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Abstract—Temperature has become an important issue in
nowadays MPSoCs design due to the ever increasing power
densities and huge energy consumption. This paper proposes
a temperature-aware task mapping technique for energy opti-
mization in systems with dynamic voltage selection capability. It
evaluates the efficiency of this technique, based on the analysis
of the factors that can influence the potential gains that can be
expected from such a technique, compared to a task mapping
approach that ignores temperature.

I. INTRODUCTION

In multi-processor platform, task mapping, first addressed
by Chu et al. [3], is the process of allocating computational
tasks and data transfers to processing elements (PEs) and
communication links (CLs) [16]. Known as a NP complete
problem [6], task mapping in distributed system has very often
been solved using efficient heuristics that can be applied to
large scale applications.

Due to increasing demands on performance, embedded
applications are frequently implemented on multiprocessor
systems on chip (MPSoC). Very often they are required to
satisfy strict timing constraints and are functioning with a
limited energy budget. One of the preferred approaches for
reducing the overall energy consumption is dynamic voltage
selection (DVS). This technique exploits the available slack
times by reducing the voltage and frequency at which the
processors operate and, thus, achieves energy efficiency. In
the context of system-level design, energy optimization should
be achieved by jointly conducting task mapping, scheduling
and DVS in the design flow. Some proposed algorithms
[16], [21] do mapping, scheduling and DVS in successive
steps and sequentially conduct each step in every iteration of
the optimization loop, others, oppositely, make simultaneous
decisions for mapping, scheduling and DVS [8], [14].

The high power densities achieved in current system of chip
(SoCs) do not only result in huge energy consumption but also
lead to increased chip temperatures. High temperatures can
impact reliability as well as cooling and package cost. Based
on the development of temperature modeling and analysis
tools e.g. [5], [20], several temperature-aware system level
design approaches have emerged. Wang et al. [18] proposed
an approach to task scheduling under peak temperature con-
straints. Design space exploration for MPSoCs architectures
under area and thermal constraints is presented by Li et al. [9],

while in [15] Sankaranarayanan et al. advocate thermal aware
floor-planning. DVS, as an important energy optimization
technique, has also been extended to be temperature-aware in
our previous work [2]. For task mapping, Xie et al. [19] are
the first to consider the temperature issue but their algorithm
does not use DVS for energy optimization.

The objective of this paper is to propose a new temperature-
aware task mapping approach with the goal of energy opti-
mization. A genetic algorithm for task mapping is introduced
which is based on a temperature aware DVS technique. We
also perform a thorough analysis of some parameters that
influence the potential gains that can be expected from a
temperature aware task mapping technique, compared to an
approach that ignores temperature.

This paper is organized as follows: section II will introduce
our system and application model as well as the temperature-
aware voltage selection technique. A motivational example
is then given in section III. The optimization technique is
described in section IV and the experimental results are
presented in section V. Finally, conclusions are drawn in
section VI.

II. PRELIMILRIES
A. System Model

We consider systems realized as bus based multi-processor
architectures on chip. We assume that the processors can
operate in several discrete execution modes. An execution
mode is characterized by a pair of supply and body bias
voltages: (Vaq, Vbs). Each execution mode has an associated
frequency and power consumption (dynamic and leakage).
The functionality of the application is captured as a set
of task graphs. In a task graph G(IL,T"), nodes 7 € II
represent computational tasks, while edges 7 € I' indicate
data dependencies between tasks (communication). For each
task, the worse case number of cycles to be executed is given.
And each task is annotated with deadlines that have to be met
at run-time.

