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LUIS A. CORTÉS, PETRU ELES, and ZEBO PENG

Linköping University

This paper addresses the interrelation between control and data flow in embedded system models

through a new design representation, called Dual Flow Net (DFN). A modeling formalism with

a very close-fitting control and data flow is achieved by this representation, as a consequence of
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1. INTRODUCTION

The design of embedded systems has significantly improved in recent years.
Design techniques, such as hardware/software codesign [Staunstrup and Wolf
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1997; Wolf 2003] and formal verification [Kern and Greenstreet 1999; Wang
2004], have increased the efficiency and reliability of the design process
to an extent that allows the Electronic Design Automation (EDA) industry to
widely rely on them. By the use of models, system designers have been able
to exploit features related to specific applications and understand the underly-
ing principles associated to a particular behavior, which is a key to obtaining
cost-effective solutions.

Although abstraction is a desired feature of models, a designer could reach in-
correct analytical conclusions of an embedded system design because of the lack
of explicit information. There is a trade-off between the amount of information
that should be available to the designer, in order to perform a correct design,
and how much detail should be hidden away to avoid confusion and unneces-
sary complexity. The relationship among different levels of abstraction can be
conceptualized by, e.g., Gajski’s Y-Chart [Gajski 1987]. The Y-Chart visualiza-
tion of the design process assumes three orthogonal domains (i.e., behavioral,
structural, and physical) which are meant to emphasize distinct properties of
the same design, while a set of concentric circles represent the abstraction level.
Purely behavioral models are suitable for analyzing the intended functional-
ity of an embedded system design, but they cannot cope with implementation
issues. Structural models, on the other hand, are more appropriate for connec-
tivity issues and netlist-type representations, which make them suitable for
implementing a design, but have a detrimental effect on its analysis.

Embedded systems usually consist of some transformative parts dedicated to
calculate and transfer values through the system (data flow) and some reactive
part that curbs the type and order of such transformative operations (control
flow). The result of a data flow operation can reside within the data flow or be
part of the control flow—the latter one is called condition. Similarly, a subset of
the control flow interacts with the data flow, and constitutes the set of control
signals. These control/data–flow interactions are not a trivial matter and have
been long neglected in behavioral models for embedded systems—for the sake
of simplicity.

Regardless of its abstraction level, we believe that an embedded system
model should differentiate between control and data components, not only in
the structural model, but in the behavioral one as well. Mechanisms for mod-
eling these interactions and still being able to reach an analytical conclusion
from them, should be provided in all cases. This paper defines a model that
achieves a satisfactory analysis of an embedded system specification, based on
these interactions, and reaches closeness to a structural view of the system. By
making these interactions explicit, our model has been conveniently fitted into
a formal verification framework, allowing the validation of embedded systems
of numerous natures.

The presented work is organized as follows. In Subsections 1.1 and 1.2, rele-
vant work is reviewed and the underlying motivation for this work is outlined.
Section 2 defines our model from a structural and behavioral perspective. The
verification of such a model is carried out in Section 3, while Section 4 shows the
applicability of this model to some real-life problems. Finally, Section 5 outlines
some conclusions.
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1.1 Related Work

The Finite-State Machine (FSM) model [Gill 1962] has been widely used in
control theory and is one of the fundamental pillars in the development of
control-dominated representations for embedded systems. However, increased
demand for Digital Signal Processing (DSP) and Multimedia functionality have
drastically increased the dataflow complexity of current embedded systems,
thus the need for data-dominated representations as well.

Formally, the FSM is a tuple 〈S, I, O, f , h〉, where S, I and O are the fi-
nite sets of states, inputs, and outputs, respectively. f : S × I → S is the next-
state function and h is the output function. The function f takes the current
state of the system, i.e., the state at time ki, together with a subset of inputs,
and produces a new state for the system at time ki+1. The output function
depends whether the FSM is a Mealy machine (h : S × I → O) or a Moore ma-
chine (h : S → O). The Synchronous DataFlow (SDF) model [Lee and Messer-
schmitt 1987], on the other hand, is a special case of Dataflow Graph, where a
given specification is captured by a directed acyclic graph and a scheduling. An
SDF =〈V , E, d , t, p, c〉 is composed of: a set of nodes or actors (V ) that trans-
form input data streams into output streams, a set of channels E ⊆ V × V
on which the data streams are carried, and four functions (d , t, p, and c) that
account for the behavioral part of the specification.

Intuitively, one way to extend this FSM definition, in order to support data
type information, is by extending each element of S, I , and O from the Boolean
to the integer domain. This issue has been discussed in [Gajski 1997], and
given the name of Finite-State Machine with Datapath (FSMD). The FSMD
model is a tuple 〈S, V , I, O, f , h〉 where S is the set of states, V is the set of
datapath variables, and I and O are defined as I : IC × ID and O : OC × OD

respectively. State transitions may include arithmetic and logic operations on
the set of datapath variables, which is a desired feature in models that deal
with the control/data-flow relationship. However, this model lacks an explicit
notation for concurrency.

The Petri Net (PN) model [Murata 1989] uses a bipartite graph, i.e., a graph
with two disjoint set of vertices, to differentiate between passive (places p ∈ P )
and active (transitions t ∈ T ) elements of a net (where P ∩ T = ∅). Petri
nets have played an important role in the modeling of embedded systems,
since they are inherently concurrent, but their insufficient data-flow analysis
has motivated the research in High-Level Petri Nets (HLPN), such as Pred-
icate/Transition Nets (PrT-Nets) [Genrich 1987], Coloured Petri Nets (CPN)
[Jensen 1992, 1994, 1997], and Object Oriented Petri Nets (OOPN) [Esser 1996].
Works, such as Kleinjohann et al. [1997], and Grode et al. [1998] are a clear in-
dication that PN-based modeling of embedded system is progressing. However,
these approaches are somewhat generic (not specifically designed for embedded
systems), thus leading to the introduction of another generation of modeling
approaches [Peng and Kuchcinski 1994; Strehl et al. 2001; Cortés et al. 2000]
that particularly address a variety of issues in the design of embedded systems.

The concept of “separate but related” control/data parts has been considered
in the Extended-Timed Petri Net (ETPN) model [Peng and Kuchcinski 1994],
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where the control part is captured using a Timed Petri Net (TPN) and the data
path is represented as a directed graph. The FunState model [Strehl et al.
2001], on the other hand, models the control flow as an FSM, while the data
flow is captured by means of a network of functions and storage units that
resembles a Queue Petri Net [Finkel and Memmi 1985]. Whereas the authors
of the above works favor the combination of two disjoint semantics, others [Eles
et al. 1998; Ziegenbein et al. 1999; Cortés et al. 2000] lean toward a consistent
semantics for modeling the complete system. Conditional Process Graphs (CPG)
[Eles et al. 1998] capture both control and data flow of an embedded system
specified as a net of interacting processes, by means of a data-flow graph that
has conditional edges. In the System Property Intervals (SPI) [Ziegenbein et al.
1999] the execution of a process depends on data availability, which captures
the conditional behavior of an embedded system due to non-constant data rates.
The Petri Net Representation of Embedded Systems (PRES+) model [Cortés
et al. 2000] uses data tokens to communicate results among processes, including
timing property analysis through an explicit notion of time in the semantics of
its underlying PN.

