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Abstract—Large-scale integration with deep sub-micron tech-
nologies has led to high power densities and high chip working
temperatures. At the same time, leakage energy has become the
dominant energy consumption source of circuits due to reduced
threshold voltages. Given the close interdependence between
temperature and leakage current, temperature has become a
major issue to be considered for power-aware system level design
techniques. In this paper, we address the issue of leakage energy
optimization through temperature aware idle time distribution
(ITD). We first propose an off-line ITD technique to optimize
leakage energy consumption, where only static idle time is dis-
tributed. To account for the dynamic slack, we then propose an
on-line ITD technique where both static and dynamic idle time
are considered. Experimental results have demonstrated that an
important amount of leakage energy reduction can be achieved
by applying our ITD techniques. To improve the efficiency of
our ITD techniques, we also propose an analytical temperature
analysis approach which is accurate and, yet, sufficiently fast to
be used inside the energy optimization loop.

Index Terms—Temperature aware design, leakage energy opti-
mization, idle time distribution, system level design.

I. INTRODUCTION

A. Background

TEchnology scaling and ever increasing demand for perfor-
mance have resulted in high power densities in current

circuits, which have also led to increased chip temperature.
At the same time, leakage energy has become the dominant
energy consumption source of circuits [1]. Due to the strong
dependence of leakage current on temperature, growing tem-
perature leads to an increase in leakage current and, conse-
quently, energy, which, again, produces higher temperature.
Thus, temperature is an important parameter to be taken into
consideration for energy optimization.

Energy optimization for embedded systems has been exten-
sively researched. At system level, dynamic voltage selection
(DVS) is one of the preferred approaches for reducing the
overall energy consumption [2], [3]. This technique exploits the
available slack time to achieve energy efficiency by reducing
the supply voltage and frequency such that the execution of
tasks is stretched within their deadline.

There are two types of slacks: (1) static slack, which is due
to the fact that, when executing at the highest (nominal) voltage
level, tasks finish before their deadlines even when executing
their worst numbers of cycles (WNC); (2) dynamic slack, due
to the fact that most of the time tasks execute less than their
WNC. Off-line DVS techniques [4], [5] can only exploit static
slack, while on-line approaches [6], [7], [8] are able to further
reduce energy consumption by exploiting the dynamic slack.

However, very often, not all available slack should or can
be exploited and certain slack may still exist after DVS. An
obvious situation is when the lowest supply voltage is such
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that, even if selected, a certain slack interval is left. Another
reason is the existence of the critical voltage [9]. To achieve
the optimal energy efficiency, DVS would not execute a task
at a voltage lower than the critical one, since, otherwise, the
additional static energy consumed due to the longer execution
time is larger than the energy saving due to the lowered voltage.
During the available slack interval, the processor remains idle
and can be switched to a low power state.

Due to the strong inter-dependence between leakage power
and temperature, different distributions of idle time will lead to
different temperature distributions and, consequentially, energy
consumption. In this paper, we address the issue of optimizing
leakage energy consumption through distribution of both static
and dynamic slack time.

B. System Level Temperature Modeling

Temperature aware system level design methods rely on the
availability of temperature modeling and analysis tools. System
level temperature modeling approaches are mostly based on the
duality between heat transfer and electrical phenomena [10].
Hotspot [11] is both an architectural level and system level
temperature simulator. The basic idea of Hotspot is to build
an equivalent circuit of thermal resistances and capacitances
capturing both the architecture blocks and the elements of
the thermal package. In [12], a similar temperature modeling
approach was proposed which speeds up the thermal analysis
through dynamic adaptation of the resolution.

However, temperature analysis time with approaches like the
two mentioned above are too long to be affordable inside a
temperature aware system level optimization loop. There has
been some work on establishing fast system level temperature
analysis techniques. They also build on the duality between
heat transfer and electrical phenomena and are based on
very restrictive assumptions in order to simplify the model.
In [13], the authors have assumed that (1) no cooling layer is
present, (2) there is no interdependency between leakage current
and temperature, and (3) the whole application executes at a
constant voltage. The models in [14] and [15] consider variable
voltage levels but maintain the first two limitations above.
The most general analytical model is proposed in [16] which
considers cooling layers as well as the dependency between
leakage and temperature. However, this approach is limited to
the case of a unique voltage level throughout the application. In
order to support our ITD technique proposed in this paper, we
introduce a fast and accurate temperature analysis technique,
which eliminates all three limitations mentioned above and can
be used inside a temperature aware system level optimization
loop.

C. Temperature Sensing and Tracking

In this paper, in addition to an off-line approach, we also
propose an on-line ITD approach which relies on on-line
temperature monitoring, where sensors [17] are used together
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with techniques for collecting and analyzing their values with
adequate accuracy. Several approaches have been proposed in
literature to improve the accuracy of temperature measurement
and estimation. For example, in [18] and [19], authors have
proposed techniques to determine the optimal locations and
allocations for thermal sensors with the target of accurate hot
spots detection as well as full chip thermal characterization.
In [20], [21], and [22] the authors have addressed the issue of
how to process/analyze readings from sparse and noisy thermal
sensors to accurately estimate temperatures where various es-
timation schemes such as spectral methods and Kalman filters
are utilized.

D. Related Work

Several approaches to system level temperature aware design
have been discussed in literature. Temperature management is
utilized to control the temperature of processors for improving
system reliability [23]. In [24], the authors proposed a technique
for temperature management by scaling the processor speed.
In [25], the authors addressed the issue of scheduling and
mapping of a set of tasks with real-time constraints on multi-
processors for peak temperature minimization. Techniques for
task sequencing combined with DVS to reduce the peak temper-
ature of a processor were proposed in [14]. Several approaches
aiming at reducing temperature variations or temperature gra-
dients across the chip, e.g. [26], were proposed.

A considerable amount of work has been published on per-
formance optimization under thermal and real-time constraints.
Zhang et al. [27] proposed voltage assignment techniques to
optimize the performance of a set of periodic tasks work-
ing under thermal constraints. In [28], the authors proposed
approaches to optimize throughput by task sequencing under
thermal constraints. An on-line speed adaptation technique for
homogeneous multi-processors with the target of maximizing
total throughput was proposed by Rao et al. in [29]. Tempera-
ture aware DVS techniques considering the leakage/temperature
dependency were proposed in [30] and [3].

In this paper we address the issue of optimizing leakage
energy consumption through distribution of idle time. The only
work, to our best knowledge, previously addressing this issue
is [31] and [32]. In [31], the authors proposed an approach
to distribute idle time for applications consisting of one single
task executing at a constant given supply voltage. Thus, their
approach cannot optimize the distribution of idle time among
multiple tasks which also execute at different voltages. The
same limitation also holds for [32], where a pattern based ITD
for leakage energy optimization considering one single task was
proposed. The pattern based approach generates uniform idle
time distribution over the whole application and, thus, is not
appropriate for ITD among multi-task applications where tasks
have different amounts of energy consumption and execute at
different voltage levels.

E. Main Contributions

In this paper, we make the following main contributions: 1

1) We propose an off-line ITD approach to optimize leakage
energy consumption for a set of periodic tasks. Static
slack is distributed globally among tasks which are exe-
cuted at different discrete voltage levels.
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2) We propose, based on the off-line ITD approach, an on-
line ITD technique where both static and dynamic slack
are distributed.

3) We propose a fast and accurate analytical temperature
model which eliminates all the three limitations men-
tioned in Section I-B, by considering the following as-
pects: a) the interdependence between leakage power and
temperature; b) multiple cooling layers of the chip; c)
non-smooth power consumption generated due to multi-
ple discrete supply voltage levels of the processor.

F. Paper Organization

In Section II we introduce the power and application models. In
Section III we give a motivational example. We formulate the
problem in Section IV. In Section V we introduce our analytical
thermal model. We then propose the off-line ITD approach,
which distributes only static slack, in Section VI. Based on the
off-line ITD approach, we present our on-line ITD technique in
Section VII. Finally, experimental results and conclusions are
presented in Sections VIII and IX.

II. PRELIMINARIES

A. Power Model

For dynamic power we use the following equation [34]:

P d = Ceff · f · V 2

where Ceff , V , and f denote the effective switched capaci-
tance, supply voltage, and frequency, respectively.

The leakage power is expressed as follows [35]:

P leak = Isr · T
2 · e

β·V +γ
T · V (1)

where Isr is the leakage current at a reference temperature, T is
the current temperature, and β and γ are technology dependent
coefficients. In Section V-B we will use a piecewise linear
approximation of this model, as proposed, for example, in [36].
According to it, the working temperature range [Ta, Tmax]
where Ta and Tmax are the ambient and the maximal working
temperature of the chip, is divided into several sub-ranges. The
leakage power inside each sub-range [Ti, Ti+1] is modeled by
a linear function: Pi = Ki · T + Bi, where Ki and Bi are
constants characteristic to each interval.

