
Design Optimization of Security-Sensitive
Mixed-Criticality Real-Time Embedded Systems

Xia Zhang, Jinyu Zhan, Wei Jiang∗, Yue Ma
School of Information and Software Engineering

University of Electronic Science and Technology of China
Email: zhangxia19870317@gmail.com,

{zhanjy, wejiang}@uestc.edu.cn, yue ma 880131@hotmail.com
∗Corresponding Author

Ke Jiang
Department of Computer and Information Science

Linköping University
Email: ke.jiang@liu.se

Abstract—In this paper we are interested in security-
sensitive mixed-criticality real-time systems. Existing researches
on mixed-criticality systems usually are safety-oriented, which
seriously ignore the security requirements. We firstly establish
the system model to capture security-critical applications in
mixed-criticality systems. Higher security-criticality protection
always results in significant time and energy overhead in mixed-
criticality systems. Thus, this paper proposes a system-level
design framework for energy optimization of security-sensitive
mixed-criticality system. Since the time complexity of finding
optimal solutions grows exponentially as problem size grows,
a GA based efficient heuristic algorithm is devised to address
the system-level optimization problem. Extensive experiments
demonstrate the efficiency of the proposed technique, which can
obtain balanced minimal energy consumption while satisfying
strict security and timing constraints.

I. INTRODUCTION

Nowadays, more and more applications are integrated into
a single platform to meet rapidly increasing cost, power, and
thermal constraints [1]. Usually, these integrated platforms are
connected to networks and security protections from attacks
are required. It’s possible that different applications in a
platform have different security requirements. For example,
in automobiles, the braking application needs more security
protections than the infotainment system. The former may
cause severe threat to human lives if it fails to resist attacks,
while the later would cause less damage. Therefore, these
applications are regarded as unequally security-critical, and
thus, mixed-criticality aspect is brought into this kind of
systems. These systems which can robustly resist against secu-
rity attacks are referred as Mixed-Security-Critical Distributed
Real-time Embedded System (MSCDRES).

Concrete security requirements depend on surrounding
environments. Taking the flight control system used in a
military unmanned aerial vehicle for example, stronger se-
curity protections are required when the system enters enemy
territory. That indicates that sometimes stronger protections,
which consume much more execution time and energy, are
needed. However, these resources in MSCDRES are likely
to be very limited, and sometimes insufficient, in handling
above situation. In this case, executions of less critical appli-
cations are sacrificed to guarantee the required protections of
higher critical applications. Therefore, a systematic method
for security guarantees for resource limited MSCDRES is
desirable. At the same time, energy budget in embedded
system is usually limited. So in this paper energy efficiency is
a main concern in MSCDRES, where security and real-time
constraints are also guaranteed.

Researches on mixed-criticality systems emerge quickly
in recent years. In [2], researchers proposed a formal model

for presenting certifiable mixed-criticality systems. Authors of
[3] derived an effective algorithm called PLRS to schedule
mixed-criticality sporadic task system. In [4], researchers
presented a Tabu Search based algorithm for designing mixed-
critical applications on distributed and cost-constrained archi-
tecture. However, only safety-critical applications have been
addressed, and security related issues were not covered.

More recently, some efforts have been made in security-
and energy-aware task scheduling for distributed real-time
systems. The authors of [5] presented a heuristic approach to
search for the best system-affordable cryptographic protection
for the internal communication messages. In [6], the authors
proposed a resource allocation technique for optimizing the
security protection in energy constrained mono-processor
systems. However, these works ignored the mixed-criticality
properties.

In this paper, we are interested to determine an imple-
mentation of the mixed-criticality applications on a distributed
architecture such that schedulability and security constraints
are satisfied and the energy consumption is well balanced.
In the implementation task mappings which can achieve
energy balancing and security guarantee objective is decided.
Firstly, we give a formal system model of MSCDRES, where
criticality level of tasks, applications and system behaviors
are specified. After that, energy consumption of the system
is investigated. Then the energy optimization problem is
formulated, and related constraints are addressed. Due to the
complexity of the problem, a Genetic Algorithm (GA) based
heuristic, i.e. Energy and Security-aware Schedule Algorithm
for Mixed-critical Applications (ESAMA), is proposed.

The rest of the paper is organized as follows. In Section
II, a mixed-criticality system model is presented. The design
optimization problem is formulated in Section III. We describe
our energy optimization algorithm in Section IV. Simulations
and experiments are conducted and analyzed in Section V.
Finally, we conclude the paper in Section VI.

