
Design Optimization of Energy- and Security-Critical
Distributed Real-Time Embedded Systems

Xia Zhang, Jinyu Zhan, Wei Jiang∗, Yue Ma
School of Information and Software Engineering

University of Electronic Science and Technology of China
Email: zhangxia19870317@gmail.com,

{zhanjy, wejiang}@uestc.edu.cn, yue ma 880131@hotmail.com
∗Corresponding Author

Ke Jiang
Department of Computer and Information Science

Linköping University
Email: ke.jiang@liu.se

Abstract—In this paper, we approach the design of energy-
and security-critical distributed real-time embedded systems from
the early mapping and scheduling phases. Modern Distributed
Embedded Systems (DESs) are common to be connected to
external networks, which is beneficial for various purposes, but
also opens up the gate for potential security attacks. However,
security protections in DESs result in significant time and energy
overhead. In this work, we focus on the problem of providing
the best confidentiality protection of internal communication
in DESs under time and energy constraints. The complexity
of finding the optimal solution grows exponentially as problem
size grows. Therefore, we propose an efficient genetic algorithm
based heuristic for solving the problem. Extensive experiments
demonstrate the efficiency of the proposed technique.

Keywords—Distributed Real-time System; Security; Energy;
Mapping; Scheduling; System Design.

I. INTRODUCTION

Nowadays, more and more embedded real-time systems
take advantage of distributed computing to achieve better
performance such as higher throughput and better reliability.
In addition, the adoption of new network interfaces in modern
Distributed Embedded Systems (DESs) strengthens the system
functionality and flexibility. Although beneficial in many cases,
the interaction with outside world also opens up unsecure
access to the systems [1], leading to higher possibility of
exhibiting the internal communication. So how to securely
transfer sensitive information and control messages over the
internal communication infrastructure becomes an emerging
problem.

The DESs which must be robust against security attacks are
referred to as Security-Critical Distributed Real-time Embed-
ded Systems (SCDRES). In this paper, we focus on protecting
the confidentiality, the central factor of information security, of
the internal communication. Then, cryptography is the promis-
ing method for undertaking the protection [2]. However, intro-
duction of cryptographic protection leads to significant time
overhead, that may further leads to deadline violations. In real-
time system, deadline misses result performance degradations
or even serious catastrophe. For example, deadline misses of
the engine control task in unmanned aerial vehicles may cause
crashes [3]. Moreover, employment of security protections
also strains energy supply. Hence, providing sound security
protections under stringent real-time and energy constraints
becomes a challenge.

Many algorithms have been proposed for handling schedul-
ing problems existed in distributed real-time systems. The
authors in [4] proposed a distributed approach to handle the
scheduling problem of distributed system through local dead-
line assignments. In [5], researchers presented a Tabu Search
based algorithm for designing mixed-critical applications on
distributed and cost-constrained architecture. Unfortunately, all
of these techniques ignored security and energy requirements.

More recently, researchers have made progresses in
security-aware task scheduling for distributed real-time sys-
tems. The authors of [6] presented a heuristic approach to
search for the best system-affordable cryptographic protection
for the messages transmitted over the internal communication
bus. Two resource allocation schemes for scheduling parallel
applications on clusters with timing and security constrains
are proposed in [7]. However, both works ignored the effect
of communication volume on system security, and the energy
constraint existed in most SCDRES. In [8], the authors pre-
sented a series of mathematical models to capture the relation-
ships between power consumption and security. Besides, they
formulated and solved a security maximization problem under
real-time and energy constraints using dynamic programming.
In [9] and [10], the authors proposed an energy efficient
adaptive risk control and security management mechanism
for centralized distributed systems and a resource allocation
technique for optimizing the security protection in energy
constrained mono-processor systems, respectively.

In this paper, we focus on security optimization problem of
parallel applications in homogenous SCDRES with deadline
and energy constraints. We find that communication traffic
reduction and security reinforcement are the two solutions
to the design problem. Traffic reduction can be achieved
by better task-to-processor mapping. In order to improve
security protection, security service strengths are quantified,
and corresponding time and energy consumption are derived.
Then the problem is formulated, and related constraints are
addressed. Due to the complexity of the problem, a Genetic
Algorithm (GA) based heuristic, Energy and Security-aware
Schedule Algorithm for Communication-sensitive Applications
(ESACA), is proposed.

The rest of the paper is organized as follows. In Section
II, we present our system model. The design optimization
problem is formulated in Section III. Section IV illustrates
a motivating example. We describe our security optimization
algorithm in Section V. Simulations and experiments are



t1

t6t5t4

t3
t2

t7

e 12

e
13

e24
e
25 e

35 e36

e67
e57

e
47

(t1,t2,t3,t5) (t4,t6,t7)

p2p1

Bus

(a) (b)

Fig. 1. A hardware architecture and a simple application example

conducted and analyzed in Section VI. Finally, we conclude
the paper in Section VII.

II. SYSTEM MODEL

A. System architecture

In this paper, we consider homogenous DESs, which con-
sist of multiple processors for tasks execution and a common
bus for data transmission. For the sake of simplicity, we make
the following assumptions:
• All the processors are homogeneous. That is, the

processing capacity and power consumption are the
same.

• Available energy of each processor is limited, namely,
the system must work under strict energy constraint.

• Messages transmitted over the bus should be encrypted
before sending and decrypted after reception.

• We assume that the hardware is temper-proof. There-
fore, communication within a processor is secure, and
then can be ignored.

• Only one message can access to the bus at a time.
The set of processors in the system is denoted as P =

{p1, p2, . . . , pρ}. All the processors are connected to a bus.
An example of two nodes hardware platform is depicted in
Fig. 1(a).