B. Application Model

The application is captured as a task graph G(Π,Γ). A node
τi ∈ Π represents a computational task, while an edge e ∈ Γ
indicates the data dependency between two tasks. Each task τi
is characterized by the following six-tuple:

τi =< WNCi, BNCi, ENCi, dli, Ceffi, Vi >

where WNCi, BNCi and ENCi are task τi’s worst case, best
case and expected number of clock cycles to be executed. The
expected number of clock cycles ENCi is the arithmetic mean
value of the probability density function of the actual executed

cycles ANCi, i.e. ENCi =
∑WNCi

j=BNCi
(j · pi(j)), where pi(j)

is the probability that a number j of clock cycles are executed
by task τi. We assume that the probability density functions
of the execution cycles of different tasks are independent. Vi

represents the supply voltage at which the task τi is executed.
The supply voltage Vi can be either constant for all tasks, or
it can be calculated by a DVS algorithm, e.g. our temperature
aware DVS technique proposed in [30]. Further, dli and Ceffi
represent the deadline and the effective switched capacitance.
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The application is mapped and scheduled on a processor
which has two power states: active and idle. In the active state
the processor can operate at several discrete supply voltage
levels. When the processor does not execute any task, it can
be put to the idle state, consuming a very small amount of
leakage power Pidle. The variation of Pidle with temperature is
neglected due to the very small value of Pidle. Switching the
processor between the idle and active state (as well as between
different voltage levels) incurs time and energy overheads.

III. MOTIVATIONAL EXAMPLE

A. Static Idle Time Distribution

Let us consider an application consisting of 7 tasks which
share a global deadline of 96.85ms. The worst case workload,
WNC (in clock cycles), and average switched capacitance,
Ceff , are given in Table I. The tasks run on a processor with
a fixed supply voltage and frequency of 0.6V and 132MHZ,
respectively. The corresponding execution times teW are given
in Table I. Based on the performance of this processor, there

TABLE I
MOTIVATIONAL EXAMPLE: APPLICATION PARAMETERS

WNC Ceff (f) teW (ms)

τ1 8.26e+06 5.0e-10 6.22

τ2 1.20e+07 5.0e-10 9.07

τ3 2.32e+07 9.0e-8 18.76

τ4 2.25e+07 1.7e-7 17.46

τ5 1.46e+07 1.8e-7 16.94

τ6 2.15e+07 1.9e-7 16.18

τ7 8.26e+06 5.0e-10 6.22

exists 6ms static slack, ts, in each execution period of this
application. Fig. 1 gives two ways of distributing ts. The first

Ĳ1 Ĳ2 Ĳ3 Ĳ4 Ĳ5 Ĳ6 Ĳ7

Ĳ1 Ĳ2 Ĳ3 Ĳ4 Ĳ5 Ĳ6 Ĳ7
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 ITD  
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 ITD 

Deadline

(Period)

Time(ms)

Time(ms)

6.2

Static Slack: 6ms

96.8

Idle for: 

2.58ms
Idle for: 

2.26ms

Idle for: 

1.16ms

15.3 34.0 51.5 68.4 84.6 90.80.0

15.3 34.0 52.7 71.9 90.66.2 96.80.0 35.2 54.9 74.4

Fig. 1. Motivational Example: Static Idle Time Distribution

distribution (1st ITD), as shown in Fig. 1a, places the whole
ts after the last task, while the second distribution (2nd ITD),
in Fig. 1b, divides the static slack ts into 3 segments and places
the 3 idle slots after execution of task τ3, τ4 and τ5, respectively.

For simplicity, in this example, we ignore both energy and
time overhead due to switching between the active and idle
mode. The two different ITDs will lead to different temperature
and leakage power profiles. The average working temperature
Tw of each task, as well as the leakage energy Eleak consump-
tion, are shown in Table II. Eleak

tot is the total leakage energy
consumption of the whole application. Comparing Eleak

tot for the
1st and 2nd ITD, we can observe that around 10% reduction
of leakage energy consumption can be achieved.

The leakage energy reduction is due to the modified working
temperature of the chip which has a strong impact on the
leakage power. It is also important to mention that the table
reflects the steady state (not the start-up mode), for which

TABLE II
STATIC ITD: LEAKAGE ENERGY COMPARISON

1st ITD 2nd ITD

Tw(◦C) Eleak(J) Tw(◦C) Eleak(J)

τ1 101 0.81 110 0.96

τ2 102 1.20 107 1.30

τ3 108 2.73 108 2.73

τ4 119 3.08 113 2.78

τ5 125 3.32 115 2.79

τ6 129 3.39 117 2.68

τ7 122 1.24 117 1.05

Eleak
tot 15.77 14.29

energy minimization is targeted. This means that the starting
temperature for τ1 is identical to the temperature at the end of
the previous period.

B. Dynamic Idle Time Distribution

The ITD approach outlined in the previous section is an off-line
static one which assumes that tasks execute their WNC and,
thus, it only distributes the static slack. However, in reality,
most of the time, there are huge variations in the number of
cycles executed by a task, from one activation to the other,
which leads to a large amount of dynamic slack.

For the task set introduced in the previous section, let us
imagine the activation scenario given in Table III where the
columns ANC and teA contain the actual executed work-
load (in clock cycles) and the corresponding actual execution
time of each task, respectively. tdi represents the dynamic slack
generated due to the actual number of cycles executed by task
τi (it is the difference between the teW and teA of the task).
For this activation scenario, tasks τ3, τ4, τ5 and τ6 execute their

TABLE III
MOTIVATIONAL EXAMPLE: AN ACTIVATION SCENARIO

ANC teW (ms) teA(ms) tdi(ms)

τ1 5.95e+05 6.22 0.45 5.77

τ2 5.20e+05 9.07 0.40 8.67

τ3 2.49e+07 18.76 18.76 0.0

τ4 2.32e+07 17.46 17.46 0.0

τ5 2.25e+07 16.94 16.94 0.0

τ6 2.15e+07 16.18 16.18 0.0

τ7 2.60e+06 6.22 1.96 4.26

worst case workload, while τ1, τ2 and τ7 execute less than their
worst case workload and, thus, generate dynamic slack. The

total amount of dynamic slack is td =
∑7

i=1 td
i = 18.7ms.
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0.4 23.5 28.2 51.5 68.4 90.60.8 4.70.0 45.7 74.4 94.9 96.8

Ĳ7

Fig. 2. Motivational Example: Idle Time Distribution

Fig. 2a illustrates the distribution of idle time slots during
the above on-line activation scenario if we use the off-line ITD
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approach which distributes static slack as illustrated in Fig. 1b.
In this case, the dynamic slack tdi is placed where it is
generated (tdi is placed after τi terminates). Table IV shows
the corresponding working temperature and leakage energy
consumption of each task as well as the total leakage energy
consumption, which is 7.98J. However, leakage energy can
be reduced by distributing the dynamic slack more wisely.
For example, at run-time, whenever a task terminates, the
idle time slot length following this task is calculated by
taking into consideration the current time and the current chip
temperature. Fig. 2b shows the ITD determined in this way.
The corresponding total leakage energy consumed, as given
in Table IV, is 7.32J which means a leakage energy reduction
of 8%. This reduction is due to the further lowered working
temperature of the energy hungry tasks τ4, τ5 and τ6, which is
achieved by ITD considering both static and dynamic slack.

TABLE IV
DYNAMIC ITD: LEAKAGE ENERGY COMPARISON

1st ITD 2nd ITD

Tw(◦C) Eleak(J) Tw(◦C) Eleak(J)

τ1 89 0.05 83 0.04

τ2 78 0.03 83 0.04

τ3 79 1.67 84 1.80

τ4 91 1.92 87 1.78

τ5 97 2.04 90 1.80

τ6 99 2.02 91 1.73

τ7 102 0.25 84 0.13

Eleak
tot 7.98 7.32

The above examples have demonstrated that leakage energy
can be reduced through both static and dynamic ITD.

IV. PROBLEM FORMULATION

We consider a set of periodic tasks (τ1, τ2, . . . , τn) executed
in the order τ1, τ2, . . . , τn. For each task τi, the six-tuple:
< WNCi, BNC,ENC, dli, Ceffi, Vi > is given. Corre-
sponding to the supply voltage Vi that task τi is executed at, the
worst case execution time teWi , best case execution time teBi ,
and expected execution time teEi can be directly calculated.

For each iteration of the application, the total static slack ts
is constant and computed by Eq. (2):

ts = dln −

n
∑

i=1

teWi (2)

where dln represents the deadline of the last task τn in the
execution order, and

∑n

i=1 te
W
i is the sum of the worst case

execution time of all tasks. The total dynamic slack for each
execution iteration is varying due to execution time variation
of tasks. For one iteration, td is calculated as follows:

td =
n
∑

i=1

teWi −
n
∑

i=1

teAi

where teAi represents the actual execution time of task τi in this
iteration. teAi conforms to a distribution with the expected exe-
cution time teEi as the arithmetic mean value of the probability

density function Pb(teAi ): te
E
i =

∫ teWi
teBi

Pb(teAi ) · te
A
i d(teAi ).

The total available slack ttot for one iteration is equal to
the sum of the static slack ts and dynamic slack td: ttot =
ts+ td. During ttot the processor can be switched to idle mode
consuming the power Pidle. The time and energy overhead for

switching the processor to and from the idle state are to and
Eo respectively. Idle slots can be placed after the execution of
any task. The length of an idle slot i after task τi is denoted as
ti, and the sum of all idle slots

∑n

j=1 ti should be equal with
the total available idle time ttot. Note that the time overhead
to is included in the slot length ti.

