

a2 0
0 a3

2
64

3
75� d

dt

θ0
θ1
θ2
θ3

2
64

3
75þ

b0;0 b0;1
b0;1 b1;1

b0;2 b0;3
b1;2 b1;3

b0;2 b1;2
b0;3 b1;3

b2;2 b2;3
b2;3 b3;3

2
664

3
775�

θ0
θ1
θ2
θ3

2
64

3
75 ¼

P0

P1

0
0

2
64

3
75:

θ0 and θ1 are core temperatures which should be taken care
of. P0 and P1 are the powers applied to the cores.

The second part of the thermal simulation is to solve the
model in order to find its response to the input power.
Usually, the simulation time is divided into smaller intervals
in which the power could be assumed to be fixed. Then Eq.
(24) is solved iteratively for each interval.

In order to solve (24) there are two distinct approaches, the
numerical approximation and the closed form solution. The
numerical approximations are usually done with very small
intermediate steps, and as a result, the complete temperature
curve for the interval is constructed. HotSpot uses the Runge–
Kutta method which is for numerical approximation [14].
Though only the temperature at the end of the interval is
registered, many points of the temperature curve are calculat-
ed. Since we do not need such a detailed temperature curve
and we only need the temperature at the end of the intervals,
the equation is solved analytically in order to give the temper-
ature at the end of the intervals in a closed form.

In addition to the granularity of the temperature curve,
another important factor, which affects the simulation speed,
is how frequently Eq. (24) is required to be solved. The sched-
uling technique presented in this paper, requires large number
of simulations. When the system is LTI and the only variation
in the inputs (within the simulation intervals) is them being
scaled, the differential equation needs to be solved only once at
the very beginning. The responses to the scaled versions of the
previous inputs are obtained by scaling the previous outputs by
the same factor. Since the computational cost of the scaling is
less than the computational cost of solving the equation from
scratch, a method which utilizes the LTI properties (i.e., scal-
ing and superposition [19]) is faster than the Runge–Kutta
method when numerous simulations are required.

In situations that the thermal simulator is invoked
quite frequently, the input power is just being scaled

from cycle to cycle, and the thermal model is kept
unchanged, the closed form solution is faster. Therefore,
we continue with the simulation approach which is based
on the closed form solution. By using Laplace transform
[19] and assuming that θ0 is the initial temperature vector
and θt is the temperature at the end of an interval, the
closed form solution is

θt ¼ exp −A−1 � B� t
� �� θ0

þ I−exp −A−1 � B� t
� �� �� B−1 � P:

ð25Þ

I is the identity matrix of size W and t is the length of the
interval. Now, a and β matrices are defined as follows.

aaaa ¼ exp −A−1 � B� t
� � ð26Þ

bbb ¼ I−aaaað Þ � B−1 ð27Þ

With the help of a and β, Eq. (25) could be written as

θt ¼ aaaa � θ0 þ bbb � P: ð28Þ

Equation (28) could be understood intuitively by thinking
about the system being LTI. According to the superposition
principle, the effects of the initial value and the input power
will add up, thus the plus sign between the two terms. The
scaling property of the system could also be verified rapidly,
as the scaling of an input, θ0 or P with a certain factor, will
scale its own effect by the same factor.

The thermal simulation is done in two phases, an
initialization phase and then the operational phase. In
the initialization phase the model is invoked and based
on it α and β are computed (this is shown in Fig. 6 in
regard to the overall scheduling method). The

514 J Electron Test (2013) 29:499–520

operational phase is the iterative computation of the
temperatures for different times using (28). Since the
thermal model is time invariant, the initialization is
done only once at the very beginning of the design
process. Throughout the offline scheduling phase, only
the iterative computations are performed.

In the closed form solution, the most computationally
expensive part is the matrix exponential for a which is a
part of (26). The matrix exponential could be computed
using numerical methods such as Padé approximation
[13]. In fact the initialization phase for the closed form
solution includes calculating (26) and therefore it is very
time consuming, however the operational phase only in-
cludes computing (28) and therefore it is fast.