II. SYSTEM MODEL

A. Security Criticality Level

Previously, mixed-criticality systems refer criticality as
safety. But security should also be part of the picture [7]. In
safety-critical system, safety related applications are certified
by Certification Authorities (CA) [8]. Different certification
levels are assigned to applications based on prescribed stan-
dards [9], such as DO-178B and IEC61508. In security-critical
systems, security-related functions should be appropriately
certified, and assigned with suitable criticality levels based
on existing certification standards, such as FIPS 140-2 [10]
and Common Criteria (CC) [11].

Security protections based on various security reinforce-
ment mechanisms are required in MSCDRESs. To give a
reasonable security certification, application vulnerabilities,
attack probabilities, and damages of system failures should be
analyzed. Then the corresponding security requirements can
be specified. In this paper, we introduce a Security Criticality
Level (SCL) to capture the required security protection levels.
Security-related applications must be certified and assigned
rational SCL according to their security requirements. We
assign four levels to SCL, from SCL1 to SCL4, and the
bigger value stands for higher security protections. A task of
higher SCL needs stronger security protection, which leads
to much more time and energy consumptions. Thereby, its
WCET estimation is longer. Separation mechanism must be
introduced to prevent tasks of different SCLs from interfering
with each other. In this paper, we assume that communication
is only allowed between tasks of the same SCL.

B. Security-Sensitive Mixed-criticality Application

In a MSCDRES, SCLs are assigned to tasks according to
their security requirements. However, if the system runs in
an environment that is dynamically changing over time, these
security requirements may change, too. Therefore, concepts of
system behaviors corresponding to surrounding environment
are employed, which are specified in the following.

Task behavior: Task behaviors depend on surrounding
environment. For example, the system running in an envi-
ronment with higher attack possibilities needs higher security
protection, and thus higher system load. Therefore, a task may
exhibit multiple behaviors, to which different SCLs can be
assigned according to each behavior’s security requirement. In
a task, higher SCL implies more security protection and longer
WCET. A task ti is then defined as ti = (λi, τi), where λi is
SCL of the task, which corresponds to the highest security
protection of it. τi = (τi(1), τi(2), . . . , τi(λi)) represents
WCET corresponding to each task behavior. All the behaviors’
SCL assignments and WCET establishments are performed by
CA. A task ti can run at multiple SCL ranging from 1 to λi.
If ti runs at level l, we say that it exhibits SCLl behavior,
which can be denoted as ti(l) with WCET τi(l).

Application behavior: Behavior of an application depends
on behaviors of its subtasks. Based on the separation mecha-
nism, all tasks of an application have equal SCLs and exhibit
equal SCLs at a time. An application of SCLλ has behaviors
G(1), G(2), . . . , G(λ).

System behavior: A system behavior can be regarded
as SCLl, if all the tasks currently executing in the system
have SCL higher than or equal to l. In this case, execution
of tasks, whose SCLs are lower than l, is sacrificed due
to resource constraints. The behavior of a system can be
divided in to a series of criticality levels range from 1 to
λmax(λmax = max{λi|ti ∈ T}). T stands for the tasks
in the system. We assume that the system has a security
monitor that detects the security threats from the surrounding
environments, and then decides the system behaviors.

C. System architecture

In this paper, we focus on heterogeneous distributed MSC-
DRESs, which consist of multiple processing units and a com-
mon bus. For the sake of simplicity, we make several assump-
tions. (1)The processing capacity, power, and energy supply of
these processors are different. (2)Energy consumption during
system behavior transition is not considered. (3)The WCETs
of message transmission are identical. (4)Transmission delay
in a processor can be ignored, but the communication delay
on a bus cannot be neglected.

t10

ω1=30W

2=50W

p2p1

Bus

t1

t2

t3

t4

t6

t5

G3 G2

f1=333MHz

f2=200GHz

(a) Hardware architecture (b)Security-sensitive mixed-criticality applications

t7

t9t8

G1

t11

t12

t1,t3,t4,t6,t7,t8,t9,t11

t2,t5,t10,t12

t1,t3,t4,t6

t2,t5

t1

t2

p1

p2

SCL 1 SCL 2 SCL 3

(c)WCETs of tasks

t1 t2 t3 t4 t5 t10t9 t11t6 t7 t8 t12

3 3 2 2 2 11 12 1 1 1
5 1 2 1 6 32 15 5 3 5
6 4 3 5 9 ** *9 * * *

10 5 * * * ** ** * * *

Task
SCL

WCET/1
WCET/2
WCET/3

(d)Task mapping of each system behavior

SCL1SCL2SCL3

Fig. 1. A hardware architecture and a set of applications

The set of processors in the system is denoted as P =
{p1, p2, . . . , pρ}. Vector F = (f1, f2, . . . , fρ) represents the
processing frequencies of these processors, and vector Ω =
(ω1, ω2, . . . , ωρ) denotes their power. An illustrative hardware
platform consisting of two processors is depicted in Fig. 1(a).

