
Optimization of Message Encryption for Distributed Embedded
Systems with Real-Time Constraints

Ke Jiang, Petru Eles, Zebo Peng
Department of Computer and Information Science, Linköping University

{ke.jiang, petru.eles, zebo.peng}@liu.se

Abstract—In this paper we consider distributed embedded systems in
which privacy or confidentiality of the internal communication is critical,
and present an approach to optimizing cryptographic algorithms under
strict timing constraints. We have developed a technique to search for
the best system-affordable cryptographic protection for the messages
transmitted over the internal communication bus. Towards this, we
formulate the optimization technique in Constraint Logic Programming
(CLP), which returns optimal results. However, CLP executions are
computationally expensive and hence, we propose an efficient heuristic
as an alternative. Extensive experiments demonstrate the efficiency of the
proposed heuristic approach.

I. INTRODUCTION

Nowadays, more and more embedded systems are being employed,
many of which take advantages of distributed computing due to
functional requirements or pursuance for better performance and
reliability, such as automated flight control systems and automotive
embedded systems. A current high-end sedan, for example, has more
than 50 embedded processors and Electronic Control Units (ECUs)
connected by various communication infrastructures, e.g., CAN-bus
[1].

Security is an important issue in designing many distributed em-
bedded systems, but is seriously overlooked. The key concepts con-
cerning security of distributed embedded system are confidentiality,
integrity, availability, authenticity, and non-repudiation, among which
confidentiality is very often of central importance. For example, the
messages transmitted within an automated flight control system used
in military battlefields are highly confidentiality-sensitive. Disclosure
of one single message may affect the life of the pilot or even the
situation of a whole battle. The security requirements under military
context are significant and obvious. Moreover, the requirement of
communication secrecy in distributed embedded systems for civilian
use, e.g., automotive IT systems, is emerging in recent years. In
the following sections, we will discuss distributed embedded system
security problems with an emphasis on the automotive domain, but
our proposed technique can also be used in other application areas
nevertheless.

As more embedded systems are connected to each other and to
the Internet, potential security threats scale up dramatically. Although
embedded system security has been addressed in some works like [2],
[3], [4], security issues in distributed embedded system communica-
tion, especially the internal communication, were seriously omitted.

Moreover, new functions, such as drive-by-wire, that potentially
increase safety of the passengers, fully depend on the underlying
automotive data networks. Meanwhile, severe security threats to the
privacy of the drivers and life-crucial in-vehicle control systems arose
rapidly, as more critical information is sent over the underlying
networks, and in completely unencrypted fashion [5]. Assuming that
an attacker obtained access to a car’s internal buses, e.g., via wireless
communication interfaces, he could easily capture sensitive informa-
tion of the driver, e.g., pay-for-use account and location based service
(LBS) data, and maliciously use such information, e.g., to illegally
track the driver.

Most researchers on vehicular networks have focused on protocols
and applications, while paying little attention to potential security
risks. There are works, e.g., [6], [7], [8], investigating automotive
embedded system security, but most of them dealt with external

vehicle communication, i.e., vehicle to vehicle (V2V) and vehicle
to infrastructure (V2I) communication. Works considering security
of in-vehicle communication, e.g., [5], [9], are rare. Wolf et al [5]
presented feasible attacks and potential exposures for automotive
networks, and proposed an abstract cryptographic architecture for
protecting the networks. But the issues of doing encryption under
actual resource constraints were not studied. In [9], four practically
implemented attack scenarios were described, and the necessity of
doing cryptography for protecting the internal bus communication is
also raised. However, no concrete protection was proposed. Possible
security threats to in-vehicle communication, especially considering
privacy and legal aspects, are becoming more serious. Therefore, how
to make the internal communication of automotive embedded systems
more robust against malicious snooping becomes a pressing topic.