Contrary to Peng and Kuchcinski [1994], Strehl et al. [2001], Ziegenbein et al.
[1999], and Cortés et al. [2000], where the underlying bipartite graph of a Perti
net has been syntactically and semantically extended to support control/data-
flow interactions, our aim is to propose a completely new model, namely Dual
Flow Net (DFN), which is based in a tripartite graph instead. By using a tri-
partite graph Kn,m,h = {I ∪ J ∪ K ; (I × J ) ∪ (I × K ) ∪ (J × K )|I ∩ J ∩ K = ∅},
control states and data activities are modeled by disjoint sets of vertices, which
are still linked by the third (also disjoint) set of vertices. This way of dealing
with the control/data flow is closer to the behavior of the final implementation
than other PN extensions.

1.2 Motivational Example

It is known that systems combining control and data processing functions have
quite a significant context-switching overhead [Österling et al. 1997]. This sec-
tion considers the modeling of a simple integer multiplier based on iterative
additions which, besides being orders of magnitude less complicated than real-
life applications, still outlines the problem of switching between contexts dur-
ing the analysis phase. Figure 1 shows both, a diagram and the pseudocode
for this multiplier. The start of the multiplier’s execution is given by signal
en, which holds if both registers (a and b) contain a valid data. After a num-
ber of iterations, the multiplier outputs the result of the multiplication, which
is stored in register c because of the acknowledgement produced by the ready
signal.

Figure 1a shows the schematic implementation of the multiplier, which de-
notes that structurally there is a clear separation between control flow (ready
and en signals) and data flow (a, b, and c operands). This separation is easily
visualized by contrasting thick and thin arrows in the schematic diagram. How-
ever, it becomes less obvious in the behavioral model presented as pseudocode
in Figure 1b.
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Fig. 1. Multiplier.

Fig. 2. ETPN representation of the multiplier.

Figure 2 illustrates the use of ETPN [Peng and Kuchcinski 1994] for
modeling the multiplier example, where the control part and data path are
captured in Figures 2a and b, respectively. The first part is captured as a TPN
[Merlin and Faber 1976], while the second part is represented as a directed
graph where nodes are used to capture data manipulation and storage. A
change in the control part, i.e., changing the marking of the underlying PN,
affects the data path in the sense that data is transferred through all edges
of the data path that are labeled with the state s ∈ S that contains a token
in the control part. For example, the firing of transition t1 allocates tokens in
places s1, s2, and s3, which leads to data transferring from I PA to RX , from
I PB to RY , and from “0” to RZ , in the data path. Then, iterative firings of t4

and t6 lead to the desired multiplication result, because places s4 and s5 are
associated with the subtract and the addition operations in the data part of the
model.
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Further analysis of this model rises the issue about improvement of the
control/ data-flow integration. Despite being ETPN, a representation easy to
map to the input of a synthesis tool, this model lacks simplicity during the
analysis phase. This trade-off is typical in embedded systems design: being
closer to the structure of the design yields a better synthesis process, while
proximity to the behavioral model is beneficial for the analysis. Models, such as
ETPN or FunState, are closer to the structural domain and, therefore, deriving
an implementation from them is feasible, while models, such as PRES+ [Cortés
et al. 2000] or SPI [Ziegenbein et al. 1999] are closer to the behavioral domain
and favor the analysis. As synthesizing a model could involve various opti-
mization steps, we are interested in reducing the amount of context switching
only for analysis. The verification complexity is directly related to the state
space of the model, which increases its size depending on this factor. Therefore,
context switching in the sense applied to this paper, has an impact on the
performance of the formal verification tool used. This can be illustrated by
comparing the following trace in an ETPN execution, with its DFN counterpart
(c.f., Section 2.4).

1.2.1 Trace for 5 × 3 = 15. We use the following notation: “;” for sequence
of events that must change environment, “|” to separate events within the
same environment, {SUM, SUB, CMP} to indicate an operation, and “←” for as-
signments. Assuming that I PA ← 5, I PB ← 3, and there is a token in s0, the
trace that leads to the result is given by:

t1; RY ← 3| RZ ← 0| RX ← 5; t2; ©> ← 3| ©> ← 0| CMP| C1 ← 1|
/C1 ← 0; t4; ©+ ← 0| ©+ ← 5| SUM| RZ ← 5| ©− ← 3| ©− ← 1|
SUB| RY ← 2; t6; ©> ← 2| ©> ← 0| CMP| C1 ← 1| /C1 ← 0; t4;
©+ ← 5| ©+ ← 5| SUM| RZ ← 10| ©− ← 2| ©− ← 1| SUB| RY ← 1;
t6; ©> ← 1| ©> ← 0| CMP| C1 ← 1| /C1 ← 0; t4; ©+ ← 10| ©+ ← 5|
SUM| RZ ← 15| ©− ← 1| ©− ← 1| SUB| RY ← 0; t6; ©> ← 0| ©> ← 0|
CMP| C1 ← 0| /C1 ← 1; t3; O PC ← 15; t5

This trace is used for comparison purposes with its counterpart for the DFN
model, as discussed in Section 2.4.

2. FORMALIZATION OF THE DUAL FLOW NET MODEL

Unlike other Petri net-based approaches to embedded systems modeling, where
the Petri net semantics is either circumscribed to the control domain [Brage
1993; Cortés et al. 2000; Peng 1987] or constitutes the basic structure of the
data domain [Ziegenbein et al. 1999; Strehl et al. 2001], our model proposes a
concise notation for both domains, leading to a uniform representation of such
heterogeneous systems.

We argue in this paper that systems, which have two information flows, i.e.,
control and data flow, are best represented by models which are isomorphic
to a tripartite graph. As discussed in the previous section, the suitability of
tripartite graphs for systems with two flows of information comes from the fact
that these systems have three aspects to be considered in the modeling process:
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Fig. 3. A tripartite graph for control and data flow.

(1) the general state of the system, (2) the control flow, and (3) the data flow.
Figure 3 depicts the interaction between these three sets, and shows that those
sets are constituted by individual elements, which are: (1) storage, (2) reactive,
and (3) transformational elements.

The DFN model and its elements are introduced in Definition 2.1. This defi-
nition is based upon the principles introduced in the following sections, which
include the dual flow structure and the initial marking.

Definition 2.1. A Dual Flow Net is a pair N =〈S, μ0〉, where S is a Dual
Flow Structure and μ0 is the initial marking.

In order to formalize the upcoming concepts, the notion of Atomic Propo-
sitions (AP) needs to be introduced. These are the most elementary type of
evaluation that can exist in a condition, e.g., “x > 0.” These propositions are
composed of two parts, namely subject and predicate. The subject of an AP is a
variable (e.g., “x”) whereas the predicate is a property that the subject may or
may not satisfy (e.g., “> 0”). This property consists of a symbol taken from the
finite set of conditional comparators, � = {=, �=, >, <, ≥, ≤}, and a constant (e.g.,
“0”). In order to standardize this concept, we consider an AP to be a function,
defined as follows:

Definition 2.2. An atomic proposition is a function of three arguments,

AP : ZZ × � × ZZ �→ IB

where the first argument is a variable x ∈ ZZ, i.e., the subject, and the second
and third argument are a symbol s ∈ � and a constant K ∈ ZZ, which constitute
the predicate of the atomic proposition.