There are several periodic applications running in the
system. An application, denoted as G, is composed of a set of
interdependent tasks and modeled as a Directed Acyclic Graph
(DAG), seeing in Fig.1(b). Each node in the DAG represents
a task, and edges denote data dependencies, referred as
messages. A task can only be scheduled until all the messages
from its preceding tasks are received. In this paper, we assume
that all the applications have equal period, and release at the
same time. For applications of different periods, our proposed
framework can be transformed by calculating their hyper-
period (LCM of all periods). We denote an application as
Γ(T,E,D). Where eij ∈ E denotes the message from ti to
tj . If there is a message transmitted from ti to tj , then eij = 1,
otherwise, eij = 0. D is the common deadline equal to the
period of the application set. T = {t1, t2, . . . , tn} stands for
the task set of the application set. We use an n×λmax matrix
Ct to present the WCET of each task on each criticality level,
which must satisfy the following property:

∀ctij ∈ Ct, ctij =

{
τi(j) j ≤ λi
0 j > λi

(1)

The value of WCET (τi, ctij) is in clock cycles.
All tasks will be mapped to processors, as is seen in

Fig.1(d). A 0-1 matrix A sized ρ × n is used to capture the
mapping of tasks to processors. For each aij ∈ A, if tj is
mapped to pi, then aij = 1, otherwise aij = 0.

An example of application set is shown in fig.1(b). We
assume that SCLs of G1, G2 and G3 is 1, 2 and 3, respectively.
WCETs, which are presented in 104 clock cycles, of the tasks
are shown in fig.1(c). In this table, WCET/1, WCET/2 and
WCET/3 stand for WCETs of a task when it exhibit SCL1,
SCL2 or SCL3 behavior, respectively. And symbol * means
that the task cannot execute at this SCL. Seeing in Fig.1(d),
all tasks can be executed and mapped to either processors
when the system runs at SCL 1. If the environment getting
worse, system behavior level must be raised to handle a more
insecure situation. Seeing in the third column of Fig.1(d),
when the system runs at SCL 2, G1 (SCL 1) are eliminated.
If environment is getting even worse, the system may exhibit
the highest system behavior. Then all the applications except
those of the highest SCL are eliminated, as is shown in
Fig.1(d). The events of switching from one SCL to another
SCL occure at intervals between two successive common
periods.

D. Energy Consumption

Usually, energy budget is limited in MSCDRESs, and
system failures due to energy depletion could result in
serious consequence. Therefore, when scheduling tasks in
MSCDRESs, energy consumption must be considered. In this
paper, we assume that energy consumption at idle time is very
low, and can be ignored. The execution cycles of a processor
in a period can be calculated by adding all WCETs of the
tasks that are allocated to the processor. Then an ρ × λmax
matrix Cr is introduced to denote the execution cycles of each
processor corresponding to each system behavior. crij ∈ Cr

stands for the executing cycles of pi when the system exhibits
SCLj behavior. Cr can be calculated using the following
function:

Cr = A · Ct (2)

where A is the task mapping to processors.
In a mixed-criticality system, energy consumption is vary-

ing when the system exhibits behaviors of different SCLs,
since task sets corresponding to different SCLs, as well as
their WCETs, are not the same. We use Y to represent the one-
period energy consumption of these processors of different
system behaviors. γij ∈ Y stands for the energy consumption
of pi when system exhibit SCLj behavior. And Y can be
calculated using the following function:

∀γij ∈ Y, γij =
crij · wi
fi

(3)

III. PROBLEM FORMULATION

In a MSCDRES, all the processors must be available
to guarantee completeness and correctness of the system.
However, energy budget in embedded systems is usually
limited, and required to be effectively utilized. Therefore, a
balanced energy-saving design is desirable to prolong the node
lifetime[12]. In MSCDRESs, utilization rates corresponding
to different system behaviors are diverse. Thus, in order to
use energy budget effectively and to prolong system life as
much as possible, workload among the computation nodes
under each behavior must be balanced [13], while satisfying
the real-time constraints of the system.