We will, formulate the following two ITD problems:

1) ITD with only static slack: static idle time distribu-
tion (SITD)

2) ITD with both static and dynamic slack: static and
dynamic idle time distribution (DITD)

A. ITD with only Static Slack: SITD

Let us consider the scenario in which each task τi is always
executed with the worst case workload: teAi = teWi . In this
scenario, for each iteration, the available slack is constant and
known: ttot = ts where ts is computed by Eq. (2).

For one iteration, the total energy consumption of the task
set can be expressed as follows:

Etot =

n
∑

i=1

Edyn
i +

n
∑

i=1

Eleak
i +

n
∑

i=1

(Eo · xi) + EI

where
∑n

i=1 E
dyn
i and

∑n

i=1 E
leak
i are the total dynamic and

leakage energy of all tasks.
∑n

i=1(Eo · xi) is the total energy
overhead when the processor is switched to/from idle state,
where xi is a binary variable indicating whether task τi is
followed (xi = 1) or not (xi = 0) by an idle slot. EI is the
total energy consumption during the idle time ttot.

The dynamic energy consumption of each task Edyn
i , is

further computed as:

Edyn
i = P d

i (Vi) · te
W
i

where Vi is the supply voltage the task τi is executed at. teWi
represents the worst case execution time of task τi. As the
supply voltage Vi and teWi are constants, the total dynamic

energy
∑n

i=1 E
dyn
i is hence constant and independent from the

distribution of idle time.
The total energy consumption during idle time EI is:

EI = Pidle · ttot

where Pidle is the power consumption of the processor in the

low power mode and ttot = ts. Similar to Edyn
i , EI is also

fixed and independent from ITD, as ts is constant with given
supply voltages.

The leakage energy consumption of each task Eleak
i is a

function of both temperature and supply voltage:

Eleak
i =

∫ teWi

0

P leak
i (Vi, Ti(t)) dt (3)

where Ti(t) describes the temperature of the processor during
execution of task τi. With given supply voltages Vi, Ti(t) is
influenced by the distribution of idle time slots, so the leakage
energy consumption Eleak

i depends on the ITD.
We need to distribute the static slack to minimize the total

leakage energy consumption and the energy overheads due to
switching:

∑n

i=1 E
leak
i +

∑n

i=1(Eo · xi). With given supply
voltages Vi, and a fixed distribution of idle time slots, the same
power pattern is periodically executed on the processor. As
the task set is executed for a large number of iterations, the
processor temperature is converging to a steady state dynamic
temperature curve (SSDTC). Once the processor has reached
steady state, the SSDTC will repeat periodically.
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Our SITD problem can be formulated as follows: given
is a set of tasks (τ1, τ2, . . . , τn) as defined earlier in this
section. The idle time slot length ti following each task τi and,
implicitly, xi (the binary variable which represents whether task
τi is followed by an idle time slot or not) are to be determined
such that the objective function Eq. (4) is minimized with
the constraints Eq. (5) and Eq. (7) to be satisfied. Esleaki in

Problem Formulation 1 Static Idle Time Distribution

E =
n
∑

i=1

Esleaki +
n
∑

i=1

(Eo · xi) (4)

subject to :

ts =

n
∑

i=1

ti (5)

dli ≥

i−1
∑

j=1

ti +

i
∑

j=1

teWj (∀i, 1 ≤ i ≤ n) (6)

Ti(t) ≤ Tmax (∀i, 1 ≤ i ≤ n) (7)

Eq. (4) represents the steady state leakage energy consumption.
The constraint in Eq. (5) requires that the sum of all idle
slots lengths should be equal with the total available static
slack ts where ts is calculated by Eq. (2). The constraint in
Eq. (6) guarantees that the deadline of each task is satisfied.
Finally, the constraint in Eq. (7) requires that the processor
temperature throughout the execution of the task set should not
exceed the maximal allowable working temperature of the chip
Tmax, where Ti(t) describes the processor temperature during
execution of task τi.

B. ITD with both static and dynamic slack: DITD

The above problem formulation ignores the execution time
variations of tasks at run-time and, implicitly, ignores the dy-
namic slack. To deal with execution time variation and perform
dynamic slack distribution, the idle slot length ti following the
termination of a task τi should be determined, at run-time, based
on the actual time and processor temperature.

Our problem formulation for DITD is as follows: given is a
set of periodic tasks (τ1, τ2, . . . , τn) as defined earlier in this

section. When task τi terminates at time tfi , the idle time slot ti
following task τi’s termination is determined such that Eq. (8)
is minimized, where

∑n

j=i+1 E
leak
j is the total leakage energy

consumption of the remaining tasks τj , (∀j, i < j ≤ n), to
be executed within the current iteration. The leakage energy
consumption Eleak

j of each remaining task τj is estimated
corresponding to the case when the expected workload is
executed. Eleak

j is calculated according to Eq. (3) with the

difference that the expected execution time teEj is used instead

of teWj as the upper limit for the integral. The constraint in
Eq. (9) requires that the sum of all idle slots lengths should

be equal with the total available slack where tfi is the time the
current task τi terminates. The total available slack is computed
with the assumption that all the future tasks τi+1 to τn are
executed with their expected workload teEj (∀j, i < j ≤ n).
The deadline of each task is guaranteed by the constraint in
Eq. (10), where dlj represents the deadline of task τj . Note
that, the worst case execution time teWk is used in Eq. (10) in
order to guarantee the deadline of each task in the worst case.
The constraint in Eq. (11) requires, similarly to Eq. (7), the

Problem Formulation 2 Dynamic Idle Time Distribution

Minimize :

E =

n
∑

j=i+1

Eleak
j +

n
∑

j=i

(Eo · xj) (8)

subject to :
n
∑

j=i

tj = dln − tfi −

n
∑

j=i+1

teEj (9)

dlj ≥ tfi +

j−1
∑

k=i

tk +

j
∑

k=i+1

teWk (10)

(∀j, i+ 1 ≤ j ≤ n)

Ti(t) ≤ Tmax (∀i, 1 ≤ i ≤ n) (11)

processor temperature during execution of the task set to be
lower than the maximal allowable working temperature of the
chip Tmax.

V. TEMPERATURE ANALYSIS

A. Temperature Model

Thermal Circuit.
In order to analyze the thermal behavior, we build an equivalent
RC thermal circuit based on the physical parameters of the
die and the package [10]. Due to the fact that the application
period tp can safely be considered significantly smaller than
the RC time of the heat sink, which, usually, is in the order
of minutes [37], the heat sink temperature stays constant after
the state corresponding to the SSDTC is reached. For SSDTC
estimation, we, hence, can ignore the thermal capacitance (not
the thermal resistance!) of the heat sink and build the 2-RC
thermal circuit shown in Fig. 3a. B1 and B2 represent the
temperature node for the die and the heat spreader respectively.
P (t) stands for the processor power consumption as a function
of time. We obtain the values of R1, R2, C1 and C2 from
an RC network similar to the one constructed in Hotspot [11].
R1 is calculated as the sum of the thermal resistance of the
die and the thermal interface material (TIM), and C1 as the
sum of the thermal capacitance of the die and the TIM. R2 is
the equivalent thermal resistance from the heat spreader to the
ground through the heat sink, and C2 is the equivalent thermal
capacitance of the heat spreader layer.

P(t)
R1

C1 C2

R2

B1 B2

P(t)
R1

C1

R2

B1 B2

(a) 2-RC Thermal Circuit (b) 1-RC Thermal Circuit 

Fig. 3. Thermal Circuit

When the application period tp is significantly smaller than
the RC time of the heat spreader in the 2-RC thermal circuit,
the heat spreader temperature stays constant after SSDTC is
reached. In this case, we can simplify the 2-RC to an 1-RC
thermal circuit (Fig. 3b).
Temperature Equations.
For the 2-RC thermal circuit in Fig. 3a, we can describe the
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temperatures of B1 and B2 as follows:

C1 ·
dT die

dt
+

T die − T sp

R1
= P (t) (12)

C2 ·
dT sp

dt
+

T sp

R2
=

T die − T sp

R1
(13)

where T die and T sp represent the temperatures at B1 and B2

respectively. The power consumption P (t) is the sum of the
dynamic and leakage power, which are dependent on the supply
voltage V and T die.

If, within a time interval, the power consumption P stays
constant, we can solve the differential equations Eq. (12) and
Eq. (13) (with given initial temperatures of the node B1,
T die
b , and node B2, T sp

b ). The corresponding solution takes the
following form:

T die(t) = A1 ∗ e
−t
tc1 +B1 ∗ e

−t
tc2 + C1 (14)

T sp(t) = A2 ∗ e
−t
tc1 +B2 ∗ e

−t
tc2 + C2 (15)

where tc1 and tc2 are the two time constants of the 2-RC
thermal circuit shown in Fig. 3. tc1 and tc2 are determined by
the thermal resistances R1, R2, and thermal capacitances C1,
C2. Coefficients A1, B1, C1, A2, B2, C2 are determined by the
initial temperatures at B1 T

die
b and B2 T

sp
b , power consumption

P , thermal resistances R1, R2, and thermal capacitances C1,
C2.

