
Energy-Aware Design of Secure Multi-Mode Real-Time
Embedded Systems with FPGA Co-Processors

Ke Jiang? Adrian Lifa? Petru Eles? Zebo Peng? Wei Jiang†
?Linköping University, Sweden †University of Electronic Science and Technology of China, China
{ke.jiang, adrian.alin.lifa, petru.eles, zebo.peng}@liu.se weijiang@uestc.edu.cn

ABSTRACT
We approach the emerging area of energy efficient, secure
real-time embedded systems design. Many modern embed-
ded systems have to fulfill strict security constraints and are
often required to meet stringent deadlines in different oper-
ation modes, where the number and nature of active tasks
vary (dynamic task sets). In this context, the use of dy-
namic voltage/frequency scaling (DVFS) techniques and on-
board field-programmable gate array (FPGA) co-processors
offer new dimensions for energy savings and performance
enhancement. We propose a novel design framework that
provides the best security protection consuming the mini-
mal energy for all operation modes of a system. Extensive
experiments demonstrate the efficiency of our techniques.

1. INTRODUCTION AND RELATED WORK
Security is becoming an important dimension for embed-

ded systems design, since many safety- and reliability-critical
applications are now controlled by embedded systems. As
the systems become more and more connected, and the num-
ber of threats continues to increase, it becomes more and
more important to provide appropriate levels of protection
[19]. One key aspect of information security is confiden-
tiality. The messages generated, especially those in critical
applications, often contain sensitive information that is sent
over the network and should not be disclosed to unautho-
rized parties. Thus, in this paper, we focus on providing
confidentiality protection for the system communication.

For modern embedded systems, energy consumption is
also a major issue, and energy-efficient design is indispens-
able, especially for battery powered systems. Dynamic volt-
age/frequency scaling (DVFS) is one popular technique for
achieving better energy-efficiency: lowering the supply volt-
age in conjunction with the clock frequency of a processor is
used for minimizing the overall energy consumption [1]. Un-
fortunately, this could lead to violation of time constraints.
For real-time systems, both energy consumption and perfor-
mance are important design considerations. Furthermore,
many embedded systems are functioning under a dynamic
load, with the number and nature of active tasks varying
over time (multi-mode systems). As a result, in order to
meet both the security and timing constrains, and at the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
RTNS 2013, October 16 - 18 2013, Sophia Antipolis, France
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
Copyright 2013 ACM 978-1-4503-2058-0/13/10 ...$15.00.
http://dx.doi.org/10.1145/2516821.2516830.

same time minimize the energy consumption, it is impor-
tant to perform careful system optimization, taking all these
aspects into account at early design phases.

In the past decade, FPGA-based reconfigurable platforms
have been widely used in embedded systems for pursuing
both higher performance and flexibility [18]. Modern FP-
GAs provide support for partial dynamic reconfiguration
[26], i.e., parts of the device may be reconfigured at run
time, while the other parts remain fully functional. Con-
sidering these advantages, FPGAs have been applied in a
variety of applications: e.g., performance enhancement [3,
11] and, more recently, low-power and energy-efficient ap-
plications [22, 21, 15]. In this paper, we will utilize the
available FPGA in the design of energy-efficient secure em-
bedded systems.

Due to the difficulties of designing secure embedded sys-
tems under tight resource and timing constraints, only few
pioneering papers discussed the security related issues of
real-time embedded systems in previous years. In [12], deliv-
ering sound security protection under real-time constraints
has been studied and validated. But the aspect of multi-
mode systems and its implications were not addressed by
these contributions. The paper [16] described an automatic
hardware-software design flow for secure MPSoCs, but ig-
nored the energy and real-time requirements. The authors in
[8] presented a design framework for secure multi-mode em-
bedded systems without considering the actual energy con-
straints and without using FPGA co-processors. The paper
[7] proposed a codesign technique for distributed embedded
systems under tight security and real-time constraints using
FPGA acceleration for cryptographic operations.

Topics of energy efficiency and dynamic task sets in FPGA-
accelerated systems started to attract more attention. The
authors in [4] presented an approximation algorithm for
energy-efficient task scheduling in heterogeneous systems
having two processing units, i.e. a DVFS enabled and a
non-DVFS unit. Researches in [14] proposed a warp pro-
cessor architecture having a main processor and an FPGA
for substantially reducing power consumption. However, the
multi-modes and security related design aspects were not ad-
dressed in either of these two works. A task relocation strat-
egy for FPGA-based systems running dynamic task sets was
discussed in [17]. But energy efficiency and security issues
were missing. To the best of our knowledge, this is the first
work that addresses the design optimization of secure and
energy-efficient real-time embedded systems with FPGA co-
processors, running dynamic task sets.

2. PRELIMINARIES

2.1 Confidentiality
Confidentiality is the key concept of information security

Table 1: The strength and encryption/decryption
time of selected ciphers

RC6 rounds 4 6 8 10 12 14 16
Strength 29 45 61 78 94 110 118
Time/block [µs] 17 26 35 44 52 61 70

that refers to preventing the disclosure of information to
unauthorized parties. In the context of communication, it is
most often achieved by encrypting/decrypting the sensitive
messages using either public-key cryptography or symmetric-
key cryptography. In this paper we have chosen the iterated
block ciphers (IBCs), a type of symmetric-key cryptogra-
phy and arguably the most widely used cryptosystems for
message encryption/decryption [9].

IBCs transform fixed-size blocks of plaintext into cipher-
text blocks of the same size, by repeatedly applying an in-
vertible transformation, with each iteration being referred
to as a round. The decryption procedure of IBCs is similar
but in reverse order. In this paper, we need to explore the
trade-off between protection strength and message encryp-
tion/decryption time. We quantify the protection strength
of an IBC as the logarithm of the amount of plaintext-
ciphertext pairs required to break the IBC using the best
known cryptanalysis attack.

For the current work, we studied several IBC algorithms,
i.e., RC6, Rijndael, and Twofish, and we selected RC6 for
its flexibility and efficiency of providing good confidential-
ity protection, as presented in [5]. Since the number of
rounds can be customized, RC6 is able to provide differ-
ent levels of confidentiality protection using corresponding
amount of execution time. Table 1 illustrates the protec-
tion strength/execution time trade-off for seven selected vari-
ants of RC6, running on a processor at the highest available
frequency (see Section 2.2.1). The first row presents the
number of employed encryption/decryption rounds; the sec-
ond row lists the protection strength (as defined above);
and the last row gives the corresponding execution time
to encrypt/decrypt a block, for each RC6 variant consid-
ered. Note that the design framework proposed in this pa-
per is general enough to be applied to other cryptographic
algorithms and quantification methods, if similar protec-
tion strength/execution time relations can be derived.

2.2 Power Model
In this paper, one of our optimization goals is to reduce

the energy consumption of a uniprocessor embedded sys-
tem having an attached FPGA co-processor. We will next
present the power models used in the rest of this paper.

2.2.1 Processor
The power consumption of a processor µP (designed with

CMOS technology) depends on the processor’s state and

consists of several components: dynamic (PDynµP), static

(PStatµP), short circuit and inherent (POnµP) power consump-
tion. The short circuit power consumption occurs only dur-
ing signal transitions and is negligible [24]. POnµP represents
the inherent power cost incurred by keeping the processor
on, and is a constant value.

