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Abstract—With new technologies, temperature has become a major
issue to be considered at system level design. In this paper we propose
a temperature aware idle time distribution technique for energy opti-
mization with dynamic voltage scaling (DVS). A temperature analysis
approach is also proposed which is accurate and, yet, sufficiently fast
to be used inside the optimization loop for idle time distribution and
voltage selection.

I. INTRODUCTION

Technology scaling and ever increasing demand for performance
have resulted in high power densities in current circuits, which also
lead to increased chip temperature. At the same time, the amount
of leakage energy consumed can reach levels up to 70% of the
total energy consumption [1]. Due to the strong dependence of
leakage on temperature, growing temperature leads to an increase
in leakage power and, consequently, energy, which, again, produces
higher temperature. Thus, temperature is an important parameter to
be taken into consideration during system level design.

At system level, dynamic voltage selection (DVS) [2] [3] is
one of the preferred approaches for reducing the overall energy
consumption. This technique exploits the available slack times to
achieve energy efficiency by reducing the supply voltage and fre-
quency such that the execution of tasks is stretched within their
deadline. However, very often, not all available slack should or can
be exploited and certain amount of slack may still exist after DVS.
An obvious situation is when the lowest supply voltage is such that,
even if selected, a certain slack is left until the deadline. Another
reason is the existence of a critical voltage [4]. To achieve optimal
energy efficiency, DVS would not execute a task at a voltage lower
than the critical one, since, otherwise, the additional static energy
consumed due to the longer execution time is larger than the energy
saving due to the lowered voltage. During the available slack interval,
the processor will be switched to a low power state.

Due to the dependence between leakage power and temperature,
different distributions of idle time will lead to different temperature
distributions and, consequentially, energy consumption. However,
none of the previous DVS approaches has considered this issue.
The closest work that considers idle time distribution (ITD) is [5],
where an approach to distribute idle time with a given constant
supply voltage is proposed. However, their approach only works
for applications consisting of a single task, and cannot optimize the
distribution of idle time among multiple tasks which also execute at
different voltages. In this paper, we address the issue of optimizing
ITD globally among tasks, executing at different voltages, for energy
minimization.

Temperature aware system level design methods rely on the
development of temperature modeling and analysis tools. Hotspot [6]
is an architecture and system-level temperature model and simulator.
The background theory of Hotspot is the duality between heat
transfer and electrical phenomena [7]. Similar to Hotspot, the work
in [8] proposes a temperature modeling approach, where dynamic
adaptation of the resolution is performed, in order to speed up the
thermal analysis.

However, temperature analysis time with approaches like the two
mentioned above are too long to be affordable inside a temperature
aware system level optimization loop. There has been some work
on establishing fast system level temperature analysis techniques.
They also build on the duality between heat transfer and electrical

phenomena. Most of them are based on very restrictive assumptions
in order to simplify the model. The work in [9] assumes that (1) no
cooling layer is present, (2) there is no interdependency between
leakage current and temperature, and (3) the whole application
executes at constant voltage. The models in [10], [11] consider
variable voltage levels but maintain the first two limitations above.
The most general analytical model is proposed in [12] which
considers cooling layers as well as the dependency between leakage
and temperature. However, this approach is limited to the case of a
unique voltage level throughout the application. In order to support
the idle time distribution technique with DVS, proposed in this paper,
we introduce, as a second contribution of this work, a fast and
accurate temperature analysis technique that eliminates all three
limitations mentioned above.

II. PRELIMINARIES

A. Power and Application Model

For dynamic power we use the following equation [13]:
Pd = Ceff ∗ f ∗ V

2, where Ceff , V , and f denote the effective
switched capacitance, supply voltage, and frequency, respectively.

The leakage power is expressed as follows [14]:

Pleak = Isr ∗ T
2 ∗ e

β∗V +γ
T ∗ V (1)

where Isr is the reference leakage current at reference temperature,
T is the current temperature. β and γ are technology dependent
coefficients. In Section IV-B, in particular, we will use a piece-
wise linear approximation of this model as proposed, for example, in
[15]. According to it, the working temperature range (Ta, Tmax)

1 is
divided into several sub-ranges. The leakage power inside each sub-
range (Ti, Ti+1) is modeled by a linear function: Pi = Ki ∗T +Bi,
where Ki and Bi are constants characteristic to each interval.

