
in Proc. Intl. Conference on Real-Time and Embedded Computing Systems and Applications, 2005, pp. 422-428.

Quasi-Static Scheduling for Multiprocessor
Real-Time Systems with Hard and Soft Tasks

Luis Alejandro Cortés 1,2 Petru Eles 2 Zebo Peng 2

alejandro.cortes@volvo.com petel@ida.liu.se zebpe@ida.liu.se
1 Volvo Truck Corporation 2 Linköping University

Gothenburg, Sweden Linköping, Sweden

Abstract
We address in this paper the problem of scheduling for multi-
processor real-time systems with hard and soft tasks. Utility
functions are associated to soft tasks to capture their relative
importance and how the quality of results is affected when a
soft deadline is missed. The problem is to find a task exe-
cution order that maximizes the total utility and guarantees
the hard deadlines. In order to account for actual execution
times, we consider time intervals for tasks rather than fixed
execution times. A single static schedule computed off-line
is pessimistic, while a purely on-line approach, which com-
putes a new schedule every time a task completes, incurs an
unacceptable overhead. We propose therefore a quasi-static
solution where a number of schedules are computed at design-
time, leaving for run-time only the selection of a particular
schedule, based on the actual execution times. We propose
an exact algorithm as well as heuristics that tackle the time
and memory complexity of the problem. We evaluate our ap-
proach through synthetic examples and a realistic application.

1 Introduction
Scheduling for hard/soft real-time systems has been ad-
dressed, for example, in the context of integrating multime-
dia and hard real-time tasks [1]. Most of the previous work
on scheduling for hard/soft real-time systems assumes that
hard tasks are periodic whereas soft tasks are aperiodic. The
problem is to find a schedule such that all hard periodic tasks
meet their deadlines and the response time of soft aperiodic
tasks is minimized. This problem has been considered under
both dynamic [2] and fixed priority assignments [5]. It is usu-
ally assumed that the sooner a soft task is served the better,
but no distinction is made among soft tasks. However, by
differentiating among soft tasks, processing resources can be
allocated more efficiently. This is the case, for instance, in
videoconference applications where audio streams are deemed
more important than the video ones. We use utility functions
in order to capture the relative importance of soft tasks and
how the quality of results is influenced upon missing a soft
deadline. Value or utility functions were first suggested by
Locke [7] for representing the criticality of tasks.

In this paper we consider multiprocessor systems where
both hard and soft tasks are periodic and there might ex-
ist data dependencies among tasks. We aim at finding an
execution sequence (actually a set of execution sequences as
explained later) such that the sum of individual utilities by
soft tasks is maximal and all hard deadlines are guaranteed.
We consider intervals rather than fixed execution times for
tasks. Since the actual execution times usually do not co-
incide with parameters like expected durations or worst-case
execution times, it is possible to exploit information regard-
ing execution time intervals to obtain schedules that yield
higher utilities, that is, improve the quality of results.

Utility-based scheduling [8] has been addressed before, for
instance, in the frame of imprecise computation techniques
[10]. These assume tasks composed of a mandatory and an
optional part: the mandatory part must be completed by its
deadline and the optional one can be left incomplete at the
expense of the quality of results. The problem to be solved
is to find a schedule that maximizes the total execution time
of the optional subtasks. There are many systems, however,
where it is not possible to identify the mandatory and op-

tional parts of tasks. We consider that tasks have no op-
tional part. Our utility functions for soft tasks are expressed
as function of the task completion time (and not its execution
time as in the case of imprecise computation).

In the frame of the problem discussed in this paper, off-
line scheduling refers to obtaining at design-time one single
task execution order that makes the total utility maximal and
guarantees the hard deadlines. On-line scheduling refers to
finding at run-time, every time a task completes, a new task
execution order such that the total utility is maximized, yet
guaranteeing the hard deadlines, but considering the actual
execution times of those tasks already completed. On the one
hand, off-line scheduling causes no overhead at run-time but,
by producing one static schedule, it can be too pessimistic
since the actual execution times might be far off from the
time values used to compute the schedule. On the other hand,
on-line scheduling exploits the information about actual ex-
ecution times and computes at run-time new schedules that
improve the quality of results. But, due to the high complex-
ity of the problem, the time and energy overhead needed for
computing on-line the dynamic schedules is unacceptable. In
order to exploit the benefits of off-line and on-line scheduling
we propose an approach in which the scheduling problem is
solved in two steps: first, we compute a number of schedules
at design-time; second, we leave for run-time only the deci-
sion regarding which of the precomputed schedules to follow.
Thus we address the problem of quasi-static scheduling for
multiprocessor hard/soft real-time systems.

Quasi-static scheduling has been studied previously,
mostly in the context of formal synthesis and without con-
sidering an explicit notion of time but only the partial order
of events [9]. In a previous work we have discussed quasi-
static scheduling for hard/soft systems in the particular case
of monoprocessor systems [4], a problem whose analysis com-
plexity is significantly lower than when considering multiple
processors: one of the sources of additional complexity in the
case of multiprocessor systems is the interleaving of possible
finishing orders for concurrent tasks, which makes that the
set of computed schedules grows very fast (as discussed in
Section 5); another important source of complexity is that,
in the case of multiprocessor systems, the off-line preparation
of schedules must consider that, when a task Ti completes,
tasks running on other processors may still be under exe-
cution, and therefore the analysis must take care that the
schedules to be selected upon completing Ti are consistent
with tasks still under execution.

2 Preliminaries

The functionality of the system is captured by a directed
acyclic graph G = (T,E) where the nodes T correspond to
tasks and data dependencies are given by the graph edges E.