The dynamic power consumed by the processor can be
calculated as

PDynµP = CeffV
2
ddf, (1)

where Ceff , Vdd and f denote the effective switching capac-
itance, supply voltage and clock frequency of the processor,

respectively. The dynamic power consumption occurs only
when the processor is active (i.e., executing tasks).

The static power does not depend on switching activity,
and is consumed due to leakage current, which is mainly a
combination of subthreshold conduction (Isub) and reverse
bias junction current (Iju) [13]. The static power (consumed
both when the processor is active and idle), is given by

PStatµP = Lg(VddIsub + |Vbs|Iju), (2)

where Lg is the number of logic gates in the circuit and
Vbs is the voltage applied between the body and the source
of a transistor. As shown in [13], the subthreshold leakage
current can be approximated with the following expression

Isub ≈ K1e
K2VddeK3Vbs , (3)

where K1,K2 and K3 are constant fitting technology depen-
dent parameters.

The V 2
dd in Eq. 1 and Vdd in Eq. 2 indicate that reducing

the supply voltage (while proportionately reducing the clock
frequency f) is the most effective way to decrease the en-
ergy consumption (for processors that are not switched off
or to low power states during idling periods). This method
is known as dynamic voltage/frequency scaling (DVFS). The
dependency of maximum operating frequency on supply volt-
age [13] is given by

f =
((K4 + 1)Vdd +K5Vbs − vth1)α

K6Ld
, (4)

where K4,K5,K6 and vth1 are technology dependent coeffi-
cients, Ld is the logic depth and α is a measure of velocity
saturation. In this paper, we consider that the discrete pairs
(Vdd, f) at which the processor can run are given.

2.2.2 FPGA
The power consumption of an FPGA device is composed

of dynamic power (PDynFPGA), due to switching activity when
the FPGA is executing the hardware modules mapped on it,
and static power (PStatFPGA), independent of switching activ-
ity. The static power consists of device static power (PDevFPGA),
which represents the leakage power when the device is pow-
ered but not configured, and design static power (PDesFPGA),
representing the additional power when the device is config-
ured but there is no switching activity [25].

Power estimation for designs on FPGAs, e.g., the Xilinx
Virtex families, can be done in several ways. The XPower
tool [25] uses a corresponding capacitance model for every
element in a design (e.g., LUT, RAM, I/O, wire, etc.), and
then derives the dynamic power consumption using infor-
mation about the circuit’s switching activity, which can be
generated by timing simulation. Another method is to use
spread-sheet-table based methods [25]. In this case, the de-
signer provides information about the number and type of
resources used by a certain design, e.g., CLBs, RAM, I/O
etc., and obtains a raw estimation of the power consumption.

3. SYSTEM MODEL

3.1 Architecture Model
An example architecture is depicted in Fig. 1. We con-

sider a uniprocessor platform that has an FPGA co-processor
with shared memory. The system uses a communication
module to communicate (by wire or wireless) with other
peers or service centers. The processor supports DVFS,
i.e., the supply voltage (and implicitly the frequency) of
the processor can be selected at run time from a discrete
set, depending on the concrete actual requirements. If the

Bitstream

Storage

R
ec

o
n

fi
g

u
ra

ti
o
n

C
o

n
tr

o
ll

er

Computation Unit

Bus

FPGA co-processor

(PDR region)

Communication Module

CPU
Slave

Master

Computation Unit

Figure 1: The architecture model

real-time constraints are tight, the voltage (and frequency)
could be increased in order to reduce the execution time of
the tasks. If, on the contrary, the real-time requirements are
relaxed, the voltage (and frequency) could be reduced in or-
der to lower the energy consumption (see Section 2.2.1). In
most cases, the tasks implemented on FPGA are faster, and
consume less energy compared to their software implementa-
tions running on a general purpose processor [23]. Moreover,
new techniques, e.g., [20], can be used to further reduce the
power consumption on FPGAs. So the FPGA co-processor
is used for both accelerating the execution of real-time tasks
and minimizing the total energy consumption.

Modern FPGA families, like the Xilinx Virtex or Altera
Stratix, provide support for partial dynamic reconfigura-
tion: i.e., parts of the device may be reconfigured at run
time, while the other parts remain fully functional. This of-
fers great flexibility, allowing customization of the hardware
platform according to the system requirements. One sce-
nario often employed for current reconfigurable platforms
is that the FPGA is partitioned into a static and a par-
tially dynamically reconfigurable (PDR) region. The static
region hosts a microprocessor, a reconfiguration controller
(that takes care of reconfiguring the PDR region), and po-
tentially other peripheral modules that need not change at
run time. The PDR region is organized as reconfigurable
slots (composed of heterogeneous configurable tiles), where
hardware modules can be reconfigured at run time [10]. We
refer to the processor and the PDR region (where the co-
processor resides) as the computation unit (see Fig. 1).

3.2 Application Model
The set of all tasks that might occur in the system, T =
{τ1, τ2, ..., τn}, is given, and the set of active tasks is dy-
namically changing at run time, defining the current mode
M ⊆ T . The complete set of modes for a given system
is the power set of T , denoted with M, having cardinality
|M| = 2|T |. However, certain modes can be excluded due to
functionality constraints. In the rest of the paper, we are in-
terested only in the modes that can occur at run time, and
we shall refer to them as functional modes Mfunc ⊆ M.
Mode M is called a supermode of M ′ if M,M ′ ∈ M and
M ′ ⊂ M . Similarly, M ′ is called a submode of M . The
sets of all supermodes and submodes of M are denoted with
M(M) and M(M), respectively. The mode containing all
the tasks in T is referred to as the root mode. Functional
modes that do not have any functional supermodes are called
top functional modes, denoted by Mfunc

↑ .
We assume that the tasks in T are preemptable and peri-

odic, and their executions are independent (i.e., they do not
have any precedence constraints or data dependencies). A
task τi in mode M has a set of design attributes (Wi, Pi, Li,
Fi). For any task τi, we know its worst-case execution time
(WCET) Wi at the highest available processor frequency
fMAX. Thus, the WCET of τi at the current frequency f

can be obtained from

WµP
i (f) =

Wi · fMAX

f
. (5)

Pi is the release period of τi and also its relative deadline.
Li is the set of messages via which task τi interacts with the
outside world. Each message mij ∈ Li is associated with
a length lij (in number of RC6 blocks), a weight wij rep-
resenting its relative importance (criticality) and a minimal

level of confidentiality requirement, QoCMIN
ij (see Section

3.3). The quadruple Fi = (Fai ,Fsi ,Fdpi ,Fapi) represents the
FPGA related properties, denoting the area consumption
(expressed in number of reconfigurable slots), relative exe-
cution speedup (over Wi), design static power, and active
(dynamic) power of τi, respectively, if it is implemented on
the FPGA co-processor.