There are several other related works in the area of embedded sys-
tem security. Xie et al [10] proposed a real-time scheduling algorithm
that distributes slack times among an array of security services for a set
of periodic tasks according to corresponding calculated security levels.
However, no communication related security aspect is considered.
In [11], Wollinger et al surveyed several important cryptographic
concepts and their relevance to embedded systems. Gebotys [12]
presented a table masking countermeasure to resist differential power
analysis and differential electromagnetic analysis for secure embedded
systems. However, to our knowledge, this is the first work to address
the confidentiality aspect of internal bus communication of distributed
embedded systems under resource and time constraints.

In this paper, we present a cryptography based technique that can be
used to protect confidentiality of internal communication in distributed
embedded systems under resource and time constraints. The technique
searches for the best system-affordable cryptographic protection for the
messages transmitted over the internal communication bus. However,
due to the complexity of the problem, finding the optimal solutions,
for example, using constraint logic programming, is only possible for
small systems. So, a heuristic approach is proposed for solving the
problem, which is very efficient in both execution time and results.

The rest of the paper is organized as follows. Section II briefly
introduces the main issues of security in internal distributed embed-
ded system communication. Section III and IV present the system
model and a motivational example respectively. Section V formulates
the design optimization problem raised in our study. Our proposed
technique, where the main contribution of this work lied, is described
in Section VI. The evaluation of the proposed approach is presented
in Section VII. We also apply our approach in a real-life example in
Section VIII. The last section concludes the work.

II. PRELIMINARIES

A. Internal communication security in distributed embedded systems

A typical distributed embedded system is composed of a set of
processors (or ECUs), controlling various functionalities, and one or
several communication networks, e.g., buses, connecting the proces-
sors. The employment of buses remarkably reduces the length of wires
and increases flexibility. These networks are normally bridged together
to achieve better interactions and control. Moreover, more and more
internal networks in modern distributed embedded systems have wire-
less interfaces like Wifi and telematics for external communication,



Number of rounds
8 12 16 20 24

Differential
cryptanalysis 256 2117 2190 2238 2299

Linear cryptanal-
ysis 247 283 2119 2155 2191

TABLE I
PLAINTEXT AND CIPHER PAIRS REQUIRED TO ATTACK RC6

which also open up the gate for adversaries to invade the internal
networks. If an attacker could eavesdrop the internal communication
via such interfaces, he would be able to obtain internally transmitted
sensitive information or data, and, e.g., violate the owner’s privacy.

One essential problem in the above context is that the processing
power of embedded processors and the time constraint of the system
limit the possibility of applying strong cryptographic protections. As
mentioned in Section I, the communication over automotive buses
today is completely unencrypted [5]. Therefore, the transmitted mes-
sages can be easily captured and understood. Another reason for this
situation is that security issues were seriously neglected in the design
of distributed embedded systems. In order to achieve acceptable overall
security protection in the context of tight resource limits and stringent
timing constraints, this aspect has to be considered during the early
stages of system level design and optimization.

B. Cryptography in embedded systems

There are three main approaches in cryptography: public-key cryp-
tography, symmetric-key cryptography and cryptographic hash func-
tions. In public-key cryptosystems, different but related keys are used,
including a public key and a private key. They are usually based on
the computational complexity of ”hard” mathematical problems, e.g.,
integer factorization problem, and are relatively costly in computation
complexity compared with most symmetric key algorithms of equiva-
lent security level. This has limited their use in resource constrained
systems like embedded systems. In symmetric-key cryptography, the
same key (or trivially related keys) is used for both encryption and
decryption. The key represents a shared secret between two or more
parties that have access to the confidential information.

In resource constrained systems, public-key algorithms are nor-
mally used for occasionally exchanging secret keys for symmetric-
key algorithms which will perform the actual message encryption
and decryption. By this, the convenience of public-key cryptosystems
and the efficiency of symmetric-key cryptosystems are combined,
and these systems are called hybrid cryptosystems. In this work,
we will concentrate on maintaining confidentiality of internal bus
communication by utilizing arguably the most widely used branch
of symmetric cryptography, iterated block ciphers.