There are one or more applications running in the system.
An application, modeled as a directed acyclic graph (DAG),
is composed of several interdependent tasks. An example of
7 tasks is revealed in Fig. 1(b). Each node in DAG represents
a task. Each edge denotes a data dependency, referred to as
a message, from tail to head. A task can only be scheduled
when all the messages from its preceding tasks are received.

An application is formally represented as G(T,E,M,W ).
ti ∈ T is a task having a designer specified WCET τi. E
is a n × n 0-1 matrix. eij ∈ E denotes the message from
ti to tj . If there is a message transmitted from ti to tj , then
eij = 1, otherwise eij = 0. M and W are both n×n matrixes.
mij ∈ M and wij ∈ W are the size and weight of message
eij , respectively. mij = wij = 0, if eij = 0. A higher value
of wij implies a higher security requirement of eij . All the
tasks in an application have a common deadline D which is
not allowed to be violated.

All tasks of an application will be mapped to processors,
i.e. nodes in Fig. 1(a). 0-1 matrix A stands for the mapping of

TABLE I. PLAINTEXTS REQUIREMENTS TO ATTACK RC6

Number of Rounds 8 12 16 20 24

Required Plaintexts 247 283 2119 2155 2191

tasks to processors. The size of the matrix is ρ×n. For aij ∈ A,
if tj is mapped to pi, then aij = 1, otherwise aij = 0. If
two tasks which communicate with each other are assigned to
different processors, their communication information will be
transferred over the bus. Otherwise, the communication actions
will be accomplished inside the processor. The transmission
delay in processors can be ignored, but the communication
delay on a bus cannot be neglected. The bus transmitting time
χij of message eij can be formulated as:

χij =
mij

B
(1)

where χij denotes the transmission delay between ti to tj . B
is the bandwidth of the bus.

Meanwhile, we define a 0-1 matrix Π sized n × n to
represents the bus communication. πij = 1 means that the
message from ti to tj is transmitted over the bus. πij = 0
implies that message from ti to tj never appears on the
bus, no matter whether the communication actually exists or
accomplished inside the processors. The value of Π can be
derived if A and E are specified by the designer. And the
equation can be formulated as follow:

Π = Ψ(A,E), Ψ : πij = eij(

ρ∑
k=1

πij k)/2 (2)

πij k = (aki + akj)mod2 (3)

s.t. 1 ≤ i, j ≤ n (4)

For each eij = 1, if the sending task and receiving task are
both assigned to pk, the message would be internal processor
communication(πij k = 0). If only one of the two tasks is
assigned to pk, the message would be transmitted over the bus
(πij k = 1). If the two tasks are assigned to other processors,
we have πij k=0, which can be obtained in Eq. (3). To obtain
πij , all of πij k (k = 0, 1, . . . , ρ) must be investigated, as Eq.
(2).

B. Models of message security requirements

As already discussed, encryption must be applied in SC-
DRESs for security protections. In this paper, we assume the
use of RC6, which is a fully parameterized symmetric cypher,
and one of the important members in iterated block cypher
(IBC) family. IBC, that is arguably the most widely used
cryptography, encrypt a plaintext block using several iterations.
In each iteration, the same transformation is applied to the data
using a sub key. The number of iterations of a selected IBC
is one determinant of its security performance and resource
consumption. Then, there are two problems that we must
pay attention to: how to evaluate the security performance
of different rounds and how do the rounds affect energy
consumption?

Lots of cryptanalysis have been conducted since the pub-
lication of RC6. Rivest et. al [11] have done some work to
analyze the security performance of RC6 against cryptanalytic



attacks, such as linear and differential cryptanalytic attacks.
Cryptanalytic attacks require a large number of plaintexts, the
number of which is regarded as an indication of its security
strength. So, more required plaintexts mean more secure.
Required amount of plaintexts grows as encryption rounds
increase. For linear cryptanalysis, the required plaintexts are
less than that of differential cryptanalysis. This implies that
linear cryptanalysis is more effective at breaking RC6. The
number of rounds and required plaintexts by a successful linear
cryptanalytic attack are presented in Table 1.

The correlation between plaintext amount and number of
rounds is formulated as:

log2Nplaintext = αl (5)

where α, Nplaintext , and l are a constant, the number of
required plaintexts, and encryption rounds, respectively.

A simple approach to improve security protection is to
maximize the total number of encryption rounds of all mes-
sages transmitted over the bus. However, this approach is not
suitable for our problem, because communication reduction
and rounds maximization are two contradictory requirements.
Therefore, we take the Degree of Security Gap (DSG) r of
a message as the security performance metric formulated as
follows:

r =
lmax − l
lmax

(6)

lmax is the maximum rounds of RC6 required by the system,
and l is the actual rounds used to encrypt and decrypt the
message. As can be noticed, the value of r is bounded between
0 and 1. Based on Eq. (5) into (6), we can obtain:

r =
lmax − (log2Nplaintext)/α

lmax
= 1−ξ · log2Nplaintext (7)

ξ =
1

lmaxα
(8)

We can see that ξ becomes a constant. Eq. (7)indicates that
DSG decreases as plaintext amount increases. Therefore, to
obtain high security, r should be minimized.

Then an n × n matrix R is introduced to describe all the
message protections. rij ∈ R is 0 if there is no message
from ti to tj . Otherwise, rij can be calculated using Eq.
(7). Similarly, an n × n matrix L is introduced to describe
the rounds assignments to messages. lij ∈ L denotes the
encryption rounds of the message from ti to tj . If there is
no message from ti to tj , then lij = 0. Given L and E, R can
be derived as:

R =
lmaxE − L

lmax
= E − 1

lmax
L (9)

Note that R and L are for all messages in an application, no
matter whether they are bus communications or not.

C. Time overhead of security protection

With the increase of encryption rounds, execution time
grows. RC6 consists of three procedures: key schedule, en-
cryption, and decryption [12]. The execution times that are
important to us are the times consumed by the encryption
and decryption procedures. The encryption and decryption
procedures take roughly the same amount of time. So for the
sake of simplicity, we assume that they share the same WCET.