B. Temperature-Aware DVS

In [1] we have presented an approach to combined supply
voltage selection and adaptive body biasing. Given a multipro-
cessor architecture and a mapped and scheduled application,
the DVS algorithm in [1] calculates the appropriate execution



modes (V4 and V) for each task, such that the total energy
consumption is minimized. Another input to the algorithm
is the dynamic power profile of the application, which is
captured by the average switched capacitance of each task.
This information will be used for calculating the dynamic
energy consumed by the task in a certain execution mode
according to the energy model presented in [1]. Similarly, in
[1] the equations are presented which are used to calculate
leakage energy, during the optimization process. However,
since leakage strongly depends on temperature, an obvious
question is which temperature to use for leakage calculations.
Ideally, it should be the temperature at which the chip will
work when executing the application. This temperature, how-
ever, is not known, since the algorithm is just calculating the
voltages at which to run the system and these voltages are
influencing the energy dissipation which, again, is determining
the temperature.

The algorithm in [1] requires the designer to introduce an
assumed temperature which is used at energy optimization.
This, of course, leads to suboptimal results, since the tem-
perature used for energy calculation during voltage selection
is different from the actual temperature at which the chip
works. In order to overcome the above problem, in [2] we
have proposed a temperature aware DVS technique which is
based on an iterative approach as illustrated in Fig. 1.
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Given is a task graph mapped and scheduled on a multicore
SoC, and the average switched capacitance for each task. A so
called assumed” temperature, at which each core is supposed
to run, is also fixed as input. The voltage selection algorithm
will determine, for each task, the voltage modes (Vg and
Vps) such that energy consumption is minimized. Based on
the determined voltage modes (and the switched capacitances
known for each task) the dynamic power profiles are calculated
and the thermal analysis is performed and the temperature is
determined for each core in steady state. This new temperature
is now used again for voltage selection and the process is
repeated until the temperature converges. Convergence means
that the actual temperature values used at voltage selection
correspond to the temperature at which the chip will function

when running with the calculated voltages.

Thermal analysis in our DVS technique is based on HotSpot
[5], our modifications to HotSpot, in order to capture the
dependence of leakage on temperature, are presented in [2].
As shown in [2], in most of the cases, convergence is reached
in less than 5 iterations.

The above DVS technique assumes that the task graph is
already mapped. If this mapping, however is performed before
the DVS step, it has to be based on an approach which
ignores the temperature at which cores are running. As we will
show in the next section, this can result in significant energy
losses. Therefore, in the rest of this paper, we will present and
evaluate a temperature aware task mapping technique.

III. MOTIVATIONAL EXAMPLE

In this section we highlight the importance of considering
temperature during the task mapping process. Consider an
application containing five tasks (Fig. 2). They are going to be
mapped on two identical processing elements: PE1, PE2. The
application has a global deadline of 0.004s. The workload of
the task taskl..task5 is (in clock cycles) 3.32 104, 2.5 % 104,
3.0 * 10°, 3.5 % 10%, 5.5 % 10° respectively, and their average
switched capacitance is 3.9 * 1078, 3.9 % 1078, 3.5 % 1078,
3.6 1078, 3.6 * 10~® correspondingly.

Fig. 2. Motivational Example: Task Graph
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Fig. 3. Motivational Example: Two Task Mapping alternatives

Let us consider the two mapping alternatives in Fig. 3. For
each of the two mapping alternatives, the following steps are
performed ':

IFor simplicity in this example we do not consider the energy consumed
for communication, this energy, however, is calculated in our mapping
optimization flow.



1) Construct a task schedule which determines the order of
execution.

2) Run the temperature unaware DVS algorithm (the one
described in [1]) which will generate the voltage levels
for each task. As discussed in section II-B, the DVS al-
gorithm considers, for energy calculation, an ”assumed”
temperature provided by the designer (in our case 90°C).

3) Calculate the consumed energy for each task and for
the whole system, considering that the application runs
at the assumed temperature. This energy (denoted E)
in Table I), differs, of course, from the actual energy
dissipated by the application, but it constitutes the best
approximation that can be obtained without a tempera-
ture aware technique.

4) Using the voltage obtained at step 2, perform the thermal
analysis of the system and determine the temperature for
each core in steady state.