The application is captured as a set of task graphs G(Π,Γ).
Nodes τ ∈ Π represent computational tasks, while edges indicate
data dependencies between tasks. Each task is characterized by the
following parameters: the maximum number of clock cycles to be
executed, a deadline, and the average switched capacitance.

The application is mapped and scheduled on a processor that has
two power states: active and idle. In active state the processor can
operate at several discrete supply voltage levels. When the processor
does not execute any task, it can be put to the idle state, consuming
a very small amount of leakage power. Switching the processor
between the idle and active state as well as between different voltage
levels incurs time and energy overheads.

B. Temperature Aware DVS

In [2] we have presented a DVS approach which, given a mapped
and scheduled application, calculates the voltage levels for each task,
such that the total energy consumption is minimized and deadlines
are satisfied. Another input to the algorithm is the dynamic power
profile of the application, which is captured by the average switched
capacitance of each task. This information is used for calculating
the dynamic energy consumed by the task executed at certain supply
voltage levels, according to the dynamic power model in Section
II-A. The leakage energy is calculated using Eq. 1.

1
Ta and Tmax are the ambient and the maximal working temperature of the chip.
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Based on the approach in [2], in [16] we have proposed a
temperature aware DVS technique illustrated in Fig. 1. The approach
starts from an initial assumed temperature, at which the processor
is guessed to run. The voltage selection algorithm will determine,
for each task, the voltage levels such that energy consumption is
minimized. Based on the determined voltage (and the switched ca-
pacitances known for each task) the power profiles are calculated, the
thermal analysis is performed, and the processor temperature profile
is determined in steady state. This new temperature information is
now used again for voltage selection and the process is repeated until
the temperature converges. As shown in [16], in most of the cases,
convergence is reached in less than 5 iterations.

Fig. 1. Temperature Aware DVS

The above approach, however, ignores the influence of the ITD
on the energy consumption. The placement of idle time is arbitrary,
e.g., it is placed after finishing all tasks, ignoring the interdependency
between idle slots placement and temperature. On the other hand, in
order to perform an efficient ITD, dynamic temperature analysis is
needed. Such an analysis generates the temperature variation curve, as
opposed to simple static steady state analysis which only produces
an estimated steady state temperature value. Dynamic temperature
analysis is much more time consuming than the static steady state
one. The DVS technique in Fig. 1 uses Hotspot to produce the static
steady state temperature. Once ITD is taken into consideration, using
Hotspot for dynamic temperature analysis is not affordable due to the
extremely long execution time.

The rest of the paper is devoted to the two problems identified
above: (1) the need for a fast but accurate dynamic temperature
analysis and (2) an efficient idle time distribution technique.

III. MOTIVATIONAL EXAMPLE

Let us consider an application consisting of 5 tasks which share a
global deadline of 88.6ms. The worst case workload (in clock cycles)
and Ceff are given in Table I. The supply voltage (V ) and frequency
(Freq.), as calculated by the temperature aware DVS (Section II-B),
are also presented in Table I, as well as the corresponding task
execution time (time).

TABLE I
MOTIVATIONAL EXAMPLE: APPLICATION

Workload Ceff (f) V (V ) Freq.(MHZ) time(ms)
τ1 1.10e7 2.26e-08 0.6 132 9.8

τ2 1.59e7 3.09e-08 0.6 132 14.0

τ3 1.27e7 2.85e-08 0.6 132 11.2

τ4 1.46e7 4.66e-08 0.55 108 16.3

τ5 1.46e7 3.49e-08 0.6 132 12.9

Based on the voltage and frequency assignment, there is an idle
time (tidle) of 24.4ms. Fig. 2 gives two different ways of distributing
tidle. The 1st distribution (1st ITD), as shown in Fig. 2a, places the
whole tidle after the last task, while the 2nd distribution (2nd ITD),
in Fig. 2b, inserts an idle slot after each task.

For simplicity, in this example, we ignore both energy and time
overhead due to switching between active and idle mode. The two
different ITDs will lead to different temperature and leakage power
profiles. The average working temperature Tw of each task as well
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Fig. 2. Motivational Example: Idle Time Distribution

as the energy consumption are shown in Table II, where Ed, El

and Etot(J) are the dynamic, leakage and total energy consumption
respectively. Around 17% reduction of leakage energy consumption
and 10% reduction of the total energy consumption are observed
comparing the 2nd ITD with the 1st ITD.