Similar to the Eq. [6], the WCET cU of encrypting/decrypting
a block are

cU = cI + l · cL (10)

where cI is the WCET of the initial procedure. cL denotes the
WCET for one round encryption/decryption operation. Then
time consumption when encrypting/decrypting a block can be
reveal by an n× n matrix CU , which is defined as:

CU = cI · E + cL · L (11)

cUij ∈ CU denotes the WCET of encrypting/decrypting one
block of message eij .

D. Energy Consumption

Energy consumption is an important performance indica-
tion of embedded systems. When executing tasks, processors
run at a full speed with maximal power. And they run at a lower
speed with less power in idle time to reduce energy consump-
tion. We assume vr stands for the power of processors at run
time, while vs denotes that at idle time. They should satisfy
the constraint vr > vs. A processors energy consumption γ is
formulated as follow:

γ = τrvr + τsvs (12)

where τr and τs are the running time duration consisted of
task execution time and encryption/decryption time and the
idle time duration, respectively. Assuming that the application
starts at time 0, τr and τs should satisfy:

τr + τs = D (13)

Based on Eq. (12) and (13), we can get:

τrvs + τsvs ≤ τrvr + τsvs ≤ τrvr + τsvr
⇒ D · vs ≤ γ ≤ D · vr

(14)

If energy constraint is not introduced, then energy consumption
has a maximum and a minimum value as seen in Eq. (14).
However, in embedded systems, total available energy is
usually very limited. So it is necessary to employ an energy
up-boundary γb on each processor. And γb must satisfy the
constraint γb ≥ D·vs. If γb is lower than D·vs, it is impossible
to get a valid schedule satisfying all constraints. When γb is
higher than D · vr, energy limit can be ignored because every
schedule scheme fulfilling the deadline requirement can satisfy
the energy constraint.

III. PROBLEM FORMULATION

A. Problem Identifying

In this section, we formally formulate our design opti-
mization problem. Before going further, we first introduce
the DAG reconstruction method [6] that we used. In order to
make the system more explicit for analyzing and more flexible
for scheduling, we abstract the encryption and decryption ex-
plicitly from their corresponding sending and receiving tasks.
The abstracted encryption and decryption processes should be
mapped to the same processors as their parents. Fig. 2(a) is an
illustrative DAG having two tasks (t1 and t2) and a message
(e12). The two tasks are mapped to different processors. So
encryption (ec12) and decryption (ed12) processes must be
performed to protect the message (e12). The reconstructed



t1

t2

e12

t1

t2ed12

ec12

e12

e12

ed12
t2

ec12

t1

p1 p2

Bus

(a)

(b) (c)

t2

t1

p1 p2

Bus

(e)

t1

t2

(d)

Fig. 2. DAG reconstruction under two mapping cases

DAG is presented in Fig. 2(b). The bus is seen as a processor,
and undertakes the messages, as shown in Fig. 2(c). If t1 and t2
can be mapped to the same processor, message e12 is ignored,
and encryption and decryption are not launched. So the DAG
will be transform into Fig. 2(d) with corresponding mapping
in Fig. 2(e). The reconstruction procedure can be expanded to
multiple applications.

From above analysis, we find that communication would
result in more resource overhead. And different task mapping
leads to different communication volume, namely different
overhead. Therefore, a mapping with less communication
could save more resource for security reinforcement. So task
mapping and message encryption/decryption are the means for
pursuing high security protection.

DSG of an Application (DSGA) is defined as the sum of
DSG of all the messages transmitted over the bus. And lower
DSGA implies higher security performance. Both communica-
tion volume reduction and security reinforcement would have
the value of DSGA diminished. Therefore, the objective can
be formulated as minimizing DSGA as much as possible by
obtaining a good task mapping and a sound encryption strategy
(rounds assignment). At the same time, several constraints
such as dependency constraint, real-time constraint, and energy
constraint must be considered.

B. Objective

Our design objective of DSGA Γ is formulated as follows

Γ = ηTΘη (15)

η is a vector sized n whose elements are all 1. Θ is a n× n
matrix having the message protections. θij ∈ Θ indicates DSG
of eij . If there is no communication from ti to tj , or the
communication are accomplished inside a processor, θij = 0.
The function Θ is presented as follows:

Θ = fmultiply
1(W,R,Π) (16)

1Assuming there are n + 1 matrixes which are B1, B2, , Bn, H , whose
elements are presented as b1ij ,b2ij ,,bnij , hij . Then fmultiply is defined as:

H = fmultiply(B1, B2, . . . , Bn), fmultiply : hij = b1ij ·b2ij · . . . ·bnij

Π, which has been mentioned in the previous section, is
used for removing the internal processor communication. Then
based on Eq. (2), (9) and (16), (15) can be transformed as:

Γ = ηT fmultiply(W,R,Π)η

= ηT fmultiply(W,E − 1

lmax
L,Ψ(A,E))η

(17)

All the variables except L and A are already known in
advance. Thus, DSGA depends on the value of the two vari-
ables. We combine L and A to a two-tuple solution s(A,L).
In the paper, our objective is to find the optimal solution s∗

that achieves the minimal Γ∗.

C. Constraints

Given a solution, the application can be scheduled by
List Scheduling (LS) [13] approach, in which the depen-
dency constraint is inherently guaranteed. Using LS, we can
obtain schedule length and energy consumption easily, and
then check whether the constraints are satisfied or not. The
encryption/decryption time overhead are calculated by

C = fmultiply(M,CU ,Π)

= fmultiply(M, cIE + cLL,Ψ(A,E))
(18)

C is an n × n matrix which represents the encryption time
overhead. cij ∈ C is the encryption time of message eij .
If eij does not exist or only exists inside a processor, then
cij = 0. As already discussed, the decryption time is equal
to encryption time. Therefore, C also indicates the decryption
time overhead.