A task can be mapped to the processor or the FPGA co-
processor. The task mapping of a task is given by

Map(τi) : τi → {µP,FPGA}. (6)

If τi is mapped on the processor, then the processor utiliza-
tion due to the execution of τi, together with the potential
encryption/decryption of communication messages, is

Uτi(f) =
WµP
i (f)

Pi
+

∑
mij∈Li

Kij(f)

Pi
, (7)

whereKij(f) is the encryption/decryption time (at the given
processor frequency f) for message mij using the chosen
RC6 variant Cij

Kij(f) =
lij · WµP

Cij
· fMAX

f
. (8)

WµP
Cij

is the corresponding WCET (measured at the high-

est processor frequency fMAX) of the selected IBC variant
Cij (retrieved from Table 1) for encrypting/decrypting one
block of message mij . Note that lij represents the length of
message mij , in number of RC6 blocks.

If τi is mapped on FPGA, then the active load ACT (τi) of
the FPGA module implementing τi can be calculated from

ACT (τi) =
Uτi(fMAX)

Fsi
. (9)

ACT (τi) indicates the fraction of time when the FPGA mod-
ule used by τi is in the active state. Note that Uτi(fMAX)
represents the processor utilization measured at the highest
available frequency fMAX, and Fsi represents the relative
execution speedup obtained by implementing task τi on the
FPGA.

3.3 Quality of Confidentiality
We define the quality of confidentiality (QoC) protection

for messagemij , encrypted/decrypted with RC6 variant Cij ,
as

QoCmij =
eStrength(Cij)/MAX − 1

e− 1
(10)

where MAX is the highest protection strength value avail-
able for a system, e.g., 118 in Table 1. Then the QoC deliv-
ered by the whole system in mode M is defined as

QoCM =

∑
τi∈M

∑
mij∈Li wij ·QoCmij∑

τi∈M
∑
mij∈Li wij

, (11)

where Li is the set of all messages over which task τi inter-
acts with the environment, and wij is the importance (crit-
icality) weight of mij as described in the previous section.

In addition, we assume a security monitor that determines
at run time the system-wide security requirement, QoCR,
based on the current status of the system and the threat
level from the environment.

3.4 Scheduling
Let us denote the tasks mapped on the processor in mode

M with T µPM = {τi ∈ M |Map(τi) = µP}, and similarly

the tasked mapped on the FPGA with T FPGA
M = {τi ∈

M |Map(τi) = FPGA}. The tasks mapped on the processor
are scheduled using the earliest-deadline-first (EDF) policy:
a set of tasks is schedulable by EDF if and only if the total
utilization of the tasks is no more than 100%. The utilization
Uτi(f) of a task τi at a certain processor frequency f was
defined in Eq. 7. Thereby, at frequency f , the schedulability
of a certain mode M can be examined with

UM (f) =
∑

τi∈T
µP
M

Uτi(f) ≤ 1, (12)

The tasks mapped on the FPGA co-processor can run in
parallel. Thus, the schedulability condition for the FPGA
co-processor reduces to the requirement that the active load
of each FPGA module should be smaller or equal to 1,
namely

ACT (τi) ≤ 1,∀τi ∈ T FPGA
M , (13)

and the hardware modules mapped on the FPGA should fit
in the number of available PDR slots, namely∑

τi∈T FPGA
M

Fai ≤ Fatotal, (14)

where Fai is the area consumption of τi and Fatotal is the
total amount of available FPGA area, expressed in number
of reconfigurable slots (see Section 3).

3.5 Average Power Consumption
The power consumed by the processor in a certain mode

M is calculated as follows,

PµPM = UM (f) · PDynµP + PStatµP + POnµP

= UM (f) · CMeffV 2
ddf + POnµP +

+ Lg
(
VddK1e

K2VddeK3Vbs + |Vbs|Iju
)

(15)

Note that the dynamic power is consumed by the processor
in mode M only when it is actively executing tasks, i.e.,
in the fraction of time given by its utilization UM (f) at
frequency f (Eq. 12). Thus, this directly reflects the energy
consumed by the processor in mode M .

In a mode M , the FPGA area is occupied by tasks (imple-

mented as hardware modules) T FPGA
M , as defined in Section

3.4. If the FPGA co-processor is switched on, then it con-
sumes the device static power PDevFPGA (see Section 2.2.2) all
the time, regardless of the hardware modules present on the
FPGA and their switching activity. The hardware modules
(implementing tasks τi ∈ T FPGA

M) configured on the FPGA
in mode M generate additional design static power con-
sumption PDesFPGA(τi). The extra power consumption from
the user logic utilization and switching activity is captured
by PDynFPGA(τi), and it is consumed only in the fraction of
time when τi is operating, i.e., ACT (τi) (Eq. 9). Thus, the
long term average power consumption (also reflecting the

τ1,τ2,τ3,τ4

τ1,τ2,τ3

τ ,τ

τ2,τ3,τ4τ1,τ3,τ4τ1,τ2,τ4

τ ,ττ ,τ τ ,τ τ ,τ τ ,ττ1,τ2 τ1,τ4τ1,τ3 τ2,τ3 τ2,τ4 τ3,τ4

τ1 τ2 τ3 τ4

Ø

Figure 2: The Hasse diagram of all potential modes

Table 2: Task attributes for the example

τi Wi Pi Li Fai Fsi Fdpi Fapi
τ1 800 3200 {m11} 18 5 0.4 0.9
τ2 1100 3000 {m21} 15 5 0.3 0.7
τ3 400 2000 ∅ 6 4 0.1 0.3
τ4 600 1900 {m41} 11 3 0.3 0.4

energy consumption) of the FPGA in mode M is given by

PFPGA
M = PStatFPGA + PDynFPGA

= PDevFPGA +
∑

τi∈T FPGA
M

PDesFPGA(τi) +

+
∑

τi∈T FPGA
M

ACT (τi) · PDynFPGA(τi)

= PDevFPGA +
∑

τi∈T FPGA
M

(
Fdpi +ACT (τi) · Fapi

)
(16)

The total average power consumption (which directly re-
flects the energy consumption) of the system is

PM = PµPM + PFPGA
M . (17)

One of our design optimization objectives is to minimize
PM . For better illustration purposes in later sections, we
convert this objective into maximizing the system power
saving (P saveM), with respect to the maximal average power

budget of the system, PMAX. The objective becomes

maxP saveM = max(PMAX − PM). (18)

4. MOTIVATIONAL EXAMPLE
Let us now consider the architecture model depicted in

Fig. 1, composed of a computation unit responsible for ex-
ecuting the tasks, and a communication module that han-
dles all incoming and outgoing messages (as described in
Section 3.1). The maximal power budget for the system is

PMAX = 3W . Four application tasks, T = {τ1, τ2, τ3, τ4},
may occur in the system at run time. The corresponding
partial order capturing the relations of all possible modes is
presented as the Hasse diagram in Fig. 2. The functionally
excluded modes, e.g., M123 = {τ1, τ2, τ3}, M14 = {τ1, τ4},
M34 = {τ3, τ4}, M1 = {τ1} and M4 = {τ4}, are marked
with crosses. All the other modes may occur during system
execution. The task attributes are listed in Table 2. The
messages m11, m21, m41 have lengths (expressed in number
of RC6 blocks) l11 = 16, l21 = 8, l41 = 8 and criticality
weights w11 = 0.6, w21 = 0.7, w41 = 0.4, respectively.