Eq. (14) describes the temperature at B1 as a function of
time, while Eq. (15) describes the one for B2. Now, let us treat
the initial temperatures at B1, T die

b , and B2, T sp
b , as variables

in Eq. (14) and Eq. (15). With a given length of a time interval,
we can rewrite Eq. (14) and Eq. (15) as Eq. (16) and Eq. (17),
where T die

b and T sp
b are the temperatures of B1 and B2 at

the beginning of the time interval, while T die
e and T sp

e are the
temperatures at the end of the time interval. a1, a2, b1, b2, c1
and c2 are constant coefficients determined by the length of
time interval, and by the values of R1, R2, C1, C2 and P .

T die
e = a1 · T

die
b + b1 · T

sp
b + c1 (16)

T sp
e = a2 · T

die
b + b2 · T

sp
b + c2 (17)

Eq. (16) gives the temperature of the chip at the end of the time
interval as a functions of the initial temperature, and Eq. (16)
gives the one for the heat spreader.

B. SSDTC Estimation

As an input to the SSDTC calculation we have the voltage
levels, calculated by the DVS algorithm, and a given idle time
distribution, as illustrated in Fig. 4a.

t0 t1 t2 t3 tn-1 tn Time
Pidle

t0 t1 t2 t3 tn-1 tnTime

Deadline

Tdie1

Tdie2

Tdie0

Tdie3

Tdie4
Tdie5

Tdie6
Tdie7 Tdiem-3

Tdiem

Tdiem-2

Tdiem-1Tdie8

Vs0 Vs1Vs2Vs3
Vs4Vs5Vs6 Vs8

Vsm-3
Vsm-1Vsm-2

Fig. 4. Temperature Analysis

When the processor is working in the active state, the leakage
power varies with the working temperature of the processor.

In Fig. 4a, we divide the execution interval of each active state
step into several sub-intervals. The total number of sub-intervals
is denoted as m. Each sub-interval is short enough such that
the temperature variation is small and the leakage power can
be treated as constant inside the sub-interval.
Pi is the power consumption for each sub-interval i (∀i, 1 ≤

i ≤ m). When the processor is in the active state during the
ith sub-interval, Pi is computed by Eq. (18), where V si−1 and
T die
i−1 are the supply voltage and processor temperature at the

start of the ith sub-interval.

Pi = P d
i (V si−1) + P leak

i (T die
i−1, V si−1) (18)

P d
i (V si−1) represents the dynamic power consumption while

P leak
i (T die

i−1, V si−1) represents the leakage power consumption
based on the piecewise linear leakage model discussed in
Section II-A. When the processor is in idle state during the
ith sub-interval, the power consumption Pi = Pidle.

As shown in Fig. 4b, we construct the SSDTC by calculating
the temperature values T die

0 to T die
m . The relationship between

the start and end temperature of each sub-interval can be
described by applying Eq. (16) and Eq. (17) to all sub-intervals.
Thus, we can establish a linear system with 2m equations as
shown by Eq. (19) to Eq. (22). T die

i and T sp
i are the temperature

at the beginning of the i+ 1th sub-interval.

T die
1 = a11 · T

die
0 + b11 · T

sp
0 + c11 (19)

T sp
1 = a12 · T

die
0 + b12 · T

sp
0 + c12 (20)

.........

T die
m = am1 · T

die
m−1 + bm1 · T

sp
m−1 + cm1 (21)

T sp
m = am2 · T

die
m−1 + bm2 · T

sp
m−1 + cm2 (22)

Due to periodicity, when dynamic steady state is reached, the
processor and heat spreader temperature at the beginning of
the period should be equal to the temperature at the end of the
previous period:

T die
0 = T die

m ; T sp
0 = T sp

m (23)

Solving the above linear system Eq. (19)–Eq. (23), we get the
values for T die

0 to T die
m and, hence, obtain the corresponding

SSDTC. As this system is a tridiagonal linear system, it can
be solved efficiently, e.g. through LU decomposition with only
O(m) operations [38]. It should be mentioned that, in fact,
two SSDTCs are obtained, one reflecting the temperature of
the chip, and the other based on that of the heat spreader.

C. Transient Temperature Curve Estimation

The temperature calculated in the previous section (SSDTC)
corresponds to the dynamic steady state reached after a suf-
ficient number of iterations have been executed. However,
the same technique can be used to calculate any transient
temperature curve (TTC), corresponding to an arbitrary time
interval, as long as the length of the time interval is significantly
smaller than the RC time of the heat sink (which is in the order
of minutes). Under this assumption, as discussed earlier in this
section, the thermal model in Fig. 3 can be used. The only
difference relative to the SSDTC calculation is that Eq. (23) is
no longer valid:

T die
0 6= T die

m ; T sp
0 6= T sp

m

To estimate the transient temperature curve (TTC), the tempera-
ture of T die

0 and T sp
0 are given as input. The temperature values:

T die
1 ,T die

2 , . . . , T die
m and T sp

1 , T sp
2 , . . . , T sp

m are calculated by
solving equations Eq. (19)–Eq. (22).
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VI. ITD WITH ONLY STATIC SLACK (SITD)

In this section we discuss our solutions to the SITD problem, as
formulated in Section IV-A, which only considers static slack.
We first introduce our approach ignoring the overheads Eo and
to in Section VI-A. This approach will be used in Section VI-B
where a general SITD technique is presented.

A. SITD without overhead (SITDNOH)

Since, in this section, we ignore the overheads (Eo = to = 0),
it results from Eq. (4) that the cost to be minimized is
∑n

i=1 Esleaki , which is the total leakage energy consumed
during task execution.

Assuming that the execution interval of task τi is divided
into qi − 1 sub-intervals, the leakage energy consumption of τi
is the sum of the leakage energy of all sub-intervals:

Esleaki =

qi−1
∑

j=1

(P leak
ij (Vij ,

T die
ij + T die

i(j+1)

2
) · tsubij ) (24)

where T die
ij , T die

i(j+1) and tsubij represent the processor SSDTC

temperatures at the beginning and end of the jth sub-interval
and the length of this sub-interval, respectively. The model in
Eq. (1) is used to compute the leakage power, P leak

ij , in each
sub-interval.

Let us first assume that the chip (as well as the heat spreader)
temperature at the termination of each task is known and is
independent of the starting temperature of the task. Under
this assumption, we can formulate SITDNOH as a convex
nonlinear problem shown in Eq. (25)–Eq. (38), where the
objective function to be minimized is the total leakage energy
for all tasks

∑n

i=1 Esleaki . The optimization variables to be
calculated are the idle slot lengths ti, (∀i, 1 ≤ i ≤ n). Eq. (27)
requires the sum of idle slots lengths to be equal with the total
available idle time: dln −

∑n

i=1 te
W
i . Eq. (28) guarantees that

the deadline of each task is satisfied. As mentioned above, the
processor and heat spreader temperatures at the end of task τi,
T die
iqi

and T sp
iqi

, are considered known and assigned by Eq. (29)

and Eq. (30), respectively, where Tgdiei and Tgspi are given
constants. T die

ij and T die
i(j+1) are the processor temperature at the

beginning and end of jth sub-interval in the execution of task
τi, and are given by Eq. (31) similar to Eq. (19) and Eq. (21)
in Section V-B. Eq. (32) describes the same relationship for the
heat spreader temperature. T die

(i+1)1 and T sp

(i+1)1 are the processor

and heat spreader temperatures at the start of task τi+1, and
are dependent on the finishing temperature of the previous task
τi and the idle slot ti placed after τi. If we assume that all
idle slots ti are significantly shorter than the RC time of the
heat spreader, then we can describe the processor temperature
behavior during the idle slot i by Eq. (33) and Eq. (35), based on
the 1-RC thermal circuit described in Section V-A. TIs is the
steady state temperature that the processor would reach if Pidle

would be consumed for a sufficiently long time and is calculated
according to Eq. (37). Rg is the sum of the two thermal
resistances R1 and R2 in Fig. 3b. Under the same assumption
as above, the heat spreader temperature stays constant during
the idle slot as shown in Eq. (34) and Eq. (36)2. Eq. (33) and
Eq. (34) calculate the processor and heat spreader temperature
at the end of the idle slot following task τi and, implicitly, the

2Idle periods are supposed to be short. If, exceptionally, they are not
significantly shorter than the heat spreader RC time, we use the 2-RC circuit
to model the temperature during the idle period in Eq. (33)–Eq. (36). This will
not affect the convexity of the formulation.