In LS approach, multiple messages will be transmitted
over the bus, and conflictions have to be addressed. By using
the DAG reconstruction approach mentioned before, we can
transform an application into a simple DAG whose edges just
represent the dependencies. Besides, in the LS approach, bus
is seen as a processor where messages are undertaken. In this
way, the LS schedule objective is just to assign a set of tasks
to a group of processors. And message conflicts are solved in
a concise way. Based on reconstructed DAG, the dependency
constraint is defined as follows.

Dependency constraints.Each task is allowed to be exe-
cuted only after all its preceding tasks are finished. Then the
dependency constraint is

τi s ≥ max{τj s + τi|tj ∈ Perants(ti)} (19)
τi s and τj s stands for the start time of ti and tj , respectively.
Parents(ti) denotes the set of ti’s preceding tasks. After that,
LS returns the schedule length τf , and the deadline D needs
to be satisfied.

τf = ListSchedule(G,C,A) (20)

Real-time constraint: all the tasks of an application should
be finished before the deadline:

τf ≤ D (21)

Available energy is limited, too, and is the same for all
processors. Energy consumption can be calculated by Eq. (12).
Assuming y = {γ1, γ2, . . . , γρ} is a vector whose elements
presents the energy consumption of each processor. And it
can be calculated by the following function:



Deadline=35

p1 t1 t3t2 t6t4 t5 t7

p2

Bus

p1

p2

t1

t3

t2 t6t4

t5

t7
Deadline=35

m13 m36 m57Bus m25

p1
t1

t3

t2 t6t4

t5

t7

cd13

ce13

p2

ce25

cd25
ce36

cd36
Deadline=35

m13 m36m25 m57

ce57

cd57

Bus

t1 t3t2

t6t4

t5

t7

m24 m36 m57

Deadline=35
ce24 ce36

cd36

ce57

cd57
cd24

Bus

p1

p2

(a)Schedule by assigning all the tasks in one processor

(b)Schedule with Minimal Schedule Length

(c)Schedule Produced by Greedy Strategy

(d)The Optimal Schedule for the Instance

DSGA: 0 

Schedule Length: 38

Energy of p1: 10.5mJ

Energy of p2: 0.35mJ

DSGA: ∞

Schedule Length: 28

Energy of p1: 7.6mJ

Energy of p2: 4.12mJ

DSGA: 5.8

Schedule Length: 35

Energy of p1: 8.95mJ

Energy of p2: 5.454mJ

DSGA: 2.4

Schedule Length: 34.8

Energy of p1: 8.238mJ

Energy of p2: 5.338mJ

Fig. 3. Schedule examples under different schemes

y =


τr

(1)

τr
(2)

...
τr

(ρ)

 vr +


τs

(1)

τs
(2)

...
τs

(ρ)

 vs (22)

Base on Eq. (13), following function can be obtained:

y =


τr

(1)

τr
(2)

...
τr

(ρ)

 (vr − vs) +Dvsη (23)

For each τ (i)
r (i = 1, 2, . . . , ρ):

τr
(i) =

n∑
j=1

(τj +

n∑
k=1

(cjk + ckj))

=


ai1
ai2

...
ain


T 

τ1 +
∑n
k=1(c1k + ck1)

τ2 +
∑n
k=1(c2k + ck2)

...
τn +

∑n
k=1(cnk + ckn)



=


ai1
ai2

...
ain


T

(


τ1
τ2
...
τn

+ Cη + CT η)

(24)

Let Λ = {τ1, τ2, . . . , τn} denotes WCETs of all tasks in an
application. 

τr
(1)

τr
(2)

...
τr

(ρ)

 = A(Λ + Cη + CT η) (25)

Therefore:

y = A(Λ + Cη + CT η)(vr − vs) +Dvsη (26)

Having obtained energy consumption, we can know if energy
constraint can be satisfied.

Energy constraint: energy on each processor cannot violate
energy upper bound:

∀γi ∈ y γi ≤ γb (27)

With a further investigation in Eq. (20) and (25), it can be
observed that schedule length and energy consumption depend
on s(L,A). And dependency constraint must be obeyed in
LS procedure. Therefore, to minimize DSGA, a reasonable
solution that satisfies the constraints must be obtained.

IV. MOTIVATIONAL APPLICATION

In this section, we present an illustrative example having
one application. For multiple parallel applications, it can be
transformed into a single application by adding two dummy
tasks (entry task and exit task) [14]. Our aim is to find a
reasonable solution to obtain optimal security performance
with deadline and energy limitation guaranteed.

Let us consider the example having seven tasks that are



mapped to the hardware platform with two processors (p1

and p2) and one bus. The parameter settings are given below.
Because most of the following matrixes are sparse, we only
list those elements that are non-zero.
• WCET of tasks: Λ = {6, 5, 7, 4, 6, 6, 4}
• Size of messages: M={m12, m13, m24, m25, m35,

m36, m47, m57, m67}={4,3,1,2,3,1,1,2,1}
• Weight of messages:W={w12, w13, w24, w25, w35,

w36, w47, w57, w67}={1,2,1,3,1,1,1,2,2}
• Deadline: τd = 35

• Energy Limitation: γb = 9mJ

• Bus bandwidth: β = 1

• Maximum rounds: lmax = 20

The tasks can be scheduled in several different ways, which
are illustrated in Fig. 3. We assume that if there is no message
transmitted on the bus, DSGA is 0. And if at least one message
on the bus is not encrypted, DSGA is ∞.

To prevent confidentiality attacks, we could have all the
communication within a processor. That means that all the
interdependent tasks are allocated to a single processor, as seen
in Fig.3(a). However, this schedule violates the deadline and
energy constraints.