For instance, the syntax AP(x, >, 0) expresses “x > 0.”
The rest of this section introduces the principles of the DFN model, using

a structural model for the organization and dependence analysis of each set
of vertices, while the functional analysis is carried out by means of the state
space and the behavioral models. Finally, we also illustrate the semantics of
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the model employing the simple multiplier example introduced in Section 1.2
(a larger, more realistic example is modeled using DFN later in Section 4).

2.1 DFN Structural Model

The structure of the DFN model is based on a notation that comprises three
types of vertices (c.f., Figure 3):

1. A set P = {p1, p2, · · · , pn} of vertices that captures the state of the system;

2. A set T = {t1, t2, · · · , tm} of vertices used to capture the changes in such
states, i.e., the control flow, and exposes its influence over the third set Q of
vertices;

3. A set Q = {q1, q2, · · · , qh} of vertices that captures all transformations that
are relevant to the data flow of the system, such as transferring information
or performing arithmetical operations among registers.

The cardinality of each set P , T , and Q is given by n, m, and h, respectively;
where n > 0, m ≥ 0 and h ≥ 0 (also, m + h �= 0). The DFN structure is given
by a weighted, directed, tripartite graph whose vertices V = P ∪ T ∪ Q , where
P ∩ T = ∅, P ∩ Q = ∅, T ∩ Q = ∅, P �= ∅, and T ∪ Q �= ∅, are used to represent
storage, reactive, and transformational elements, respectively. Storage elements
(p ∈ P ) relate to memory components in the system (e.g., registers, memory
cells, latches, and variables), reactive elements (t ∈ T ) are associated with
components in the control part, and transformational elements (q ∈ Q) refer to
arithmetic operations performed among storage elements (i.e., components in
a data path). Hereafter, the elements p ∈ P , t ∈ T , and q ∈ Q are referred as
places, transitions, and hulls of the DFN net, and are graphically represented
by a circle, a bar, and a box, respectively

Definition 2.3. A Dual Flow Structure is a seven-tuple S =〈P, T, Q ,
F, W, G, H〉,
where: F ⊆ (P × T ) ∪ (T × P ) ∪ (P × Q) ∪ (Q × P ) ∪ (T × Q) ∪ (Q × T )

is a binary relation, called the flow relation;

W : F �→ ZZ+ ∪ ZZ− is a weight function;
G :T �→ � ∪ {�} is a guard function,

where � is the set of conditional comparators, and
� is an element from the binary set IB = {⊥, �} that means true;

H : Q �→ ZZ is an offset function.

For the sake of simplicity, this paper uses the notation W (x, y) to denote
W ((x, y)). From the pictorial point of view, each transition t ∈ T is labeled
with a symbol from � according to the guard function G(t). Hulls q ∈ Q are
also labeled with integers, corresponding to the offset function H(q). In order
to reduce notational clutter, transitions and hulls are only labeled in nontrivial
cases, i.e., symbols � and numbers 0 are not explicitly written down across the
net. These points have been exemplified in Figure 5 (See later).

The three disjoint sets of vertices in a DFN model, and their interactions,
define the structure of the control and data domain shown in Figure 3. This

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.



62 • M. Varea et al.

means that there is a direct relation between the control (data) flow of the
original embedded system specification and the control (data) domain of the S
net. Both control and data domains are formalized in Definitions 2.4 and 2.5,
where the concepts of pre- and postsets, from the classical Petri net notation,
are extended in order to support any element p ∈ P , t ∈ T , and q ∈ Q of the
new DFN model.

Definition 2.4. Given a certain p ∈ P , t ∈ T , and q ∈ Q , the following
subsets are defined:

i. The control preset of a place, • p = {t ∈ T |(t, p) ∈ F };
ii. The control postset of a place, p• = {t ∈ T |(p, t) ∈ F };

iii. The control preset of a transition, •t = {p ∈ P |(p, t) ∈ F };
iv. The control postset of a transition, t• = {p ∈ P |(t, p) ∈ F };
v. The control preset of a hull, •q = {t ∈ T |(t, q) ∈ F };

vi. The control postset of a hull, q• = {t ∈ T |(q, t) ∈ F }.
Definition 2.5. Given a certain p ∈ P , t ∈ T , and q ∈ Q , the following

subsets are defined:

i. The data preset of a place, ◦ p = {q ∈ Q |(q, p) ∈ F };
ii. The data postset of a place, p◦ = {q ∈ Q |(p, q) ∈ F };

iii. The data preset of a transition, ◦t = {q ∈ Q |(q, t) ∈ F };
iv. The data postset of a transition, t◦ = {q ∈ Q |(t, q) ∈ F };
v. The data preset of a hull, ◦q = {p ∈ P |(p, q) ∈ F };

vi. The data postset of a hull, q◦ = {p ∈ P |(q, p) ∈ F }.
Inherited from classical PNs [Murata 1989], a transition t, such that •t = ∅

is called source transition and a transition t such that t• = ∅ is called sink
transition. The same pattern is followed in the data domain, i.e., we name
source hull a hull with ◦q = ∅, while its dual (q◦ = ∅) is called sink hull. There
are, however, some issues to be considered with regard to these four special
cases. For instance, a sink hull q ∈ Q may only exist1 if there is at least one
transition t ∈ q•, such that G(t) �= �.

The control and data flow of an embedded system are not completely inde-
pendent. On the contrary, a model which deals with embedded systems must
have a mechanism that allows the representation of interdomain effects. By
interdomain effects we mean the influence of the control flow over the data
flow and vice versa, e.g., the execution of a conditional branch (where the next
operation to be executed is data dependent). Such influence is modeled in DFN
by means of arcs in T × Q and Q × T and the guard function G. The guard
function G plays an important role in the behavioral DFN model, since it al-
lows a transition t to have a functionality that not only depends on the control
domain of the model, but also on its data domain. Section 2.3 elaborates this
concept in further detail.

1In order to avoid performing an operation (c.f. Section 2.3) that will not be used, neither in the

data domain (a place p ∈ q◦) nor in the control domain (a transition t ∈ q•).
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2.2 DFN Marking Functions

Bridging the gap between the structural (Section 2.1) and behavioral (Sec-
tion 2.3) models has lead to the current section, where the dynamical aspects of
the modeling are tackled. This section puts forward a new concept for the state
evolution.

Bipartite graph-based models, such as ETPN or PRES+, analyze the state

space evolution by means of a marking function that is isomorphic to −→μ :
P �→ IN. Instead, we propose to make use of a tripartite graph and, conse-

quently, make the marking function isomorphic to −→μ : P �→ ZZ∗
[i], where ZZ∗

[i] is
a new numeric system based on Gaussian integers [Dimiev and Markov 2002]
and polar representation of complex numbers (Definition 2.6). Because of its
two-dimensional nature, the Modified Gaussian Integer (MGI) notation defined
below combines two independent parameters and is suitable for capturing both
control and data flows.