Formulation 1 SITD with No Overheads Consideration

Minimize :
n
∑

i=1

Esleaki =
n
∑

i=1

(

qi−1
∑

j=1

(tsubij · P leak
ij )) (25)

Subject to :

ti ≥ 0 (∀i, 1 ≤ i ≤ n) (26)
n
∑

i=1

ti = dln −

n
∑

i=1

teWi (27)

dli ≥

i−1
∑

j=1

tj +

i
∑

j=1

teWj (∀i, 1 ≤ i ≤ n) (28)

T die
iqi

= Tgdiei (∀i, 1 ≤ i ≤ n) (29)

T sp
iqi

= Tgspi (∀i, 1 ≤ i ≤ n) (30)

T die
i(j+1) = a1ij · T

die
ij + b1ij · T

sp
ij + c1ij (31)

T sp

i(j+1) = a2ij · T
die
ij + b2ij · T

sp
ij + c2ij (32)

(∀i, 1 ≤ i ≤ n; ∀j, 1 ≤ j ≤ qi − 2)

T die
(i+1)1 ≥ TIs+ (T die

iqi
− TIs) · e

(
−ti

Rg·C1
)

(33)

(∀i, 1 ≤ i ≤ n− 1)

T sp

(i+1)1 = T sp
iqi

(∀i, 1 ≤ i ≤ n− 1) (34)

T die
11 ≥ TIs+ (T die

nqn
− TIs) · e

( −tn
Rg·C1

)
(35)

T sp
11 = T sp

nqn
(36)

TIs = Pidle ·Rg (37)

T die
ij ≤ Tmax (38)

(∀i, 1 ≤ i ≤ n; ∀j, 1 ≤ j ≤ qi)

starting temperature of τi+1. Eq. (35) and Eq. (36) compute the
temperature at the start of task τ1, taking into consideration that
this task starts after the idle period following task τn (the task
set is executed periodically). Finally, the constraint in Eq. (38)
requires that the processor temperatures during execution of the
task set, T die

ij (∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ qi), do not exceed
the maximal allowable working temperature of the chip Tmax.
The presented formulation is a convex non-linear problem, and
can be solved efficiently in polynomial time [39].
SITDNOH Algorithm.
The above formulation is based on the particular assumption
that the temperature at the end of a task τi is known and fixed.
However, in reality, this is not the case, and the temperature
T die
iqi

and T sp
iqi

(Eq. (29) and Eq. (30)) at the termination of a task
depend on the starting temperature of the task and, implicitly,
on the distribution of the idle time. This makes the above
formulation become a non-convex programming problem which
is very time consuming to solve. In order to solve the problem
efficiently we have developed an iterative heuristic outlined in
Fig. 5.

The heuristic starts with an arbitrary initial ITD, for example,
that the entire idle time ttot is placed after the last task τn.
Assuming this ITD and the given voltage levels, steady state
dynamic temperature analysis is performed, as described in
Section V-B. Given the obtained SSDTC, the leakage energy
consumption

∑n

i=1 E
leak
i corresponding to the assumed ITD

is calculated. From the SSDTC we can also extract the final
temperatures T die

iqi
and T sp

iqi
for each task τi. Assuming this T die

iqi
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Static Slack Only Idle Time Distribution 
(Convex Optimization Eq.(25)-Eq.(38))

Tdieiqi  Converges?

Reduced  Energy ?

Update Tdieiqi and Tspiqi
Eq. (29) and Eq. (30) 

Tasks with their assigned 
voltage V; total idle time ttot

Initial idle time distribution 

Final Idle Time 
Distribution

SSDTC  Analysis (Section V)
& Energy Calculation

SSDTC  Analysis (Section V)
& Energy Calculation

Fig. 5. SITDNOH Heuristics

and T sp
iqi

as the final temperatures in Eq. (29) and Eq. (30), we
can calculate the idle time ti using the convex optimization
formulated in Eq. (25)–Eq. (37).

From the new ITD resulted after the optimization, we cal-
culate a new SSDTC which provides new temperatures T die

iqi

and T sp
iqi

at the end of each task τi. The new total leakage

energy consumption
∑n

i=1 E
leak
i , corresponding to the updated

ITD, is also calculated. The process is continued assuming the
new end temperatures in Eq. (29) and Eq. (30) and the convex
optimization produces a new ITD.

The iterations stop when the temperature T die
iqi

converges (i.e.

|T dienew

iqi
−T dieold

iqi
| < ε, ∀i, 1 ≤ i ≤ n). However, it can happen

that, after a certain point, additional iterations do not signifi-
cantly improve the ITD. Therefore, even if convergence has not
yet been reached, the optimization is stopped if no significant
energy reduction has been achieved: (Eold

tot −Enew
tot )/Eold

tot < ε′.
Our experiments have shown that maximum 5 iterations are
needed with ε = 0.5◦ and ε′ = 0.001.

B. SITD with overhead (SITDOH)

The approach presented in Section VI-A is based on the
assumption that time and energy overheads for switching the
processor to and from the idle state, to and Eo, are zero, which
is not the case in reality. If we consider the hypothetical case
that the end temperature of each task is known, the problem
can be formulated similar to Eq. (25)–Eq. (37), with the main
difference that the total energy to be minimized is given in
Eq. (4). Based on this formulation, we could solve the SITDOH
problem for the real case, when the end temperatures are not
supposed to be known, similarly to the approach described
in Fig. 5. However, the formulation with the objective function
Eq. (4), due to the binary variable xi, is a mixed integer
convex programing problem which is very time consuming to
solve. We, hence, propose an SITDOH heuristic based on the
SITDNOH approach presented in Section VI-A.

Our SITDOH heuristic comprises two steps. In the first step
an optimization of the idle time distribution is performed by
eliminating idle intervals whose lengths are smaller than a
certain threshold limit. In the second step, the ITD is further
refined in order to improve energy efficiency.

A lower bound tmin on the length ti of an idle slot can be
determined by considering the following two bounds:

1) No idle slot is allowed to be shorter than to, the total
time needed to switch to/from the idle state.

2) The energy overhead due to switching should be com-
pensated by the gain due to putting the processor into
the idle state. The energy gain for an idle interval ti is

computed as:

Eg =

∫ ti

0

P leak
i (Vi, Ti(t)) dt− Pidle · ti (39)

where Ti(t) is the processor temperature as a function of
time during the idle time interval [0, ti]. Vi is the supply
voltage for τi. P

leak
i (Vi, Ti(t)) is the leakage power in the

active state during the idle time interval. Thus, in order for
the overhead to be compensated, we need Eo < Eg . As

P leak
i depends on the temperature, the threshold length

of an idle slot is not a given constant. Nevertheless, this
length will be always larger than Eo/(P

leak
maxi

− Pidle),
where P leak

maxi
= P leak

i (Vi, Tmax) is the leakage power at
the maximum temperature Tmax at which the processor
is allowed to run.

In conclusion, for the first step of the SITDOH heuristic
(Fig. 6a), we consider: tmin = max(to, Eo/(P

leak
maxi

−Pidle)).

SITDNOH (Fig. 5)

i := 1 

ti>t
min

N

N

Y

Y

Step 2 

Set ti =0  in Eq.(26)

Find the shortest idle slot i

N

Step 1 

Reduced Energy?

Y

set  ti = 0 in Eq.(26)

SITDNOH (Fig. 5)

End

(a) Step1 (b) Step2

Y

N

Accept

 new

ITD

i≤n 

i ++ 

All ti > t
min

SSDTC  Analysis (Section V)

& Energy Calculation

Fig. 6. SITDOH Heuristics

The basic idea of the first step is that no idle slot is allowed
to be shorter than tmin. Thus, after running SITDNOH, the
obtained ITD is checked slot by slot. If a slot length ti is smaller
than tmin, this slot will be removed. In order to achieve this,
the particular constraint in Eq. (26), corresponding to slot i,
is changed from ti ≥ 0 to ti = 0. After all slots have been
visited and Eq. (26) updated, SITDNOH is performed again.
The obtained ITD is such that all slots which in the previous
iteration have been found shorter than tmin have disappeared
and the corresponding idle time has been redistributed among
other tasks. The process is repeated until no slot shorter than
tmin has been identified.

After step1, we still can be left with slots that are too short
to be energy efficient. There are two reasons for this:

1) Due to the fact that the processor is running at a
temperature lower than the maximum allowed Tmax, it
can happen that the real tmin is smaller than the one
considered in step1.

2) Even if Eo < Eg , which means that an energy reduction
due to the idle slot is obtained, energy efficiency can, pos-
sibly, be improved by eliminating the slot and distributing
the corresponding idle time among other slots.

In the second step (Fig. 6b), we start from the shortest idle
slot and consider to eliminate it (by setting the corresponding
constraint ti = 0 in Eq. (26)). If the ITD obtained after applying
SITDNOH is more energy efficient, the new ITD is accepted.
The process is continued as long as, by eliminating a slot, the
total energy consumption is reduced.

As mentioned earlier, SITDNOH, which is at the heart of
SITDOH, can be run efficiently in polynomial time. For each
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of the two steps implied by SITDOH, the SITDNOH algorithm
is executed maximally n times, where n is the total number of
tasks.

VII. ITD WITH DYNAMIC AND STATIC SLACK (DITD)

The above SITD approach determines idle time settings as-
suming that tasks always execute their WNC. However, due to
execution time variations, large amounts of dynamic slack are
created at run-time. In order to exploit the dynamic slack, the
slot length ti has to be determined at run-time based on the
values of the current time and temperature after termination
of task τi. In principle, calculating the appropriate ti implies
the execution of a temperature aware ITD algorithm similar to
the one described in Section VI-B (with the objective function
and constraints in Eq. (8)–Eq. (10)). Running this algorithm
on-line, after execution of each task, implies a time and energy
overhead which is not acceptable.

To overcome the above problem, we have divided our DITD
approach into an off-line and an on-line phase. In the off-line
phase, idle time settings for all tasks are pre-computed, based
on possible finishing times and finishing temperatures of the
task. The results are stored in look-up tables (LUTs), one for
each task. In Fig. 7, we show two such tables. They contain idle

time settings for combinations of possible termination times tfi
and finishing temperatures Tfdie

i of a task τi.