A. Motivational Example

We firstly present an illustrative example to state our
problems. Let’s consider the example of Fig.1, where the
two processors have the same energy budget of 10J. We
assume that the messages consume the same transmitting
time, i.e., 20µs. The deadline of the three applications is
1180µs. Then two different one-period scheduling schemes is
presented in Fig. 2, and both can be achieved at three SCLs.
In the two schemes, different task mappings are generated.
Then List Scheduling (LS)[14] algorithm is used to determine
the starting time of these tasks statically. And we assume
that all of the applications are non-preemptive. Scheme 1
aims at prolonging lifetime, but ignores the mixed-criticality
properties. The same scheduling objective is addressed with
the consideration of mixed-criticality in scheme 2.

Usually, all the tasks are fully executed, and normal securi-
ty protections are inherently provided. In this case, the system
runs at SCL 1 (Fig.2(a)(d)). One-period energy consumptions
of the two processors are γ1 = 21.6mJ and γ2 = 37.5mJ ,
respectively, in both schemes. Their corresponding life time,
referred as number of periods, can be calculated using bi/γi,
where bi denotes the energy budget of pi, and γi is its the
energy consumption of one period. So, in the two schemes
lifetime of p1 and p2 is 462 and 266. The two schemes lead

to the same lifetime 266 corresponding to SCL1 behavior.
When the surrounding security environment is getting worse,
stronger protections must be adopted. Then, system behaviors
are raised to SCL 2 (fig.2(b)(e)). Execution of tasks of SCL
1 (G1) is ignored to save more execution time and energy
for security reinforcements of higher SCL tasks. WCETs of
tasks of SCL 2 and SCL 3 (G2, G3) increase, too. We could
find that in scheme 1, deadline is already missed. However,
when using scheme 2, the tasks are schedulable and the
system lifetime is 307. If the security environment keeps
getting worse, the strongest protections is needed, and tasks
of lower SCL (G1, G2) are sacrificed, as seen in Fig.2(c)(f).
In this case, all remained tasks will exhibit behaviors of the
highest SCL and consume the longest execution time. We
could notice that in scheme 1, tasks executions concentrate
on p1, and CPU time on p2 is wasted. Its system lifetime
is 740. When turning to scheme 2, we find that tasks are
mapped to processors more evenly, and energy is used more
effectively. The corresponding lifetime is 800, which is much
longer.

Based on above analysis, we find that scheme 2 can obtain
schedulable results and longer system lifetime at each sys-
tem behavior, comparing to scheme 1. Therefore, to achieve
schedulable and energy efficient solutions, system behavior of
every SCL must be investigated.

B. Objective

In this paper, our objective is to find a task mapping which
can maximize the system lifetime as much as possible, under
limited energy budgets. Let B = {b1, b2, b3, . . . , bρ} denote
the energy budgets of each processor in P . Then, ignoring
mixed-criticality property, the lifetime of the system, i.e. the
number of iterated execution periods, can be calculated as:

lifetime = min{ bi
γi
|i = 1, 2, . . . , ρ} (4)

γi is one-period energy consumption of processor pi. Then
equation (4) can be transformed as

θ = max{γi
bi
|i = 1, 2, . . . , ρ} (5)

γi/bi can be regarded as weighted one-period energy con-
sumption that needs to be minimized. Therefore, θ must be
minimized to achieve the lifetime maximization objective.
However, workload reduction on one processor leads to larger
workload on other processors. Therefore, our energy mini-
mization objective tends to have balanced workloads for all
processors.

In MSCDRESs, energy consumption of each behavior
must be studied. And system behaviors tend to switch from
one SCL to another when environment changes. In this
paper, we use εj to denote the occurrence rate of SCLj
behavior. This occurrence rate is obtained based on related
measurements and experiences in professional fields where
the systems are applied. Then the Expectation of One-period
Energy Consumption (EOEC) is formulated as follow

minimize Θ =

λmax∑
j=1

εj · θj , s.t.

λmax∑
j=1

εj = 1 (6)

θj = max{γij
bi
|i = 1, 2, . . . , ρ, j = 1, 2, . . . , λmax} (7)

Θ is the EOEC that needs to be minimized to achieve energy
efficiency. From equation (2), (3) and (6), we find that the
value of EOEC depends on task mapping A. Thus, our
objective can be described as obtaining the best A which can
minimize Θ.

