

A Constraint Logic Programming Framework for the Synthesis of Fault-Tolerant Schedules for Distributed Embedded Systems

Kåre Harbo Poulsen, Paul Pop, Viacheslav Izosimov

August 23, 2007

Domain

- Safety critical embedded systems
 - Hard real-time
 - Static schedules are necessary
 - Reliability is critical
 - Fault-tolerant
 - Battery powered
 - Energy consumption must be minimised

Example

- Application with
 - Hard deadline
 - Reliability goal: 0.999,999,9
 - Minimise energy

Fastest Schedule:

Deadline

R=0.999 999 987 100% E₀

 $N_1 N_2$ $P_1 10 X$ $P_2 70 X$

P₃ X 40

P₄ 40 X

 $P_5 X 40$

P₆ X 50

Voltage levels

N₁ 100% 66% 33% N₂ 100% 66% 33%

k = 1

Example

- Application with
 - Hard deadline
 - Reliability goal: 0.999,999,9
 - Minimise energy

 $N_1 N_2$ $P_1 10 X$ $P_2 70 X$

P₃ X 40

P₄ 40 X

P₅ X 40

P₆ X 50

Voltage levels

N₁ 100% 66% 33% N₂ 100% 66% 33%

Example

- Application with
 - Hard deadline
 - Reliability goal: 0.999,999,9
 - Minimise energy
 - Sacrifice 5% energy to meet reliability

 $N_1 N_2$ $P_1 10 X$ $P_2 70 X$

 $P_3\ X\ 40$

 $P_4\ 40\ X$

 $P_5 X 40$

P₆ X 50

Voltage levels

N₁ 100% 66% 33% N₂ 100% 66% 33%

k = 1 **/**

Design Optimisation Tool

- Constraint Logic Programming
 - Good performance for NP-complete problems
 - Easily extendable model
- Heuristics
 - Complete: Variable- and value selection to guide search
 - Incomplete: Credit search to limit search to feasible space/time