Tf
die 

1

LUT1 LUT2

ti (ms)

50 0.5

70 0.7

90 0.9

50 0.4

70 0.5

90 0.6

Tf
 die

2 ti (ms)

... ...
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85 1.2

65 0.4
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...

1
1 2 3 4 5
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0
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Access LUT

…  … 

t
f
1(ms)
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1.5

t
f
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...

... ...... ... ...
...

2.0 

...

2.5

Fig. 7. DITD On-line Phase

A. On-line Phase

The on-line phase is illustrated in Fig. 7. Each time a task
τi terminates, the length of the idle time slot ti following the
termination of τi has to be fixed; the on-line scheme chooses the
appropriate setting from the lookup table LUTi, depending on
the actual time and temperature sensor reading. If there is no ex-
act entry in LUTi, corresponding to the actual time/temperature,
the entry corresponding to the immediately higher time and
closest temperature value is selected. For example, in Fig. 7, τ1
finishes at time 1.35ms with a temperature 78◦C. To determine
the appropriate idle time slot length t1, LUT1 is accessed. As

there is no exact entry with tf1=1.35ms and Tfdie
1 = 78◦C,

the entry corresponding to termination time 1.5ms (1.5ms is
immediately higher than 1.35ms) and temperature 70◦C (as it
is the closest one to Tfdie = 78◦C) is chosen. Hence, the
processor will be switched to the idle state for 0.5ms before the
next task, τ2, starts. This on-line phase is of very low, constant
time complexity O(1) and, thus, very efficient.

We should notice that, according to our temperature model
presented in Section V, the state of the system is defined by
both the die and the heat spreader temperatures. In our LUTs,
however, we only consider the die temperature for taking the
decision on the idle slack. This is due to the following reasons:

1) It is both impractical and potentially expensive to obtain,
at run-time, temperature readings from the heat spreader.

2) The variations of the heat spreader temperature are small
compared to those of the chip. This is due to the fact that
the heat capacitance of the heat spreader is much larger
than that of the chip.

3) Considering also the heat spreader temperature as an
additional dimension in the LUTs would dramatically
increase the size of the tables without significant con-
tribution to energy efficiency.

Thus, when generating the LUTs, we will consider that, at the
termination of a task τi, the heat spreader has a certain expected
temperature Tfsp

i . In Section VII-E we will show how Tfsp
i

is calculated.

For all task Ĳi , i = {1...n},

calculate [EFTi , LFTi ] and interval [Tf 
l
i, Tf 

h
i ]

Consider task Ĳi

Determine ǻti and ǻTi

t
f
i      EFTi

Perform DITDOH

t
f
i t

f
i +  ǻti  t

f
i ≤ LFTi

Tf 
die

i Tf 
die

i +  ǻTi  

i     1

 Tf 
die

i      Tf 
l
i

Tf 
die

i ≤ Tf 
h
i

Last task

i = n? N

Y

N

Y

i     i+1N

Y

Fig. 8. DITD Off-line Phase

B. Off-line Phase

In the off-line phase, one LUT table is generated for each task.
The LUT table generation algorithm is illustrated in Fig. 8. The
outermost loop iterates over the set of tasks and successively
constructs the table LUTi for each task τi. The next loop
generates LUTi entries corresponding to the various possible
finishing temperatures Tfdie

i of τi. Finally, the innermost
loop iterates, for each possible finishing temperature, over all

considered termination times tfi of task τi.
The algorithm starts by computing the earliest EFTi and

latest possible finishing times LFTi, as well as the lowest Tf l
i

and highest possible finishing temperature Tfh
i for each task τi.

With a given finishing time tfi and finishing temperature Tfdie
i

of task τi, the innermost loop performs the slack distribution
step DITDOH, iteratively. We describe the DITDOH algorithm
in Section VII-C. For successive iterations, the finishing tem-

perature Tfdie
i and time tfi will be increased with the time and

temperature quanta △ti and △Ti, respectively. The calculation
of the parameters EFTi, LFTi, Tf l

i and Tfh
i as well as

the determination of the granularities and number of entries
along the time and temperature dimensions are presented in
Section VII-D and Section VII-E, respectively.
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C. DITDOH Algorithm

When calculating the actual LUT entries for a task τi, the
ITD algorithm DITDOH is performed to determine the idle
slot length ti following the termination of τi, with given termi-
nation time and temperature, based on the problem formulation
described in Section IV-B. DITDOH is similar to SITDOH
outlined in Section VI-B. However, unlike the formulation used
in SITDOH (Eq. (25)–Eq. (38)) which is based on SSDTC
estimation, the formulation used for DITDOH is based on the
estimation of a transient temperature curve (TTC) described in
Section V-C. Since we do not rely on the fact that successive
iterations of the application are identical and that tasks execute
always with their worst case number of cycles, we do not
calculate an SSDTC corresponding to the dynamic steady state.
But, instead, we estimate a TTC.

The formulation used for DITDOH is shown in Eq. (40)–
Eq. (55). As mentioned in Section IV-B, the energy is optimized

Formulation 2 DITD with No Overheads Consideration

Minimize :
n
∑

k=i+1

Eleak
k =

n
∑

k=i+1

(

qk−1
∑

j=1

(tsubkj · P leak
kj )) (40)

Subject to :

tj ≥ 0 (∀j, i ≤ j ≤ n) (41)
n
∑

k=i

tk = dln − tfi −

n
∑

k=i+1

teEj (42)

dli+1 ≥ tfi + ti + teWi+1 (43)

LFTi+1 ≥ tfi + ti + teWi+1 (44)

dlj ≥ tfi +

j−1
∑

k=i

tk + teWi+1 +

j
∑

k=i+2

teEk (45)

(∀j, i+ 2 ≤ j ≤ n)

T die
kqk

= Tgdiek (∀k, i+ 1 ≤ k ≤ n) (46)

T sp
kqk

= Tgspk (∀k, i+ 1 ≤ k ≤ n) (47)

T die
(i+1)1 ≥ TIs+ (Tfdie

i − TIs) · e
(

−ti
Rg·C1

)
(48)

T sp

(i+1)1 = Tfsp
i (49)

T die
k(j+1) = a1kj · T

die
kj + b1kj · T

sp
kj + c1kj (50)

T sp

k(j+1) = a2kj · T
die
kj + b2kj · T

sp
kj + c2kj (51)

(∀k, i < k ≤ n; ∀j, 1 ≤ j ≤ qk − 2)

T die
(k+1)1 ≥ TIs+ (T die

kqk
− TIs) · e

(
−tk

Rg·C1
)

(52)

(∀k, i+ 1 ≤ k ≤ n− 1)

T sp

(k+1)1 = T sp
kqi

, (∀k, i ≤ k ≤ n− 1) (53)

TIs = Pidle ·Rg (54)

T die
kj ≤ Tmax (55)

(∀k, i+ 1 ≤ k ≤ n; ∀j, 1 ≤ j ≤ qk)

for the case that the future tasks τi+1 to τn execute their
expected time teE which, in reality, happens with a much
higher probability than, e.g. the teW (nevertheless, idle time
slots are distributed such that, even in the worst case, deadlines
are satisfied). The objective function Eq. (40) to be minimized
is the total leakage energy of further tasks to be executed in

the current iteration: τk, (∀k, i < k ≤ n). Eq. (40) is similar to
Eq. (25) with two differences:

1) It refers only to the remaining tasks τi+1, . . . , τn.
2) The execution interval of a task τk, which is divided into

qk−1 subintervals, is not corresponding to the worst case
teWk , but to the expected case teEk .

The optimization variables to be calculated are the idle slot
lengths tk, (∀k, i ≤ k ≤ n). Eq. (42) requires that the sum of
all idle slot lengths should be equal to the total available idle

time, where tfi is the current task’s finishing time. The total
available idle time is calculated based on the assumption that
all future tasks are executed with their expected workload.

Eq. (43) guarantees the deadline of task τi+1—the next task
to be executed after the termination of the current task τi in the
worst case (task τi+1 executed with teWi+1). In order to guarantee
that all future tasks meet their deadlines in the worst case,
Eq. (44) requires that τi+1 finishes before LFTi+1, in the worst
case. The latest finishing time LFTi+1 (see Section VII-D) is
the latest termination time of task τi+1 that still allows future
tasks, following τi+1, to satisfy their deadline even if their
worst case workloads are executed. Thus, Eq. (43) and Eq. (44)
guarantee not only that the deadline of τi+1 is satisfied in
the worst case but also that τi+1 finishes in time for all the
remaining tasks to be able to meet their deadline in the worst
case. Eq. (45) enforces the deadline of the remaining tasks τj ,
(∀j, i+2 ≤ j ≤ n), considering that they execute their expected
workload. This means that the idle time ti following task τi
is determined such that it guarantees deadlines to be satisfied
in the worst case but is optimized for the situation that tasks
execute their expected workloads.