C. Iterated block ciphers

Iterated block ciphers are constructed by applying a function repeat-
edly in order to provide better information confusion and diffusion [13]
as the number of rounds increases. They are known to be susceptible
to cryptanalytic attacks, e.g., linear and differential cryptanalysis, that
try to obtain secret information, such as the secret encryption key.
However, these attacks require a large number of plaintexts and their
encrypted versions from the target system, while the time needed to
gather such required information grows exponentially as more rounds
are used for encryption. Take a typical iterated block cipher, RC6 [14],
for example. The required amount of plaintexts and corresponding en-
crypted versions for linear and differential cryptanalysis are presented
in Table I, which shows that the amount grows exponentially when
the number of rounds increases. Thus, the number of rounds used
by iterated block ciphers is a determinant value deciding the security
strength.

In iterated block ciphers, the more rounds are used for encryption
and decryption, the more execution time the procedure will take.

For correct message transmission, same number of rounds is used
by an encryption and decryption (E/D) process pair. The worst case
execution time (WCET) for the E/D pair cei and cdi are as follows.

tcei = wE + rE ∗ xi (1)

tcdi = wD + rD ∗ xi (2)

wE and wD represent the WCETs for doing the pre-/post-whitening
for the algorithm on the encryption and decryption processor E and
D, respectively. rE and rD represent the WCETs for doing one round
on respective processor. Pre-/post-whitening is the initialization and
ending operations of the algorithm that take constant time. xi is the
actual number of rounds used by this ith E/D pair (i ∈ {1, 2, ..., nM},
where nM is the total number of messages to be protected).

RC6 is simple and flexible while providing sound security protection
[15] if the design parameters are carefully decided. All the follow-
up discussions are based on the assumption of applying RC6 in the
system. But our techniques is also applicable to other iterated block
ciphers. In RC6, half of the data is encrypted in one round [14], so
two rounds are considered as the smallest unit for doing encryption
and decryption in following sections.

III. SYSTEM MODEL

We assume that the hardware architecture is constituted of a group
of processors interconnected by a statically scheduled TDMA bus. The
application is represented as an abstract model which is a directed,
acyclic process graph G(P,E,M). Each node pi ∈ P represents one
process, and E is the set of edges. An edge ei ∈ E from ps to pt
indicates that pt depends on ps in the execution flow. The mapping
of the application processes to processing resources is given by a
function F : P → PE, where PE = {pe1, pe2, ..., pen} is the set
of processors (the bus is also considered as a processing resource).
For any process pi, F (pi) is the processor to which it is assigned for
execution. mi ∈ M represents a message on an edge that connects
two processes on different processors. These messages are to be sent
over the bus, and are illustrated as black dots on the edges in process
graphs. The application is constrained by a deadline D, meaning that
an execution of the application must complete before the end-to-end
delay D. WCET for each process and worst case transmission time
for each message are also given.

Fig. 1 depicts an illustrative application graph. The hardware archi-

Fig. 1. A simple process graph

Fig. 2. A hardware architecture example



Fig. 3. Schedule of different solutions

tecture is shown in Fig. 2. In this example P = {p1, p2, p3, p4, p5},
E = {e1, e2, e3, e4, e5}, and M = {m1,m2,m3,m4}. Processes
{p1, p4} and {p2, p3, p5} are mapped to processor pe1 and pe2
respectively. The communication messages {m1,m2,m3,m4} are
transferred over the bus, denoted as pe3. The WCETs of the processes
are T (P ) = {110, 90, 170, 110, 150}, and the worst case payload
communication times of all the messages are assumed to be 15. The
global deadline is 700 time units.