The mapping of tasks is defined by a function m : T → PE
where PE is the set of processing elements. Thus m(T)
denotes the processing element on which task T executes.
Inter-processor communication is captured by considering the
buses as processing elements and the communication activ-
ities as tasks. If T ∈ C then m(T) ∈ B, where C ⊂ T is
the set of communication tasks and B ⊂ PE is the set of
buses. The issue of assigning tasks to processing elements
(processors and buses) is beyond the scope of this paper. We
consider that the mapping of tasks to processing elements is

already determined and given as input to the problem.
The tasks that make up a system can be classified as non-

real-time, hard, or soft. H and S denote, respectively, the
subsets of hard and soft tasks. Non-real-time tasks are nei-
ther hard nor soft, and have no timing constraints, though
they may influence other hard or soft tasks through prece-
dence constraints as defined by the task graph G = (T,E).
Both hard and soft tasks have deadlines. A hard deadline di

is the time by which a hard task Ti ∈ H must be completed.
A soft deadline di is the time by which a soft task Ti ∈ S
should be completed. Lateness of soft tasks is acceptable
though it decreases the quality of results. In order to cap-
ture the relative importance among soft tasks and how the
quality of results is affected when missing a soft deadline, we
use a non-increasing utility function ui(ti) for each soft task
Ti ∈ S, where ti is the completion time of Ti. Typical utility
functions are depicted in Fig. 1. We consider that the deliv-
ered value or utility by a soft task decreases after its deadline
(for example, in an engine controller, lateness of the task that
computes the best fuel injection rate, and accordingly adjusts
the throttle, implies a reduced fuel consumption efficiency),
hence the use of non-increasing functions. The total utility,
denoted U , is given by the expression U =

P

Ti∈S
ui(ti).

u

td

M

u

td

M

u

td

M

Fig. 1. Typical utility functions for soft tasks

The actual execution time of a task Ti at a certain activa-
tion of the system, denoted τi, lies in the interval bounded by
the best-case duration τbc

i and the worst-case duration τwc
i

of the task, that is τbc
i ≤ τi ≤ τwc

i (dense-time semantics).
The expected duration τ e

i of a task Ti is the mean value of
the possible execution times of the task.

We use ◦T to denote the set of direct predecessors of task
T , that is, ◦T = {T ′ ∈ T | (T ′, T) ∈ E}. Similarly, T ◦ =
{T ′ ∈ T | (T, T ′) ∈ E} is the set of direct successors of T .

We consider that tasks are periodic and non-preemptable:
all the tasks in a task graph have the same period and be-
come ready at the same time. We assume a single-rate se-
mantics, that is, each task is executed exactly once for every
activation of the system. Thus a schedule Ω in a system
with p processing elements is a set of p bijections {σ(1) :

T(1) → {1, 2, . . . , |T(1)|}, . . . , σ(p) : T(p) → {1, 2, . . . , |T(p)|}}

where T(i) = {T ∈ T | m(T) = PE i} is the set of tasks

mapped onto the processing element PE i and |T(i)| denotes

the cardinality of the set T(i). In the particular case of mono-
processor systems, a schedule is just one bijection σ : T →
{1, 2, . . . , |T|}. We use the notation σ(i) = Ti1Ti2 . . . Tin as

shorthand for σ(i)(Ti1) = 1, σ(i)(Ti2) = 2, . . . , σ(i)(Tin) =

|T(i)|. A schedule Ω as defined above captures the task exe-
cution order for each one of the processing elements.

If a system, however, contains task graphs with different
periods we can still handle it by generating several instances
of the task graphs and building a graph that corresponds to
a set of task graphs as they occur within their hyperperiod
(least common multiple of the periods of the involved tasks),
in such a way that the new task graph has one period equal
to the aforementioned hyperperiod.

For a given schedule, the starting and completion times of
a task Ti are denoted si and ti respectively, with ti = si + τi.
Thus, for σ(k) = T1T2 . . . Tn, task T1 will start executing at
s1 = max Tj∈

◦T1
{tj} and task Ti, 1 < i ≤ n, will start exe-

cuting at si = max(maxTj∈
◦Ti

{tj}, ti−1). In the sequel, the

starting and completion times that we use are relative to the
system activation instant. Thus a task T with no predecessor
in the task graph has starting time s = 0 if σ(k)(T) = 1. For
example, in a monoprocessor system, according to the sched-
ule σ = T1T2 . . . Tn, T1 starts executing at time s1 = 0 and
completes at t1 = τ1, T2 starts at s2 = t1 and completes at
t2 = τ1 + τ2, and so forth.

We aim at finding off-line a set of schedules and the con-
ditions under which the quasi-static scheduler decides on-line
to switch from one schedule to another. A switching point de-
fines when to switch from one schedule to another. A switch-
ing point is characterized by a task and a time interval, as
well as the involved schedules. For example, the switching

point Ω
Ti;[a,b]
−−−−→ Ω′ indicates that, while Ω is the current

schedule, when the task Ti finishes and its completion time is
a ≤ ti ≤ b, another schedule Ω′ must be followed as execution
order for the remaining tasks.

We assume that the system has a dedicated shared mem-
ory for storing the set of schedules, which all processing el-
ements can access. There is an exclusion mechanism that
grants access to one processing element at a time. The worst-
case blocking time on this memory is considered in our anal-
ysis as included in the worst-case duration of tasks. Upon
finishing a task running on a certain processing element, a
new schedule can be selected which will then be followed by
all processing elements. Our analysis takes care that the
execution sequence of tasks already executed or still under
execution is consistent with the new schedule.

3 Motivational Example

Let us consider the multiprocessor system shown in Fig. 2.
Tasks T1, T3, T5 are mapped on processor PE 1 and tasks
T2, T4, T6, T7 are mapped on PE 2. For the sake of simplicity,
we have ignored inter-processor communication in this ex-
ample. The best-case and worst-case duration of every task,
considering the given mapping, are shown in Fig. 2 in the
form [τbc, τwc]. In this example we assume that the execu-
tion time of every task Ti is uniformly distributed over its
interval [τbc

i , τwc
i]. Tasks T3 and T6 are hard and their dead-

lines are d3 = 16 and d6 = 22 respectively. Tasks T5 and T7

are soft and their utility functions are given in Fig. 2.