Definition 2.6. A modified Gaussian integer is a tuple ZZ∗
[i] =〈ρ , θ〉,

where: ρ ∈ ZZ θ ∈ ZZn n ∈ IN
ZZn = {0, 1, 2, . . . , (n − 1)}
θ + n = θ

The inherent periodicity that Definition 2.6 imposes on θ is beneficial for
two reasons: first, the data domain stays bounded, as in real-life applications,
where registers do not have an infinite capacity and, second, the same overflow
behavior occurs when an arithmetic operation exceeds the capacity of a register.
Thus, the applicability of this numeric system to the codomain of a marking
function comes from using ρ ei·θ to indicate that θ is the periodic part (hence,
applied to capture data), while ρ is an integer used in the control domain.

Definition 2.7. The marking function −→μ : P �→ ZZ∗
[i] captures the state of

the system. The marking μ(p) of a place p ∈ P , also called marked place, is:

μ(p) = γ · ei·2π · α
R(p)

where γ ∈ IN, α ∈ ZZ, and R(p) is defined in 2.8. The following notation is used
hereafter:

−→μ =

⎡
⎢⎢⎢⎣

μ(p1)
μ(p2)

...
μ(pn)

⎤
⎥⎥⎥⎦ = (μ(p1), μ(p2), · · · , μ(pn))T

where T denotes the transpose operation.

The new marking function scheme introduced in Definition 2.7 is based on
a subset of complex numbers, i.e., the MGI numeric system defined in 2.6. Un-
like classic PNs [Murata 1989], the DFN marking function defined in 2.7 is
capable of considering the effects of both control and data domains when ana-
lyzing the dynamics of a system, because of its extended structure that allows
two independent but related sets of quanta, i.e., γ and α, to share a place at
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Fig. 4. Complex plane mapping of the state space.

any time. A search through the state space can thereby combine effects of two
disjoint domains, the control domain captured as the modulus γ = |μ(p)| of
a complex number and the data domain as its argument α = � μ(p). In this
way, a marked place μ(p) contains all the information needed for the net T ∪ Q
to perform modifications in the state of the system. A transition t ∈ T oper-
ates at the modulus level of μ(p) while hulls q ∈ Q tackle the argument. Next,
Definition 2.8 introduces three attributes associated to a place, which are used
in both control and data domain in order to bound the representation.

Definition 2.8.

K (p) is the capacity of a place, which is the maximum number allowed in
|μ(p)|;

R(p) is the range of a place, which is the cardinality of the set of values that
conforms � μ(p);

L(p) = log2(R(p)) is the length of a place.

For the sake of clarity, we illustrate these three limits using the example
presented in Figure 4. The state space of the system is limited in the control
domain to K (pi) = 3 and in the data domain to R(pi) = 16, and L(pi) = 4.

Furthermore, having a marking function defined in terms of a periodic do-
main allows for a more natural representation of the embedded system hard-
ware. For instance, an ALU performing an operation that exceeds the capacity
of a register will produce a truncated result. The same effect can be observed
in the DFN model, if the argument of a place is overflowed, because:

· · · = α − 2 · R(p) = α − R(p) = α = α + R(p) = α + 2 · R(p) = · · · (1)
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Definition 2.7 has expressed μ(p) by means of the constant R(p). However, it
is more useful to redefine μ(p) incorporating other parts of Definition 2.8 and,
thus, linking it to the constant L(p) instead. This result is shown below:

μ(p) = γ ei·2π · α
R(p) = γ e

i·2π · α

2L(p) = γ e
i· π ·α

2L(p)−1 = γ ei·(21−L(p)·π )α (2)

Thus far, Figure 4 exemplifies the principles hitherto introduced, by showing
the representation of a marking function in a complex plane. The DFN model
corresponds to a system that has been captured by means of three places p1, p2,
and p3. Since a marking mi of a place pi, i.e., mi = μ(pi), 1 ≤ i ≤ 3, has modulus
γ ∈ IN and argument α ∈ ZZ, it is represented as a vector in a quantized complex
plane. The magnitude of this vector is obtained from the number of tokens
of the marked place and there is a direct relation between the vector angle
and the number of data quanta in the marked place. Moreover, this can be
visualized as moving radially through a line when performing changes in the
control quantum γ of a marked place, while changes in data quantum α are
equivalent to a move through concentric circles of constant radius –determined
by the number of tokens γ .

In order to explain Definitions 2.7 and 2.8, and Eqs. (1) and (2), associated
with the state space model, the example given in Figure 4 illustrates the state
where place p1 contains γ = 2 tokens and α = 1 data quantum, place p2 has
γ = 3 tokens and α = 6 data quanta and p3 has γ = 1 token and α = −4 data
quanta. Likewise, each marked place is:

μ(p1) = 2ei· π
8 ; μ(p2) = 3ei· π

8
·6; μ(p3) = 1e−i· π

8
·4 = 1e−i· π

2

2.3 DFN Behavioral Model

Having introduced both the structure and the state space of DFN models, it is
subsequently possible to analyze the behavior of such models using the prin-
ciples introduced in this section. This section introduces four definitions that
state the behavior of DFN models. The behavior of a DFN model is described
in terms of enabling and firing transitions, as in classic Petri nets, in addition
to a synchronized data-flow operation scheme. The following two definitions
introduce the rules that ensue from modifying the classic enabling and firing
rules, in order to allow a marking function defined in the ZZ∗

[i] domain.

Definition 2.9. A transition t is said to be enabled, for a given marking μk ,
if the following two conditions are met:

i. all places in preset pi ∈ •t contain at least W (pi, t) tokens, which is:∧
pi∈ •t

(|μ(pi)| ≥ W (pi, t)
)

ii. the following atomic proposition holds: “the relation between the data
quanta that affects all hulls in the preset qj ∈ ◦t, and 0, is given by the
result of the guard function G(t).” Formally:

∧
qj ∈ ◦t

AP

( ∑
�

� μ(p�) · W (p�, qj ) + H(qj ), G(t), 0

)
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Definition 2.9 states whether a transition is enabled or not, in the DFN mod-
els. The influence of both control and data flow aspects in this evaluation can
be observed from the combined form of the enabling condition. Thus, from the
control flow point of view, the enabling of a transition depends on the token
distribution throughout the DFN model, i.e., subpart (i) of the definition. From
the data flow point of view, the dependence is established in subpart (ii), by
the conjunction of atomic propositions AP, which take data quanta as an argu-
ment. The summation (over �) in the argument of AP is explained further in
Definition 2.11.

Definition 2.10. The firing of an enabled transition t j changes a marking
μk into μk+1 by means of the following rules:

i. A finite number of tokens are removed from pi ∈ •t j :

|μk+1(pi)| = |μk(pi)| − W (pi, t j ), ∀pi ∈ •t j

ii. A finite number of tokens are added to pi ∈ t j
•:

|μk+1(pi)| = |μk(pi)| + W (t j , pi), ∀pi ∈ t j
•

iii. Each hull q ∈ t j
◦ is executed (c.f. Definition 2.11).

Hulls capture the data flow behavior of a DFN, as shown in Definition 2.11.
In simple terms, the hull performs a summation of data quanta over the data
domain. If the summation contains only one term, i.e., | ◦q| = 1, it turns out to
be a simple move operation. From the behavioral point of view, the execution
of each hull q is synchronized with some transition t in the net. Therefore, no
hull q can fire nondeterministically.