Fig.3(b) is another possible schedule. In this case, both
deadline and energy constraints are satisfied, but security pro-
tection is not employed and these messages are transferred over
the bus in plaintext, thus, vulnerable to malicious eavesdrops.
If we look closer at the schedule, we can find that there exists
idle time and energy budget on both processors, which can be
used to increase security performance.

We can use greedy strategy to increase encryption rounds
as in Fig. 3(c). In this scheme, CPU time and energy are
fully used and any increase of encryption rounds will lead
to constraints violation. However, if we look at the DSGA,
this is still not a satisfying solution.

Fig. 3(d) is actually the optimal schedule, which gives
the minimum DSGA with respect to the deadline and energy
constraints. Comparing with Fig.3(c), communication traffic
is reduced due to the remapping of tasks to processors.
Meanwhile, encryption rounds are assigned in a different way.
So, to obtain the best schedule scheme, task mapping and
rounds assignment are two factors that must be considered.
However, obtaining task mapping and increasing encryption
round separately will have solutions fall into local optimum
and may not give acceptable results. Therefore, the two parts
of solutions must be optimized synthetically.

Solutions consist of task mapping and rounds assignment.
There are ρn different task mapping and (lmax)k different
rounds assignment of an application. Here k denotes the
message number of an application. Therefore, for an appli-
cation and a given hardware architecture, there are ρn(lmax)k

different solutions that grows exponentially as n and k grow.
When the problem size become bigger, it becomes impossible
to obtain the optimal solution. Thus, heuristic approaches are
becoming a choice for this problem.

V. PROPOSED TECHNIQUE

Due to the complexity of the problem, we propose an
efficient algorithm, ESACA, for solving this problem. ESACA

Algorithm 1 ESACA
1 begin
2 initial G;
3 population initialization;
4 while stop criteria is not satisfied do
5 evolution of A;
6 evolution of L;
7 end while
8 obtain the best solution s∗;
9 end

is a GA based heuristic that takes DAGs and hardware plat-
form specification as input, and returns the task-to-processor
mapping and rounds assignments as output.

GA was developed based on the emulation of natural
selection and evolution, and famous for its robustness and
global searching ability [15]. GA is widely used in solving
combinatorial optimization problems. A group of solutions,
which is called population, is evolved from generation to
generation for pursuing better solutions. In our algorithm, an
acceleration technique [16] and elite strategy are imported to
achieve quick convergence.

In ESACA, s is employed as chromosome, which also
is regarded as an individual in a population. Operations on
chromosomes such as crossover and mutation fall into two
categories: operations on L and operations on A. According
to the classification, the evolution procedure in ESACA is
designed as a two-stage procedure. The main procedure of
ESACA is presented in Alg. 1.

First, an application is input into the algorithm. Then, a
group of initial population treated as the start point of evolution
procedure is generated. Line 4 to 7 is the two-stage evolution
procedure, and A and L are optimized alternatively. The best
solution is obtained in line 8. In the following sections, we
will discuss the procedures in more details.

A. Population Initialization

Before evolution procedures, initial population must be
generated in some way. Traditionally, initial population is
generated randomly. However, bad solutions can be generated
and increase time overhead for finding acceptable solutions.
To obtain quick convergence, an acceleration technique is
introduced to obtain the initial populations with good quality.

The core of the acceleration technique is composed of
two parts: a scheduler and a greedy searching procedure.
Firstly, initial task mapping is produced without considering
the security protection. Then, the task mapping A and the
rounds assignment Lmin with the lowest protection level are
combined to form the initial solution of greedy searching
procedure. A and L are randomly adjusted to explore better
solutions. After a number of iterations, some solutions are kept
as the initial population.

Let us assume that the population size is µ. Then the
pseudo code of the population initialization procedure is shown
in Alg. 2. In line 2, A is obtained by the scheduler. Initial
solutions of the procedure are generated in line 3. From line
4 to line 13, initial population is generated greedily.

B. Two-stage Evolution Procedure

This procedure is the core step of ESACA. In the first
stage, the population evolves on task mapping. Similarly, the
population evolves on rounds assignment in the second stage.



Algorithm 2 Population Initialization
1 begin
2 A = Schedule(G);

3 sinitial = (A,Lmin);

4 while population size not reach µ do
5 s = sinitail;

6 while stop criteria is not satisfied do
7 s′ = adjust(s);
8 if Γ(s′) < Γ(s), τf (s′) < D and (∀γ ∈ y(s′)) < γb then
9 s = s′;
10 end if
11 end while
12 s is assigned to initial population;
13 end while
14end

Algorithm 3 Two-stage Evolution
1 begin
2 x = 1;
3 evaluation;
4 while stop criteria is not satisfied do
5 Φ′(x) = selection(Φ(x));
6 Φ′′(x) = crossoverA(Φ′(x));
7 Φ(x+ 1) = mutationA(Φ′′(x));
8 x = x+ 1;
9 evaluation;
10 end while
11 obtain sbest in Φ(x);
12 for each s in Φ(x) do
13 s = (Abest, L);
14 end for
15 evaluation;
16 while stop criteria is not satisfied do
17 Φ′(x) = selection(Φ(x));
18 Φ′′(x) = crossoverL(Φ′(x));
19 Φ(x+ 1) = mutationL(Φ′′(x));
20 x = x+ 1;
21 evaluation;
22 end while
23 obtain sbest in Φ(x);
24 for each s in Φ(x) do
25 s = (A,Lbest);
26 end for
27 end

And the two stages are operated alternately. There are four
main operations in each stage: evaluation, selection, crossover
and mutation. In evaluation, fitness of every solution is calcu-
lated. Selection is a process in which high quality solutions
in current population is selected for following operations, i.e.
crossover and mutation. New solutions are produced from
crossover and mutation. Let Φ(x) denotes the population of
the x-th generation, and sbest = (Abest, Lbest) indicates the
best solution in a generation. Alg. 3 presents pseudocode of
the procedure.