Similar to Eq. (29) and Eq. (30), Eq. (46) and Eq. (47)
specify the processor and heat spreader temperatures at the
finishing of task τk: T die

kqk
and T sp

kqk
. Eq. (48) computes the

processor temperature at the beginning of task τi+1 similar to
Eq. (35), where Tfdie

i is the chip temperature at the termination
of the current task τi. Similarly, Eq. (49) computes the heat
spreader temperature at the beginning of task τi+1, where
Tfsp

i is, as described in Section VII-A, the expected heat
spreader temperature at the termination of task τi. Tfsp

i is
pre-calculated as will be explained in Section VII-E. Eq. (50)–
Eq. (53) compute the TTC of processor/heat spreader based
on our TTC estimation method described in Section V-C,
where T die

kj and T die
k(j+1) are the processor temperature at the

beginning and end of the jth sub-interval during the execution
of task τk. Finally, throughout the execution of the future tasks
τj (∀j, i + 1 ≤ j ≤ n), the processor temperatures T die

kj

(∀k, i + 1 ≤ k ≤ n; ∀j, 1 ≤ j ≤ qk) should not exceed the
maximal allowable working of the chip Tmax as imposed by
the constraint in Eq. (55). The above formulation is a convex
non-linear problem and can be solved efficiently in polynomial
time [39].

Coming back to the DITD off-line phase in Fig. 8, the
DITDOH algorithm is invoked for each line in the LUTi

corresponding to a task τi. This invocation will result in the
calculation of the slack length ti corresponding to the current

value of termination time tfi and temperature Tfdie
i . DITDOH

performs exactly like SITDOH (Fig. 6), with the exception that
for solving SITDNOH (Fig. 5), instead of Eq. (25)–Eq. (38),
the formulation in Eq. (40)–Eq. (55) is used.

D. Time Bounds and Granularity

In the first step of the algorithm in Fig. 8, the EFTi and LFTi

for each task are calculated. The earliest finishing time EFTi
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is calculated based on the situation that all tasks execute their
best case execution time teBi . The latest finishing time LFTi is
calculated as the latest termination time of τi that still allows
all tasks τj , j > i, to satisfy their deadlines when they execute
their worst case execution time teWi .

With the time interval [EFTi, LFTi] for task τi, a straight-
forward approach to determine the number of entries along the
time dimension would be to allocate the same number of entries
for each task. However, the time interval sizes LFTi − EFTi

can differ very much among tasks, which should be taken into
consideration when deciding on the number of time entries
Nti. Therefore, given a total number of entries along the time
dimension NLt, we determine the number of time entries in
each LUTi, as follows:

Nti =

⌈

NLt ·
(LFTi − EFTi)
n
∑

i=1

(LFTi − EFTi)

⌉

The corresponding granularity along the time dimension △ti is
the same for all tasks and is obtained as follows:

△ti =

n
∑

i=1

(LFTi − EFTi)

NLt

, (∀i, 1 ≤ i ≤ n)

E. Temperature Bounds and Granularity

The granularity △Ti along the temperature dimension is the
same for all task τi and has been determined experimentally.
Our experiments have shown that values around 15◦ are appro-
priate, in the sense that finer granularities will only marginally
improve energy efficiency.

To determine the number of entries along the tempera-
ture dimension, we need to calculate the temperature interval
[Tf l

i , T f
h
i ] at the termination of each task. In fact, it is not

needed to determine the bounds of the temperature interval
exactly. A good estimation, such that, at run-time, temperature
readings outside the determined interval will happen rarely, is
sufficient. If the temperature readings exceed the upper/lower
bound of the interval, the idle time setting corresponding to the
highest/lowest temperature value available in the LUT will be
used. One alternative would be to simply assume that all tasks
have a finishing temperature interval [Ta, Tmax], where Ta is
the ambient temperature and Tmax is the maximum temperature
at which the chip is allowed to work. This would lead to huge
amounts of wasted memory space (for storing LUT tables) as
well as wasted computation time in the off-line phase. We
have developed an estimation technique for the temperature
interval [Tf l

i , T f
h
i ], which balances computation complexity

and accuracy of the results.

In order to estimate the temperature bounds Tf l
i and Tfh

i ,
we define two run-time scenarios:

• Worst case execution scenario: in which the actual execu-
tion time of each task τi is always equal to its worst case
execution time: teAi = teWi .

• Best case execution scenario: in which the actual execution
time of each task τi is always equal to its best case
execution time: teAi = teBi .

In both scenarios, the processor will execute the corre-
sponding periodic power pattern repeatedly and the processor
temperature will eventually reach the corresponding steady
state dynamic temperature curve (denoted as SSDTCw for the
worst case scenario and SSDTCb for the best case scenario,
respectively). From the corresponding SSDTC, we can obtain,

for each task τi, its finishing temperature. We use the finishing
temperature of task τi corresponding to the worst case execution

scenario, Tfw
i , as the upper bound of the finishing temperature

of task τi: Tfh
i = Tfw

i ; the finishing temperature of task τi
corresponding to the best case execution scenario, Tf b

i , will be
used as the lower bound: Tf l

i = Tf b
i .

In order to obtain the SSDTCw we first perform the
SITDOH heuristic (Fig. 6). Then, temperature analysis (Sec-
tion V) produces the temperature curve for the worst case
scenario with the corresponding idle time distribution generated
by SITDOH. The SSDTCb curve is obtained in a similar way,
by replacing teWi with teBi in the constraint in Eq. (27).

With the upper and lower bounds Tf l
i and Tfh

i obtained
for each task, the number of the entries along the temperature
dimension, for task τi, is:

NTi =
⌈Tfh

i − Tf l
i

△Ti

⌉

where △Ti is the granularity along the temperature dimension.

As mentioned in Section VII-A, when generating the LUTs,
we consider that, at the termination of a task τi, the heat
spreader has a certain expected temperature Tfsp

i . In order
to obtain these temperatures, we perform the same procedure
as outlined above but, in this case, considering the expected
execution time of each task: teAi = TeEi . We obtain the temper-
ature curve SSDTCexp

sp corresponding to the heat spreader (see
Section V-B), from which we extract the expected temperature
of the heat spreader, Tfsp

i , at the termination of each task τi.

VIII. EXPERIMENTAL RESULTS

A. Evaluation of The Thermal Model

Experimental Setup.
We have evaluated our thermal model considering platforms
with parameter settings based on values from [40], [41]
and [42]. We consider die areas of 6×6, 8×8, and 10×10mm2.
The heat spreader area is five times the die area, and the
heat sink area is between 1.3 and 1.4 times the area of the
heat spreader. The thickness of the die and heat spreader are
0.5mm and 2mm respectively. The thickness of the heat sink
is between 10mm and 20mm. The coefficients corresponding
to the power model in Section II-A are based on [34] and [3].
For the temperature calculation (Section V-B and Section V-C)
we have considered a piecewise linear leakage model with 3
segments, as recommended in [36].
Accuracy.
We first performed a set of experiments to evaluate the accuracy
of our temperature analysis approach proposed in Section V.
We randomly generated 500 periodic voltage patterns corre-
sponding to applications with periods in the range between 5ms
and 100ms. For each application, considering the coefficients
and platform parameters outlined above, we have computed
the SSDTC using the approach proposed in Section V-B and
by using Hotspot simulation. For each pair of temperature
curves obtained, we calculated the maximum deviation as
the largest temperature difference between any corresponding
pairs of points (in absolute value), as well as the average
deviation. Fig. 9 illustrates the results for different application
periods. For applications with a period of 50ms, for example,
there is no single case with a maximum deviation larger
than 2.1◦C, and the average deviation is 0.8◦C. Over all 500
applications, the average and maximum deviation are 0.8◦C
and 3.8◦C, respectively. We can observe that the deviation
increases with the increasing period of the application. This
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is due to the fact that, with larger periods, accuracy can be
slightly affected by neglecting the thermal capacitance of the
heat sink (see Section V-A).
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Fig. 9. SSDTC Estimation with Our Approach VS. Hotspot

Computation Time.
We have compared the corresponding computation time of our
SSDTC generation approach with the time needed by Hotspot.
Fig. 9 illustrates the average speedup as the ratio of the two
execution times. The speedup is between 3000 for periods of
5ms and 20 for 100ms periods. An increasing period leads
to a larger linear system that has to be solved for SSDTC
estimation (Section V-B), which explains the shape of the
speedup curve in Fig. 9.

The accuracy and speedup of our approach are also depen-
dent on the length of the sub-interval considered for the tem-
perature analysis (Section V-B and Fig. 4). For the experiments
throughout this paper, the length of the sub-interval is 2ms. This
is based on the observation that reducing the length beyond this
limit does not improve the accuracy significantly.

B. Evaluation of The ITD Heuristics

We have used both generated test applications as well as a real
life example in our experiments to evaluate our DITD approach
presented in Section VII. This, implicitly, also evaluates the
SITD approach (Section VI) since:

1) For small dynamic slack ratio, the dynamic approach
converges towards the static one.

2) The DITD approach is based on the SITD for calculation
of each entry in the LUTs.

Experimental Setup.
We have randomly generated 100 test applications consisting
of 30 to 100 tasks. The workload in the worst case (WNC) for
each task is generated randomly in the range [106, 5.0×106]
clock cycles, while the workload in the best case is generated
in the range [105, 5.0×105] clock cycles. To generate the
expected workload ENCi of each task, the following steps
are performed:

1) The value of the expected total dynamic idle time, tEd , is
given as an input: tEd is the total dynamic slack when all
tasks execute their workload in the expected case: tEd =
∑n

i=1(te
W
i − teEi ).