16 T4 T5T3

T6 T7

[2,10]T1 T2

[2,6]

[1,7]

[1,5] [2,4]

[1,4]

22

[2,4]

u5(t5)=

8

>

>

<

>

>

:

2 if t5 ≤ 5,

3−
t5

5
if 5 ≤ t5 ≤ 15,

0 if t5 ≥ 15.

u7(t7)=

8

>

>

<

>

>

:

3 if t7 ≤ 3,

18

5
−

t7

5
if 3 ≤ t7 ≤ 18,

0 if t7 ≥ 18.

Fig. 2. Motivational example

The best static schedule, that can be calculated off-line,
corresponds to the task execution order which, among all
the schedules that satisfy the hard constraints in the worst
case, maximizes the sum of individual contributions by soft
tasks when each utility function is evaluated at the task’s
expected completion time (completion time considering the
particular situation in which each task in the system lasts its
expected duration). For the system in Fig. 2 such a schedule

is Ω = {σ(1) = T1T3T5, σ
(2) = T2T4T6T7} (in this section we

use the simplified notation Ω = {T1T3T5, T2T4T6T7}). We
have proved that the problem of computing one such optimal
schedule is NP-hard even in the monoprocessor case [3].

Although Ω = {T1T3T5, T2T4T6T7} is optimal in the static

sense discussed above, it is still pessimistic because the ac-
tual execution times (not known in advance) might be far
off from the ones used to compute the static schedule. This
point is illustrated by the following situation. The system
starts execution according to Ω, that is T1 and T2 start at
s1 = s2 = 0. Assume that T2 completes at t2 = 4 and then
T1 completes at t1 = 6. At this point, exploiting the fact
that we know the completion times t1 and t2, we can com-
pute the schedule that is consistent with the tasks already
executed, maximizes the total utility (considering the actual
execution times of T1 and T2—already executed—and ex-
pected duration for T3, T4, T5, T6, T7—remaining tasks), and
also guarantees the hard deadlines (even if all remaining tasks
execute with their worst-case duration). Such a schedule is
Ω′ = {T1T5T3, T2T4T6T7}. For τ1 = 6, τ2 = 4, and τi = τ e

i for
3 ≤ i ≤ 7, Ω′ yields a total utility U ′ = u5(9) + u7(20) = 1.2
which is higher than the one given by the static schedule Ω
(U = u5(12) + u7(17) = 0.8). Since the decision to follow Ω′

is taken after T1 completes and knowing its completion time,
the hard deadlines are also guaranteed.

A purely on-line scheduler would compute, every time a
task completes, a new execution order for the tasks not yet
started such that the total utility is maximized for the new
conditions while guaranteeing that hard deadlines are met.
However, the complexity of the problem is so high that the
on-line computation of one such schedule is prohibitively ex-
pensive. In our quasi-static solution, we compute at design-
time a number of schedules and switching points. The on-line
overhead by the quasi-static scheduler is very low because it
only compares the actual completion time of a task with that
of a predefined switching point and selects accordingly the
already computed execution order for the remaining tasks.

We can define, for instance, a switching point Ω
T1;[2,6]
−−−−−→ Ω′

for the example given in Fig. 2, with Ω = {T1T3T5, T2T4T6T7}
and Ω′ = {T1T5T3, T2T4T6T7}, such that the system starts
executing according to the schedule Ω; when T1 completes, if
2 ≤ t1 ≤ 6 tasks not yet started execute in the order given
by Ω′, else the execution order continues according to Ω.
While the solution {Ω, Ω′}, as explained above, guarantees
meeting the hard deadlines, it provides a total utility which
is greater than the one by the static schedule Ω in 43% of
the cases, at a very low on-line overhead. Also, by profiling
the system (generating a large number of execution times
for tasks according to their probability distributions and, for
each particular set of execution times, computing the utility),
for each of the above two solutions, we find that the static
schedule Ω yields an average total utility 0.89 while the quasi-
static solution {Ω, Ω′} gives an average total utility of 1.04.

Another quasi-static solution, similar to the one discussed

above, is {Ω, Ω′} but with Ω
T1;[2,7]
−−−−−→ Ω′ which actually gives

better results (it outperforms the static schedule Ω in 56 %
of the cases and yields an average total utility of 1.1, yet
guaranteeing the hard deadlines). Thus the most important
question in the quasi-static approach discussed in this paper
is how to compute, at design-time, the set of schedules and
switching points such that they deliver the highest quality.

4 On-Line Scheduler and Problem Formulation

4.1 Ideal On-Line Scheduler

In this paper we use a purely on-line scheduler as reference
point in our quasi-static approach. This means that, when
computing a number of schedules and switching points as
outlined in the previous section, our aim is to match an ideal
on-line scheduler in terms of the yielded total utility. The
formulation of this on-line scheduler is as follows:

On-Line Scheduler: The following is the problem that the
on-line scheduler would solve before the activation of the sys-

tem and every time a task completes (in the sequel we will
refer to this problem as the one-schedule problem):

Find a multiprocessor schedule Ω (set of p bijections

{σ(1) : T(1) → {1, 2, . . . , |T(1)|}, . . . , σ(p) : T(p) →

{1, 2, . . . , |T(p)|}} with T(l) being the set of tasks
mapped onto the processing element PE l and p be-
ing the number of processing elements) that maximizes
U =

P

Ti∈S
ui(t

e
i) where tei is the expected completion

time of task Ti, subject to: no deadlock1 is introduced
by Ω; twc

i ≤ di for all Ti ∈ H, where twc
i is the worst-case

completion time of task Ti; each σ(l) has a prefix σ
(l)
x ,

with σ
(l)
x being the order of the tasks already executed

or under execution on processing element PE l.