5) Using the temperature obtained in step 4, calculate the
energy consumed by each task and by the whole system.
This energy (denoted F» in Table I) represents the real
dissipated energy.

Table I shows that energy values F; and Esof the tasks and
the actual steady state temperature of the cores, corresponding
to the two mapping alternatives. It is important to notice that
a designer using a temperature unaware technique has only
access to the energy values F;. Based on these values, the
designer will select the mapping alternative 1 as being more
energy efficient, since the value of El in this case (0.0347J)
is smaller than the one for Mapping2 (0.0351J).

However, if we consider the real energy consumption, Fs, it
turns out that, in reality, Mapping?2 is more energy efficient and
using that mapping, instead of Mappingl, reduces the energy
consumption by 22% (0.0263J instead of 0.0338J). What
this example shows is that temperature has to be taken into
consideration when deciding on an energy efficient mapping
of a MPSoC application. Such a temperature aware mapping
technique is presented in the following section.

TABLE I
MOTIVATIONAL EXAMPLE

Task Temperature(° C) E1(J) E>()
Mapping!:

Task1 PE1:89.7 0.0011  0.0011

Task2 PE2:50.1 0.0008  0.0005

Task3 PE1:89.7 0.0113  0.0113

Task4 PE2:50.1 0.0011  0.0006

Task5 PE1:89.7 0.0204  0.0203

Total 0.0347 0.0338
Mapping2:

Task1 PE1:58.4 0.0011  0.0008

Task2 PE1:58.4 0.0008  0.0005

Task3 PE1:58.4 0.0113  0.0080

Task4 PE1:58.4 0.0011  0.0007

Task5 PE2:70.2 0.0208  0.0162

Total 0.0351  0.0263

IV. MAPPING HEURISTIC

Our temperature aware mapping approach is based on
a genetic algorithm (GA). By imitating and applying the
principles of natural selection and “survival of the fittest” on
a population pool (consisting of several solution candidates),
GAs are able to gradually improve the quality of solutions and
to evolve towards close to optimal result [7]. Each solution
candidate individual is encoded as a string (chromosome)
and is associated with a solution quality (fitness). Based on
their fitness, the individuals are ranked within the selection
pool. In each iteration, the highest ranked individuals are
selected for reproduction by mating (crossover) with other
individuals of the population. The produced offspring replaces
least ranked solutions in the population. Occasionally, new
individuals are also generated by mutation. A mutation is
realized by randomly changing the value of certain genes
of a chromosome. Fig. 4 illustrates the overall flow of our
temperature-aware mapping approach.

The encoding of individual mapping candidate into chromo-
somes is illustrated in Fig. 5. A chromosome is represented
by an array and each element of the array (gene of the
chromosome) captures the mapping of a task to a processing
element. Thus, in Fig. 5, according to Mapping 1, Task2 is
mapped to PE2 and Task4 to PEI.

For our heuristic we use a total population size of 25.
The fitness function for each individual is evaluated as the
energy consumption corresponding to the respective mapping
alternative (smaller energy consumption means higher fitness).
In order to compute the energy, the application is scheduled 2
after which our temperature-aware voltage selection presented
in [2] is applied, which calculates voltage levels for each task,
such that the total energy consumption is minimized (section
II-B). Based on the calculated voltage and actual temperatures,
the total consumed energy is obtained.

Based on the energy (fitness) value the individuals for
mating are selected, using a roulette wheel technique [7].
According to this selection rule, high fitness individuals have
a high probability to mate. For mating, multi-point (2 to 8
points) crossover is conducted (Fig. 6). The value of crossover
points is determined based on the length of the chromosome
(number of tasks). Mutations (Fig. 7) are applied with a
probability of 5% on 10% of the chromosome genes (the
percentage has been determined experimentally).

The individuals for the next generation are selected out of
the pool formed by the old population and the new offsprings.
Survival of high fitness (smaller energy) individuals is again
favoured.