On the other hand, for the Runge–Kutta approach [21],
the initialization is fast since there is no need for compu-
tations which are as heavy as (26), but the operational
phase is slow since the equation is required to be solved
in many fine steps through large number of intermediate
time instances. The conclusion is that the Runge–Kutta
method is faster for limited number of simulations and
the closed form method is faster for large number of
simulations. The experiments in Section 7.1 will support
this statement.

7 Experimental Results

Two distinct contributions of this paper, the thermal simu-
lation approach and the scheduling technique are experi-
mentally examined in this section. All experiments are
performed on a desktop computer with Intel® Xeon®
W3520 processor and 8 GB of memory. The experiments
for thermal simulation are presented first.

7.1 Experiments for the Suggested Thermal Simulation
Approach

A thermal simulation approach based on the closed form
solution is suggested in Section 6 in order to elevate the

simulation speed. The problem with numerical approxima-
tion approaches for temperature simulation is that they are
very slow for large number of simulation cycles especially
when there are a large number of cores. Thermal simulations
for a SoC with 100 cores and for different numbers of
simulation cycles are performed using the proposed ap-
proach and using HotSpot [14], and the CPU times are
plotted in Fig. 12a.

The numerical approximation approaches, such as the
one used by HotSpot, perform faster than the suggested
approach for a small number of simulation cycles, as de-
tailed in Section 6. But for simulations longer than 1,700
cycles, the proposed approach is faster than HotSpot, as
shown in Fig. 12a. In general, this difference increases with
a rate close to 0.011 s per cycle and it reached a CPU time
difference of 100 s for 10,000 simulation cycles. This is
important since for every edge in every candidate schedule
tree thermal simulation is performed for the number of test
cycles plus cooling cycles.

Thermal simulations are performed using the proposed
approach and using HotSpot [14] for 10,000 simulation
cycles for different numbers of cores, and the CPU times
are plotted in Fig. 12b. In general, the CPU time difference
increases rapidly with the number of cores and the differ-
ence reaches 100 s for 100 cores. This is also important,
since achieving a good schedule in reasonable time becomes
infeasible with a small increase in the number of cores,
when the slower approach is in use.

7.2 Experiments for the Proposed Test Scheduling Technique

The proposed SoC test scheduling technique is experimen-
tally evaluated in this section. The first set of experiments is
performed on SoCs with different number of cores and the
CPU times are reported. Then, experiments are done for
ITC’02 [17] benchmark chips with random test switching
activities generated using a Markov chain similar to [24].
Finally, an experiment is performed for the d695 benchmark
chip from ITC’02 with real switching activities based on
real test data from [22]. The costs of the test schedules and

HotSpot

Suggested
Approach

Number of coresSimulation cycles

C
P

U
 ti

m
e

[s
ec

]

HotSpot

Suggested
Approach

2000 4000 6000 8000 100000 20 40 60 80 1000

20

40

60

80

100

0

120

140

160

180

C
P

U
 ti

m
e

[s
e c

]

20

40

60

80

100

0

120

140

160

180
a bFig. 12 CPU times for thermal

simulation with HotSpot [14]
and with the suggested
approach. The simulations are
performed a for 100 cores for
different numbers of simulation
cycles and b for 10,000
simulation cycles for different
numbers of cores

J Electron Test (2013) 29:499–520 515

the test schedule sizes are reported for the last two sets of
experiments. The experimental setup is briefly introduced at
the beginning and then the results are presented.

The static power is computed using the temperature depen-
dent model given in [16]. The temperature simulations are
performed using the approach proposed in Section 6. The
spatial temperature error is assumed to have normal distribu-
tion (0, 10) ranging from −20 °C to +20 °C with a resolu-
tion of 0.5 °C (M=80). The temporal temperature error is also
assumed to have a normal distribution (0, 10) ranging from
−40 °C to +40 °C with a resolution of 0.5 °C. It is assumed
that there are 20 temperature error clusters (L=20).