TABLE II
MOTIVATIONAL EXAMPLE: ENERGY COMPARISON

Ed(J) El(J) Etot(J) Tw(◦C).

1st ITD: τ1 0.090 0.102 0.192 58.3

τ2 0.176 0.213 0.390 75.2

τ3 0.130 0.222 0.352 87.9

τ4 0.206 0.319 0.525 95.5

τ5 0.183 0.351 0.534 104.5

Tot. 0.787 1.206 1.993

2nd ITD: τ1 0.090 0.160 0.250 80.0

τ2 0.176 0.217 0.394 78.2

τ3 0.130 0.189 0.319 80.3

τ4 0.206 0.224 0.430 76.5

τ5 0.183 0.214 0.397 78.2

Tot. 0.787 1.003 1.790

The energy reduction is due to the modified working temperature
of the chip which has a strong impact on the leakage power. It
is also important to mention that the table reflects the steady state
(not the start-up mode), for which energy minimization is targeted.
This means that the starting temperature for τ1 is identical to the
temperature at the end of the previous period.

IV. TEMPERATURE ANALYSIS

According to the model in Section II-A, the processor executes the
application periodically with each task executed at the voltage level
calculated off line by the DVS algorithm. Thus, the processor tem-
perature will, finally, converge to a steady state dynamic temperature
curve (SSDTC) which repeats periodically.

A. Temperature Model

Thermal Circuit. In order to analyze the thermal behavior, we build
an equivalent RC thermal circuit based on the physical parameters of
the die and the package [7]. Due to the fact that the application period
tp can safely be considered significantly smaller than the RC time of
the heat sink, which is usually in the order of minutes [12], the heat
sink temperature stays constant after the state corresponding to the
SSDTC is reached. We, hence, can ignore the thermal capacitance
(not the thermal resistance!) of the heat sink and build the 2-RC
thermal circuit shown in Fig. 3a. B1 and B2 represent the temperature
node for the die and the heat spreader respectively. P (t) stands for
the processor power consumption as a function of time.

We obtain the values of R1, R2, C1 and C2 from an RC network
similar to the one constructed in Hotspot [6]. R1 is calculated as the
sum of the thermal resistance of the die and the thermal interface
material (TIM), and C1 as the sum of the thermal capacitance of
the die and the TIM. R2 is the equivalent thermal resistance from
the heat spreader to the ground through the heat sink, and C2 the
equivalent thermal capacitance of the heat spreader layer.

When the application period tp is significantly smaller than the
RC time of the heat spreader in the 2-RC thermal circuit, the heat
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Fig. 3. Thermal Circuit

spreader temperature stays constant after SSDTC is reached. In this
case, we can simplify the 2-RC to an 1-RC thermal circuit (Fig. 3b).
Temperature Equations. For the 2-RC thermal circuit in Fig. 3a,
we can describe the temperatures of B1 and B2 as follows:

C1 ∗
dT die

dt
+

T die − T sp

R1
= P (t) (2)

C2 ∗
dT sp

dt
+

T sp

R2
=

T die − T sp

R1
(3)

where T die and T sp represent the temperature at B1 and B2.The
power consumption P (t) is the sum of the dynamic and leakage
power, which are dependent on the supply voltage V and on T die.

If, within a time interval, the power consumption stays constant
P , the temperature at the beginning and end of the time interval can
be expressed as follows, by solving Eq. 2 and Eq. 3:

T die
e = a1 ∗ T

die
b + b1 ∗ T

sp
b + c1 (4)

T sp
e = a2 ∗ T

die
b + b2 ∗ T

sp
b + c2 (5)

T die
b and T sp

b are the temperature of B1 and B2 at the beginning,

while T die
e and T sp

e are the temperature at the end of the time interval.
a1, a2, b1, b2, c1 and c2 are constant coefficients determined by R1,
R2, C1, C2 and P .