Lines 3-14 is the first stage, and line 15-26 is the second
stage. At the end of each stage (lines 11-14 and lines 23-
26), elite strategy is applied: Abest or Lbest are obtained, and
replace A or L of each solution. In this way, good task mapping
and rounds assignment are reserved for following evolutions.
Now we discuss the four main operations one by one.

1) Evaluation: Here we evaluate the fitness of each indi-
vidual, and the fitness function is formulated as

f(s) = ε1Γ + ε2 4 d+ ε3 4 y (28)

4d =

{
τf −D τf > D
0 else

(29)

4y =

ρ∑
i=1

4γi, s.t. 4 γi =

{
γi − γb γi > γb
0 else

(30)

Three criteria are employed in the function. The first one
is DSGA of the solution. The next two are the deadline and
energy constraints. In the system, the result is not allowed to
violate any constraints. But solutions with deadline misses or
energy limit violations are possible to evolve into better global
solutions. So we consider these excesses of schedule length
and energy consumption as penalty factors in fitness function,
rather than simply discard them. Solution with smaller fitness
value have stronger adaptability. ε1, ε2 and ε3 are the weights
of the three criteria.

2) Selection: After selection, good solutions are likely to
be kept to guarantee the evolution quality. When a solution
is selected, they are copied to mating pool for crossover and
mutation. A random selection approach, namely roulette-wheel
selection, is applied in this paper, and solution si’s probability
of being selected is:

p(si) =
f(smax)− f(si)∑µ
j=1 f(smax)− f(sj)

(31)

Here smax denotes the solution with maximal fitness in current
population. When a solution is selected, they are copied to
mating pool for crossover and mutation operation.

3) Crossover: Crossover combines two parents to create
new individuals, which may take good characteristics of their
ancestors. As already mentioned, the operation objects in
the two stages are to find good task mapping and rounds
assignments. Take stage 1 for instance. Firstly, a crossover
point i on A is randomly selected. Then the columns behind
the i-th column of two parents (A(1) and A(2)) are swapped to
form offspring (A(3) and A(4)). It means all the tasks ranging
from i + 1 to n exchange their task mapping. The crossover
operation is formulated as follows:{

A(3) = A(1)Ic(i) +A(2)I ′c(i)
A(4) = A(2)Ic(i) +A(1)I ′c(i)

, s.t. Ic(i) + I ′c(i) = I

(32)
where, I is an unit matrix, and

Ic(i) =

[
Ii×i 0

0 0

]
, I ′c(i) =

[
0 0
0 I(n−i)×(n−i)

]
(33)

The crossover operation on L is similar. The only dif-
ference is that when a crossover point i is selected, all the
rows behind the i-th row of two parents are exchanged to
create offspring. That is, all the tasks ranging from i + 1 to
n exchange the rounds assignment of the messages they send.
This is formulated as follows:{

L(3) = Ic(i)L
(1) + I ′c(i)L

(2)

L(4) = Ic(i)L
(2) + I ′c(i)L

(1) (34)

4) Mutation: Mutation operator plays an important role
in GA, keeping the variety of the population and preventing
results from converging to local optimums. Mutation operation
will be employed on task mapping or rounds assignment of a
randomly selected solution with the two parts:

• Task mapping mutation. A randomly selected task
is relocated to another processor. Assuming i is the



mutation point, which is actually the id of the selected
task. A randomly selected j is the id of the new
processor that ti is mapped to. Then mutation of A
is denoted as:

A′ = AIm(i) + ι̂T (j)ι̂(i) (35)

Im(i) is a n×n diagonal matrix having element ιii =
0 and ι11=ι22=. . . =ι(i−1)(i−1)=ι(i+1)(i+1)=. . . =ιnn =
1. ι̂(i) and ι̂(j) are unit vectors whose i-th and j-th
elements are 1, respectively.

• Rounds assignment mutation. The encryption rounds
of a message are increased or decreased. The step
size 4l of this alteration is determined in advance.
Assuming a message eij is randomly selected. Then
the mutation operation is denoted as:

L′ = L±4l · ι̂T (i)ι̂(j) (36)

Solutions for crossover and mutation are randomly selected
based on user provided rates, i.e. a crossover rate δc and a
mutation rate δm.

C. Brief Summary

The whole optimization procedure terminates when the
stopping condition is reached, which in this paper, is the
number of optimization iterations. And the best solution is
returned. Like traditional GA, ESACA is sensitive to the value
of parameters, such as µ, iterations, δc and δm. Therefore,
these parameters must be fine-tuned by extensive experiments
to achieve the best performance.

VI. EXPERIMENTAL RESULTS

In this section, we present the experiments that we conduct-
ed for evaluating our proposed technique. All the simulations
are implemented using C#, and performed on a Windows
machine having a dual-core Intel Pentium CPU with 2.22GHz
frequency and 2GB RAM. Three security-aware scheduling al-
gorithms for parallel applications (TAPADS, Min-Greedy and
SA-Heuristic) are also implemented and used for comparisons.
TAPADS[7] is a security-aware scheduling approach that max-
imizes security of applications by greedily increasing tasks’
or messages’ security level step by step without considering
communication reduction. Min-Greedy is a greedy approach
as the method in Fig. 3(c). SA-Heuristic [6] is an optimization
algorithm trying to balancing resource utilizations.

We carried out three groups of experiments. The execution
time of ESACA, Min-Greedy and SA-Heuristic are relatively
long because of their complexity. TAPADS and SA-Heuristic
focus on security optimization under constraints of deadline,
but do not consider energy limit. The parameters that are used
in the experiments are given in Table 2. Other parameters such
as task numbers and deadlines are specifically defined in each
group.