Ideal On-Line Scheduler: In an ideal case, where the on-
line scheduler solves the one-schedule problem in zero time,
for any set of execution times τ1, τ2, . . . , τn (each known only
when the corresponding task completes), the total utility
yielded by the on-line scheduler is denoted U ideal

{τi}
.

The total utility delivered by the ideal on-line scheduler, as
defined above, represents an upper bound on the utility that
can practically be produced without knowing in advance the
actual execution times and without accepting risks regard-
ing hard deadline violations. This is due to the fact that
the defined scheduler optimally solves the one-schedule prob-
lem in zero time, it is aware of the actual execution times of
all completed tasks, and optimizes the total utility assuming
that the remaining tasks will run for their expected execu-
tion time. We note again that, although the optimization
goal is the total utility assuming expected duration for the
remaining tasks, this optimization is performed under the
constraint that hard deadlines are satisfied even in the situ-
ation of worst-case duration for the remaining tasks.

4.2 Problem Formulation

Due to the NP-hardness of the one-schedule problem [3],
which the on-line scheduler must solve every time a task com-
pletes, such an on-line scheduler causes an unacceptable over-
head. We propose instead to prepare at design-time schedules
and switching points, where the selection of the actual sched-
ule is done at run-time, at a low cost, by the so-called quasi-
static scheduler. The aim is to match the utility delivered by
an ideal on-line scheduler. The problem we concentrate on
in the rest of this paper is formulated as follows:

Multiple-Schedules Problem: Find a set of multiproces-
sor schedules and switching points such that, for any set of
execution times τ1, τ2, . . . , τn, hard deadlines are guaranteed
and the total utility U{τi} yielded by the quasi-static sched-

uler is equal to U ideal

{τi}
.

5 Optimal Set of Schedules/Switching Points
We present in this section a systematic procedure for com-
puting the optimal set of schedules and switching points as
formulated by the multiple-schedules problem. By optimal,
in this context, we mean a solution which guarantees hard
deadlines and produces a total utility of U ideal

{τi}
. The problem

of obtaining such an optimal solution is intractable. Nonethe-
less, despite its complexity, the optimal procedure described
here has also theoretical relevance: it shows that an infinite
space of execution times (the execution time of task Ti can be
any value in [τbc

i , τwc
i]) might be covered optimally by a finite

number of schedules, albeit it may be a very large number.
The key idea is to express the total utility, for every feasi-

ble task execution order, as a function of the completion time

1When considering a task graph with its original edges together
with additional edges defined by the partial order corresponding to
the schedule, the resulting task graph must be acyclic.

tk of a particular task Tk. Since different schedules yield dif-
ferent utilities, the objective of the analysis is to pick out the
schedule that gives the highest utility and also guarantees the
hard deadlines, depending on the completion time tk.

We may thus determine (off-line) the schedule that must
be followed after completing task T at a particular time t.
For each schedule Ωi that satisfies the precedence constraints
and is consistent with the tasks so far executed, we express
the total utility Ui(t) as a function of the completion time
t (considering the expected duration for every task not yet
started). Then, for every Ωi, we analyze the schedulability
of the system, that is, which values of t imply potential hard
deadline misses when Ωi is followed (for this analysis, the
worst-case execution times of tasks not completed are con-
sidered). We introduce the auxiliary function Ûi such that

Ûi(t)=−∞ if following Ωi, after T has completed at t, does

not guarantee the hard deadlines, else Ûi(t) = Ui(t). Based

on the functions Ûi(t) we select the schedules that deliver the
highest utility, yet guaranteeing the hard deadlines, at differ-
ent completion times. The interval of possible completion
times gets thus partitioned into subintervals and, for each of
these, we get the corresponding execution order to follow af-
ter T . We refer to this as the interval-partitioning step. Such
subintervals define the switching points we want to compute.

For each of the newly computed schedules, the process is
repeated for a task T ′ that completes after T , this time com-

puting Ûi(t
′) for the interval of possible completion times t′.

Then the process is similarly repeated for the new schedules
and so forth. In this way we obtain the optimal tree of sched-
ules and switching points.

We use the example in Fig. 2 to illustrate the procedure.
The initial schedule is Ω = {T1T3T5, T2T4T6T7}, that is, T1

and T2 start executing concurrently at time zero and their
completion time intervals are [2, 10] and [1, 4] respectively.
We initially consider two situations: T1 completes before T2

(2 ≤ t1 ≤ 4); T2 completes before T1 (1 ≤ t2 ≤ 4). For the

first one, we compute Ûi(t1), 2 ≤ t1 ≤ 4, for each one of the
Ωi that satisfy the precedence constraints, and we find that
Ω′′ = {T1T5T3, T2T4T7T6} is the schedule to follow after T1

completes (before T2) at t1 ∈ [2, 4]. For the second situa-
tion, in a similar manner, we find that when T2 completes
(before T1) in the interval [1, 4], Ω = {T1T3T5, T2T4T6T7} is
the schedule to follow (see Fig. 4). Details of the interval-
partitioning step are illustrated next.

Let us continue with the branch corresponding to T2

completing first in the interval [1, 4]. Under these condi-
tions T1 is the only running task and its interval of possible
completion times is [2, 10]. Due to the data dependencies,
there are four feasible schedules Ωa = {T1T3T5, T2T4T6T7},
Ωb = {T1T3T5, T2T4T7T6}, Ωc = {T1T5T3, T2T4T6T7}, and
Ωd = {T1T5T3, T2T4T7T6}, and for each of these we com-
pute the corresponding functions Ua(t1), Ub(t1), Uc(t1), and
Ud(t1), 2 ≤ t1 ≤ 10, considering the expected duration for
T3, T4, T5, T6, T7. For example, Ud(t1) = u5(t1 +τ e

5)+u7(t1 +
max(τ e

4 , τ e
5) + τ e

7) = u5(t1 + 3) + u7(t1 + 7). We get the
functions shown in Fig. 3(a)2.