SCL1 system
behavior

SCL2 system
behavior

SCL3 system
behavior

t1 t2

t4

t3

t5

p1

p2

Bus

t6

500μs250μs 750μs 1000μs1=11.7mJ

2=57.5mJ

e3-4 e3-5

Deadline=1180

t1 t2p1

p2

Bus

500μs250μs 750μs 1000μs1=13.5mJ

2=0mJ

Deadline=1180

Scheme 1

t1

t4

t3

t5 t6

p1

p2

Bus

t7

t8

t12t9 t10

500μs250μs 750μs1=21.6mJ

2=37.5mJ

e3-4 e3-5 e7-8 e8-12

Deadline=1180

1000μs

t2

t11

t1

t2

t3

t5

t6p1

p2

Bus

t7 t8

t12

t9

t10

Deadline=1180
500μs250μs 750μs 1000μs1=21.6mJ

2=37.5mJ

t4
t11

e1-2 e4-5 e9-10 e5-6 e10-11 e11-12

500us

t1

t2

t4t3

t5

t6

250us

p1

p2

Bus

750us 1000us1=20.1mJ

2=32.5mJ

Deadline=1180

e1-2 e4-5 e5-6

t1

t2

p1

p2

Bus

500us250us 750us 1000us1=9mJ

2=12.5mJ

Deadline=1180

e1-2

Scheme 2

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2. Schedule examples under different schemes

C. Constraints

In MSCDRESs, where all tasks must satisfy the criticality
constraints, LS must be used to determine tasks’ starting
time corresponding to each system behavior. Using LS, we
can obtain schedule length and energy consumption of every
behavior, and then check whether the constraints can be
satisfied or not.

When achieving the EOEC minimizing objective, follow-
ing constraints must be satisfied. Criticality constraints: In a
LS process, only tasks with SCLs higher than SCL of current
system behavior can be executed. Dependency constraints:
Each task is allowed to be executed only after all its preceding
tasks (including message transmissions) are finished. Real-
time constraint: The real-time constraint is then transformed
as that all the tasks in the applications should be finished
before their deadline.

IV. PROPOSED TECHNIQUE

In this paper, our optimization problem is formulated
as obtaining a reasonable task mapping, which can lead to
minimum EOEC, under the criticality, dependency and real-
time constraints. There are ρn different task mapping when a
set of applications of n tasks running in the system. Therefore,
for a set of applications and a given architecture, there are ρn
different solutions that grow exponentially as n grow. It is
impossible to obtain the optimal solutions for large system
designs. Thus, a Genetic Algorithm (GA) based heuristic
algorithm ESAMA is proposed to address it. GA is a widely
used algorithm based on the emulation of natural selection and
evolution, and famous for its robustness and global searching
ability [15]. Usually, it is hard to decide if the results of
GA are good enough, and this problem is out of the paper’s
scope because of its complexity. However, at most of the time,
GA can obtain good solutions within acceptable execution
time. In ESAMA, a task mapping A, which is regarded as
a solution to our optimization problem, is formulated as a
chromosome. The algorithm starts with a population of task
mappings generated by a greedy strategy. The population
is evolved from generation to generation towards the best
solution via operations such as crossover and mutation. The

whole evolution procedure terminates when the solutions are
similar to some extent, or the pre-defined maximum number
of iterations is reached.

A. Evaluation

In this process, the fitness of each solution is calculated.
Solutions with better fitness values have higher chance to sur-
vive in the evolution procedure. In regarding that in evolution
procedure, solutions with real-time violation have potential
ability to evolve into better solutions, solutions with real-time
violation should not be simply discarded. Therefore, fitness
function must synthetically include the aspects of optimization
objective and constraints. In this function, deadline misses are
considered as a penalty factor which can impact the fitness
values, i.e.

fitness(A) = δ1 ·Θ + δ2 ·∆d (8)

∆d =

λmax∑
λ=1

∆dλ, s.t. ∆dλ =

{
τλf −D τλf > D
0 else

(9)

Two criteria are employed in this function. Θ is the EOEC
value corresponding to task mapping A. ∆d denotes the
violation degree, which is 0 when deadline constraint is
guaranteed. According to the scheduling objective, solutions
of lower fitness values have higher chance to survive. δ1 and
δ2 are the weights of the two criteria, and are fine-tuned by
extensive experiments to achieve the best performance.