0,50

0,60

0,70

0,80

0,90

1,00

Q
u

al
it

y
 o

f
C

o
n

fi
d

en
ti

al
it

y

(Q

o
C

)
Pareto front for M234

Pareto front SW-only

QoCR = 0.85

Task τ4 mapped on FPGA to

0,00

0,10

0,20

0,30

0,40

0,85 1,05 1,25 1,45 1,65 1,85

Q
u

al
it

y
 o

f
C

o
n

fi
d

en
ti

al
it

y

(Q

o
C

)

Power savings (W)

Task τ2 mapped on FPGA to

improve power efficiency

Task τ4 mapped on FPGA to

meet timing requirements

Figure 3: Pareto front for mode M234

0,50

0,60

0,70

0,80

0,90

1,00

Q
u

al
it

y
 o

f
C

o
n

fi
d

en
ti

al
it

y
 (

Q
o

C
)

Optimal and derived Pareto fronts for M24

derived from derived from optimal for M1234 M234 M24

Non-optimal solution from the

derived front is repaired on-line

QoC
2

R = 0.85

QoC R = 0.35

0,00

0,10

0,20

0,30

0,40

0,80 1,00 1,20 1,40 1,60 1,80 2,00

Q
u

al
it

y
 o

f
C

o
n
fi

d
en

ti
al

it
y
 (

Q
o

C
)

Power savings (W)

Selected solution on derived front is

optimal, no on-line repairing needed

QoC
1
R = 0.35

Figure 4: The derived Pareto fronts for mode M24

Let us assume that the system is currently in modeM234 =
{τ2, τ3, τ4}. Assuming that no security protection is needed,
and considering a software-only solution (i.e., all tasks
mapped on the processor), the system utilization at the high-
est available frequency (fMAX = 762MHz, Vdd = 1.8V) is
UM234(fMAX) =

∑
τ∈M234 Uτ (fMAX) = 0.88. Thus, we

can scale down the frequency to f = 650MHz (Vdd =
1.6V), yielding a processor utilization of UM234(f) = 0.99
and power savings P saveM234 = 0.9W (with respect to the max-

imal power budget PMAX = 3W). In Fig. 3, this point is
represented with a square marker while the Pareto front for
mode M234 is represented with crosses. All the solutions on
the Pareto front have at least one task mapped to hardware.
It is interesting to note that, for the case with no security re-
quirements, although the system is schedulable purely on the
processor, the use of FPGA co-processor gives more energy-
efficient solutions. In this particular case, task τ2 is mapped
on the FPGA, while tasks τ3 and τ4 run on the processor
at the lowest frequency available, i.e., f = 427MHz(Vdd =
1.2V), yielding a power saving P saveM234 = 1.82W (more than
twice the saving obtained with the software only solution).

Let us now consider the case when maximum security
protection is needed. In this case, a software-only solu-
tion would yield a processor utilization at the highest pos-
sible frequency of UM234(fMAX) = 1.36. Thus, it is im-
possible to schedule the system on the processor only, and
the FPGA acceleration is needed in order to fulfill the tim-
ing requirements. By mapping task τ4 on the FPGA, and
running tasks τ2 and τ3 on the processor at a frequency
f = 595MHz(Vdd = 1.5V), the system will satisfy all dead-
lines, and the power consumption will be minimal. The
two scenarios outlined above show that the FPGA accel-
eration is essential both for accelerating the applications
with high security requirements (increased message encryp-
tion/decryption load) under tight deadlines, and for obtain-
ing more energy-efficient solutions.

As also shown in Fig. 3, the two cases discussed above
represent two extreme scenarios: confidentiality is delivered
either at the lowest or at the highest possible level. Thus,
when the system is minimally loaded, bigger power savings
can be obtained; at the other extreme, for a maximally
loaded system, there is little room to optimize the energy
consumption. In reality, there exist many different scenar-
ios in between, and requirements for the system vary at run
time, depending on the current threat level from the envi-
ronment. Thus, we are facing a multi-objective optimization
problem, that tries to provide maximal security protection
with minimal energy consumption and, at the same time,
satisfy the schedulability constraints. The solutions to this
problem are captured by a Pareto front.

By inspecting the Pareto front for mode M234 (Fig. 3),
the trade-off between security protection and power con-
sumption can be observed: solutions with low security re-
quirements consume less power (thus the savings are bigger),
and, as the security requirements increase, the power con-
sumption also increases (thus the savings are smaller). It
is interesting to note that for low security requirements, up
to a point (QoC ≈ 0.6 in Fig. 3) we can obtain signifi-
cant increases in quality of confidentiality with small power
losses. This is due to the fact that we can increase the en-
cryption/decryption strength for the tasks mapped on the
FPGA, and this is very efficient. For higher security re-
quirements, we need to increase the encryption/decryption
strength for the tasks mapped on the processor as well, and
this is done with higher power expenses.

At run time, depending on the threat level, the security
monitor will set a security requirement for the system, e.g.,
QoCR = 0.85. Assuming that the Pareto front for the cur-
rent mode is stored in memory, the solution satisfying the
security requirement that generates the biggest power sav-
ings can directly be chosen. For our example, we would
choose the solution marked with a circle in Fig. 3, with
QoC = 0.91 ≥ QoCR and power savings P saveM234 = 1W .

Since we assume dynamic task sets, the application might
change mode at run time. Let us consider the situation when
the system switches to mode M24 = {τ2, τ4}. If the Pareto
front for the new mode is saved in memory, the procedure
described in the above paragraph would be applied. Unfor-
tunately, not all Pareto fronts for all the possible modes are
available. There are two reasons for this: 1) the run time
memory constraints only allow the storage of a limited num-
ber of Pareto fronts; 2) the number of modes is exponential
in the number of tasks, so it is impossible to explore and gen-
erate at design time the Pareto fronts for all the modes, for
large designs. Because of these limitations, we will discuss
next how to extrapolate a good solution for a mode, based
on the Pareto fronts of its implemented supermodes. Let
us assume that modes M234 and M1234 are implemented,
i.e., they have their Pareto fronts stored in memory. Thus,
for our example, the implemented supermodes of M24 are
M(M24)∩Mimpl = {M234,M1234}. The current mode M24

and its implemented supermodes are illustrated with shad-
ing in Fig. 2.

We obtain a derived Pareto front by freeing the resources
occupied by the tasks that are not active in the current
mode. For example, for mode M1234, we disregard tasks
M1234\M24 = {τ1, τ3}. Fig. 4 presents the Pareto fronts for
the considered mode (not saved in memory), as well as the
derived fronts from its two implemented supermodes. Once
we derive on-line the fronts from both supermodes of M24,

we pick the front derived from M234 because it provides
higher quality solutions. As can be seen in Fig. 4, the
solutions derived from M234 (marked with red rhombuses)
dominate the ones derived from M1234 (marked with purple
triangles).