Now, for Ωa, Ωb, Ωc, and Ωd, we compute the latest com-
pletion time t1 that guarantees satisfaction of the hard dead-
lines when that particular schedule is followed. For exam-
ple, when the execution order is Ωc = {T1T5T3, T2T4T6T7},
in the worst case t3 = t1 + τwc

5 + τwc
3 = t1 + 8 and t6 =

max(t3, t1 + τwc
4) + τwc

6 = max(t1 + 8, t1 + 5) + 7 = t1 + 15.
Since the hard deadlines for this system are d3 = 16 and
d6 = 22, when Ωc is followed, t3 ≤ 16 and t6 ≤ 22 if and only

2For instance,

Uc(t1) =

(

16/5 − 2t1/5 if 2 ≤ t1 ≤ 4,

12/5 − t1/5 if 4 ≤ t1 ≤ 10.

if t1 ≤ 7. A similar analysis shows the following: Ωa guaran-
tees the hard deadlines for any completion time t1 ∈ [2, 10];
Ωb implies potential hard deadline misses for any t1 ∈ [2, 10];
Ωd guarantees the hard deadlines if and only if t1 ≤ 4. Thus
we get auxiliary functions as shown in Fig. 3(b).

1 8

3

4

2

2

1

3 4 5 6 7

U

a

U
U

b

109 t1

U
Uc

d

11
(a) Ui(t1)

1 8

3

4

2

2

1

3 4 5 6 7

U

a

U
U

b

109 t1

U
Uc

d

11

^

^

^

^

^

(b) Ûi(t1)

Fig. 3. Ui(t1) and Ûi(t1), 2 ≤ t1 ≤ 10, for the ex. of Fig. 2

From the graph in Fig. 3(b) we conclude that upon com-
pleting T1, in order to get the highest total utility while guar-
anteeing hard deadlines, the tasks not started must execute
according to: Ωd = {T1T5T3, T2T4T7T6} if 2 ≤ t1 ≤ 4; Ωc =
{T1T5T3, T2T4T6T7} if 4 < t1 ≤ 7; Ωa = {T1T3T5, T2T4T6T7}
if 7 < t1 ≤ 10.

The optimal tree of schedules for the system shown in
Fig. 2 is presented in Fig. 4. When all the descendant sched-
ules of a node (schedule) in the tree are equal to that node,
there is no need to store those descendants because the ex-
ecution order will not change. For example, this is the case
of the schedule {T1T5T3, T2T4T7T6} followed after complet-
ing T1 in [2, 4]. Also, note that for certain nodes of the tree,
there is no need to store the full schedule in the memory of
the target system. For example, the execution order of tasks
already completed (which has been taken into account during
the preparation of the set of schedules) is clearly unnecessary
for the remaining tasks during run-time. Other regularities
of the tree can be exploited in order to store it in a more com-
pact way. We have considered these in our implementation
but they are not discussed in this paper.

T1
T

T
TTT

T
7

53
642

T4
T1

TT
T

7
3
6TT

T
42
5T1

TT
T

6
3
7TT

T
42
5T1

TT
T

7
3
6TT

T
42
5T1

TT
T

6
3
7TT

T
42
5T1

TT 76T
T

2
5T3

T2;[1,4]

T4;(6,9]T3;(8,12] T4;(9,12]

T1
TT 76T

T
2

5T3
T4

T1
TT 67T

T
2

5T3
T4

T4;(8,9] T4;(9,12]

T1
TT

T
7

3
6TT 42

T5

T5;(6,9] T5;(9,11]
T4

T1
TT 76T

T
2

5T3

T4
T1

TT 76T2
T3T5

T4;(5,11]T5;(6,11]
T4

T1
TT 76T2

T5T3
T4

T1
TT 67T2

T3T5

T4 TT 76T2
T5T3T1

T1;(4,7]
T1;(7,10]T1;[2,4]

T
T

TTT
T

6
35
742

T1

T1;[2,4]

Fig. 4. Optimal tree of schedules and switching points

The schedules are stored in the dedicated shared memory
of the system as an ordered tree. Upon completing a task,
the cost of selecting at run-time, by the quasi-static scheduler,
the execution order for the remaining tasks is O(logN) where

N is the maximum number of children that a node has in the
tree of schedules. Such cost can be included in our analysis
by augmenting accordingly the worst-case duration of tasks.

6 Heuristics and Experimental Evaluation
In the optimal algorithm presented in Section 5, when find-
ing the schedule to follow after completing a task T in an
interval of possible completion times t, it is necessary to ana-
lyze all the schedules that respect the data dependencies and
are consistent with the tasks already executed. Hence the
interval-partitioning step requires O(|T|!) time in the worst
case. Moreover, the inherent nature of the problem (finding a
tree of schedules) makes it so that it requires exponential time
and memory, even when using a polynomial-time heuristic in
the interval-partitioning step. Additionally, even if we can
afford to compute the optimal tree of schedules (this is done
off-line), the size of the tree might be too large to fit in the
available memory resources of the target system. Therefore a
suboptimal set of schedules and switching points must be cho-
sen such that the memory constraints imposed by the target
system are satisfied. Solutions tackling different complexity
dimensions of the problem are addressed in this section.

6.1 Interval Partitioning

When partitioning an interval Ii of possible completion times
ti, the optimal algorithm explores all the permutations of
tasks not yet started that define feasible schedules Ωj and

accordingly computes Ûj(ti). In order to avoid computing

Ûj(ti) for all such permutations, we propose a heuristic that
instead considers only two schedules ΩL and ΩU, computes

ÛL(ti) and ÛU(ti), and partitions Ii based on these two func-
tions. The schedules ΩL and ΩU correspond, respectively, to
the solutions to the one-schedule problem (see Section 4) for
the lower and upper limits tL and tU of the interval Ii. For
other completion times ti ∈ Ii different from tL, ΩL is rather
optimistic but it might happen that it does not guarantee
hard deadlines. On the other hand, ΩU can be pessimistic
but does guarantee hard deadlines for all ti ∈ Ii. Thus, by
combining the optimism of ΩL with the guarantees provided
by ΩU, good quality solutions can be obtained. The pseu-
docode of the heuristic, called Lim, is presented in Fig. 5.