IV. MOTIVATIONAL EXAMPLE

In order to protect the communication against malicious snooping,
encryption and decryption should be deployed on the messages. These
operations are however computationally expensive, while automotive
embedded systems have limited computation resources and stringent
timing requirements. So it is indispensable to find a method that
provides the best system-affordable cryptographic protection for the
communication such that the resources and deadline constraints of the
system are not violated. Let us consider the process graph in Fig. 1.
The shortest end-to-end delay for this application is 535 time units, and
the corresponding schedule is shown in Fig. 3 (a). As can be observed
from this schedule, the system currently has time slacks that can be
utilized to perform encryption and decryption operations within the
deadline of 700 time units. The WCETs of doing pre/post-whitening
and one E/D round on the two processors are 2 and 2 time units,
respectively, for both processors.

A simple approach to protect the communication of the application
would be to maximize the total number of E/D rounds over all
messages, which leads to the schedule in Fig. 3 (b). According to
this schedule, the number of rounds for m2 and m4 are 34 and 46
respectively (a total of 80 rounds), while m1 and m3 are not encrypted
at all. This, very likely, is not a satisfactory solution, as two messages
are left completely unprotected.

Another alternative solution would be to distribute the number of
E/D rounds evenly to all messages. The best possible solution in this
case is to assign 14 E/D rounds to each message transmitted over the
bus, and the corresponding schedule is illustrated in Fig. 3 (c) with a
total of 56 rounds. Assigning 16 1 or more rounds to each message
would violate the imposed deadline of 700. Nevertheless, the schedule

1As discussed in Section II, the number of rounds should be increased by
at least 2 when using RC6.

in Fig. 3 (c) still contains slacks, which means that the number of E/D
rounds for certain individual messages can still be increased. Fig. 3
(d) illustrates a solution in which the available slacks has been used
to increase the security level of more messages. Now the numbers of
E/D rounds for the messages become 14, 18, 14 and 16 (a total of
62 rounds), in which two messages are further encrypted by 4 and 2
more rounds respectively. This is especially useful in the case when
different messages are encrypted with different keys. Thus, the system
is further protected. The numbers of rounds used by the messages in
the solutions mentioned above are presented in Table II.

m1 m2 m3 m4

Maximization of total rounds (Fig.3b) 0 34 0 46
Even slack distribution (Fig.3c) 14 14 14 14
Further rounds increment (Fig.3d) 14 18 14 16

TABLE II
NUMBER OF ROUNDS FOR THE MESSAGES FOR DIFFERENT SOLUTIONS

V. DESIGN OPTIMIZATION PROBLEM

The goal of this work is to optimize the protection level of messages
transmitted over the bus using iterated block ciphers, considering the
available processing power and the imposed timing constraints. The
optimization problem is decomposed into two sub-problems that are
performed in two steps:

a) Step 1: We firstly want to find the maximal number of rounds
N that all E/D processes can perform, i.e. the system can be scheduled
within the deadline if N rounds are used by all E/Ds. This step
maximize the smallest number of rounds globally (see Fig. 3 (c) and
the third row in Table II).

b) Step 2: After step 1, the system may still have extra unutilized
slacks due to unbalanced workload and the diversity of the processing
power of different processors, as discussed in Section IV. Hence, we
can further increase the security strength of the internal communication
by utilizing these slacks. By this, the window (the E/D modules run-
ning on the smallest number of rounds) revealing the vulnerability of
the system is further dwindled. This is particularly effective if different
E/D pairs use distinct secret keys to encrypt their communication.

In this step, we want to increase the number of E/D rounds as much
as possible, while also trying to provide a certain balance between



Fig. 4. Reconstructed process graph

Fig. 5. New process mapping

the individual security degrees of the messages. These two aspects
are captured by the following cost function which is driving the
optimization in step 2:

Cost = α ∗Avrg(X)− β ∗ StandDev(X) (3)

in which

Avrg(X) =
1

n
∗

n∑
i=1

xi (4)

StandDev(X) =

√√√√ 1

n
∗

n∑
i=1

(xi −Avrg(X))2 (5)

α and β are the designer-provided weights depending on how balanced
the security levels of different messages are desired.