The balancing coefficient is assumed to be equal to ten
(BC=10). It is assumed that each entry in a linear schedule
table occupies 64 bits and each entry in a branching table
per core per edge occupies 32 bits. For example a node with
two succeeding edges for a SoC with two cores, occupies
(2×2×32) = 128 bits.

The first set of experiments is performed on a number of
SoCs with different number of cores ranging from 5 to 50
cores. Markov chains are used to generate random test
switching activity sequences having random averages and
random lengths. The experiments are performed for at least
five randomly generated sets of tests for each chip and the
average CPU times are reported in Table 1. Note that even for
a 50-core SoC, the CPU time remains in an affordable range.

The second set of experiments is performed on ITC’02
SoCs with randomly generated test switching activities sim-
ilar to the first set of the experiments but this time tests for a

chip have constant power averages and length. The pro-
posed technique is compared with two traditional methods
similar to the methods proposed in [3]. The first traditional
method is an Offline method which uses only one linear
schedule and the other traditional method is a Hybrid meth-
od which selects a linear schedule out of a set of pre-
generated schedules only once during the test process. The
test costs offered by traditional methods and by the pro-
posed technique are computed according to Eq. (4) and are
reported in Table 2.

The cost improvements reported in [1, 2] are at most
20 % better than the Offline method and at most 7 % better
than the Hybrid method, while in this paper, in average, the
adaptive method reduces the cost by 76 % over the Offline
method and 43 % over the Hybrid method. The proposed
adaptive method has reduced the cost by 76 % compared to
the Offline method, while the cost reduction achieved by the
Hybrid method is 52 %. This difference demonstrates the
advantage of the proposed adaptive method.

The ATE memory occupied to store the schedules (i.e.,
the schedule size) is reported in Table 3. The cost reduction
comes with increase in the schedule size because of in-
creased number of linear schedules and branching tables,
which consume ATE memory space. The average increase
in schedule size compared to Offline is 87 % for Hybrid and
308 % for the proposed method. When compared to Hybrid,
the average schedule size increase for the proposed method
is 117 %. The increase in the schedule sizes reported in
[1, 2] are in the range 187–291 % compared to Offline and

Table 1 CPU times for SoCs
with different number of cores Number of cores 5 10 15 20 25 30 35 40 45 50

CPU time [Sec] 9 46 52 132 208 308 590 762 1141 1367

Table 2 Test cost for traditional
and proposed test scheduling
techniques

ITC’02 chips Cost Percentage reduction
relative to the Offline

Percentage reduction
relative to the Hybrid

Offline Hybrid Proposed Hybrid Proposed Proposed

a586710 1.44 0.56 0.54 61 62 4

d281 0.69 0.45 0.03 35 96 93

d695 0.50 0.12 0.06 76 88 50

f2126 2.71 1.39 0.51 49 81 63

g1023 5.09 4.27 1.99 16 61 53

h953 0.46 0.14 0.11 70 76 21

p22810 1.22 0.70 0.69 43 43 1

p34392 0.75 0.72 0.06 4 92 92

p93791 1.02 0.13 0.08 87 92 38

q12710 1.32 0.40 0.23 70 83 42

t512505 0.48 0.23 0.13 52 73 43

u226 1.05 0.43 0.37 59 65 14

Average 52 76 43

516 J Electron Test (2013) 29:499–520

43–84 % compared to the Hybrid. These numbers fall with-
in the ranges reported for the proposed method in this paper.

The increase in the usage of ATE memory (as given in
Table 3) refers only to the memory space used to store the
schedule. This is usually small, compared with the memory
space used to store the test patterns. Therefore a large increase
in the schedule size is very likely to be translated into a small
increase in the usage of the ATE memory as a whole.