Definition 2.11. The firing of any transition t ∈ •q produces the execution
of the hull q, which changes a marking μk into μk+1 as follows:

� μk+1(pj ) = W (q, pj ) ·
(∑

i

� μk(pi) · W (pi, q) + H(q)

)
(3)

where pi ∈ ◦q and pj ∈ q◦.

Thus far, the definitions introduced in this section are based on classic Petri
net notation and linear algebra. The control part of the DFN model is semanti-
cally equivalent to a Petri net, while the data part is modeled in terms of basic
linear operators. By combining these two effects, we obtained a model of compu-
tation that allows representations to be very close to the final implementation
of the system. However, this accuracy is achieved at the expense of additional
aid for decisions at the system level.

2.4 Example

The DFN model of the multiplier described in Section 1.2 is shown in Figure 5.
Places p1 and p2 are set to contain, in the argument of their markings, the
multiplier operands a and b, respectively. One token is placed in each of these
two places as an indication of the validity of such data quanta. This initial
marking μ0, captures the behavior of the en signal, in the sense that t1 is only
allowed to fire when both p1 and p2 have a token.
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Fig. 5. DFN model of the multiplier.

In order to perform a multiplication, there is a sequence of events which
sets the argument of p6, i.e., � μk(p6), into the product � μ0(p1) · � μ0(p2). This
sequence is:

1. Transition t1 fires. Therefore,
(a) The two tokens are removed from p1 and p2 —Definition 2.10.1.
(b) One token is placed in p3, other in p4, and another in p5 —

Definition 2.10.2.
(c) The two hulls belonging to the set t1

◦ = {q1, q2} are executed accordingly
with Eq. (3) —Definition 2.10.3.

2. Hulls q1 and q2 execute, according to Definition 2.11, copying the arguments
from p1 and p2 into p3 and p4 respectively, i.e., the application of Eq. (3)
when | ◦q| = |q◦| = 1. Thus,

� μ1(p3) = W (q1, p3) · (� μ0(p1) · W (p1, q1) + H(q1))
= 1 · (a · 1 + 0)
= a

� μ1(p4) = W (q2, p4) · (� μ0(p2) · W (p2, q2) + H(q2))
= 1 · (b · 1 + 0)
= b

3. The new marking −→μ1 = (0ei·a, 0ei·b, 1ei·a, 1ei·b, 1ei·0, 0ei·0)
T

causes the tran-
sitions t2 to fire repeatedly b times and, for each iteration, � μ(p5) is incre-
mented by a. This leads to obtaining a · b in the final value of � μ(p5) as
follows:
(a) Since μ1(p4) has an argument greater than 0, t2 is enabled according to

Definition 2.9. Note the influence of � μ1(p4) in the enabling rule of the
definition, through an atomic proposition AP based on ◦t2 = {q7} and
G(t2) =“>.”
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(b) Firing the enabled transition t2 produces the subsequent execution of
two hulls: q3 and q4.

(c) The execution of q3 always leads to an unitary decrement of the argument
in p4, since | ◦q3| = 1 and H(q3) = −1. This is:

� μk+1(p4) = W (q3, p4) · ( � μk(p4) · W (p4, q3) + H(q3))
= 1 · (� μk(p4) − 1)
= � μk(p4) − 1

For k = 1 · · · b + 1.
(d) The execution of q4 provides the system with iterative additions in the

scope of p5. This is:

� μk+1(p5) = W (q4, p5) · ( � μk(p3) · W (p3, q4) + � μk(p5) · W (p5, q4)
+H(q4))

= 1 · (� μk(p3) + � μk(p5) + 0)
= � μk(p3) + � μk(p5)

For k = 1 · · · b + 1.
(e) This is:

−→μ1 = (0ei·a, 0ei·b, 1ei·a, 1ei·b, 1ei·0, 0ei·0)
T

−→μ2 = (0ei·a, 0ei·b, 1ei·a, 1ei·b−1, 1ei·a, 0ei·0)
T

−→μ3 = (0ei·a, 0ei·b, 1ei·a, 1ei·b−2, 1ei·2·a, 0ei·0)
T

...
−−→μb−1 = (0ei·a, 0ei·b, 1ei·a, 1ei·2, 1ei·(b−2)·a, 0ei·0)

T

−→μb = (0ei·a, 0ei·b, 1ei·a, 1ei·1, 1ei·(b−1)·a, 0ei·0)
T

−−→μb+1 = (0ei·a, 0ei·b, 1ei·a, 1ei·0, 1ei·b·a, 0ei·0)
T

(f) When � μ(p4) reaches the value of 0, only t3 is allowed to fire next, devi-
ating the control flow toward the end of the procedure.

4. The firing of t3 does not only put a token in p6, because of p6 ∈ t3
•, but also

sets � μ(p6) to the value in � μ(p5), because of q5 executing.

2.4.1 Trace for 5 × 3 = 15. For the sake of comparison, a detailed trace of
the 5 × 3 = 15 execution of the multiplier’s DFN model is presented below. The

initial marking −→μ0 = (1ei·5, 1ei·3, 0ei·0, 0ei·0, 0ei·0, 0ei·0)
T

implies that only t1 is
enabled. Thus:

t1; p3 ← 1ei·5| p4 ← 1ei·3| p5 ← 1ei·0; t2 ← 1ei·3| CMP| t2; SUB|
p4 ← 1ei·2| SUM| p5 ← 1ei·5; t2 ← 1ei·2| CMP| t2; SUB| p4 ← 1ei·1|
SUM| p5 ← 1ei·10; t2 ← 1ei·1| CMP| t2; SUB| p4 ← 1ei·0| SUM| p5 ←
1ei·15; t3 ← 1ei·0| CMP| t3; p6 ← 1ei·15

It can be observed, by comparison with the trace obtained in Section 1.2,
that the number of changes between control and data environments has been
reduced, i.e., less “;” symbols than previously. In the former ETPN trace, there
are 18 changes, while only 9 are counted in this DFN trace.
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2.5 Remarks

The control/data-flow interaction problem is not new and has been previously
addressed [Peng and Kuchcinski 1994; Strehl et al. 2001]. These approaches are
useful for synthesis issues, such as scheduling and allocation, but have limited
application in behavioral analysis. When the interaction between control and
data flows is intensified, these approaches tend to increase their complexity
as outlined in Section 1.2. Therefore, Section 2 has been promoting a model-
ing technique applicable to the design of embedded system, which exploits the
interactions between control and data flow in order to reduce complexity and
yet add expressiveness to the model. An increase on the expressive power of a
model usually requires more resources and, therefore, verification complexity
is magnified. What this paper exploits is the fact that by making the data do-
main periodic, the designer does not loose information, because that is the way
the application is meant to behave, whereas it gains from the analysis point
of view: the model has become data bounded. This contrasts traditional ap-
proaches, where data boundedness is achieved by limiting the size of the state
space, with possible loss of information.