B. SSDTC Estimation

As an input to the SSDTC calculation we have the voltage levels,
calculated by the DVS algorithm, and a given idle time distribution,
as illustrated in Fig. 4a.
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Fig. 4. Temperature Analysis

When the processor is working in active state, the leakage power
consumption varies with the working temperature of the processor. In
Fig. 4a, we divide the execution interval of each active state step into
several sub-intervals. The total number of sub-intervals is denoted
as m. Each sub-interval is short enough such that the temperature
variation is small and the leakage power can be treated as constant
inside the sub-interval.
Pi is the power consumption for each sub-interval i (1 ≤ i ≤ m).

When the processor is in active state during the ith sub-interval, Pi is
computed by Eq. 6, where V si−1 and T die

i−1 are the supply voltage and
processor temperature at the start of the ith sub-interval. Pd(V si−1)
represents the dynamic power consumption while Pl(T

die
i−1, V si−1)

represents the leakage power consumption based on the piece-wise
linear leakage model discussed in Section II-A. When the processor
is in idle state during the ith sub-interval, the power consumption

Pi = Pidle.

Pi = Pd(V si−1) + Pl(T
die
i−1, V si−1) (6)

As shown in Fig. 4b, we construct the SSDTC by calculating
the temperature values T die

0 to T die
m . The relationship between the

start and end temperature of each sub-interval can be described by
applying Eq. 4 and Eq. 5 to all sub-intervals. Thus, we can establish
a linear system with 2 ∗m equations as follows:

T die
1 = a11 ∗ T

die
0 + b11 ∗ T

sp
0 + c11 (7)

T sp
1 = a12 ∗ T

die
0 + b12 ∗ T

sp
0 + c12 (8)

.........

T die
m = am1 ∗ T

die
m−1 + bm1 ∗ T

sp
m−1 + cm1 (9)

T sp
m = am2 ∗ T

die
m−1 + bm2 ∗ T

sp
m−1 + cm2 (10)

T die
i and T sp

i are the temperature of the processor and heat spreader
at the beginning of the i + 1th sub-interval. Due to periodicity,
when dynamic steady state is reached, the processor and heat spreader
temperature at the beginning of the period should be equal with the
temperature values at the end of the previous period:

T die
0 = T die

m ; T sp
0 = T sp

m (11)

Solving the above linear system, we get the values for T die
0 to T die

m

and, hence, obtain the corresponding SSDTC.

V. IDLE TIME DISTRIBUTION

A. Problem Formulation

Let us consider a set of tasks (τ1, τ2, . . . , τn) executed in the order τ1,
τ2, . . . , τn. For each task τi, its deadline dli, the supply voltage level
Vi at which the task is executed (calculated by the temperature aware
DVS algorithm) and the corresponding worst case execution time tei
are given. The total idle time of the processor tidle is dln−

∑n

i=1(tei).
During tidle, the processor can be switched to idle mode consuming
the power Pidle. The time and energy overhead for switching the
processor to and from the idle state are to and Eo respectively. Idle
slots can be placed after the execution of any task. The length of an
idle slot i after task τi is denoted as ti, and the sum of all idle slots∑n

i=1(ti) should be equal with the total available idle time tidle
2.

The total energy consumption Etot is computed by Eq. 12:

Etot =
n∑

i=1

(Pdi
(Vi) ∗ tei) +

n∑

i=1

Eli +
n∑

i=1

(Eo ∗ xi) + EI (12)

where
∑n

i=1(Pdi
(Vi) ∗ tei) and

∑n

i=1 Eli are the total dynamic and
leakage energy consumption during task execution.

∑n

i=1(Eo ∗ xi)
is the total energy overhead when the processor is switched to/from
idle state, where xi is a binary variable indicating whether task τi is
followed (xi = 1 ) or not (xi = 0 ) by an idle slot. EI is the total
energy consumption during the idle time tidle: EI = Pidle ∗ tidle.

With the given supply voltage Vi for each task τi, the total dynamic
energy consumption

∑n

i=1(Pdi
(Vi)∗tei) in Eq. 12 and the the energy

consumption during the idle time EI are fixed and do not depend
on the idle time distribution. Our ITD problem is then formulated as
follows: with given amount of tidle, determine the values ti(∀1 ≤ i ≤
n), with the constraint that tidle =

∑n

i=1(ti), such that the following
sum is minimized:

n∑

i=1

Eli +

n∑

i=1

(Eo ∗ xi) (13)

In Section V-B we first introduce an idle time distribution approach
ignoring the overheads Eo and to. This approach will, then, be used
in Section V-C where we present our general idle time distribution
technique with overheads.