Once we selected one derived front, we need to select a
solution for a particular security requirement. Considering
a requirement QoCR1 = 0.35, we would choose the solution
with QoC = 0.45 and power savings P saveM24 = 2.05W (the
overlapping rhombus and cross, circled with green), which
is identical to the optimal solution from the Pareto front of
mode M24 (task τ2 mapped on FPGA, processor frequency
f = 427MHz and supply voltage level Vdd = 1.2V). For a
security requirement QoCR2 = 0.85, as can be seen from the
figure, the solution on the derived front (the rhombus circled
with red) is not optimal. This is due to the fact that the
extra resources freed (occupied by task τ3 in mode M234),
are not optimally used. Let us elaborate more on this: since
τ3 is mapped on the processor in mode M234, the solution
on the derived front has processor utilization lower than 1
(in this case U = 0.71), at a frequency f = 595MHz(Vdd =
1.5V) which is unnecessarily high, and generates a power
saving of only P saveM24 = 1.38W . Thus, we apply a quick on-
line procedure to improve this solution obtained from the
derived front. We scale down the frequency of the processor
to the minimum value available f = 427MHz(Vdd = 1.2V),
bringing the utilization as close as possible to 1 (U = 0.96),
in order to reduce the power consumption. In the example
discussed above, we manage to recover the optimal solution
(the cross circled with red), yielding P saveM24 = 1.77W (task τ4
mapped on FPGA, processor frequency f = 427MHz and
supply voltage level Vdd = 1.2V).

The methods to obtain the Pareto fronts at design time,
as well as the methods to select, at run time, an efficient
solution that satisfies the security requirements, will be pre-
sented in Section 6.

5. PROBLEM FORMULATION
Our global optimization goal is that, whenever a new

mode is entered at run time, or the security requirements
for a particular mode change, the system adapts to a new
energy-efficient configuration that is schedulable and satis-
fies the current security constraints. The actual configura-
tion is characterized by the tasks mapped on the FPGA and
processor, the voltage/frequency level on the processor, and
the security protection level for each message. The prob-
lem is decomposed into two sub-problems, namely, design
time and run time optimization. At design time, we want to
find the optimal solutions to the multi-objective optimiza-
tion problem for each mode, such that we have solutions
satisfying different requirements. Thus, we need to prepare
solutions for all functional modesMfunc that may occur at
run time. However, since there existO(2|T |) potential modes
inMfunc, we cannot afford to explore all M ∈Mfunc when
|T | becomes large. Therefore, we need to find an efficient
method to explore the Hasse diagram, covering only a sub-
set of Mfunc (depending on the available design time and
memory limitation of the hardware platform for storing the
generated solutions), and still yielding high quality results.
At run time, a new mode M ∈Mfunc can occur randomly,
and the system is required to find a energy-efficient config-
uration that satisfies the QoC requirements quickly.

5.1 Design Time Optimization
At design time, there are two sub-problems to consider.

The first is to solve the multi-objective optimization problem
for one mode, i.e., maximizing the confidentiality protection

of the system (Eq.11) and the long term average power sav-
ing (Eq. 18), while meeting the schedulability constraints.
The second sub-problem is to explore Mfunc efficiently de-
pending on the available design time and system memory,
and to apply the approach for the first sub-problem on each
explored mode.

5.1.1 Optimization for one mode
The optimization problem is over two objectives: QoC

(Eq. 11) and long term average power saving (Eq. 18). The
optimal solutions to this problem form a Pareto curve on
which no solution is dominated by any other1. The Pareto
solutions are considered to be equally good, but with dif-
ferent emphases. An implementation IM for mode M is a
subset of the Pareto solutions, that are saved in the system
memory.

A solution s ∈ IM contains three design decisions:

• cipher selections Cij for all messages;

• the assigned supply voltage Vdd and corresponding fre-
quency f of the processor for mode M ; and

• a task partitioning of all tasks in M between the pro-
cessor and the FPGA co-processor.

A solution is feasible if the assigned Vdd is available in the
system, no task misses its deadline, i.e., Eq. 12 and 13 must
be satisfied, and the FPGA area constraint is not violated,
i.e., Eq. 14 must be satisfied.

The inputs for this problem are the active tasks in mode
M and their attributes τi(Wi,Pi,Li,Fi), the message at-

tributes mij(lij , wij , QoC
MIN
ij) for all mij ∈ Li, and the

FPGA related properties (Fai , Fsi , Fdpi , Fapi) for all Fi (see
Section 3.2). A designer provided protection strength/ exe-
cution time trade-off table for selected cryptographic algo-
rithms (similar to Table 1) is also required. The desired
output is the implementation IM , consisting of a set of so-
lutions from the Pareto front for M , with respect to the
two optimization objectives, i.e., maximization of QoC and
average power saving.

5.1.2 Optimization for the whole system
There can be up toO(2|T |) different modes that may occur

at run time. Our concrete optimization objective is to solve
the aforementioned problem, i.e., find the Pareto fronts, for
all M ∈ Mfunc. Thereby, whenever the system switches
into a new mode, or the security requirement changes for
a particular mode, the system can adapt to the best solu-
tion selected from the saved Pareto fronts depending on the
run time requirements. The ideal scenario is that we can
prepare at design time the Pareto fronts for all functional
modes Mfunc. Unfortunately, due to both time and mem-
ory constraints, this might not be possible for large systems.
In such cases, our run time policy will use the best Pareto
front derived from the supermodes of the current mode in
order to choose a solution (see Sec. 5.2).

Before going further, let us introduce a relation between
two implementations IM and I′M of mode M : we say that
IM outperforms I′M if and only if H(IM) > H(I′M), where
H(I) represents the hypervolume metric for I, computed as
shown in [27]. For a mode M /∈ Mimpl, there is no imple-
mentation IM saved in memory. Then we refer to the de-
rived implementation obtained from M ′ ∈ (M(M)∩Mimpl)

1A solution is dominated if there exists at least one other
(dominating) solution that performs better in both opti-
mization objectives.

that gives the highest hypervolume after removing the re-
sources occupied by the tasks τi ∈ M ′\M as the derived

implementation IM
′

M for mode M . IM
′

M has the following
properties,

H(IM
′

M) ≥ H(IM
′′

M), ∀M ′′ ∈ (M(M) ∩Mimpl). (19)

Now let us define the characteristic hypervolume of a
mode M , denoted with HM :

HM =

{
H(IM) if M ∈Mimpl

H(IM
′

M) otherwise
(20)

The inputs for this second problem are the set of func-
tional modes Mfunc and the top functional modes Mfunc

↑ .
The top functional modes must be implemented, since they
have no supermodes which could be used for deriving an
implementation. The output is represented by implemen-
tations of selected modes, denoted with Mimpl ⊆ Mfunc.
The objective for this second step is to generateMimpl, un-
der the given run time memory and available optimization
time constraints, such that the total hypervolume H of all
functional nodes is maximized, i.e.,

maxH =
∑

M∈Mfunc

HM (21)

5.2 Run Time Optimization
At run time, we need to find an appropriate solution for

the current mode M , which satisfies the confidentiality re-
quirement QoCR imposed by the security monitor, and max-
imizes the long term average power saving (thus implicitly
minimizing the energy). More precisely, at the stage of a
mode change, or when the security requirement changes, we
want to quickly adapt the system with a solution s, based
on the available implementations {IM |M ∈ Mimpl} stored
in memory. The selected solution s is desired to deliver
a confidentiality protection QoCs no less than the security
constraints QoCR received from the security monitor, while
maximizing the long term average power saving.

If M ∈ Mimpl, then s can be directly selected from IM
that is available in memory. Otherwise, we need to find a
good solution s, derived from that implemented supermode
of M giving the highest hypervolume on the derived solution
front. However, due to the sub-optimality of the derived so-
lutions, the delivered QoCs and power saving P saves may,
potentially, be improved. So further optimization needs to
be performed in order to improve the efficiency of the solu-
tion.