In order to broaden this point of view, the DFN model with other nontripartite
approach should be compared. For instance, the PRES+ model is based on the
same principles of Coloured Petri Net, i.e., it consists of an underlying bipartite
graph and has an extended semantics to cope with dataflow manipulation. The
data flow of the system is handled by associating two parameters to each to-
ken of the net: a value (v) and a time stamp (t). To illustrate what is meant
by reducing complexity without compromising the model’s expressiveness,
Figure 6 shows a PRES+ representation of the multiplier example discussed in
Section 1.2, and compares it with the DFN model in Section 2.4. The inputs to
the multiplier are places A and B, while its output is bound to place C. The ini-
tialization of the multiplier is carried out by firing t1, t2, and t3, which transfers
the token in A and B to X and Y , respectively (for the first two transitions),
and sets the value of the token in Z to 0 (for the firing of t3). The main loop of
the multiplier is captured by t7, t8, and t9, where the guard function [y>0], and
t9’s transition function y-1, indicate that the loop will be repeated Y times. The
result is taken out to place C, when the guard function [y=0] allows t10 to fire.

Comparing Figures 5 and 6, it can be observed that having a tripartite in-
stead of bipartite graph is advantageous. Clearly, modeling based on a bipartite
graph (e.g., PRES+) requires intricate manipulations to cope with control/data-
flow modeling, since this is not inherent in the model. By identifying which
elements are of control nature and which ones belong to the data flow, DFN
is capable of reducing unnecessary complexity and does not compromise the
quality of the model in terms of expressiveness.

3. FORMAL VERIFICATION

Models are often validated by means of simulation, where the behavior of the
system is checked against a certain set of stimuli and, therefore, only a limited
part of the state space is searched. Formal verification, on the other hand,
mathematically checks for all possible behaviors whether the model corresponds

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.



70 • M. Varea et al.

Fig. 6. PRES+ model of the multiplier.

to the given specification. A comprehensive overview of the state of the art of
formal verification is given in Wang [2004].

The combination of atomic propositions (APs), such as the ones described in
Section 2, is carried out using a finite set of logical operators, e.g., ¬, ∧, and
=⇒. This is known as Propositional Logics (PL). In addition, Modal Logics (ML)
also introduce the concept of path quantification [Emerson 1990], through the
universal (∀) and existential (∃) operators. However, since we are interested in
state evolution analysis (which implies that the AP is allowed to change over
the time), it is important to consider a type of logic that not only expresses
several execution traces, as ML, but is also capable of capturing properties that
vary along the time. Temporal Logic (TL) is a class of ML which provides a
mechanism for analysis of assertions over time by means of an additional set of
operators, called temporal quantifiers [Bellini et al. 2000], which describe the
behavior of dynamic assertions along the time. For the rest of this paragraph,
we assume that ϕ is either an AP or an already known property. Thus, a prop-
erty, which holds at the next state, is represented by ◦ϕ1, a property that will
eventually hold is symbolized by �ϕ1, if it always holds by �ϕ1, and ϕ1U ϕ2 is
used to represent that ϕ1 holds until ϕ2 holds.
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Fig. 7. Our model checking methodology.

There are two possible time classifications for TL properties: (a) assuming
a state evolution where only one possible next state can be assigned for any
given state, i.e., Linear Temporal Logics (LTL), or (b) taking into account pos-
sible splits in the state evolution, i.e., Branching Temporal Logics (BTL). Com-
putational Tree Logic (CTL) is a BTL restricted by the constraint that each
temporal operator must be preceded by a path quantifier. For further reference,
the reader is referred to Emerson and Halpern [1986], Kupferman and Vardi
[1995], Pnueli [1985], and Vardi [2001].

3.1 Model Checking of DFN models

Model Checking [McMillan 1993; Clarke et al. 1999; Burch et al. 1992] is a for-
mal verification technique that has had a number of success stories, e.g., Burch
et al. [1992], which certainly attracted the EDA industry. This section outlines
our approach to formally verify DFN models via model checking. Figure 7 shows
a verification engine as the core of the proposed methodology, which has been
chosen to be the Cadence SMV model checker [Cadence 2001] for its robustness
and expressiveness. However, it should not be inferred that our methodology
is restricted to this particular tool. The methodology’s input is an embedded
system specification composed of both a DFN model and a set of properties ex-
pressed in a temporal logic. The DFN model is translated into a source code
understood by the model checker while, on the other hand, a library written in
the tool’s language captures the DFN semantics according to the definitions in-
troduced in the previous section. The verification is driven by a scheduler (sch),
which determines a valid sequence of transition firings in order to analyze the
resulting behavior. The outcome of the verification (YES or NO in Figure 7) is
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Fig. 8. Algorithm for a DFN transition.

the result of evaluating the correctness of the DFN model with regard to the
temporal logic properties.

A library that captures the semantics of DFN has been implemented in or-
der to perform the DFN model checking. This library consists of four modules
(place(), transition(), hull() and guard()), and a scheduler (sch). The structure
of the net is built by means of successive instantiations to these four modules.
Since an enabled transition is not forced to fire, the scheduler has been de-
fined in a way that restricts each step of the schedule to the set of enabled
transitions, i.e., the scheduler nondeterministically chooses from the set of en-
abled transitions the next transition to fire. The code for such a scheduler is
presented below, where M= |T | is the number of control transitions in the net.
A variable sch of order M= |T | indicates which transition t[sch] is firing at
time k. The last line defines the firing of the transition t[sch] by changing the
marking μ of the system. Note that pp is the output of the transition() module,
i.e., p′ in Figure 8. As a consequence, there is a change in the enabled transi-
tions, i.e., t[i].en=1, which influences the nondeterministic value assigned to
sch = {i : i = 1..(M), t[i].en}.

typedef TRANSITIONS 1..(M);

...

sch : TRANSITIONS;

sch := { i : i = 1..(M), t[i].en };

...

forall (i in PLACES)

next(p[i].modulus) := t[sch].pp[i];

In the following subsections, we introduce three modules of the library, where
the place() module is a data structure, and the algorithms in the transition()
and hull() modules are presented. The remaining guard() module is a case
statement that returns the evaluation of a condition, based on the symbol used
at its argument.
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3.1.1 Places. Because of the underlying complex notation used in Defini-
tion 2.7, the set P cannot be constructed as an array of integers as in classic
Petri nets. In the implementation of the DFN library, an array p[i] where each
member comprise a two-member structure, is the basic data type that models
the modulus and argument of a marked place. The extraction of each part of the
complex tuple, i.e., the application of the |μ(p)| and � μ(p) operators in order
to obtain modulus and argument, respectively, is performed through a direct
access to the member of the structure stored within the array p[i].

3.1.2 Transitions. The algorithm presented in Figure 8 consists of two
main parts: checking if the transition is enabled (s1) and the firing operation
(s2), which refer to Definitions 2.9 and 2.10, respectively. When a transition
is selected by the scheduler, an assignment occurs in all places of the net. If
the transition determined by the scheduler (t[sch]) is enabled, the assignment
carried out in (s2) considers the effect of the firing rule presented above.