The proposed scheduling method will utilize the available
ATE memory even if a very small reduction in cost (e.g., from
0.70 to 0.69 for p22810 in Table 2) is achieved. Since the
number of nodes contributes to the scaled cost function (Eq. 6),
a larger schedule will not be generated (e.g., 195 % larger for
p22810 in Table 3 comparedwith hybrid solution) if it does not
reduce the cost compared with a smaller schedule.

The ATE memory constraint will affect the quality of the
adaptive test schedules. The proposed algorithm will not
generate even an offline schedule when the available mem-
ory is too small. By increasing the available ATE memory,
first an offline schedule and then a hybrid schedule will be
generated. With the further increase of the memory con-
straint, better schedules with lower costs will be generated.
This trend continues until the cost reaches a minimum
beyond which further cost reduction is impossible. The

minimum cost is usually dictated by the branching over-
heads (time to read sensors and react accordingly). Such a
trend is experimentally demonstrated in [1].

The last experiment is performed on d695 (one of the
ITC’02 chips) using the real test switching activities. The
costs and schedule sizes are reported in Table 4. The Hybrid
method improves the cost compared to Offline method by
59 % while the proposed adaptive technique achieves a
reduction of 71 %. The proposed technique improves the
cost by 30 % over Hybrid method. The schedule size for the
proposed method is 169 % and 49 % larger than Offline and
Hybrid, respectively. As we expected the improvement in
cost and the increase in the schedule size are in the ranges
suggested by the second set of experiments.

The test sequences are stored elsewhere and are not
affected by the schedule. The test size is larger than the
schedule size, and therefore the effect of increased schedule
size on the total consumed ATE memory is small. For
example consider the experiments with the d695 chip with
real switching activities. The size of the schedule for the
adaptive solution is approximately 7 Kbit while the test size
is approximately 1,324 Kbit. Therefore the percentage in-
crease in total utilized ATE memory from the offline solu-
tion to the adaptive solution is 0.34 %. This means that the

Table 3 ATE memory utilized
only for schedule in traditional
and in proposed techniques

ITC’02 chips Utilized memory for schedule [bit] Percentage increase
relative to the Offline

Percentage increase
relative to the Hybrid

Offline Hybrid Proposed Hybrid Proposed Proposed

a586710 1216 1888 4768 55 292 152

d281 1088 1280 2624 18 141 105

d695 1280 2176 3392 70 165 54

f2126 704 960 2368 36 236 147

g1023 576 1088 4480 89 678 312

h953 576 1088 1472 89 155 35

p22810 704 1888 5568 168 691 195

p34392 832 1472 2688 77 223 83

p93791 704 1920 3136 173 345 63

q12710 640 1024 1664 60 160 62

t512505 1152 2336 3712 103 222 59

u226 320 672 1568 110 390 133

Average 87 308 117

Table 4 Cost and ATE memory
utilized for schedule for d695
with real test data

Percentage change
relative to the Offline

Percentage change
relative to the Hybrid

Offline Hybrid Proposed Hybrid Proposed Proposed

Cost 20.84 8.53 5.93 −59 −71 −30

Utilized memory for
schedule [bit]

2688 4992 7232 +86 +169 +49

J Electron Test (2013) 29:499–520 517

adaptive method achieves 71 % reduction in cost relative to
the offline method, with a small expense of 0.34 % increase
in the occupied ATE memory.

8 Conclusion

This paper presents an adaptive SoC test scheduling tech-
nique to deal with spatial and temporal temperature devia-
tions, caused by process variations in deep submicron
technologies. The main contribution is an algorithm to gen-
erate a set of efficient test schedules, each corresponding to
a different thermal behavior of different cores during test.
The on-chip temperature sensors are used to monitor the
actual temperatures of the different cores and to guide the
selection of the corresponding test schedules accordingly,
during the test. This way, the overall test efficiency will be
improved considerably.