A. Evaluation on Different Graph Size

In this set of experiments, applications of different sizes
are generated, and corresponding deadlines are determined,
as seen in Fig. 4. These applications are mapped to 2, 2, 3,
3, 4, 4, 4, 5, and 5 processors respectively. For each graph
size, 5 applications are generated, and for each application, 10

TABLE II. PARAMETER SETTING

Parameters Value

Encryption Rounds 1∼20
Message Weight 1∼5
Message Size 1∼20KB
WCET of Tasks 1∼20ms
CPU Power in Running Time 300mW
CPU Power in Slack Time 10mW

test cases are conducted on the four algorithms. The available
energy of all the processors is 70mJ. In the rest of the paper,
we call the energy consumption of the processor which is the
most among all processors as maximum energy in brief. The
simulation results of DSGA, maximum energy and schedule
length are presented in Fig. 4.

From Fig.4(a), we get to know that ESACA is the best
in security optimization in most cases. TAPADS could get
results in the shortest time, but has the worst performance.
ESACA obtains the lowest DSGA on applications sized 10,
20, 30, 40, 50 and 60. The optimization performance of
ESACA is almost the same with SA-Heuristic on size 70
and 80, and worse on size 90. However, from Fig. 4(b), we
can find that, from application size 50, 60, 70, 80 and 90,
energy consumption of TAPADS and SA-Heuristic on a single
processor is already larger than the energy bound, as they
do not consider energy during optimization. When application
sizes are relatively small, energy consumption is relatively low,
hence can be ignored. With the increase of application sizes,
the energy constraint impacts more. Since ESACA and Min-
Greedy must consider the deadline and energy constraints at
the same time, the result qualities of ESACA and Min-Greedy
are weakened when application size rises.

TAPADS and Min-Greedy are greedy approaches, and have
high probability of falling into local optimums. SA-Heuristic
and ESACA are both based on randomness, and have global
searching ability. But SA-Heuristic does not consider energy
limit. Therefore, compositing security and energy aspects,
ESACA still obtains higher performance compared to the other
algorithms.

It can be observed from Fig. 4(c) that all the algorithms
meet the deadline requirements. On applications sized 70-90,
schedule length of SA-Heuristic and ESACA are smaller than
deadline, while that of TAPADS and Min-Greedy are almost
near deadline. Thats because when application size rise, the
search space is enlarged. Its possible for random algorithms
such as SA and GA to obtain sub-optimal solution and utilize
resources insufficiently.

B. Evaluation of Energy Limit Impacts

In this set of experiments, application size and deadline are
fixed as 30 and 160, respectively. The energy limit is ranged
from 35mJ to 55mJ. The results are shown in Fig. 5.

We find that ESACA and Min-Greedy can always fulfill
the energy requirement, while TAPADS and SA-Heuristics
energy consumptions violate the constraints when the energy
limit is lower than 45mJ. As seen in Fig. 5(a), ESACA’s
DSGA trends down when energy constraint is higher. And so
does Min-Greedy, although not obvious. That’s because more
energy budget means more resource for security reinforcement.
ESACA and SA-Heuristics security performances are much



0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90

D
SG

A
 

Graph Size 

TAPADS Min-Greedy SA-Heuristic ESACA

0

50

100

150

10 20 30 40 50 60 70 80 90

M
ax

m
u

m
 E

n
e

rg
y 

 

Graph Size 

TAPADS Min-Greedy SA-Heuristic

ESACA Energy Limit

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90

Sc
h

e
d

u
le

 L
e

n
gt

h
 

Graph Size 

TAPADS Min-Greedy SA-Heuristic

ESACA Deadline

(a) (b) (c) 

Fig. 4. Performance Corresponding to Different Graph Size

0

10

20

30

40

50

35 37 39 41 43 45 47 49 51 53 55

D
SG

A
 

Energy Limit 

TAPADS Min-Greedy SA-Heuristic ESACA

35

40

45

35 37 39 41 43 45 47 49 51 53 55

M
ax

im
u

m
 E

n
e

rg
y 

 

Energy Limit 

TAPADS Min-Greedy SA-Heuristic

ESACA Energy Limit

158

158.5

159

159.5

160

160.5

35 37 39 41 43 45 47 49 51 53 55

Sc
h

e
d

u
le

 L
e

n
gt

h
 

Energy Limit 

TAPADS Min-Greedy SA-Heuristic
ESACA Deadline

(a) (b) (c) 

Fig. 5. Impact of Energy Limit on Algorithms’ Performance

0

10

20

30

40

50

140 145 150 155 160 165 170 175 180 185 190

D
SG

A
 

Deadline 

TAPADS Min-Greedy SA-Heuristic ESACA

35

40

45

50

55

140 145 150 155 160 165 170 175 180 185 190

M
ax

m
u

m
 E

n
e

rg
y 

 

Deadline 

TAPADS Min-Greedy SA-Heuristic

ESACA Energy Limit

135

145

155

165

175

185

195

140 145 150 155 160 165 170 175 180 185 190

Sc
h

e
d

u
le

 L
e

n
gt

h
 

Deadline 

TAPADS Min-Greedy SA-Heuristic

ESACA Deadline

(a) (b) (c) 

Fig. 6. Impact of Deadline on Algorithms’ Performance

higher than the other two. When the energy limit lowers than
41mJ, Min-Greedy cannot get a valid solution. In general,
ESACA can always meet the energy constraint, and give high
security performance, even when available energy is limited.

C. Evaluation of Deadline Impacts

In this set of experiments, application size and energy limit
are fixed as 30 and 41, respectively. The deadline is between
140 and 190. The results are presented in Fig. 6.

With the increase of deadline, DSGA of all algorithms are
decreasing. That means when the time limits are extended,
the performances of all the algorithms become better. We can
see from the figures that no solution can be obtained by these
algorithms except ESACA when deadline is tight. For Min-
Greedy and SA-Heuristic, no solution is derived when deadline
is 140. And TAPADS can get solutions only if deadline is
longer than 160. ESACA shows high quality dealing with
tight time constraints. Solutions obtained by SA-Heuristic and
ESACA are better in general.