For the sake of clarity, assume a transition() module instantiated as follows:

t[1]: transition(p,[3,1,0,2],[0,1,2,0],1);

This means that:

•t1 = {p1, p2, p4};
W (p1, t1) = 3, W (p2, t1) = 1, W (p4, t1) = 2;

t1
• = {p2, p3};

W (t1, p2) = 1, W (t1, p3) = 2;

and

No guard function exists (since 1 is the default value on the result of a guard()
module)

With regard to Definition 2.9, which is implemented through the enabling con-
dition part (s1), the following logical condition:

guard ∧
|P |∧
i=1

pre[i] > 0 =⇒ | p[i]| ≥ pre[i]

is unfolded into:

� ∧ | p[1]| ≥ pre[1] ∧ | p[2]| ≥ pre[2] ∧ | p[4]| ≥ pre[4]

≡ � ∧ | p[1]| ≥ 3 ∧ | p[2]| ≥ 1 ∧ | p[4]| ≥ 2 (4)

The boolean result of Eq. (4) is used in part s2 to see whether the next step of
the argument of each marked place, or whether its former content, is assigned
to the result of the firing rule. Note the connection between the scheduler’s
assignment and the output of the transition() module.

3.1.3 Hulls. Similarly, Figure 9 shows the algorithm for a hull q ∈ Q . The
enabling part s1 checks whether the transition that is firing at a given step
k (i.e., t[sch]) has any connection to the hull itself. This is because of Def-
inition 2.10.3. On the other hand, the action described in Definition 2.11 is
implemented in the firing part s2, which allows the next state of the argument

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.



74 • M. Varea et al.

Fig. 9. Algorithm for a DFN hull.

in pi to be set to either (a) a sum of values coming from the preset, or (b) its
previous content.

An implementation of the multiplier described in Section 2.4 is given below,
in order to clarify the concepts hitherto introduced. This SMV code utilizes the
dfn.smv library, which defines all elements of a DFN model in the way described
in this section. The aforementioned library also includes the nondeterministic
scheduler (described in Section 3.1) and a deadlock definition (used as last
argument of hull()). The property to be verified is �( � μ(p6) = a · b), which
means that the multiplier’s output will eventually reach the value of a times b.
Since a and b inputs are defined as abstract variables in the range of 0..7, all
256 combinations are taken into account for proving the design correct. This
verification was performed in 5.23 sec, allocating 163007 BDD nodes.

#define Kc 3 /* capacity in the ctrl domain */

#define Kd 64 /* capacity in the data domain */

#define NN 6 /* |P| */

#define MM 3 /* |T| */

#define HH 8 /* |Q| */

#include "dfn.smv"

abstract a : 0..7; next(a):=a;

abstract b : 0..7; next(b):=b;

/* INITIAL MARKING */

ictrl := [1,1,0,0,0,0];

idata := [a,b,0,0,0,0];

/* NET */

g1 : guard(p[4],gt,0);

g2 : guard(p[4],eq,0);
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t[1] : transition(p,[1,1,0,0,0,0],[0,0,1,1,1,0],1);

t[2] : transition(p,[0,0,0,0,0,0],[0,0,0,0,0,0],g1);

t[3] : transition(p,[0,0,0,0,1,0],[0,0,0,0,0,1],g2);

q[1] : hull(p,[1,0,0,0,0,0],[0,0,1,0,0,0],{1},0,sch,deadlock);

q[2] : hull(p,[0,1,0,0,0,0],[0,0,0,1,0,0],{1},0,sch,deadlock);

q[3] : hull(p,[0,0,0,1,0,0],[0,0,0,1,0,0],{2},-1,sch,deadlock);

q[4] : hull(p,[0,0,1,0,1,0],[0,0,0,0,1,0],{2},0,sch,deadlock);

q[5] : hull(p,[0,0,0,0,1,0],[0,0,0,0,0,1],{3},0,sch,deadlock);

q[6] : hull(p,[0,0,0,1,0,0],[0,0,0,0,0,0],{0},0,0,deadlock);

q[7] : hull(p,[0,0,0,1,0,0],[0,0,0,0,0,0],{0},0,0,deadlock);

q[8] : hull(p,[0,0,0,0,0,0],[0,0,0,0,1,0],{1},0,sch,deadlock);

/* SPEC */

--FirstStep : assert X (p[4].modulus = 1);

Result : assert F (p[6].phase = a * b);

END

3.2 Behavioral Properties

This section presents a brief description of the applicability of the methodology
introduced in Section 3.1 to verify behavioral properties that are of interest for
the verification of embedded systems, such as reachability, safety, and liveness.
Furthermore, the relation of both LTL and CTL notation to such behavioral
properties is discussed.

3.2.1 Reachability. A marking μk is said to be reachable from a marking
μ0 if there is a sequence of transition firings, which leads to μk . We use CTL
formulas to express this condition as:

ϕr = ∃�

|P |∧
i=1

(
μ(pi) = ci

)
where ci = bi ei·ai is the desired final marking μk(pi), ∀pi ∈ P at the time step k.
Therefore, if both |μ(pi)| = bi and � μ(pi) = ai holds, then the state of the system
has eventually reached a marking of μk(pi), ∀1 ≤ i ≤ n.

3.2.2 Safety. Safety properties are conditions that are verified along any
execution path. These type of properties are usually associated with some criti-
cal behavior, and, thereby, should always hold. A particular type of safety prop-
erty is known, in the context of Petri nets, as safeness. Classically, a safe PN
allows, at most, one token in every place, for any reachable marking, which
means that the following LTL formula holds:

ϕs = �
|P |∧
i=1

(|μ(pi)| ≤ 1
)

3.2.3 Liveness. A DFN model that never changes its marking is likely
to be of very little interest. Thus, liveness properties indicate that a certain
DFN model would not get trapped into a single marking (or a particular cycle

ACM Transactions on Embedded Computing Systems, Vol. 5, No. 1, February 2006.



76 • M. Varea et al.

Fig. 10. DMA transmitter/receiver of the Ethernet coprocessor and signals involved.

defined by a limited set of markings). The absence of deadlocks is a fundamen-
tal liveness property in the theory of Petri nets. For the model checking of a
DFN model, the deadlock condition is expressed as follows:

ϕd = ¬
|T |∨
i=1

( ∧
pj ∈ •ti

|μ(pj )| ≥ W (pj , ti)

)

This means that there is “at least one transition enabled.” The condition ϕd is
used within s1 in the hull module as a part of the enabling condition, i.e., the
’deadlock’ condition affects the hull’s member “en,” as illustrated in Figure 9.

4. ETHERNET NETWORK COPROCESSOR

This section shows the applicability of our DFN modeling approach to the
real-life Ethernet coprocessor. Empirical results have been obtained using the
Cadence SMV tool [Cadence 2001] in a Sparc Sun-Ultra 10 / 440 MHz with
512 Mb RAM running Solaris 8.

The Ethernet network is an IEEE standard. The network coprocessor trans-
mits and receives data frames over a network by means of the CSMA/CD pro-
tocol, which is defined in the IEEE 802.3 standard [ANSI/IEEE 1991]. There
have been a number of attempts to perform a hardware/software codesign of
the Ethernet coprocessor [Gupta and De Micheli 1992], as well as benchmark-
ing [Narayan and Vahid 1992]. Furthermore, the formal verification of this
coprocessor has been carried out using a predecessor of the tool used in our
verification engine [Naik and Sistla 1994].

The operation of the coprocessor is controlled by the execution unit, which
sends the starting memory address to the transmit unit and then enables a
DMA unit to operate straight into memory. The DMA unit (dma xmit) directly
reads from the successive memory locations in order to obtain destination ad-
dress, data length, and the actual data, which are then sent to the xmit frame.