The proposed technique consists of two distinct algo-
rithms, the test scheduler and the thermal simulator. The
thermal-aware test scheduler is a constructive algorithm
which generates tree-based test schedules by putting the
optimized sub-trees together. Sub-tree optimization is basi-
cally a chip-clustering algorithm which involves a linear test
scheduling algorithm. A new sub-tree scheduling algorithm
is proposed in this paper. The linear scheduling algorithm
requires a thermal simulator in its main loop. A fast thermal
simulation approach is proposed in order to speed up the
thermal-aware test scheduling algorithm.

The proposed adaptive test scheduling technique generates
process-variation and temperature aware test schedules for
SoCs with large number of cores. The algorithm has a rela-
tively short run-time and generates high quality test schedules.
The proposed technique has been experimentally evaluated
using a number of experiments including ITC’02 benchmark
SoCs. The proposed technique outperforms the Offline and the
Hybrid methods in average by 76 % and 43 %, respectively.

9 Quick Reference

Notation Description Equation

A Capacitances vector in the
thermal model

24–26

ATS Applied Test Size 2–4

B Resistances vector in the
thermal model

24–27

BC Balancing Coefficient 4

Branching table The table that determines
with which linear schedule
table a specific chip should
be tested. (See the example
in Section 2)

C Number of cores

Chip cluster A group of chips with similar
thermal behavior that are
tested with the same Linear
schedule table. A chip cluster
corresponds to an edge in the
schedule tree.

Chip-cluster border The border line between two
Chip clusters. For two
adjacent Chip clusters the
border is a set of natural
numbers, each corresponding
to an individual core. A
border represents a particular
error value. (See Section 5.4)

Chip clustering In short, it is finding the
optimal partitioning of the
C-dimensional error space
into an already known
number of Chip clusters
for the nodes of a tree.
(See full explanation
in Section 5.4)

CTF Cost of the Test Facility
per time unit

1

EATS Expected Applied Test Size 7

EB temperature Error-
clusters Borders

9, 11

ECCP Error Cell Change
Probabilities

10, 14

ECCPbefore normalization ECCP before
being normalized

9–10

ECL Error-Cell Labeling 12

ECP Error-Cells Probabilities 11–12,
17

ECPafter branching ECP just after branching 12–13,
15

ECPafter overheating ECP just after overheating 13–14,
16

ECPafter temporal changes ECP after temporal changes
(according to temperature
error model)

14, 17

Error cluster A range of error values which
are to be treated as one single
error value. Error clusters are
separated by Error-clusters
Borders, EB.

ETAT Expected Test Application Time 8

ETOP Expected Test Overheating
Probability

19–20

ETTpS Effective Test Time per Second 2

HTT High Temperature Threshold 13

I Identity matrix 25, 27

Knee The point that the output
is equal to the input and
not equal to one, in the
proposed reciprocal limiter.

21

L Number of temperature
error clusters

Linear schedule table A schedule that specifies
stop/start times for the test
of all cores individually.
This will correspond to an
edge or to a single Chip
cluster. (See the example
in Section 2)

518 J Electron Test (2013) 29:499–520

LOP Leaves’ Overheating
Probabilities

18–19

M Number of temperature
error values

N Number of nodes in a tree

NATS Nodes’ Applied Test Sizes 7

NCF Normalized Cost Function 4, 6

NCL Node’s Cluster Label 12

NnOP Node’s not Overheating
Probability

16, 18

Node A node in the schedule tree
that corresponds to the
ending of a Linear schedule
table (i.e., a place that
branching is possible).

NP Nodes’ Probabilities 7–8,
15, 19

NPT expected Number of Partial
Trees, similar to the current
partial tree, that are
required to construct the
complete schedule tree

21

NTAT Nodes’ Test Application Times 8

NTT Normalized Test Throughput 3–4

P Power vector 24–25,
28

Partial cost function NCF evaluated for a
part of the schedule
tree (e.g., a sub-tree).