B. ITD without overhead (ITDNOH)

Let us first consider a particular case: the execution time tei of each
task τi is long enough such that the processor and heat spreader reach

2The time overhead to is included in the idle time slot ti



a steady state temperature Tsdiei and Tsspi when task τi finished (the
temperature does not further change if the task would continue).
As opposed to the temperature at the beginning of the task τi,
which depends on the length of the idle period, Tsdiei and Tsspi
are independent of the idle time distribution and are calculated as
follows, based on our 2-RC thermal circuit (Fig. 3):

Tsdiei = (Pdi(Vi) + Pli(Vi, T s
die
i )) ∗ (R1 +R2) (14)

Tsspi = (Pdi(Vi) + Pli(Vi, T s
die
i )) ∗R2 (15)

where R1 and R2 are the same as introduced in Section IV-A.
Pli(Vi, T s

die
i ) is the leakage power at the temperature Tsdiei . By

solving the above equations we obtain Tsdiei and Tsspi .

Since, in this section, we ignore the overheads (Eo = to = 0),
from Eq. 13, it results that the cost to be minimized is

∑n

i=1 Eli,
which is the total leakage energy consumed during task execution.

Assuming that the execution interval of task τi is divided into a
number of qi−1 sub-intervals, the total leakage energy consumption
of τi is the sum of the leakage energy of all sub-intervals:

Eli =

qi−1∑

j=1

(Plij (Vij ,
T die
ij + T die

i(j+1)

2
) ∗ tsubij ) (16)

where T die
ij , T die

i(j+1) and tsubij represent the processor temperature

at the beginning and end of the jth sub-interval and the length of
this sub-interval, respectively. The leakage model in Eq. 1 is used to
compute the leakage power in each sub-interval.

We can formulate our ITDNOH problem for this scenario as shown
in Eq. 17-Eq. 29 where the objective function to be minimized is the
total leakage energy for all tasks (Eq. 17):

n∑

i=1

(

qi−1∑

j=1

(tsubij ∗ Plij (Vij ,
T die
ij + T die

i(j+1)

2
) )) (17)

Subject to:

tidle =

n∑

i=1

(ti) (18)

ti ≥ 0(1 ≤ i ≤ n) (19)

dli ≥

i−1∑

j=1

tj +

i∑

w=1

qi−1∑

j=1

tsubwj (20)

T die
iqi

= Tsdiei (1 ≤ i ≤ n) see Eq. 14 (21)

T sp
iqi

= Tsspi (1 ≤ i ≤ n) see Eq. 15 (22)

T die
i(j+1) = a1ij ∗ T

die
ij + b1ij ∗ T

sp
ij + c1ij (23)

T sp

i(j+1) = a2ij ∗ T
die
ij + b2ij ∗ T

sp
ij + c2ij (24)

( 1 ≤ i ≤ n; 1 ≤ j ≤ qi − 2)

T die
(i+1)1 ≥ TIs+ (T die

iqi
− TIs) ∗ exp(

−ti
Rg ∗C1

) (25)

( 1 ≤ i ≤ n− 1)

T sp

(i+1)1 = T sp

(i)qi
(1 ≤ i ≤ n− 1) (26)

T die
11 ≥ TIs+ (T die

nqn
− TIs) ∗ exp(

−tn
Rg ∗ C1

) (27)

T sp
11 = T sp

nqn
(28)

TIs = Pidle ∗Rg (29)

The optimization variables to be calculated are the idle slot lengths
ti(∀1 ≤ i ≤ n). T die

iqi
and T sp

iqi
are the processor and heat spreader

temperature at the end of execution of task τi and they are equal to
the steady state temperature Tsdiei and Tsspi respectively (Eq. 21,
Eq. 22). T die

ij and T die
i(j+1) are the processor temperature at the

beginning and end of jth sub-interval in the execution of task τi and
are given by Eq. 23 which is similar to Eq. 7 and Eq. 9 in Section
IV-B. Eq. 24 describes the same relationship for the heat spreader