The exploration process is terminated when a stopping cri-
terion has been reached and the best ever mapping solution is
returned. We are terminating the optimization process if for ten
successive generations the reduction of energy consumption
for the best solution produced is less than 1%.

2Task scheduling is performed using a list scheduling based approach
described in [4]
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V. EXPERIMENTAL RESULTS

Experimental results presented in this section are aimed at
exploring the efficiency of being temperature-aware for task
mapping, compared to previous mapping algorithms which ig-
nore the temperature issue. For our experiments we have used
both randomly generated applications and real-life examples.

We have randomly generated applications consisting of 60
to 400 tasks. The applications are mapped on a MPSoC
architecture consisting of 9 identical cores. The cores are
running at 10 different supply voltage levels in the range [0.6V,
1.8V]. The temperature model related coefficients are the same
as in [2], while the power models and associated parameters
are the same as in [2] [12] [11]. The total workload of an
application (later referred as TW) is randomly generated in
the interval [107, 9 % 107] cycles. The size of individual tasks
is in the interval [103, 10%] cycles.

We have generated three sets consisting of 50 applications
each. For the first set, S, the applications are such that 75%
of the TW is realized by the tasks with sizes in the interval
[10%, 10°] cycles, while the rest of the TW is realized by
the tasks with sizes in the interval [103, 10%] or [10°, 10°]
cycles. In the second set S, tasks sizes are distributed over
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the whole interval [103, 10°] cycles. Finally, the set S5 consists
of applications, in which task sizes are either in the small or
the large range: only 5% of the TW is realized by tasks with
sizes in the middle range [10%, 10°] cycles, while the rest of
the TW is realized with tasks in the extreme intervals [103,
104] or [10°, 106] cycles.

Given a certain application we run the temperature-aware
task mapping (later referred as TaTM), as described in section
IV (Fig. 4), and obtain the optimized solution corresponding
to an energy consumption E}, (temperature aware). For the
same application we run a task mapping optimization ignoring
temperature (temperature unaware task mapping, later referred
as TnaTM), which is realized by running the same mapping
optimization as described in section IV (Fig. 4), with the
difference that a temperature unaware voltage selection is
used inside the exploration loop. As discussed in the previous
section, this means that energy calculations are based on an
“assumed temperature” instead of the actual temperature at
which the cores run and, thus, the TnaTM is less efficient.
Considering the mapping solution and the voltage levels
produced by the TnaTM approach, we run the temperature
analysis to obtain the real temperature at which the application
will run and, finally, we calculate the consumed energy F,q
(not temperature aware). By comparing F,, with F,;, we can
appreciate the efficiency of using a temperature aware mapping
scheme.

Given a certain application, we define the energy efficiency
factor G of the TaTM, compared to the TnaTM, as G =
(Enta — Eta)/Enta * 100%.

Fig. 8 shows the energy efficiency factor obtained for the
three application sets. For each set the average and maximum
value of G is indicated. It can be observed that, in the case
of applications in which task sizes are very similar (set S7)
the energy efficiency factor is smaller. This means that the
potential gain of applying a temperature aware approach is
larger for the applications with an uneven distribution of task
sizes (set S3).

The explanation for the above phenomenon has its roots in
the exponential dependence of leakage current on temperature.
As a result, cores running at high temperature will dissipate an
unproportionaly high amount of energy. Therefore, a solution
in which temperatures are uniformly distributed among cores
is, in principle, more energy efficient than one in which some
cores run at low and others at high temperature. Balanced
temperature distribution is, in principle, related to a balanced
distribution of load. Such a balanced distribution is more likely
to be obtained with tasks of relatively uniform sizes (set S)
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Fig. 7. Multi-point Mutation



40.00%

35.00% | 33.85%

OAveraged G BMax G| ,q570,

30.00% [

25.00%

20.00%

15.00% [
10.43%

Energy Efficiency Factor (%)