In this paper, we consider that all messages on the network share
the same security requirement. However, the proposed approach can
be generalized in a straightforward way if messages have different
security requirements. For example, in step 2, the number of E/D
rounds can be weighted with a coefficient to capture the security
demand of the actual message.

VI. PROPOSED TECHNIQUE

Let us consider again the application in Fig. 1 and 2. In order
to keep the messages confidential, we have to perform message
encryption and decryption. Each message will be encrypted before
being sent over the bus by the source processor, and decrypted when
received by the destination processor. To capture these operations in
our representation, we will make the procedure of encryption and
decryption explicit. The newly added processes for encryption and
decryption are mapped to the same processors as the corresponding
sending and receiving processes. For example, encryption task ce1 is
mapped to processor pe1, while the corresponding decryption task cd1
to processor pe2. The reconstructed model from Fig. 1 and 2 and the
new hardware mapping are illustrated in Fig. 4 and Fig. 5 respectively.

A. CLP Formulation

We first formulate both the first and second step of our optimization
problem using constraint logic programming (CLP). A constraint logic
program contains constraints in the body of clauses, and allows users

to formulate the problem as a process of constraint satisfaction. Then
the CLP solver tries to solve the problem using methods like using
branch and bound search. However, finding the best solution using
CLP is computationally expensive.

In the following, we present the CLP constraints shared by both
steps, which are divided into two sets. The first set contains the
dependencies of the process graph, e.g., process ce1 needs to be
executed after process p1 in Fig. 4. The second set includes the schedu-
lability related constraints, e.g., process p5 in Fig. 4 must successfully
complete its execution before 700 time units. The constraints we used
in our CLP formulation are as follows.

Dependency constraints: This set of constraints reflects the
structure of the process graph. Each process is allowed to execute
only after all its parent processes have terminated, i.e.,

∀pi ∈ P and ∀pj ∈ Parent(pi),
StartT ime(pi) ≥ StartT ime(pj) +WCET (pj) (6)

Schedulability constraints: There are three related sub-types of
constraints in this set, which guarantee that the optimal result obtained
is schedulable within the global time constraint, and also that the final
schedule is correct.

• Execution time constraints:
The non-E/D processes have constant WCETs, while the E/D
processes have variable WCETs that are related to the optimiza-
tion variable xi as stated in equations (1) and (2). So, in order to
capture this behavior, we assign fixed values as the WCETs for
non-E/D processes, and restrict the WCETs of E/D processes to
a domain containing all the possible values that they can take.

• Parallelization and sequence constraints:
The target applications are mapped to distributed processors.
Therefore the processes on different processors can run in par-
allel, while the executions of different processes on the same
processor must not overlap with each other.

• Deadline constraint:
As all dependencies have been defined, we formulate the deadline
constraint as follows: the last task of the application must finish
its execution before the deadline D, i.e.,

StartT ime(plast) +WCET (plast) ≤ D (7)

Optimization objectives: The two steps have different objectives.
In the first step, the objective is to find the maximal number of rounds
N that all the E/D pairs can perform. While in the second step, the
objective is to maximize the cost presented as equation (3) based on
the number N obtained from the first step.

B. Heuristic Approach

The CLP formulation outlined above returns the optimal solution,
but cannot scale to large systems due to its computation complexity.
In this section, we describe our proposed heuristic for solving the
optimization problem which can handle large designs efficiently.

Our heuristic approach is based on two well-known algorithms,
list scheduling [16] and simulated annealing (SA) [17]. The former
handles the schedulability test, and the latter is in charge of optimizing
the cost function.

The first step is achieved by gradually adding two rounds to all E/D
processes, whose WCETs are also increased by the WCETs of doing
two rounds on corresponding processors, until the system cannot be
scheduled within the deadline. The obtained number of rounds, N , is
the largest number of rounds that all the E/D processes can perform
without breaking the system schedulability. N will be usedby all E/Ds
as the initial value for the second step. The pseudocode for the first
step is shown in Algorithm 1.