B. Selection

To prevent premature convergence, a random selection ap-
proach, namely roulette-wheel selection, is applied. Assuming
the population size in each generation is µ, a solution Ai’s
probability of being selected is:

probability(Ai) =
fitness(Amax)− fitness(Ai)∑µ
j=1[fitness(Amax)− fitness(Aj)]

(10)
fitness(Amax) ≥ fitness(Aj) (11)

Amax, Aj ∈ Φ(x), 1 ≤ j ≤ µ (12)

Algorithm 1 ESAMA
1 initialize the application set Γ(T,E,M,D);
2 while population size not reach µ do (population initialization)
3 randomly generate Ainitial; A = Ainitial ;
4 while stop criteria is not satisfied do
5 A′ = adjust(A);
6 if Θ(A′) < Θ(A), τf (A′) < D then A = A′;
7 end while; A→ Φ;
8 end while;
9 while stop criteria is not satisfied do (evaluation)
10 for each individual A in Φ do fitness(A) = δ1 ·Θ + δ2 ·∆d;
11 empty ElitePool;
12 while individuals in ElitePool not reach µ · θr do
13 obtain Abest ∈ Φ(x)− ElitePool; Abest → ElitePool;
14 end while;
15 while MatingPool is not full do (selection)
16 A = RouletteWheel(Φ(x)); A→MatingPool;
17 end while; count = 0;
18 for each A in MatingPool do (crossover)
19 randomly generate p (0p1);
20 if count%2 == 0 and p < θc then count = count+ 1;
21 if count%2! = 0 and p < θc then
22 perant1 = A;perant2 = A; randomly select crossover point i,
23 offspring1 = perant1 · Uc(i) + perant2 · U ′c(i),
24 offspring1 = perant2 · Uc(i) + perant1 · U ′c(i),
25 offspring replace parents;
26 end for;
27 for each A in MatingPool do (mutation)
28 randomly generate p (0p1);
29 if p < θm then A′ = A · (i) + uT (j)u(i), A′ replace A;
30 end for;
31 for each A in ElitePool do
32 obtain Aworst ∈MatingPool, A replace Aworst;
33 A ∈MatingPool; A→ Φ;
34 end while;
35 obtain optimal solution A∗;

Φ(x) denotes the population of the x-th generation. In this
procedure, solutions with higher probabilities tend to have
more copies, while those with lower probability are likely to
have less or even no copies.

C. Crossover and Mutation

In this operation, each chromosome is selected with a
crossover rate θc to mate and produce new offspring. Here
single point crossover is applied. Assuming A1 and A2 are
two mated chromosomes that are about to undergo crossover
operation. Firstly, a crossover point i is randomly selected.
Then the columns behind the i-th column of A1 and A2

are swapped to form offspring A3 and A4. The crossover
operation can be formulated as follows:{

A3 = A1 · Uc(i) +A2 · U ′c(i)
A4 = A2 · Uc(i) +A1 · U ′c(i)

s.t. Uc(i) + U ′c(i) = U

(13)
Where U is an unit matrix, and

Uc(i) =

[
Ui×i 0

0 0

]
U ′c(i) =

[
0 0
0 U(n−i)×(n−i)

]
(14)

Then one point mutation is applied, and the mutation rate
is θm. Assuming i is the mutation point, which is actually the
sequence number of the randomly selected task. A randomly
selected j is the sequence number of the new processor that
ti is mapped to. Then the mutation operation is represented
as follows:

A′ = AUm(i) + uT (j)u(i) (15)

Um(i) is an n × n matrix having elements u11 = u22 =
. . . = u(i−1)(i−1) = u(i+1)(i+1) = . . . = unn = 1, and other
elements are all 0. u(i) and u(j) are unit vectors whose i-th
and j-th elements are 1, respectively.

D. Enhancement techniques

Before evolution procedures, initial population must be
generated. In this algorithm, a greedy searching procedure is
introduced to speed up the convergence. Firstly, a population
of task mappings is generated randomly. Then each task
mapping is adjusted to explore better solutions by randomly
reallocating a task to another processor step by step. After
a number of iterations, some solutions are kept as the initial
population.

After crossover and mutation operations, a new population
is generated. Due to the randomness of GA, some good solu-
tions may be lost in the evolution procedure and slow down
the convergence speed. Therefore, elite strategy is introduced
in each generation, which is implemented by replacing the
poorest solutions in current generation with the best solutions
from the prior generation.