POC Price of One Chip 1

PSO Particle Swarm Optimization

PTOP Predicted Test
Overheating Probability

20

Q Number of leaf nodes 19

S Number of succeeding edges
for a node

SCF Scaled Cost Function that is
used to select the unfinished
trees out of a group of
offspring trees.

6

ST Simulated Temperature 13

STEP Spatial Temperature
Error Probabilities

11

TAM Test Access Mechanism

TAT Test Application Time 2–4

Temporal
error period

The period for the discrete-
time temperature error
model. The error values
are updated regularly
with a frequency equal to
1/Temporal_error_
period. (See Section 4)

TEV Temperature Error Values 5, 9

THT Test Handling Time 2

TOP Test Overheating Probability 1–4

TT Test Throughput 1–2

TTEP Temporal Temperature
Error Probability

5, 9

W Number of nodes in the
thermal model

α Transfer matrix for
initial temperatures

26–28

β Transfer matrix for
power values

27–28

Θ Temperatures vector in
thermal model

24

θ0 Initial temperatures 25, 28

θt Temperatures at the end
of the interval of size t

25, 28

Temperatures at t-th time
sample (in Section 2)

θw Temperature of w-th
thermal node

λ The output of the proposed
limiter, applied on the
expected number of partial
trees, NPT. l ≤ (knee+1)

20–21

Acknowledgments The authors would like to thank Soheil Samii for
providing cycle-accurate test switching-activities data for SoC d695.

References

1. Aghaee N, Peng Z, Eles P (2011) Adaptive temperature-aware SoC
test scheduling considering process variation. Digit syst des, pp
197–204

2. Aghaee N, Peng Z, Eles P (2011) Process-variation and tempera-
ture aware soc test scheduling using particle swarm optimization.
Int des and test, pp 1–6

3. Aghaee N, He Z, Peng Z, Eles P (2010) Temperature-aware SoC
test scheduling considering inter-chip process variation. Asian test
symposium, pp 395–398

4. Bonhomme Y, Girard P, Landrault C, Pravossoudovitch S (2002)
Test power: a big issue in large SOC designs. Electron des, test,
and appl, pp 447–449

5. Chandran U, Zhao D (2009) Thermal driven test access routing in
hyper-interconnected three-dimensional System-on-Chip. Defect
and fault toler in VLSI syst, pp 410–418

6. Clabes JG et al (2004) Design and implementation of the
POWER5 microprocessor. Des autom conf, pp 670–672

7. Cheng K-T, Dey S, Rodgers M, Roy K (2000) Test challenges for
deep sub-micron technologies. Des autom conf, pp 142–149

8. Choi JH, Murthy J, Roy K (2007) The effect of process variation
on device temperature in finFET circuits. Comput-aided des, pp
747–751

9. He Z, Peng Z, Eles P (2010) Multi-temperature testing for core-
based system-on-chip. Des, autom and test in Eur, pp 208–213

10. He Z, Peng Z, Eles P (2009) Thermal-aware test scheduling for
core-based SoC in an Abort-on-First-Fail test environment. Digit
syst des, pp 239–246

11. He Z, Peng Z, Eles P (2008) Simulation-driven thermal-safe test
time minimization for System-on-Chip. Asian test symposium, pp
283–288

12. He Z, Peng Z, Eles P, Rosinger P, Al-Hashimi BM (2008)
Thermal-aware SoC test scheduling with test set partitioning and
interleaving. J Electron Testing 24(1–3):247–257

13. Higham NJ (2005) The scaling and squaring method for the matrix
exponential revisited. SIAM J Matrix Anal Appl 26(4):1179–1193

14. Huang W, Stan MR, Skadron K, Sankaranarayanan K, Ghosh S,
Velusamy S (2004) Compact thermal modeling for temperature-
aware design. Des autom conf, pp 878–883

15. IEEE P1687 (IJTAG) http://grouper.ieee.org/groups/1687/
16. Liao WP, He L, Lepak KM (2005) Temperature and supply voltage

aware performance and power modeling at microarchitecture level.
IEEE Trans Comput Aided Design 24(7):1042–1053