After the first step, some E/D pairs may still have slacks for
undertaking extra encryption and decryption rounds. So distributing
these slacks in a smart way is crucial for getting closer result of Cost



Algorithm 1 Heuristic approach: Step 1
1: init WCETs of all E/Ds with corresponding wpe

2: for i = 2, 4, ..., Bound do
3: increase WCETs of all E/Ds with corresponding rpe ∗ 2
4: if ListScheduling(G) > D then
5: return N as i− 2 //largest rounds found
6: end if
7: end for

Algorithm 2 Heuristic approach: Step 2
1: init all xi with N and cost with currentcost
2: init WCETs of E/Ds with wpe + rpe ∗N of corresponding processors
3: while stopping condition is not reached do
4: while executions on temperature level is not reached do
5: randomly select edi and the move V to be performed
6: if V will lead to xedi < N then continue endif
7: update xedi, tceedi and tcdedi as V
8: if ListScheduling(G) > D then
9: restore xedi, tceedi and tcdedi to the previous state

10: else
11: if currentcost > cost then
12: cost = currentcost
13: else
14: randomly generate p ∈ (0, 1)
15: if p < exp(−δ/t) then cost = currentcost
16: else restore xedi, tceedi and tcdedi to the previous state
17: end if
18: end if
19: end if
20: end while
21: t = α ∗ t
22: end while

to the optimum. We have used a SA based heuristic for the second op-
timization step. At the beginning, cost and all xi(i ∈ {1, 2, ..., nM})
are initialized with currentcost and N , and the WCETs of the E/Ds
are also initialized correspondingly. Then SA randomly selects one
E/D pair edi to manipulate each time. Both increment and decrement
manipulations are allowed and randomly decided to be performed on
xedi, but decrement moves leading to xedi < N are not allowed. If
the updated system can be scheduled by our list scheduling algorithm,
then the program proceeds to check whether currentcost is higher
than cost. Otherwise, this pair edi is restored to the previous state.
Now if currentcost is higher than cost, then cost is updated to the
currentcost. If not, a random number p ∈ (0, 1) is generated and
compared with exp(−δ/t) where t is the current temperature, and
δ is the cost decrement caused by this move. The current state and
currentcost are kept only in case p < exp(−δ/t). This makes sure
that our search will not be trapped in a local optimum.

The above optimization procedure will terminate when no accep-
tance occurs in a certain number of consecutive steps. The final cost is
the optimum approximation returned by our heuristic approach. The
set of decision variables, xi(i ∈ {1, 2, ..., nM}), hold the numbers
of rounds for all E/D pairs. The pseudocode for step 2 is given
in Algorithm 2. The SA parameters, including initial temperature,
temperature reduction scheme and stopping condition, are set by
extensive experiments.

VII. EXPERIMENTAL RESULTS

We have performed experiments on randomly generated process
graphs with 10, 15, 20, 30, 40, 50, 60, 70, 80, 90 application processes
(not including E/D processes) that are mapped on 2, 3, 3, 4, 4, 5, 5, 6,
6, 7 processors respectively. For each process graph size, 50 different
applications are generated. All experiments were performed on a Linux
machine having a four-core Intel Xeon CPU with 2.66GHz frequency
and 8GB RAM.

The experiments with the CLP formulations were implemented in
ECLiPSe constraint programming system [18], and were conducted
with a timeout setup. If the CLP engine can find the optimal solution
of an experiment before the timeout restriction, it returns the optimum
for this application. Otherwise, it will be stopped with a timeout

notification, without producing the optimum. This setup is used to
make the extensive CLP experiments efficient; otherwise, the CLP
engine may run for a long time for some cases, and even may
not terminate. The computational complexity of the CLP executions
is therefore characterized by two parameters. One is the average
execution time of those experiments that terminate and return optimal
solutions. The other is the percentage of cases that cannot retrieve
the optimal solutions due to the timeout restriction. In contrast, the
proposed heuristic algorithms, for both step 1 and step 2, always
terminate and produce solutions.