E. ESAMA algorithm

The pseudocode of ESAMA is presented in Algorithm 1.
First, an application set is input into the algorithm. Then, a
group of initial population, generated through greedy search-
ing, treated as the starting point of evolution, as seen in lines
2 to 8. Lines 9 to 34 is the evolution procedure. Evaluation,
selection, crossover and mutation procedures are implemented
in lines 10-14, 15-17, 18-26, 27-33, respectively. Lines 12-14
and 31-33 are where elite strategy is implemented. After a
number of iterations, population converges and the optimal
solution A∗ is obtained. Like traditional GA, ESAMA is
sensitive to the value of parameters, such as µ, iterations,
θc, θm and θr. Therefore, these parameters must be fine-tuned
trough extensive experiments to achieve the best performance.

V. EXPERIMENT RESULTS

In this section, we present the experimental results that
were obtained from the evaluation of our proposed tech-
nique. All the simulations are implemented using C#, and
performed on a Windows machine having a dual-core Intel
Pentium CPU with 2.22 GHz frequency and 2GB RAM.
Three other algorithms (NESAMA, OESAMA, Greedy) are
also studied for comparison. NESAMA and OESAMA are
two other heuristic algorithms based on GA. NESAMA
does not have enhancement technique, and OESAMA does
not consider mixed-criticality aspects. The Greedy approach
explores better solutions step by step in a greedy fashion.
Two groups of experiments are carried out to evaluate the
efficiency of the proposed algorithm in two different aspects.
All of the algorithms require long executions because of their
complexity. The enhancement techniques in ESAMA lead to
longer execution time, but produce better solutions. We have
implemented our algorithm on architectures that have 2 to 5
processing nodes with different computation capacities and
power budget. DAGs are generated randomly as the inputs of
the experiments. The WCET of tasks are randomly assigned
within 1× 104 to 20× 104, and message transmission times
are all equal to 1ms. Each application set includes applications
of at least two SCL. And at most four SCL can exist in an
application set.

Firstly, instances of different size are evaluated. In this
set of experiments, ten instances of 10 to 50 tasks (in 2 to 5
applications) are generated randomly, and the corresponding
deadlines are also determined. The applications are mapped
to 2 to 5 processors. The simulation results of EOEC and
schedule length is depicted in Fig.3(a) and (b). From Fig.3(a),
we can find that ESAMA is the best in EOEC minimization
in most cases. Most of the time, ESAMA shows much more

190

210

230

250

270

290

310

330

350

10 15 20 25 30 35 40 45 50

Sc
h

ed
u

le
 L

e
n

gt
h

Number of tasks

ESAMA NESAMA Greedy
OESAMA Deadline

0.15

0.2

0.25

0.3

0.35

0.4

10 15 20 25 30 35 40 45 50

M
O

EC

Number of Tasks

ESAMA NESAMA Greedy OESAMA

290

340

390

440

490

320 340 360 380 400 420 440 460 480 500

Sc
h

ed
u

le
 L

e
n

gt
h

Deadline

ESAMA NESAMA Greedy
OESAMA Deadline

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

320 340 360 380 400 420 440 460 480 500

M
O

EC

Deadline

ESAMA NESAMA Greedy OESAMA

(a) (c) (b) (d)

Fig. 3. Performance corresponding to different task numbers and deadline

superiority than the other three algorithms. Greedy performs
slightly better than NESAMA in most cases. However, Greedy
algorithm consumes much longer execution time because of
the limitation of neighborhood search. So, it is reasonable to
employ some enhancement techniques in ESAMA. Lacking
of mixed-criticality consideration, it is difficult for OESAMA
to produce good EOEC. It is worth mentioning that the
EOEC in the experiments are increasing with the increased
number of tasks firstly. But the EOEC decline rapidly when
task number is 35 and 50. This is caused by increasing
number of processors. 30-task instances and 35-task instances
are mapped to 3 and 4 processors, respectively. With more
processors, energy consumption of each processor tends to
decrease. We measure the schedule length of all the system
behaviors, and obtain the maximum one as the experiment
results. From Fig.3(b), we can find that all the algorithms
meet the deadline constraints.