6. PROPOSED TECHNIQUES

6.1 Design Time Optimization
Due to the huge computational complexity of the first

sub-problem (Section 5.1.1) for even one mode, it is not
affordable to find the whole optimal Pareto front. Thus,
we choose the genetic algorithm based multi-objective opti-
mization framework NSGA-II [2] for generating a close-to-
optimal Pareto curve for each explored mode. The obtained
solutions have to satisfy the schedulability constraints (Eq.
12 and Eq. 13) and the FPGA area constraint (Eq. 14). The
optimization parameters of NSGA-II, e.g., population size,
number of generations, and mutation rates, are fine-tuned
for different problem sizes.

The number of possible functional modes grows exponen-
tially as the number of tasks in the root mode |T | increases.
Therefore, it is indispensable to explore the Hasse diagram

Algorithm 1 Hasse diagram exploration algorithm

1: Initialize Mwait := empty, and Mimpl,Mskip ← ∅
2: for all Mt ∈Mfunc

↑ do

3: IMt = NSGA(Mt), and Mimpl ←Mimpl ∪ {Mt}
4: Insert all M ∈M−(Mt) into Mwait

5: while Mwait 6= empty do
6: Pop out M ′ = head(Mwait)
7: if M ′ ∈Mfunc\(Mimpl ∪Mskip) then
8: for each IM′′ of M ′′ ∈ (M(M ′) ∩Mimpl) do

9: Calculate H(IM
′′

M′) of derived front IM
′′

M′

10: HDMAX = MAX(H(IM
′′

M′),HDMAX)
11: IM′ = NSGA(M ′)
12: if H(IM′) ≥ HDMAX · (1 + λ) then
13: Mimpl ←Mimpl ∪ {M ′}
14: Insert all M ′′ ∈M−(M ′)\(Mimpl ∪Mskip) into

Mwait

15: else
16: Mskip ←Mskip ∪ {M ′} ∪M(M ′)
17: Remove all M ′′ ∈M(M ′) from Mwait

in an efficient and tunable way. We introduce an improve-
ment factor λ for limiting the depth of exploration. An
obtained Pareto front IM is saved in memory if it gives
more than λ gain over the best derived curve from its imple-
mented supermodes, i.e., H(IM) ≥ HDMAX · (1 + λ), where

HDMAX = max(H(IM
′

M)), ∀M ′ ∈ (M(M) ∩Mimpl). Other-
wise, IM is discarded, and all its submodes M(M) will be
skipped in the succeeding exploration. The detailed proce-
dure is presented as pseudo-code in Algorithm 1.

Before going further, let us introduce the notation of an
immediate submode M ′ ∈ M−(M) of mode M that is a
submode of M having strictly one less task, i.e.,

M ′ ∈M−(M), iff.M ′ ∈M(M), and|M ′| = |M | − 1 (22)

First, we initialize the variables used in the algorithm in
Line 1. Then we start the optimization by implementing all
top functional modes Mt ∈ Mfunc

↑ using NSGA-II, and in-

sert their immediate submodes M−(Mt) into the list to be
processed Mwait (Line 2-4). We then process the waiting
list Mwait from the first element M ′ = head(Mwait) (Line
5-6). If M ′ is a functional mode, and is not implemented
or skipped, then the algorithm tries to find the best de-

rived curve IM
′′

M′ from its implemented supermodes in Line

7-10. After obtaining IM
′′

M′ , the algorithm checks whether
saving the Pareto curve returned by NSGA-II (Line 11) gains
enough with respect to the improvement factor λ. If yes,
M ′ is implemented, and its immediate submodes M−(M ′)
are inserted into Mwait. Otherwise, M ′ and its submodes
M(M ′) are ignored in later mode exploration (Line 12-17).
After the algorithm terminates, we obtain a set of imple-
mentations {IM |M ∈ Mimpl} which later is saved in the
system memory.

6.2 Run Time Optimization
Let us assume that, at a certain moment during run time,

the system is required to switch into a mode M , and the cur-
rent system-wide confidentiality requirement received from
the security monitor is QoCR. Then the system must be
able to adapt to mode M with a good configuration, that
is robust against the current security threats and uses the
lowest possible power. In fact, two different scenarios can
appear at run time, i.e., M is implemented (M ∈ Mimpl)
and M is not implemented (M /∈ Mimpl), as result of the
offline design phase discussed in the previous section.

Algorithm 2 Run time optimization if M /∈ Mimpl and

s ∈ IM
′

M is found

1: Initialize T skip ← ∅
2: while T µPs 6= T skip do
3: Find τi ∈ T µPs \T skip with the lowest PPAU
4: if

∑
τj∈T FPGA

s ∪{τi}
Faj > Fatotal or Eq. 13 can be

violated then
5: T skip ← T skip ∪ {τi}
6: else
7: Map(τi) = FPGA, and reduce Vdd until violating

Eq. 12
8: if Pcurrent > Ps then
9: Map(τi) = µP , and break

10: return the current solution

If M ∈Mimpl, then a set of Pareto solutions IM is avail-
able in memory. Therefore, we can directly select an opera-
tion point s ∈ IM for M that satisfies

QoCs ≥ QoCR and

P saves ≥ P saves′ ,∀s′ ∈ {k ∈ IM |QoCk ≥ QoCR}.
(23)

However, it is possible that there exists no solution that
can satisfy all constraints, i.e., confidentiality constraint
QoCR, schedulability constraints (Eq. 12 and 13), and FPGA
area constraint (Eq. 14), at the same time even with the
highest supply voltage of the processor and the best map-
ping of tasks. In such cases, the security monitor will be
notified and emergency measures must be taken.

If M is not implemented after the offline design phase, i.e.,
M /∈Mimpl, there is no direct solution point available for M
in memory. Thus, we need to make use of the existing Pareto
curves to quickly adapt the system with a good resource
allocation decision. The first step that we do is to find the
supermode M ′ ∈ (M(M) ∩Mimpl) that gives the highest

hypervolume of the derived curve IM
′

M . After that, we try

to select an operation point s ∈ IM
′

M that satisfies QoCs ≥
QoCR, and uses the lowest power. At this point, we face
two alternatives:

Case 1
A solution s, satisfying all constraints (confidentiality con-
straint QoCR, schedulability constraints Eq. 12 and 13, and
FPGA area constraint Eq. 14), is found on the derived im-
plementation. Our proposed technique for this case is de-
scribed in Alg. 2. It is important to notice that, due to

the sub-optimality of IM
′

M , s may not deliver the best sup-
ply voltage and task mapping strategy, as compared with
the one produced using the (unavailable) implementation
IM . So we need to further improve the power consump-
tion, if possible. However, the problem of recovering the
real optimal solution from the operational point s on the
derived curve is actually a knapsack problem, which is too
complex to solve optimally on-line. So we propose a fast
greedy method to efficiently find a good implementation at
run time.