The comparison of the average execution time (of both steps
together) of the finished CLP experiments and corresponding heuristic
executions is illustrated in Fig. 6. For the CLP experiments, of all the
ten graph sizes, all the 50 designs retrieved the optimal solutions only
on the smallest size 10. For graph size 15 and 20, there were 15 and
28 cases respectively out of 50 that failed in finding the optimums
within the timeout limit. While, starting from size 30, the CLP engine
cannot find the optimal solutions for any of the CLP executions any
longer, so their execution times cannot be presented. As we can see,
the execution time of the CLP experiments grows exponentially as the
graph size increases. Therefore, finding the optimal solution using the
CLP formulation, is only feasible for very small applications. Due to
the limit of our experimental time, we set the timeout bounds of the
first and second step as 300 and 1800 seconds respectively, which are
relatively small, but the trend of complexity growth can still be clearly
reflected.

Fig. 6 shows that the execution time of the proposed heuristics is
much smaller than that of the CLP solutions. Of course, the execution
time grows also aggressively due to the nature of the simulated
annealing algorithm, but the average execution time of the heuristics
for the biggest graphs (size 90) is only around 900 seconds.

The result comparisons of the two approaches are presented in Fig. 7
and 8 for step 1 and 2, respectively. When comparing the results, the
experiments that CLP failed in finding the optimal solutions before
timeout are eliminated. So we only analyze the CLP-obtained opti-
mums and their corresponding heuristic-returned results. For example,
only 22 experiments of graph size 20 are used to generate the data in
Fig. 8. In both Fig. 7 and 8, the yellow bars without hatchings (left
ones for size 10 and 15 in Fig. 7, and for size 10 in Fig. 8) indicate that
all the CLP experiments found the optimal solutions, while the rest
with hatchings present the results of only the finished CLP executions.
The red bars are the results obtained by our heuristic approach. Fig. 7
illustrates the global N comparisons for step 1. Averagely, the results
produced by the heuristic is 93.83% of the optimal. In the second
step, the costs were obtained by setting the weights as α = 0.7 and
β = 0.3. As shown in Fig. 8, the final Cost returned by our heuristic
approach and the optimal solutions retrieved by CLP are presented, and
94.5% of the optimal result can be achieved by the heuristic approach.
From graph size 30, the results of CLP formulations are missed since
none of the experiments found the optimal solution within our timeout
bound.

VIII. A REAL-LIFE EXAMPLE

We also experimented with a real life example, an adaptive cruise
controller (ACC), similar to the one described in [19]. The ACC
application automatically maintains a safe following distance from the
preceding vehicle. It also has the possibility of autonomous changes
of the maximum speed depending on the speed-limit regulations and
helps the driver with the braking procedure in extreme situations.

The ACC application is composed of 22 processes and 15 bus
communications, and is constrained by a global deadline (500 time
units). The processes are distributed to three processors connected by
a bus. The original process graph and the WCET of the processes are
depicted in Fig. 9, and the task-to-processor allocation is illustrated in
Fig. 10.



Fig. 6. Average execution time of finished CLP
experiments and heuristic approach

Fig. 7. Result comparison of step 1 Fig. 8. Result comparison of step 2

Fig. 9. Adaptive cruise controller

Fig. 10. Hardware architecture of ACC

The results returned by CLP and our heuristic approach are pre-
sented in Table III, in which N is the maximal number of rounds that
all E/D processes can handle, and Cost is the final optimization result
with α = 0.7 and β = 0.3. Time 1 and Time 2 indicate the execution
time (in seconds) for the first and second step respectively. The CLP
formulation for the second step cannot find the optimal solution using
any of the available search methods within our timeout restriction of
1800 seconds. So no results are given in the ”Cost” and ”Time 2”
columns of CLP formulation. As can be observed from the table, our
heuristic found identical N as the optimum in the first step, and returns
the result within a very short period.