temperature. T die
(i+1)1 and T sp

(i+1)1 are the processor and heat spreader

temperature at the start of task τi+1, and are dependent on the
finishing temperature of the previous task τi and the idle slot ti placed
after τi. If we assume that all idle slots ti are significantly shorter than
the RC time of the heat spreader, then we can describe the processor
temperature behavior during the idle slot i by Eq. 25 and Eq. 27,
based on the 1-RC thermal circuit described in Section IV-A. TIs is
the steady state temperature that the processor would reach if Pidle

would be consumed for a sufficiently long time and is calculated
according to Eq. 29. Rg is the sum of the two thermal resistances
R1 and R2 in Fig. 3b. Under the same assumption, the heat spreader
temperature stays constant during the idle slot as shown in Eq. 26
and Eq. 283. Eq. 25 and Eq. 26 calculate the processor and heat
spreader temperature at the end of the idle slot following task τi and,
implicitly, the staring temperature of τi+1. Eq. 27 and Eq. 28 compute
the temperature at the start of task τ1, taking into consideration that
this task starts after the idle period following task τn (the task set is
executed periodically). The above formulation is a convex nonlinear
problem, and can be solved efficiently in polynomial time [17].
ITDNOH Approach. For the situation when tasks can have arbitrary
execution time, the temperature of the processor and heat spreader
at the end of task τi may not reach the steady state temperature.
Thus, the values of T die

iqi
and T sp

iqi
(Eq. 21, Eq. 22) are no longer

constants but are dependent on the idle time distribution. This makes
the above formulation become a non-convex programming problem
which is very time consuming to solve. In order to solve the problem
efficiently we have developed an iterative heuristic outlined in Fig. 5.
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Fig. 5. ITDNOH Heuristic

The heuristic starts with an arbitrary initial ITD, for example, that
the entire idle time tidle is placed after the last task τn. Assuming this
ITD and the given voltage levels, steady state dynamic temperature
analysis is performed, as described in Section IV-B. Given the
obtained SSDTC and the voltage levels, the total energy consumption
Etot corresponding to the assumed ITD is calculated. From the
SSDTC we can also extract the final temperature T die

iqi
and T sp

iqi
for

each task τi. Assuming this T die
iqi

and T sp
iqi

to be the final temperature
in Eq. 21 and Eq. 22, we can calculate the idle time ti using the
convex optimization formulated in Eq. 17-Eq. 29.

From the new ITD resulted after the optimization, we calculate
a new SSDTC which provides new temperatures T die

iqi
and T sp

iqi
at

the end of each task τi. The new total energy consumption Etot,
corresponding to the updated ITD, is also calculated. The process is
continued assuming the new end temperatures in Eq. 21 and Eq. 22
and the convex optimization produces a new ITD.

The iteration process outlined above stops when the temperature

T die
iqi

converges (i.e. |T dienew

iqi
−T dieold

iqi
| < ε, ∀i 1 ≤ i ≤ n ). However,

it can happen that, after a certain point, additional iterations do not
significantly improve the ITD. Therefore, even if convergence has
not yet been reached, the optimization is stopped if no significant

3Idle periods are supposed to be short. If, exceptionally, they are not significantly
shorter than the heat spreader RC time, we use the 2-RC circuit to model the
temperature during the idle period in Eq. 25−Eq. 28. This will not affect the convexity
of the formulation.



energy reduction has been achieved ((Eold
tot −Enew

tot )/Eold
tot < ε′). Our

experiments have shown that maximum 5 iterations are needed with
ε = 0.5◦ and ε′ = 0.1%.

C. ITD with overhead (ITDOH)

The approaches presented in section V-B are based on the assumption
that time and energy overhead to and Eo are zero, which is not the
case in reality. If we consider the restricted case with tasks such that
the end temperature does not depend on the idle time distribution,
the problem can be formulated similar to Eq. 17-Eq. 29, with the
main difference that the total energy to be minimized is Eq. 13.
Based on this formulation, we could solve the ITDOH for the general
case, when tasks can have arbitrary execution time, similarly with
the approach described in Fig. 5. However, the formulation with the
objective function Eq. 13, due to the binary variable xi, is a mixed
integer convex programing problem which is very time consuming to
solve. We, hence, propose an ITDOH heuristic based on the ITDNOH
approach in Fig. 5.

Our ITDOH heuristic comprises two steps. In the first step an
optimization of the idle time distribution is performed by eliminating
idle intervals whose length is shorter than a certain threshold limit.
In the second step, the ITD is further refined in order to improve
energy efficiency.