Then we evaluate the impacts of different deadlines. The
total number of tasks and applications are fixed as 30 and 4.
The applications are mapped to 3 processors. Each application
has its own SCL level. The results are presented in Fig.3
(c) and (d). With the increase of deadline, EOECs of all
algorithms are decreasing. This illustrates that, when the time
restrictions are loose, the performances of all algorithms be-
come better. We can see from the figures that ESAMA always
exhibit the highest performance. NESAMA tends to obtain the
worst results, while Greedy is a little better than OESAMA.
When the deadline is longer, the results of ESAMA is nearly
the same, and the corresponding schedule lengths become
stable. Therefore, if deadline is extended to some extent, the
deadline impacts can be ignored. EOECs of OESAMA and
Greedy decrease, and tend to be stable with the increase of
deadline, but still worse than ESAMA. From Fig.3(d), we find
that all the algorithms can satisfy the deadline constraint.

VI. CONCLUSION

In this paper we have addressed a system-level design
optimization for security-sensitive mixed-criticality real-time
systems. For these systems, security situation of surrounding
environment is changing overtime, and thus the concrete
security requirements are changing, too. We introduce a
security-related mixed-criticality system model to capture
these security requirements. SCL and system behavior is iden-
tified according to tasks’ inherent security requirements and
surrounding environment. Higher security-criticality, requiring
higher security protections, always incurs more time and
energy overhead. Thus, a good task-to-processor mapping has
to be obtained, then energy consumption can be reduced, and
system lifetime can be prolonged. Due to the large complexity
of finding optimal task mappings, a GA based design opti-
mization algorithm together with an enhancement technique
is presented for solving the problem efficiently. Experiments
are conducted on the proposed techniques besides three other
approaches. Experiential results demonstrate the efficiency of

the proposed framework.

REFERENCES

[1] J. Barhorst, T. Belote, P. Binns, J. Hoffman, J. Pau-nicka, P. Sarathy,
and J. Scoredos, “White paper: A research agenda for mixed criticality
systems,” In CPS Week 2009 Workshop on Mixed Criticality: Roadmap
to Evolving UAV Certification, 2009.

[2] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable
mixed-criticality systems,” in Proc. IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), Apr. 2010, pp. 13–
22.

[3] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Effective and efficient
scheduling of certifiable mixed-criticality sporadic task systems,” in
Proc. IEEE Real-Time Systems Symposium (RTSS), Apr. 2011, pp. 13–
23.

[4] D. Tǎmas-Selicean and P. Pop, “Design optimization of mixed-
criticality real-time applications on cost-constrained partitioned archi-
tectures,” in Proc. IEEE Real-Time Systems Symposium (RTSS), Nov.
2011, pp. 24–33.

[5] K. Jiang, P. Eles, and Z. Peng, “Optimization of message encryption
for distributed embedded systems with real-time constraints,” in Proc.
of Design and Diagnostics of Electronic Circuits & Systems, Apr. 2011,
pp. 243–248.

[6] W. Jiang, K. Jiang, and Y. Ma, “Resource allocation of security-critical
tasks with statistically guaranteed energy constraint,” in Proc. Embed-
ded and Real-Time Computing Systems and Applications (RTCSA),
Aug. 2012, pp. 330–339.

[7] B. Triquet, “Mixed criticality in avionics,” available online at
http://cordis.europa.eu/fp7/ict/embedded-systems-engineering /presen-
tations/triquet.pdf, 2012.

[8] N. Storey, Safety critical computer systems. Addison-Wesley Long-
man, 1996.

[9] J. Rushby., “Just-in-time certification,” in 12th IEEE Internation-
al Conference on the Engineering of Complex Computer Systems
(ICECCS), Jun. 2007, pp. 15–24.

[10] “Fips pub 140-2, security requirements for
cryptographic modules,” available online at
http://csrc.nist.gov/groups/STM/cmvp/standards.html#02.

[11] “Common criteria for information technology security evaluation,”
available online at http://www.commoncriteriaportal.org/cc/.

[12] Y. Tian and E. Ekici, “Cluster-based information processing in wire-
less sensor networks: an energy-aware approach: Research articles,”
Wireless Communications & Mobile Computing, 2007.

[13] Y. Jin, J. Jin, A. Gluhak, K. Moessner, and M. Palaniswami, “An
intelligent task allocation scheme for multi-hop wireless networks,”
in IEEE Transactions on Parallel and Distributed Systems, Apr. 2011,
pp. 444–451.

[14] P. Eles, Z. Peng, P. Pop, and A. Doboli, “Scheduling with bus access
optimization for distributed embedded systems,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 8, no. 5, pp. 472–491, 2000.

[15] D. E. Golgberg, Genetic algorithms in search, optimization and ma-
chine learning. Addison-Wesley, 1989.