N Cost Time 1 Time 2
CLP 12 - 9 -
Heuristic 12 10.59 0.03 2.315

TABLE III
RESULT COMPARISON OF ACC

IX. CONCLUSION

In this paper, we have presented an optimization technique for
protecting the confidentiality aspect of internal distributed embedded
system communication using iterated block ciphers. We proposed
a heuristic approach for solving the problem, and ran extensive
experiments to prove the time efficiency and result quality. Although
we have a focus on the automotive area, this work can also be adopted
in other distributed real-time embedded systems where the internal
communications need to be secured.

REFERENCES

[1] “CAN in Automation (CiA),” http://www.can-cia.org/.
[2] P. Koopman, “Embedded system security,” Computer, vol. 37, pp. 95–97,

2004.
[3] P. Kocher, R. Lee, G. McGraw, and A. Raghunathan, “Security as a new

dimension in embedded system design,” in DAC ’04: Proceedings of the
41st annual Design Automation Conference. New York, NY, USA: ACM,
2004, pp. 753–760.

[4] D. D. Hwang, P. Schaumont, K. Tiri, and I. Verbauwhede, “Securing
embedded systems,” IEEE Security and Privacy, vol. 4, no. 2, pp. 40–49,
2006.

[5] M. Wolf, A. Weimerskirch, and C. Paar, “Secure In-Vehicle Communi-
cation,” in Embedded Security in Cars, 2006, pp. 95–109.

[6] M. Raya and J.-P. Hubaux, “Securing vehicular ad hoc networks,” Journal
of Computer Security, vol. 15, no. 1, pp. 39–68, 2007.

[7] B. Parno and A. Perrig, “Challenges in Securing Vehicular Networks,” in
Proceedings of Workshop on Hot Topics in Networks (HotNets-IV), Nov.
2005.

[8] P. Golle, D. Greene, and J. Staddon, “Detecting and correcting malicious
data in VANETs,” in VANET ’04: Proceedings of the 1st ACM interna-
tional workshop on Vehicular ad hoc networks. New York, NY, USA:
ACM, 2004, pp. 29–37.

[9] “Security threats to automotive can networks–practical examples and
selected short- term countermeasures,” Reliability Engineering & System
Safety, vol. In Press, Corrected Proof, 2010.

[10] T. Xie and X. Qin, “Improving security for periodic tasks in embedded
systems through scheduling,” ACM Trans. Embed. Comput. Syst., vol. 6,
no. 3, p. 20, 2007.

[11] J. G. Thomas Wollinger and C. Paar, “Cryptography in embedded
systems: An overview (invited paper),” in Proceedings of the Embedded
World 2003 Exhibition and Conference, 2003, pp. 735–744.

[12] C. H. Gebotys, “A table masking countermeasure for low-energy secure
embedded systems,” Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 14, no. 7, pp. 740 –753, jul. 2006.

[13] C. E. Shannon, “Communication Theory of Secrecy Systems,” Bell System
Technical Journal, 1949.

[14] R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin, “The rc6 block
cipher,” in in First Advanced Encryption Standard (AES) Conference,
1998, p. 16.

[15] L. B. W. B. M. D. J. F. E. R. James Nechvatal, Elaine Barker, “Report on
the development of the advanced encryption standard (aes),” Tech. Rep.,
2000.

[16] P. Eles, Z. Peng, P. Pop, and A. Doboli, “Scheduling with bus access
optimization for distributed embedded systems,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 8, no. 5, pp. 472–491, 2000.

[17] S. Kirkpatrick, D. G. Jr., and M. P. Vecchi, “Optimization by simmulated
annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[18] Constraint Logic Programming using ECLiPSe. Cambridge University
Press, 2006.

[19] P. Pop, “Analysis and synthesis of communication-intensive heteroge-
neous real-time systems,” Ph.D. dissertation, Linköping University, 2003.