A lower bound tmin on the length ti of an idle slot can be
determined by considering the following two limitations:

1) No idle slot is allowed to be shorter than to, the total time
needed to switch to/from the idle state.

2) The energy overhead due to switching should be compensated
by the gain due to putting the processor into the idle state.
The energy gain for an idle interval ti is (Pl − Pidle) ∗ ti
where Pl is the leakage power consumption in active state.
Thus, in order for the overhead to be compensated, we need
Eo < (Pl − Pidle) ∗ ti. However, Pl depends on the processor
temperature and, thus, the threshold length of an idle slot is not
a given constant. Nevertheless, this threshold will be always
longer than Eo/(P

max
l − Pidle), where Pmax

l is the leakage
power at the maximum temperature at which the processor is
allowed to run.

In conclusion, for the first step of the ITDOH heuristic, illustrated in
Fig. 6a, we consider: tmin = max(to, Eo/(P

max
l − Pidle)).
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Fig. 6. ITDOH Heuristic

The basic idea of the first step is that no idle slot is allowed to be
shorter than tmin. Thus, after running ITDNOH, the obtained ITD is
checked slot by slot. If a slot length ti is shorter than tmin, this slot
will be forced to disappear. In order to achieve this, the particular
constraint in Eq. 19, corresponding to slot i, is changed from ti ≥ 0
to ti = 0. After all slots have been visited and Eq. 19 updated,
ITDNOH is performed again. The obtained ITD is such that all slots
which in the previous iteration have been found shorter than tmin

have disappeared. The process is repeated until no slot shorter than
tmin has been identified.

After step1, we still can be left with slots that are too short from
the energy efficiency point of view. There are two reasons for this:

1) Due to the fact that the processor is running at a temperature
lower than the maximum, worst case, one, it can happen that
Eo > (Pl − Pidle) ∗ ti.

2) Even if Eo < (Pl−Pidle) ∗ ti, which means that there exists a
certain energy reduction due to the idle slot, energy efficiency
can, possibly, be improved by eliminating the slot. Eliminating
a slot means, implicitly, distributing the corresponding amount
of idle time between other slots, since the total idle time, tidle,
is constant for the given voltage levels per task.

In the second step, illustrated in Fig. 6b, we start from the shortest
idle slot and consider to eliminate it (by setting the corresponding
constraint in Eq. 19). If the ITD obtained after applying ITDNOH
is more energy efficient, the new ITD is accepted. The process is
continued, as long as, by eliminating a slot, the total amount of energy
consumed is reduced.

VI. EXPERIMENTAL RESULTS

The platform parameters used in our experiments are based on values
taken from [18], [19] and [20]. We consider platforms with a die
area of 6*6, 8*8 and 10*10mm2. The heat spreader area is five times
the die area and the heat sink area is between 1.3 and 1.4 times the
area of the heat spreader. The thickness of the die and heat spreader
are 0.5mm, and 2mm respectively. The thickness of the heat sink
is between 10mm and 20mm. The coefficients corresponding to the
power model in Section II-A are based on [13] [3]. For the SSDTC
calculation (Section IV-B) we have considered a piece-wise linear
leakage model with 3 segments, as recommended in [15].

The first set of experiments evaluate the accuracy of our proposed
temperature analysis approach. We randomly generated 500 periodic
voltage patterns corresponding to applications with periods in the
range between 5ms and 100ms. For each application, considering
the coefficients and platform parameters outlined above, we have
computed the SSDTC using the approach proposed in Section IV-B
and by using Hotspot simulation. For each pair of temperature
curves obtained, we calculated the maximum deviation, as the largest
temperature difference between any corresponding pairs of points (in
absolute value), as well as the average deviation. Fig. 7 illustrates
the results for different application periods. For applications with
a period of 50ms, for example, there is no single case with a
maximum deviation larger than 2.1◦C, and the average deviation is
1◦C. Over all 500 applications, the average and maximum deviation
are 0.8◦C and 3.8◦C respectively. We can observe that the deviation
increases with the increasing period of the application. This is
due to the fact that, with larger periods, accuracy can be slightly
affected by neglecting the thermal capacitance of the heat sink
(see Section IV-A). We also compare the computation time of our
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Fig. 7. SSDTC Estimation with Our Approach VS. Hotspot

SSDTC generation approach with the time needed by Hotspot. Fig. 7
illustrates the average speedup as the ratio of the two execution times.
The speedup is between 3000 for periods of 5ms and 20 for 100ms
periods. An increasing period leads to a larger linear system that has
to be solved for SSDTC estimation (Section IV-B), which explains
the shape of the speedup curve in Fig. 7.