2) tEd is divided into a number nsub of sub-intervals with
equal length (tsub).

3) The nsub sub-intervals are allocated among all tasks
based on a uniform distribution; as result, each task is
allocated a number p of sub-intervals.

4) The expected workload ENCi of task τi is, thus, deter-
mined as: ENCi = WNCi− p · tsub · fi, where fi is the
processor frequency when task τi is executed.

In order to evaluate our DITD technique, we have considered
a straightforward approach (SFA) for comparison. This SFA
scenario corresponds to the natural execution procedure for the
case when no idle time distribution is performed. Following
this approach, tasks are executed according to a static schedule

generated based on the worst case execution time. According
to this schedule, the static slack is placed at the end of the
application, after the last task. At run-time, when the tasks
execute less than their WNC and the generated dynamic slack
is large enough, the processor is put in idle mode. More exactly,
the SFA works as follows:

1) The start time of each task tsti is determined off-line by:
tsti = teWi−1 + tsti−1.

2) At runtime, whenever a task τi terminates, we compute

the gap tg = tsti+1 − tfi , where tfi is the termination time
of the current task.

3) If tg = 0, the next task τi+1 starts immediately after the
termination of task τi. When tg > 0, if the following
two conditions are both satisfied, the processor will be
switched to idle state during tg (otherwise the processor
will stay in the active state with the voltage level at which
task τi is executed): (a) tg > to, where to is the time
overhead due to state switching; (b) the energy gain Eg

is positive: Eg = Ea − (Pidle · tg + Eo) > 0, where
Ea is the leakage energy consumption of the processor
during tg , if the processor stays in the active state. Ea is

estimated as P leak · tg , where P leak is the leakage power
consumption calculated at the temperature when task τi
terminates. Pidle · tg + Eo is the energy consumption if
the processor is switched to idle state during tg , where
Eo is the energy overhead due to switching, and Pidle is
the power consumption in idle state.

We have applied both the DITD and SFA approaches on
the same test application. We assume, for each task τi, that
the actual executed workload at run-time conforms to a beta
distribution [38]. When we simulate the execution of the test
applications, the actual number of executed clock cycles of a
task is generated using a random number generator according
to the beta distribution Beta(α1i, α2i). The parameters α1i and
α2i are determined based on (1) the expected workload ENCi

and (2) a given standard deviation σi of the executed clock
cycles of task τi. The Hotspot system [11] is used to simulate
the sensor readings which track the temperature behaviour of
the platform during the execution of a test application.

In our experiments, the granularity along the time and
temperature dimensions for the LUT tables is set to 1.5–2.0ms
and 15◦–20◦, respectively. It is important to mention that in
all our experiments we have accounted for the time and energy
overhead imposed by the on-line phase of our DITD. Similarly,
we have also taken into consideration the energy overhead
due to the memory access. This overhead has been calculated
based on the energy values given in [43] and [44]. The energy
and time overheads due to power state switching are set to
Eo = 0.5mJ and to = 0.4ms, respectively, according to [9].

After applying both the DITD and SFA approaches on a
test application, we compute the corresponding leakage energy
reduction due to our DITD approach compared to the SFA:
I = (ESFA − EDITD)/ESFA · 100%, where ESFA and
EDITD are the consumed leakage energy corresponding to the
SFA and DITD approach, respectively.
Leakage Energy Reduction vs. Slack Time Ratios.
We first performed experiments considering different combina-
tions of static (rs) and dynamic idle time ratio (rd). The static
idle time ratio is computed as: rs = (dln −

∑n

i=1 te
W
i )/dln,

where dln is the deadline of the last task in execution order. The
dynamic idle time ratio is calculated as: rd = tEd /dl, where tEd
is the total dynamic slack when all tasks execute their workload
in the expected case, as described earlier in this section. Fig. 10
shows the averaged leakage energy reduction I over all test
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applications. The energy reduction achieved by DITD grows
with the available amount of static and dynamic slack. With
rs = 0.2 and rd = 0.2, for example, leakage energy can be
reduced with 20% by applying our DITD approach.
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Fig. 10. Leakage Energy Reduction with Low Switching Overheads

In order to explore the influence of the energy and time
overheads on the potential leakage reduction, we have repeated
the previous experiments in a context where energy and time
overheads are set to higher values: Eo = 1.0mJ and to = 0.8ms.
Fig. 11 shows the corresponding averaged leakage energy
reduction I . The results show a similar trend as in Fig. 10.
Comparing the results in Fig. 10 and Fig. 11, we can observe
that the leakage reduction achieved with the higher overhead
settings is larger. The leakage reduction approaches 40% with
rs = 0.2 and rd = 0.2. The reason is the following: with
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Fig. 11. Leakage Energy Reduction with High Switching Overheads

large switching overheads, it is more likely that the generated
slots are too small for switching power state to be energy
efficient. Thus, using the SFA approach, the processor will keep
in the active power state. With the DITD approach, however, the
slack time will be redistributed such that large slack slots are
generated and, even with large overheads, power state switches
can be performed.

The DITD approach proposed in this paper achieves leakage
energy reduction due to two main features: (1) it is temperature
aware, which means that idle time is distributed such that the
temperature is controlled in order to minimize leakage; (2) it
redistributes slack such that the number of idle slots which are
too short to switch power state, is minimized. A comparison
between Fig. 10 and Fig. 11 illustrates the second feature
of our ITD technique. However, the following question still
remains open: How much does the temperature awareness of
our approach contribute to the energy reduction? In order to
answer this question we have repeated the above experiments
considering a hypothetical scenario with zero switching over-
head: Eo = 0mJ and to = 0ms. The results are shown in
Fig. 12. Under such a scenario, the processor can be switched
to the low power state for the duration of the total idle
time (regardless the length of the individual idle slots). Thus,
the energy gains obtained with DITD compared to SFA, as
illustrated in Fig. 12, are exclusively due to the temperature
awareness of the DITD approach.
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Fig. 12. Leakage Energy Reduction with No Switching Overheads

From Fig. 10, Fig. 11, and Fig. 12 one can also observe the
efficiency of the ITD approach with only static slack (SITD,
Section VI). The cases where rd = 0 (no dynamic slack) are, in
fact, corresponding to those situations when only static slack
is distributed. Obviously, in the cases that both rs = 0 and
rd = 0, there is no slack to distribute and, thus, the energy
reduction is zero.
Leakage Energy Reduction vs. Standard Deviation.
As mentioned, for our experiments we have generated work-
loads for each task τi according to a beta distribution Beta(α1i,
α2i), where α1i and α2i are determined based on the expected
workload ENCi and standard deviation σi of the executed
workload. For the above experiments, the standard deviation σi

for each task is considered to be: σi = 0.1 · (WNCi−BNCi).
As the standard deviation has an influence on the potential leak-
age reduction, we have repeated the above experiments, con-
sidering three different settings of σi, namely, 0.2 · (WNCi −
BNCi), 0.15·(WNCi−BNCi), and 0.05·(WNCi−BNCi).
Fig. 13 shows the leakage reduction I% by applying our DITD
approach relative to the SFA, with different standard deviation
settings. We have considered test applications having static and
dynamic ratios of: rs = 0.2 and rd = 0.2. As can be observed,
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Fig. 13. Leakage Energy Reduction with Different Standard Deviations

the efficiency of the DITD approach increases as the standard
deviation decreases. This is due to the fact that our DITD al-
gorithm is targeted towards optimizing the energy consumption
for the case that tasks execute the expected number of cycles
ENC. When the standard deviation is smaller, more of the
actual executed number of clock cycles are clustering around
the ENC and, therefore, our DITD approach can achieve better
leakage reduction.
Computation Time.
We have also evaluated the computation time for the off-line
phase of our DITD approach. The results are given in Fig. 14.
MPEG2 Decoder.
We have applied our DITD approach to a real-life application,
namely an MPEG2 decoder, which consists of 34 tasks. Details
regarding the application are described in [45]. We have consid-
ered a platform with the size of the chip, heat spreader, and heat
sink of 8×8mm2, 18×18mm2, and 22×22mm2, respectively.
The thickness of the chip, heat spreader, and the heat sink
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is 0.5mm, 2mm, and 15mm, respectively. The execution time
distribution of the tasks has been obtained from simulations
on the MPARM platform [46]. We considered the following
two overhead settings: (1) Eo = 0.5mJ, to = 0.4ms, (2) and
Eo = 1.0mJ, to = 0.8ms. The leakage energy reduction by
applying our DITD approach relative to the SFA approach is
32.5% and 40.8%, respectively.

IX. CONCLUSIONS

We first proposed a static temperature aware ITD approach for
leakage energy optimization where only static slack is consid-
ered. In order to consider both static and dynamic slack, we then
proposed a dynamic temperature aware ITD approach, which
consists of an off-line and an on-line step. The experiments
have demonstrated that considerable energy reduction can be
achieved by our temperature aware ITD approaches. In order to
efficiently perform temperature analysis inside our optimization
loop for idle time distribution, we have also proposed a fast
and accurate system level temperature analysis approach. Ex-
periments show that our temperature analysis method achieves
both good accuracy and high speed.
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