J Electron Test (2013) 29:499–520 519

http://grouper.ieee.org/groups/1687/

17. Marinissen EJ, Iyengar V, Chakrabarty K (2002) A Set of
Benchmarks for Modular Testing of SOCs. Int test conf, pp 519–
528

18. Nebel W, Mermet J (1997) Low power design in deep submicron
electronics. Kluwer, Dordrecht

19. Oppenheim AV, Willsky AS, Nawab SH (1996) Signals and sys-
tems, 2nd edn. Prentice-Hall, Upper Saddle River

20. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimiza-
tion, an overview. Swarm Intell 1(1):33–57

21. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002)
Numerical recipes in C: the art of scientific computing, 2nd edn.
Cambridge University Press, New York

22. Samii S, Selkala M, Larsson E, Chakrabarty K, Peng Z (2008)
Cycle-accurate test power modeling and its application to SoC test
architecture design and scheduling. IEEE Trans Comput Aided
Des Integr Circuits Syst 27(5):973–977

23. Yang Y, Gu Z, Zhu C, Dick RP, Shang L (2007) ISAC:
integrated space-and-time-adaptive chip-package thermal analy-
sis. IEEE Trans Comput Aided Des Integr Circuits Syst
26(1):86–99

24. Yao C, Saluja KK, Ramanathan P (2011) Thermal-aware test
scheduling using on-chip temperature sensors. VLSI des, pp 376–
381

25. Yao C, Saluja KK, Ramanathan P (2011) Temperature dependent
test scheduling for multi-core system-on-chip. Asian test sympo-
sium, pp 27–32

26. Yao C, Saluja KK, Ramanathan P (2009) Partition based SoC test
scheduling with thermal and power constraints under deep submi-
cron technologies. Asian test symposium, pp 281–286

27. Yu TE, Yoneda T, Chakrabarty K, Fujiwara H (2009) Test infra-
structure design for core-based system-on-chip under cycle-

accurate thermal constraints. Asia and s pac des autom conf, pp
793–798

28. Zorian YA (1993) Distributed BIST control scheme for complex
VLSI devices. VLSI test symposium, pp 4–9

Nima Aghaee is a Ph.D. student at Embedded Systems Laboratory,
Linkoping University, Sweden. His research interests include test tech-
nology and digital signal processing. He has a M.Sc. in embedded
systems design from ALaRI Institute, Switzerland, a M.Sc. in electron-
ics engineering from TMU University, Iran, and a B.Sc. in electronics
engineering from SBU University, Iran.

Zebo Peng received the Ph.D. degree in computer science from
Linkoping University, Linkoping, Sweden, in 1987. Currently, he
is a Professor of computer systems and Director of the Embedded
Systems Laboratory, Linkoping University. His research interests
include design and test of embedded systems, SoC testing, hard-
ware/software co-design, and real-time systems. He has published
over 300 technical papers and co-authored several books in these
areas.

Petru Eles is a Professor of embedded computer systems with the
Department of Computer and Information Science (IDA), Linkoping
University, Linkoping, Sweden. His current research interests include
embedded systems, real-time systems, electronic design automation,
cyber-physical systems, hardware/software codesign, low power sys-
tem design, fault-tolerant systems, design for test. He has published a
large number of technical papers in these areas and co-authored several
books.

520 J Electron Test (2013) 29:499–520

	Process-Variation and Temperature Aware SoC Test Scheduling Technique
	Abstract
	Introduction
	Motivational Example
	Problem Formulation
	Temperature Error Model
	Adaptive Test Scheduling
	Tree Construction
	Linear Schedule Tables
	Sub-Tree Evaluation
	Sub-Tree Scheduling
	Remarks

	Thermal Simulation Approach
	Experimental Results
	Experiments for the Suggested Thermal Simulation Approach
	Experiments for the Proposed Test Scheduling Technique

	Conclusion
	Quick Reference
	References