Algorithm Lim(Ω,A, Tl,I
l)

input: A schedule Ω, the set A of already completed tasks,
the last completed task Tl, and the interval Il of completion
times for Tl

output: The tree Ψ of schedules to follow after completing Tl

at tl ∈ I
l

1: set Ω as root of Ψ
2: compute the set C of concurrent tasks
3: for i← 1, 2, . . . , |C| do

4: if Ti may complete before the other Tc ∈ C then
5: compute interval Ii when Ti may complete first
6: tL := lower limit of Ii; tU := upper limit of Ii

7: ΩL := solution one-sch. problem for tL; ΩU := solu-
tion one-sch. problem for tU

8: compute ÛL(ti) and ÛU(ti)
9: partition Ii into subintervals Ii

1,Ii
2, . . . ,Ii

K
s.t. Ωk

makes Ûk(ti) maximal in Ii
k

10: Ai := A ∪ {Ti}
11: for k ← 1, 2, . . . ,K do

12: Ψk := Lim(Ωk ,Ai, Ti, Ii
k
)

13: add subtree Ψk s.t. Ω
Ti;I

i
k−−−−→ Ωk

14: end for

15: end if

16: end for

Fig. 5. Algorithm Lim(Ω,A, Tl, I
l)

For the example discussed in Sections 3 and 5, when par-
titioning the interval I1 = [2, 10] of possible completion

times of T1 (case when T1 completes after T2), the heuris-
tic solves the one-schedule problem for tL = 2 and tU = 10.
The respective solutions are ΩL = {T1T5T3, T2T4T7T6} and

ΩU = {T1T3T5, T2T4T6T7}. Then Lim computes ÛL(t1) and

ÛU(t1) (which correspond, respectively, to Ûa(t1) and Ûd(t1)
in Fig. 3(b)) and partitions I1 using only these two functions.
In this step, the solution given by Lim is, after T1: follow ΩL

if 2 ≤ t1 ≤ 4; follow ΩU if 4 < t1 ≤ 10. The reader can
note that in this case Lim gives a suboptimal solution (see
Fig. 3(b) and the optimal tree in Fig. 4).

Along with the proposed heuristic we must solve the one-
schedule problem (line 7 in Fig. 5), which itself is intractable.
We have proposed an exact algorithm and a number of heuris-
tics for the one-schedule problem [3]. For the experimental
evaluation of Lim we have used the exact algorithm and two
heuristics when solving the one-schedule problem. Hence we
have three heuristics LimA, LimB, and LimC for the multiple-
schedules problem. The first uses an optimal algorithm for
the one-schedule problem while the second and third use two
different heuristics presented in [3].

Observe that the heuristics presented in this section ad-
dress only the interval-partitioning step and, in isolation,
cannot handle the large complexity of the multiple-schedules
problem. These heuristics are to be used in conjunction with
the methods discussed in Section 6.2.

We have generated a large number of synthetic examples
in order to evaluate the quality of the heuristics. For the
examples used throughout the experimental evaluation in this
subsection, we have considered that, out of the n tasks of
the system, (n−2)/2 are soft and (n−2)/2 are hard. The
tasks are mapped on architectures consisting of between 2
and 4 processors. We generated 100 synthetic systems for
each graph dimension.

The average size of the tree of schedules, when using the
optimal algorithm (Section 5) as well as the above heuristics,
is shown by the plot of Fig. 6(a). Note the exponential growth
even in the heuristic cases. This is inherent to the problem
of computing a tree of schedules.

The average execution time for constructing the tree of
schedules is shown in Fig. 6(b). The rapid growth rate of
execution time for the optimal algorithm makes it feasible
to obtain the optimal tree only in the case of small systems.
The long execution times for LimA, slightly less than the
algorithm Optimal, are due to the fact that, along the con-
struction of the tree, it solves the one-schedule problem (itself
intractable) using an exact algorithm. The other heuristics,
LimB and LimC , take significantly less time because of the
use of polynomial-time heuristics for the one-schedule prob-
lem during the interval-partitioning step. However, due to
the exponential growth of the tree size (see Fig. 6(a)), even
LimB and LimC require exponential time.

We evaluated the quality of the trees generated by differ-
ent algorithms with respect to the optimal tree. For each
one of the generated examples, we profiled the system for
a large number of cases. For each case, we obtained the
total utility yielded by a given tree of schedules and nor-
malized it with respect to the one produced by the optimal
tree: ‖Ualg‖ = Ualg/Uopt. The average normalized utility, as
given by trees computed using different algorithms, is shown
in Fig. 6(c). We have also plotted the case of a static solution
where only one schedule is used regardless of the actual ex-
ecution times (SingleSch), which is the optimal solution in
the static scheduling case. This plot shows LimA as the best
of the heuristics discussed above, in terms of the total utility
yielded by the trees it produces. LimB produces still good
results, not very far from the optimal, at a significantly lower
computational cost. Having one single static schedule leads
to a considerable quality loss, even if the static solution is

 1

 10

 100

 1000

 10000

 100000

 1e+06

 4 6 8 10 12 14 16 18 20 22

A
ve

ra
ge

 N
um

be
r

of
 T

re
e

N
od

es

Number of Tasks

OPTIMAL
LIMA

LIMB

LIMC

(a) Tree size

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 4 6 8 10 12 14 16 18 20 22

A
ve

ra
ge

 E
xe

cu
ti

on
 T

im
e

[s
]

Number of Tasks

OPTIMAL
LIMA

LIMB

LIMC

(b) Execution time

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 4 6 8 10 12 14

A
ve

ra
ge

 T
ot

al
 U

ti
lit

y
(N

or
m

al
iz

ed
)

Number of Tasks

OPTIMAL
LIMA

LIMB

LIMC

SINGLESCH

(c) Normalized total utility

Fig. 6. Evaluation of the algorithms for computing a tree of schedules

optimal (in the sense as being the best static solution) while
the quasi-static is suboptimal (produced by a heuristic).