Of course, the accuracy and speedup of our approach are also
dependent on the length of the sub-interval considered for the
temperature analysis (Section IV-B and Fig. 4). For the experiments



throughout this paper, the length of the sub-interval is 2ms. This is
based on the observation that reducing the length beyond this limit
does not improve the accuracy significantly.

The next set of experiments aims to evaluate the efficiency of
our ITDOH heuristic presented in Section V-C. We have randomly
generated 1000 applications consisting of 2 to 100 tasks. The
workload of each task is in the range [106,107] clock cycles. The
applications are executed on platforms as discussed at the start of
this section. For each application we have performed the following
steps:

1) The temperature aware DVS algorithm described in Sec-
tion II-B is run to determine the voltage levels for each task.

2) Based on the obtained voltage assignment, we compute tidle
as tp−

∑n

i=1(tei), where tp is the deadline of the application,
tei is the execution time of task τi at the assigned voltage, and
n is the number of tasks in the application. The ratio between
tidle and tp is denoted as idle time ratio.

3) If tidle > 0, the energy consumption E1 of the application is
calculated, with the assumption that tidle is placed after the
last task.

4) If tidle > 0, we apply our ITDOH approach described in
Section V-C. The corresponding energy consumption E2 is cal-
culated. The energy reduction is computed as (E1−E2)/E1 ∗
100%.

The above four steps are performed, for each application, con-
sidering three different contexts with regard to the energy and time
overheads Eo and to. The setting corresponding to Eo = 0.5mJ and
to = 0.4ms is based on the values indicated in [21]. The two other
settings assume a lower (Eo = 0.25mJ, to = 0.2ms) and higher
(Eo = 1mJ, to = 0.8ms) overhead respectively. Fig. 8 shows the
averaged energy reduction due to ITD, corresponding to different
idle time ratios and overheads. The energy reduction achieved by
ITD grows with the available amount of idle time and reaches 15%
with an idle time ratio of 20-25%.
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Fig. 8. Energy Reduction by ITDOH

We also evaluated the computation time for our ITDOH approach.
Fig. 9 shows the results averaged for the test applications having
15% ∼ 25% idle time ratio. The line marked with triangles shows
the computation time of our ITDOH approach (the time consumed in
step 4 above) as function of the number of tasks in the application.
The computation time is within only 8 seconds for even very large
applications. In Fig. 9 we also indicate the total execution time of
all 4 steps, including both DVS and ITD.
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We have also applied our ITDOH approach to a real life case,
namely an MPEG2 decoder which consists of 34 tasks and is

described in detail in [22]. We performed the fours steps described
above, considering the same three settings for the overhead Eo and
to. The energy reduction by applying our ITDOH approach is 12.2%,
11.8% and 10.6% respectively.

And, finally, a word on the integration between the two techniques,
DVS and ITD. In the experiments described above we have first
performed the temperature aware DVS and, using the obtained
voltage levels and total idle time as an input, we have run our ITDOH
algorithm. Another alternative is also possible, namely, to place the
ITDOH algorithm inside the DVS optimization loop in Fig. 1, after
the voltage/frequency selection step. Considering this alternative, we
have performed experiments on the same applications and platforms
as described above. The obtained energy reduction was, on average,
2% ∼ 3% larger than by applying DVS and ITD in sequence.
However, by placing ITD inside the loop, the total execution time
becomes three times larger on average. This increased execution time
(e.g. 45 seconds for 100 tasks), is, nevertheless, affordable if such
an improved level of optimization is required.

VII. CONCLUSION

We have proposed an idle time distribution heuristic for energy
minimization. In order to efficiently perform temperature analysis
inside our optimization loop, we have also proposed a fast and
accurate system level temperature analysis approach. Experiments
show that our temperature analysis method achieves good accuracy
with fast speed. The experiments also demonstrate that considerable
energy reduction can be achieved by an efficient idle time distribution
in the context of temperature aware DVS.
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