The problem with the solution s is that there still might be
unused resources on the FPGA and the voltage/frequency
level of the processor might be unnecessarily high. Exploit-
ing this observation, together with the fact that running a
task on the FPGA is more energy-efficient than running it
on the processor, we first find the task τi ∈ T µPs = {τ ∈
s|Map(τ) = µP} mapped on the processor that gives the
lowest power per area and utilization value PPAU (Line 3

Algorithm 3 Run time optimization if M /∈Mimpl and no

s is found on the derived implementation IM
′

M

1: Initialize T skip ← ∅
2: Select s ∈ IM

′
M with the highest QoCs

3: while M 6= T skip do
4: Find unprocessed mij from τi ∈ M\T skip with the

highest wij , set Cij to CMAX

5: if QoCs ≥ QoCR and Eq. 12 & 13 then
6: T skip ← ∅, goto Alg. 2
7: if Eq. 12 is violated then
8: if

∑
τj∈T FPGA

s ∪{τi}
Faj > Fatotal then

9: T skip ← T skip ∪ {τi}, and restore Cij
10: else
11: Map(τi) = FPGA
12: if Eq. 13 is violated then
13: T skip ← T skip ∪ {τi}, restore Cij , and

Map(τi) = µP
14: if Eq. 13 is violated then
15: T skip ← T skip ∪ {τi}, and restore Cij
16: if ∀mik ∈ τi, Cik = CMAX then
17: T skip ← T skip ∪ {τi}
18: Notify run time security monitor

in Alg. 2)

PPAU(τi) =
Fdpi +ACT (τi) · Fapi

Fai · Uτi(f)
. (24)

If it is possible to migrate τi to FPGA without violating
the FPGA area constraint Eq. 14, then the processor will
be offloaded. Thus, we can now reduce the supply voltage
Vdd of the processor as much as possible while satisfying
all constraints (Lines 6-7). This procedure terminates when
no further improvement in the power consumption can be
achieved (Lines 8-9).

Case 2
We may face the possibility that there exists no solution s

on the derived front IM
′

M satisfying all constraints (confiden-
tiality constraint QoCR, schedulability constraints Eq. 12
and 13, and FPGA area constraint Eq. 14). Our strategy to
address this second scenario is illustrated in Alg. 3. Since

IM
′

M is not the real Pareto front for M , but obtained by ig-
noring the unnecessary tasks in its parent M ′, it is possible
that the constraints can, in fact, be satisfied. Therefore, we
try to satisfy the QoC requirement first by selecting the op-

eration point s ∈ IM
′

M with the highest QoC (Line 2). After
that, we find the message mij having the highest importance
factor wij , and set its encryption or decryption rounds Cij
to CMAX (Line 4). If QoCR is achieved, then we try to re-
duce the power consumption by reusing the method defined
in Alg. 2 (Lines 5-6).

If the above increment of Cij leads to a schedulability vio-
lation (Eq. 12) on the processor (Line 7), we check whether
we can map τi to FPGA instead (Lines 10-12). If this results
in a violation of Eq. 13, τi is moved back to the processor
and its Cij is restored (Lines 12-13). If the increment of Cij
is not possible, neither on the processor, nor on the FPGA
(Line 14), then we skip processing τi (Line 15). The pro-
cess continues until it satisfies the security requirement, or
all tasks are fixed in their mapping but QoCR is still not
satisfied. In the second case, the security monitor is notified
(Line 18) and emergency measures must be taken.

4 6 8 10 12
0

10

20

30

40

50

60

70

80
0.8
0.4
0.2
0.1
0

Number of tasks

A
ve

ra
ge

 o
bt

ai
ne

d
H

g
(%

)

Figure 5: Performance improvement of off-line phase

4 6 8 10 12
0

200

400

600

800

1000

1200

1400
0.8
0.4
0.2
0.1
0

Number of tasks

O
pt

im
iz

at
io

n
tim

e
in

 s
ec

on
ds

Figure 6: Optimization time of off-line phase

7. EXPERIMENTAL RESULTS
We have carried out experiments on a Linux machine hav-

ing a quad-core Intel Xeon 2.66GHz CPU and 8GB RAM.
We evaluated our proposed design framework on five prob-
lem sizes with |T | = 4, 6, 8, 10, and 12 tasks, respectively.
The parameters for NSGA-II were fine tuned for each prob-
lem size. On each level, 20 test applications with different
task attributes were randomly generated, and each applica-
tion was designed separately using five improvement factors
λ = 0, 0.1, 0.2, 0.4, and 0.8, respectively. In the case λ = 0,
the optimal solutions were always guaranteed. However, this
requires to explore and implement all modes, thus consum-
ing the longest optimization time and largest run time mem-
ory space.

The task execution times and message lengths were gener-
ated randomly from the intervals [500, 1400] time units and
[4, 16] blocks, respectively. The FPGA area Fai and design

static FPGA power Fdpi of each task were generated based
on their execution times with a uniform distribution. The
FPGA speed-up Fsi and active FPGA power consumption
Fapi of each task were generated using a normal distribu-
tion. The supply voltage Vdd to the processor was restricted
to seven discrete levels, i.e., Vdd ∈ {1.2, 1.3, ..., 1.8}. The co-
efficients used in the power model (see Section 2.2) were set
based on the values given in [13]. We set POnµP and Vbs with
conservative values 0.1W and −0.7V, respectively, similar to
[6].

We used the same strength/time trade-off table as Table
1. The average power budget (PMAX in Eq. 18) for the
five problem sizes were set to 4W, 4W, 5W, 5W, and 5W,
respectively.

7.1 Design Time Optimization
We first analyzed our proposed design time optimization

techniques on the five problem sizes as mentioned above. For
evaluation purposes, we also conducted a baseline study, in
which only the top functional modes were implemented, i.e.,
Mimpl =Mfunc

↑ . In this scenario, only the minimal amount
of necessary Pareto curves were saved in memory. Thereby,
it delivers the lowest global optimization performance. After
that, we evaluated the impact of different λ on the result
quality by calculating the obtained total hypervolume gain
(Hgλ) of all functional modes H(Mimpl) over the baseline

H(Mfunc
↑), i.e.,

Hgλ =
H(Mimpl)−H(Mfunc

↑)

H(Mfunc
↑)

, (25)

where H(Mimpl) is the hypervolume of all functional modes,
given Mimpl obtained using the improvement factor λ. If
M ∈Mimpl, we add its hypervolume, otherwise, we add the
hypervolume of its best derived supermode. Similarly, we
compute H(Mfunc

↑).

The average obtained Hg (in percentage) and optimiza-
tion times of the five problem sizes with different λ are de-
picted in Fig. 5 and 6, respectively. The x-axis in both
figures indicates the number of tasks. The y-axis in Fig 5
shows the average Hg of each experimental setup, while the
y-axis in Fig. 6 is the optimization time in seconds. The
case λ = 0 is the most extensive experiment, in which the
algorithm goes to the deepest level of the Hasse diagram.
Thus, the best solutions are always produced in all modes.
However, it does not scale for medium or large designs. So,
as can be noticed in both figures, no result is shown for
λ = 0 on levels |T | = 10 and 12, because no experiment ter-
minated within our time-out restriction, i.e., 1500 seconds.
For the same reason, the result for λ = 0.1 for |T | = 12 is
not presented either.

It is observable from the two figures that bigger improve-
ment factor λ leads to smaller performance gains over the
baseline, but using much less optimization time. In addi-
tion, higher performance gains are achieved on bigger prob-
lem sizes with the same λ, e.g., Hg0.8(12) = 38.6% and
Hg0.8(10) = 31.5%. Fig. 5 and 6 reveal that the designer
can trade-off the desired optimization quality with his toler-
able optimization time. However, for large system designs, it
is not affordable to explore the possible modes with a small
λ. Nevertheless, good solutions can still be obtained with a
larger λ using much less optimization time.