6.2 Tree Size Restriction

Even if we could afford to compute the optimal tree of sched-
ules (which is not the case for large examples due to the time
and memory constraints at design-time), the tree might be
too large to fit in the available memory of the target sys-
tem. Hence we must drop some nodes of the tree at the
expense of the solution quality. The heuristics presented in
Section 6.1 reduce considerably both the time and memory
needed to construct a tree as compared to the optimal algo-
rithm, but still require exponential time and memory. In this
section, on top of the above heuristics, we propose methods
that construct a tree considering its size limit (imposed by
the designer) in such a way that we can handle both the time
and memory complexity.

Given a limit for the tree size, only a certain number of
schedules can be generated. Thus the question is how to
generate a tree of at most M nodes which still delivers a
good quality. We explore several strategies which fall under
the umbrella of the generic algorithm Restr given in Fig. 7.
The schedules Ω1, Ω2, . . . , ΩK to follow after Ω correspond to
those obtained in the interval-partitioning step as described
in Sections 5 and 6.1. The difference among the approaches
discussed in this section lies in the order in which the available
memory budget is assigned to trees derived from the nodes
Ωk (line 7 in Fig. 7): Sort(Ω1, Ω2, . . . , ΩK) gives this order
according to different criteria.

Algorithm Restr(Ω, M)
input: A schedule Ω and a positive integer M

output: A tree Ψ limited to M nodes whose root is Ω

1: set Ω as root of Ψ
2: m := M − 1
3: find the schedules Ω1,Ω2, . . . , ΩK to follow after Ω

(interval-partitioning step)
4: if 1 < K ≤ m then

5: add Ω1,Ω2, . . . ,ΩK as children of Ω
6: m := m−K

7: Sort(Ω1, Ω2, . . . ,ΩK)
8: for k← 1, 2, . . . , K do

9: Ψk :=Restr(Ωk ,m + 1)
10: nk := size of Ψk

11: m := m− nk + 1
12: end for

13: end if

Fig. 7. Algorithm Restr(Ω, M)

Initially we studied two simple heuristics for constructing
a tree, given a maximum size M . The first one, called Diff,
gives priority to subtrees derived from nodes whose sched-
ules differ from their parents. We use a similarity metric,
based on the notion of Hamming distance, to determine how
similar two schedules are. For instance, while constructing a
tree with a size limit M = 8 for the system whose optimal
tree is the one in Fig. 8(a), we find out that, after the initial
schedule Ωa (the root of the tree), either Ωb must be followed

or the same schedule Ωa continues as the execution order for
the remaining tasks, depending on the completion time of a
certain task. Therefore we add Ωb and Ωa to the tree. Then,
when using Diff, the size budget is assigned first to the sub-
trees derived from Ωb (which, as opposed to Ωa, differs from
its parent) and the process continues until we obtain the tree
shown in Fig. 8(b). The second approach, Eq, gives priority
to nodes that are equal or more similar to their parents. The
tree obtained when using Eq and having a size limit M = 8
is shown in Fig. 8(c). Experimental data (see Fig. 9) shows
that in average Eq outperforms Diff. The basic idea when
using Eq is that, since no change has yet been operated on
the previous schedule, it is likely that several possible alter-
natives are potentially detected in the future. Hence, it pays
to explore the possible changes of schedules derived from such
branches. On the contrary, if a different schedule has been
detected, it can be assumed that this one is relatively well
adapted to the new situation and possible future changes are
not leading to dramatic improvements.

A third, more elaborate, approach brings into the the pic-
ture the probability that a certain branch of the tree of sched-
ules is selected during run-time. Knowing the execution time
probability distribution of each individual task, we may de-
termine, for a particular execution order, the probability that
a certain task completes in a given interval. In this way we
can compute the probability for each branch of the tree and
exploit this information when constructing the tree of sched-
ules. The procedure Prob gives higher precedence (in terms
of size budget) to those subtrees derived from nodes that ac-
tually have higher probability of being followed at run-time.

For evaluation purposes, we generated 100 systems with a
fixed number of tasks and for each one of them we computed
the complete tree of schedules. Then we constructed the trees
for the same systems using the algorithms presented in this
section, for different size limits. For the experimental eval-
uation in this section we considered small graphs (16 tasks)
in order to cope with complete trees: note that the complete
trees for these systems have, in average, around 10.000 nodes
when using LimB. For each of the examples we profiled the
system for a large number of execution times, and for each
of these we obtained the total utility yielded by a restricted
tree and normalized it with respect to the utility given by the
complete tree (non-restricted): ‖Urestr‖ = Urestr/Unon−restr .
The plot in Fig. 9 shows that Prob is the algorithm that
gives the best results in average. For example, trees limited
to 200 nodes (2% of the average size of the complete tree)
yield a total utility that is just 3% off from the one produced
by the complete tree. Thus, good quality results and short
execution times show that the proposed techniques can be
applied to larger systems.

7 Cruise Control with Collision Avoidance

Modern vehicles can be equipped with sophisticated elec-
tronic aids aiming at assisting the driver, increasing efficiency,
and enhancing on-board comfort. One such system is the
Cruise Control with Collision Avoidance (CCCA) [6] which

Ωd

Ωd

Ωe Ωa

Ωf

Ωa

Ωc

Ωa

Ωb

Ωb

(a) Complete tree

Ωd Ωe Ωa

Ωa

Ωc

Ωa

Ωb

Ωb

(b) Using Diff (max. size M = 8)

Ωd

Ωd

Ωe Ωa

Ωf

Ωa

ΩaΩb

(c) Using Eq (max. size M = 8)

Fig. 8. Trees of schedules

 0.8

 0.85

 0.9

 0.95

 1

 1 200 400 600 800 1000

A
ve

ra
ge

 T
ot

al
 U

ti
lit

y
(N

or
m

al
iz

ed
)

Max. Tree Size [nodes]

PROB
EQ
DIFF

Fig. 9. Evaluation of the tree size restriction algorithms

assists the driver in maintaining the speed and keeping safe
distances to other vehicles.