Figure 10 shows the top level diagram of the Ethernet coprocessor’s DMA
transmitter/receiver. Data flow has been marked with thick lines in order to
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distinguish it from the control flow. This unit has two modes of operation:
dma xmit normal and dma xmit cancel, so that it normally stays in the first
mode but, if a failure occurs in the transmission to xmit frame, the DMA unit
switches to an alternative mode that sets the environment to restart the trans-
mission process. It can be observed in the figure that only the first mode of
operation deals with the data flow of the system.

The work in Narayan and Vahid [1992] describes the dma xmit unit as a
combination of eight mutual exclusive subprocesses: START, DEST1, DEST2,
LENGTH, DATA, DATA2, END, and RESTART. Modeling this specification by the
DFN model requires, to begin with, a set of eight places (p1 to p8) to indicate the
beginning of each subprocess. These places have been highlighted in Figure 11
for further reference. For instance, the initialization of the START subprocess
is captured by placing a token in p1. The specification of dma xmit also shows
that once the START subprocess has been initialized, it will wait for an external
signal (txstart), in order to request access from the CPU (Bhold). Such a behavior
is conceptualized by the waiting of a token in p10 and, after firing a couple of
transitions (t1 and t2), placing a token in p21. This is more formally expressed
in the ϕ acc property.

Table I shows the list of properties that are necessary to prove, in order to
assure the correctness of the Ethernet coprocessor model. We can identify two
types of properties: those that describe the functionality of the system (ϕ) and
those that assure that all subprocesses will eventually be used by such a func-
tionality (ψ). As explained above, when a txstart signal is sent to the DMA unit,
this will request access to the CPU (c.f. ϕ acc). The system them reads from
successive memory locations (c.f. ϕs1, ϕs2 and ϕs3), starting from txaddress[16]

(c.f. ϕfrom). At this point, the Ethernet coprocessor is ready to transmit Bdata[16]

to xmit frame, but this is an 8-bit unit. Properties ϕhigh and ϕlow have been for-
mulated in order to prove that both Bdata[15..8] and Bdata[7..0] are transferred to
such unit. However, it is not sufficient to prove these nine functional properties.
In order to complete the proof, liveness among the subprocesses has to be guar-
anteed. Therefore, by means of the ψ properties, we prove that each subprocess
will eventually call another subprocess (i.e., the DFN model is live).

The complete correctness of the DFN model for the Ethernet coprocessor
has been proved after 4809.2 sec (approx. 1 hour and 20 min) of verification
time.

5. CONCLUSIONS

Control and data flow of embedded system specifications are usually kept sep-
arate on a structural point of view, for ease of its implementation phase, while
its behavior is usually analyzed in a framework that combines both flows
and makes them indistinguishable. Unlike most approaches in the realm of
embedded-system modeling based on Petri nets, which extend the classical
weighted, directed, bipartite graph, our DFN model is based on a tripartite
graph. Thus, specifications consisting of both control and data flow are effi-
ciently captured, keeping a tight link between control and data domains. Such
a significant alteration to the classical Petri nets has shown, throughout the
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Fig. 11. DFN model of the Ethernet coprocessor.

paper, that issues concerning the linkage between control and data flow are of
major concern, in order to accurately capture the behavior of embedded systems.

The formal verification of the DFN model has been also addressed in this
paper, through a library that captures the semantics of the model. This li-
brary allows to mathematically prove the correctness of embedded system
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Table I. LTL Properties of the Ethernet Coprocessor

Name Property BDD Nodes Where?

ϕ acc |μ(p10)| = 1 =⇒ �|μ(p21)| = 1 10033 START (p1)

ϕ from |μ(p10)| = 1 =⇒ �� μ(p12) = � μ(p9) 10256 START (p1)

ϕ s1 |μ(p10)| = 1 =⇒ �� μ(p13) = � μ(p12) 10494 START (p1)

ϕ s2 �� μ(p13) = � μ0(p12) + 2 141160 LENGTH (p5)

ϕ s3 �� μ(p13) = � μ0(p12) + 4 140948 LENGTH (p5)

ϕ high �� μ(p34) = high( � μ(p14) ) 5704 DEST1 (p3)

ϕ low �� μ(p34) = low( � μ(p14) ) 3268 DEST2 (p4)

ϕ rel |μ(p8)| = 1 =⇒ �|μ(p26)| = 1 7015 END (p8)

ϕ fail |μ(p36)| = 1 =⇒ �sch = 23 9029 RESTART (p2)

ψ start |μ(p10)| = 1 =⇒ �|μ(p3)| = 1 10017 START (p1)

ψ dest1 |μ(p3)| = 1 =⇒ �|μ(p4)| = 1 4012 DEST1 (p3)

ψ dest2 |μ(p4)| = 1 =⇒ �|μ(p5)| = 1 2365 DEST2 (p4)

ψ len-c �|μ(p43)| = 1 7628 LENGTH (p5)

ψ len-d �� μ(p32) = � μ0(p14) 69283 LENGTH (p5)

ψ len-i �� μ(p44) = high( � μ(p32) ) 5506 LENGTH (p5)

ψ len-n0 μ(p44) = 1 · ei·α , α �= 0 =⇒ �|μ(p6)| = 1 2629 LENGTH (p5)

ψ len-e0 μ(p44) = 1 · ei·0 =⇒ �|μ(p8)| = 1 3760 LENGTH (p5)

ψ dt0 �|μ(p46)| = 1 10013 DATA (p6)

specifications represented in DFN, which does not mean that the DFN model
acts as an intermediate step between another modeling paradigm and its ver-
ification. On the contrary, it is assumed that the designer develops the model
based on the specifications of the design and produces a set of properties that
will allow him to verify the correctness of that model. The DFN modeling and
verification phase have been applied to a real-life example, i.e., the Ethernet
coprocessor, in order to show the applicability of this methodology to complex
designs.

ACKNOWLEDGMENTS

The authors wish to thank the anonymous reviewers for their constructive com-
ments and suggestions, which improved the paper’s presentation and clarity.

REFERENCES

ANSI/IEEE. 1991. Information Processing Systems—Local Area Networks—Part 3: Carrier
Sense Multiple Access with colision Detection (CSMA/CD) access method and physical Layer
Specifications. IEEE, New York.

BELLINI, P., MATTOLINI, R., AND NESI, P. 2000. Temporal Logics for Real-Time System Specification.

ACM Computing Surveys 32, 1 (Mar.), 12–42.

BRAGE, J. P. 1993. Foundations of a high-level synthesis system. Ph.D. thesis, Department of

Computer Science, Technical University of Denmark, Lyngby, Denmark.

BURCH, J. R., CLARKE, E. M., MCMILLAN, K. L., DILL, D. L., AND HWANG, L. J. 1992. Symbolic Model

Checking: 1020 states and beyond. Imperial College of Science, Technology and Medicine 98, 2,

142–170.

CADENCE. 2001. The SMV Model Checker. http://www-cad.eecs.berkeley.edu/∼kenmcmil/smv/.
CLARKE, E. M., GRUMBERG, O., AND PELED, D. A. 1999. Model Checking. MIT Press, Cambridge,

MA.
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