When deadline ranges from 145 to 155, the security
performance of ESACA is lower than SA-Heuristic. If there
is an application with enough tasks and tight deadline, energy
limit tends to drive the tasks to be mapped to all CPUs evenly.

It potentially increases the parallelism and communication
possibility, but decreases the security of the system. That’s
why DSGA of ESACA increases when deadline is tight. SA-
Heuristic is not restricted by energy limit, so it can obtain
better security performance in this case.

In Fig. 6(b), we can notice that ESACA and Min-Greedy
respect the energy budget. TAPADS and SA-Heuristics violate
the energy limit when deadline is longer than 150. Therefore,
ESACA obtain the best results with respect to security and
energy. SA-Heuristic and ESACA does not fully utilize the
processors. Meanwhile, when the deadline restriction is ful-
ly relieved, energy limit becomes dominating impacting the
schedule length. Thus, Min-Greedy cannot fully use CPU time
if deadline is too long.

VII. CONCLUSION

To provide sound security protections for SCDRES, es-
pecially to protect the confidentiality aspect of the internal
communication, we must take security considerations into our
scope from the early system design and optimization phases.
In this paper, we focus on the design optimization problem
of secure SCDRESs with energy and real-time constraints.
Communication traffic reduction and message cryptographic



reinforcement are the key methods in the design procedure.
DSGA is used to capture the security strength of the system,
and must be minimized to achieve the best protection. At the
same time, deadline and energy constraints must be satisfied.
Due to the large complexity of finding optimal solutions, a GA
based heuristic is presented for solving the problem efficiently.
Furthermore, acceleration techniques are employed to obtain
quick convergence. Extensive experiments are conducted on
our heuristic together with three comparative approaches.
Experimental results have demonstrated the efficiency of our
proposed technique.

ACKNOWLEDGMENT

This work was partly supported by the National Natural
Science Foundation of China under Grant No. 61003032, the
Fundamental Research Fund for the Central Universities of
China under Grant No. ZYGX2011J061, and the Research
Fund of National Key Laboratory of Computer Architecture
under Grant No. CARCH201104.

REFERENCES

[1] J. Wilbrink, D. Nativel, and T. Morin, “Networked networks and embed-
ded microcontroller architectures,” Industrial & Military Applications,
vol. 4, no. 4, pp. 16–19, Feb. 2006.

[2] J. Guajardo, T. Wollinger, and C. Paar, “Cryptography in embedded
systems: an overview,” in Proc. the Embedded World 2003 Exhibition
and Conference, 2003, pp. 735–744.

[3] V. Bonifaci, G. D’Angelo et al., “Scheduling real-time mixed-criticality
jobs,” in Proc. IEEE Transactions on Computers, vol. 6, no. 8, Aug.
2012, pp. 1140–1152.

[4] S. Hong, T. Chantem, and X. S. Hu, “Meeting end-to-end deadlines
through distributed local deadline assignments,” in Proc. IEEE Real-
Time Systems Symposium, Nov. 2011, pp. 183–192.

[5] D. Tǎmas-Selicean and P. Pop, “Design optimization of mixed-
criticality real-time applications on cost-constrained partitioned archi-
tectures,” in Proc. IEEE Real-Time Systems Symposium, Nov. 2011, pp.
24–33.

[6] K. Jiang, P. Eles, and Z. Peng, “Optimization of message encryption
for distributed embedded systems with real-time constraints,” in Proc.
of Design and Diagnostics of Electronic Circuits & Systems, Apr. 2011,
pp. 243–248.

[7] T. Xie and X. Qin, “Security-aware resource allocation for real-time
parallel jobs on homogeneous and heterogeneous clusters,” in Proc.
IEEE Transactions on Parallel and Distributed Systems, vol. 9, no. 5,
May 2008, pp. 682–697.

[8] R. Chandramouli, S. Bapatla, and K. P. Subbalakshmi, “Battery power-
aware encryption,” in Proc. ACM Transactions on Information and
System Security, vol. 9, no. 2, May 2006, pp. 162–180.

[9] Y. Ma, W. Jiang, N. Sang, and X. Zhang, “Arcsm: A distributed
feedback control mechanism for security-critical real-time system,”
in Proc. IEEE International Symposium on Parallel and Distributed
Processing with Applications, Jul. 2012, pp. 379–386.

[10] W. Jiang, K. Jiang, and Y. Ma, “Resource allocation of security-critical
tasks with statistically guaranteed energy constraint,” in Proc. Embed-
ded and Real-Time Computing Systems and Applications (RTCSA), Aug.
2012, pp. 330–339.

[11] S. Contini, R. L. Rivest, M. J. B. Robshaw, and Y. L. Yin, “The
security of the rc6 block cipher,” Aug. 1998. [Online]. Available:
http://www.rsa.com/rsalabs/node.asp?id=2512

[12] R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin, “The rc6 block
cipher,” in Proc. Advanced Encryption Standard (AES) Conference,
Aug.

[13] P. Eles, Z. Peng, P. Pop, and A. Doboli, “Scheduling with bus access
optimization for distributed embedded systems,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 8, no. 5, pp. 472–491, 2000.

[14] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Design optimization of
time- and cost-constrained fault-tolerant distributed embedded systems,”
in Proc. Automation and Test in Europe Conference and Exposition
(DATE), Mar. 2005, pp. 864–869.

[15] D. E. Golgberg, Genetic algorithms in search, optimization and machine
learning. Addison-Wesley, 1989.

[16] K. Z. Gkoutioudi and H. D. Karatza, “Multi-criteria job scheduling in
grid using an accelerated genetic algorithm,” Journal of Grid Comput-
ing, vol. 10, no. 2, pp. 311–323, Jun. 2012.