The CCCA is composed of four main subsystems, namely
Braking Control (BC), Engine Control (EC), Collision Avoid-
ance (CA), and Display Control (DC), each one of them
having its own period: TBC = 100 ms, TEC = 250 ms,
TCA = 125 ms, and TDC = 500 ms. We have modeled each
subsystem as a task graph. Each subsystem has one hard
deadline that equals its period. We identified a number of
soft tasks in the EC and DC subsystems. The soft tasks in
the engine control part are related to the adjustment of the
throttle valve for improving the fuel consumption efficiency.
Thus their utility functions capture how such efficiency varies
as a function of the completion time of the activities that cal-
culate the best fuel injection rate for the actual conditions.
For the display control part, the utility of soft tasks is a mea-
sure of the time-accuracy of the displayed data, that is, how
soon the information on the dashboard is updated.

We considered an architecture with two processors that
communicate through a bus. We generated several instances
of the task graphs of the four subsystems mentioned above
in order to construct a graph with a hyperperiod T = 500
ms. The resulting graph, including processing and communi-
cation activities, contains 126 tasks, out of which 6 are soft
and 12 are hard. Assuming we can store up to 640 tree nodes,
we constructed the tree of schedules using the approaches dis-
cussed in Section 6.2 combined with one of the heuristics pre-
sented in Section 6.1 (LimB). Due to the size of the system,
it is infeasible to fully construct the complete tree of sched-
ules. Therefore, we compared instead the tree limited to 640
nodes with the static, off-line solution of a single schedule.
The results are presented in Table 1. For the CCCA exam-
ple, we can achieve with our quasi-static approach a gain of
above 40% as compared to a single static schedule.

Average Gain with respect
Total Utility to SingleSch

SingleSch 6.51 —
Diff 7.51 11.42%
Eq 9.54 41.54%

Prob 9.6 42.43%

Table 1. Quality of different approaches for the CCCA

8 Conclusions
We have presented an approach to the problem of scheduling
for multiprocessor real-time systems with periodic soft and

hard tasks. In order to distinguish among soft tasks, we
made use of utility functions, which capture both the relative
importance of soft tasks and how the quality of results is
affected when a soft deadline is missed. We aimed at finding
task execution orders that produce maximal total utility and,
at the same time, guarantee hard deadlines.

Since a single static schedule computed off-line is rather
pessimistic and a purely on-line solution entails a high over-
head, we have therefore proposed a quasi-static approach
where a number of schedules and switching points are pre-
pared at design-time, so that at run-time the quasi-static
scheduler only has to select, depending on the actual execu-
tion times, one of the precomputed schedules.

We have proposed a procedure that computes the optimal
tree of schedules and switching points, that is, a tree that
delivers the same utility as an ideal on-line scheduler. Due to
the intractability of the problem, it is feasible to compute the
optimal tree of schedules only for small systems, though. Ac-
cordingly, several heuristics that address different complexity
dimensions of the problem have been presented. The heuris-
tics for the interval-partitioning step combined with the ones
for tree size restriction allow to generate good-quality sched-
ule trees for large applications, even in the context of limited
resources. The solutions produced by our heuristics permit
important improvements in the quality of results, as com-
pared to a single static schedule, while keeping a very low
on-line overhead. This has been demonstrated by a large
number of synthetic examples and a real-life application.

References
[1] L. Abeni and G. Buttazzo. Integrating Multimedia Applica-

tions in Hard Real-Time Systems. In Proc. Real-Time Sys-
tems Symposium, pp. 4–13, 1998.

[2] G. Buttazzo and F. Sensini. Optimal Deadline Assignment
for Scheduling Soft Aperiodic Tasks in Hard Real-Time En-
vironments. IEEE. Trans. on Computers, 48(10):1035–1052,
Oct. 1999.

[3] L. A. Cortés. Verification and Scheduling Techniques
for Real-Time Embedded Systems. PhD thesis, Dept. of
Computer and Information Science, Linköping University,
Linköping, Sweden, Mar. 2005.

[4] L. A. Cortés, P. Eles, and Z. Peng. Quasi-Static Scheduling
for Real-Time Systems with Hard and Soft Tasks. In Proc.
DATE Conference, pp. 1176–1181, 2004.

[5] R. I. Davis, K. W. Tindell, and A. Burns. Scheduling Slack
Time in Fixed Priority Pre-emptive Systems. In Proc. Real-
Time Systems Symposium, pp. 222–231, 1993.

[6] A. R. Girard, J. Borges de Sousa, J. A. Misener, and J. K.
Hedrick. A Control Architecture for Integrated Cooperative
Cruise Control with Collision Warning Systems. In Proc.
Conference on Decision and Control, pp. 1491–1496, 2001.

[7] C. D. Locke. Best-Effort Decision Making for Real-Time
Scheduling. PhD thesis, Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, May 1986.

[8] D. Prasad, A. Burns, and M. Atkins. The Valid Use of Utility
in Adaptive Real-Time Systems. Real-Time Systems, 25(2-
3):277–296, Sept. 2003.

[9] M. Sgroi, L. Lavagno, Y. Watanabe, and A. Sangiovanni-
Vincentelli. Synthesis of Embedded Software Using Free-
Choice Petri Nets. In Proc. DAC, pp. 805–810, 1999.

[10] W.-K. Shih, J. W. S. Liu, and J.-Y. Chung. Fast Algorithms
for Scheduling Imprecise Computations. In Proc. Real-Time
Systems Symposium, pp. 12–19, 1989.