7.2 Run Time Optimization
In order to simulate the run time behavior of dynamic sys-

tems, we conducted experiments on the five aforementioned
problem sizes with the same λ settings. For each experi-
mental setup, namely each test application with a given λ,
20 functional modes were randomly generated for simulating
the run time occurrence of modes, together with random se-
curity requirements QoCR for emulating the uncertainty of
security constraints. For evaluation purposes, we computed
the extra power, consumed in the current mode using the
off-line design decisions with respect to λ and the run time
security requirement QoCR, over the optimal power when
the Pareto curve of the mode is available in memory.

Fig. 7 presents the average extra power for all experimen-
tal settings. In this figure, the results for λ = 0 are not
shown, because the optimal power consumptions are always
guaranteed (this corresponds to bars of length 0). As can be
seen, the system consumes only 6.3% more power than the
optimal solutions on average for all problem sizes if it is de-
signed with λ = 0.1. While, the average power consumption
of λ = 0.8 for all levels is 18.5% more than the optimum.
The smaller λ is used in the design time optimization, the
less power is consumed by the system at run time, as can be
noticed in Fig. 7. But smaller λ also implies longer optimiza-
tion time and larger memory space. This also demonstrates
how our proposed design framework can be tuned for pursu-

4 6 8 10 12
0

5

10

15

20

25

0.8 0.4

0.2 0.1

Number of tasks

A
ve

ra
ge

 e
xt

ra
 p

ow
er

 (
%

)

Figure 7: Performance of on-line solution selection

ing better design quality or faster optimization convergence
and smaller memory consumption.

8. CONCLUSION
This paper addressed a novel design optimization prob-

lem for modern multi-mode embedded systems (running dy-
namic task sets), in which both energy-efficiency and secu-
rity are critical. Our design goal is that, no matter what
mode or security requirement the system is running in, the
minimal energy consumption is ensured. We have used
DVFS techniques and on-board FPGA co-processor to ob-
tain significant power savings and, at the same time, meet
strict security and timing constraints. Due to the huge
complexity of the problem, we proposed an efficient design
framework, which is tunable for better design quality or
short optimization time, to approach the optimal solutions.

9. REFERENCES
[1] M. Bao et al. On-line Thermal Aware Dynamic

Voltage Scaling for Energy Optimization with
Frequency/Temperature Dependency Consideration.
Design Automation Conference, 2009.

[2] K. Deb et al. A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II. Evolutionary
Computation, 6:182–197, 2002.

[3] C. Huang and F. Vahid. Dynamic Coprocessor
Management for FPGA-Enhanced Compute
Platforms. Intl. Conf. on Compilers, Architecture, and
Synthesis for Embedded Systems, 2008.

[4] C.-M. Hung et al. Energy-Efficient Real-Time Task
Scheduling for a DVS System with a Non-DVS
Processing Element. Real-Time Systems Symposium,
2006.

[5] O. Hyncica et al. Performance Evaluation of
Symmetric Cryptography in Embedded Systems.
International Conference on Intelligent Data
Acquisition and Advanced Computing Systems, 2011.

[6] R. Jejurikar et al. Leakage Aware Dynamic Voltage
Scaling for Real-Time Embedded Systems. Design
Automation Conference, 2004.

[7] K. Jiang et al. Co-Design Techniques for Distributed
Real-Time Embedded Systems with Communication
Security Constraints. Design, Automation and Test in
Europe, 2012.

[8] K. Jiang et al. Optimization of Secure Embedded
Systems with Dynamic Task Sets. Design, Automation
and Test in Europe, 2013.

[9] L. Knudsen and W. Meier. Correlations in RC6 with a
Reduced Number of Rounds. Fast Software
Encryption, 2001.

[10] M. Koester et al. Design Optimizations for Tiled
Partially Reconfigurable Systems. IEEE Trans. on

Very Large Scale Integration (VLSI) Systems, 19(6):
1048–1061, 2011.

[11] A. Lifa et al. Dynamic Configuration Prefetching
Based on Piecewise Linear Prediction. Design,
Automation and Test in Europe, 2013.

[12] M. Lin et al. Static Security Optimization for
Real-Time Systems. IEEE Trans. on Industrial
Informatics (II), 22–37, 2009.

[13] S. Martin et al. Combined Dynamic Voltage Scaling
and Adaptive Body Biasing for Lower Power
Microprocessors under Dynamic Workloads. Intl.
Conf. on Computer-Aided Design, 2002.

[14] J. Mu and R. Lysecky. Autonomous Hardware/
Software Partitioning and Voltage/Frequency Scaling
for Low-Power Embedded Systems. ACM Trans. on
Design Automation of Electronic Systems (TODAES),
15(1):2:1–2:20, 2009.

[15] A. Nabina and J. L. Nunez-Yanez. Adaptive voltage
scaling in a dynamically reconfigurable fpga-based
platform. ACM Trans. Reconfigurable Technol. Syst., 5
(4):20:1–20:22, Dec. 2012.

[16] K. Patel and S. Parameswaran. SHIELD: a Software
Hardware Design Methodology for Security and
Reliability of MPSoCs. Design Automation
Conference, 2008.

[17] R. Pellizzoni and M. Caccamo. Adaptive Allocation of
Software and Hardware Real-Time Tasks for
FPGA-based Embedded Systems. Real-Time and
Embedded Technology and Applications Symposium,
2006.

[18] M. Platzner et al. Dynamically Reconfigurable
Systems. Springer, 2010.

[19] S. Ravi et al. Security in Embedded Systems: Design
Challenges. ACM Trans. on Embedded Computing
Systems (TECS), 3:461–491, 2004.

[20] C. Ravishankar et al. FPGA Power Reduction by
Guarded Evaluation Considering Logic Architecture.
IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems (CAD), 31(9):1305–1318, 2012.

[21] M. Shafique et al. REMiS: Run-time Energy
Minimization Scheme in a Reconfigurable Processor
with Dynamic Power-Gated Instruction Set.
International Conference on Computer-Aided Design,
2009.

[22] L. Shang et al. SLOPES: Hardware/Software
Cosynthesis of Low-Power Real-Time Distributed
Embedded Systems With Dynamically Reconfigurable
FPGAs. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems (CAD), 26(3):
508–526, 2007.

[23] T. v. Sydow et al. Quantitative Analysis of Embedded
FPGA-Architectures for Arithmetic. Intl. Conf. on
Application-specific Systems, Architectures and
Processors, 2006.

[24] H. Veendrick. Short-Circuit Dissipation of Static
CMOS Circuitry and its Impact on the Design of
Buffer Circuits. IEEE Journal of Solid-State Circuits
(SSC), 19(4):468–473, 1984.

[25] Xilinx. XPower Estimator User Guide UG440. 2012.

[26] Xilinx. Partial Reconfiguration User Guide UG702.
2012.

[27] E. Zitzler and L. Thiele. Multiobjective Optimization
Using Evolutionary Algorithms - A Comparative Case
Study. Conference on Parallel Problem Solving from
Nature (PPSN V), 1998.