10.00% F :
6.34% 7.02%

5.00%
2.15%

0.00%
S1 S2 S3

Distribution

Fig. 8. Task Size Distribution Influence on G

than in the case of tasks that have very different sizes (set
Ss3). The TaTM approach will actively seek balanced solutions
since those will produce lowest energy. The TnaTM approach,
however, which ignores the dependence of consumed energy
on temperature, can end up with an unbalanced solution
that, according to the energy calculation at the “assumed
temperature”, consumes less energy and also satisfies the time
constraints. While in the case of very similar task sizes, it is
possible that the solution produced by the TnaTM is relatively
balanced, this is much less likely in the case of applications
with uneven task size distribution.

In order to confirm our assumption that the main reason for
the inefficiency of the TnaTM is the unbalanced temperature
distribution, we have drawn the graph in Fig. 9. In order
to characterize the temperature variation among cores, for a
certain solution, we use the standard deviation. With SD_Thna
we denote the standard deviation of core temperatures for a
certain solution produced by the TnaTM approach.
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Fig. 9 shows the average energy efficiency factor G, for
the same three sets of applications as in Fig. 8, as a function
of SD _Tna. As we can see, the more unbalanced the core
temperatures produced by the TnaTM are, the larger the gain

is by using TaTM. For some applications in set S, the TnaTM
produces solutions with balanced (SD_Tna = 0) or close to
balanced temperature. For this case the energy efficiency factor
is zero or close to zero. For applications in set Sy and set S
the TnaTM will never find balanced temperature solutions.

As mentioned previously, for the TnaTM, it is assumed
that the application runs at a certain temperature given by
the designer. For our experiments presented so far, we have
produced the “assumed temperature” in the following way: for
an application we first run the TaTM approach and determine
the temperature at which each core is running; we use, as
”assumed temperature” for the TnaTM approach, the average
of the individual core temperature. This approach is, of course,
not applicable in practice, since a designer who does not have
a temperature aware design tool will not be able to know
the average temperature at which the cores will run. Thus,
in reality, the results obtained with a TnaTM approach are
worse, compared to the TaTM, than shown in Fig. 8 and Fig.
9. Obviously, E,,;,, the energy consumption produced by the
TnaTM approach, is as larger as further away from reality the
designer’s “temperature guess” is.

In Fig. 10 we show the average energy efficiency factor
for the applications in set Sp, for different “temperature
guesses”. If the temperature guess of the designer corresponds
to the average temperature, as considered in our previous
experiments (temperature difference = 0) the average factor
G is identical with the one in Fig. 8. If the temperature guess
is deviating towards larger or smaller temperatures (which in
reality is the case) the discrepancy between the quality of the
TaTM and TnaTM approach is increasing.
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Fig. 11 shows the optimization time needed by our TaTM
approach as a function of the application size. As can be
observed, even very large applications can be handled in
reasonable amounts of time.

We have investigated the efficiency of temperature aware
task mapping using two real-life examples: A GSM voice
codec and a multimedia MPEG4 audio-video encoder. Details
regarding the two applications can be found in [17] and [13],
respectively. The GSM voice codec is composed of an encoder
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and a decoder of GSM frames and consists of 87 tasks, and
it is considered to be mapped on an architecture composed
of 3 cores with 13 voltage modes. The MPEG4 consists of
109 tasks and is also mapped on 3 cores with 13 voltage
modes. The results are presented in Fig. 12 and 13, and they
confirm the values and trends for the energy efficiency factor
G outlined by our previous experiments.
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VI. CONCLUSION

In this paper, we propose a temperature aware task mapping
approach. We have analysed the potential gain that can be ob-
tained by taking temperature into consideration and discussed
main factors which influence the efficiency of the proposed
approach. Based on our experiments, we have demonstrated
that significant energy gain can be obtained by applying the
temperature aware task mapping technique.
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