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Abstract
We present a constraint logic programming (CLP) approach

for synthesis of fault-tolerant hard real-time applications on dis-

tributed heterogeneous architectures. We address time-triggered

systems, where processes and messages are statically scheduled

based on schedule tables. We use process re-execution for recov-

ering from multiple transient faults. We propose three schedul-

ing approaches, which each present a trade-off between schedule

simplicity and performance, (i) full transparency, (ii) slack shar-

ing and (iii) conditional, and provide various degrees of trans-

parency. We have developed a CLP framework that produces

the fault-tolerant schedules, guaranteeing schedulability in the

presence of transient faults. We show how the framework can be

used to tackle design optimization problems.The proposed ap-

proach has been evaluated using extensive experiments.

1. Introduction

Safety-critical applications must function correctly and meet

their timing constraints even in the presence of faults. Such

faults can be permanent (i.e. damaged hardware), transient (e.g.

caused by electromagnetic interference), or intermittent (recur-

ring). Transient faults are most common, and increasing so, due

to the raising level of integration in semiconductors [5].

Researchers have proposed several hardware architecture so-

lutions, such as MARS [16], TTA [15], and XBW [4], that

use hardware redundancy to tolerate a single permanent fault.

To use such schemes for tolerating transient faults, which are

more numerous, incurs very large hardware cost. In this case,

time-redundant approaches such as re-execution, replication and

checkpointing are more appropriate.

The schedulability of an application can be guaranteed as

well as appropriate levels of fault-tolerance achieved using pre-

emptive online scheduling [2, 3, 10, 23]. However, such ap-

proaches lack the predictability required in safety-critical ap-

plications, where static off-line scheduling is the only option

for ensuring both the predictability of worst-case behavior, and

high resource utilization [15]. A simple heuristic for combining

several static schedules to mask fault-patterns through replica-

tion is proposed in [6], however, without considering any timing

constraints. This approach is used as basis for cost and fault-

tolerance trade-offs within the Metropolis environment [20].

Fohler [8] proposes a method for joint handling of aperiodic

and periodic processes by inserting slack for aperiodic processes

in the static schedule, such that timing constraints of periodic

processes are met. In [9] he extends this to cover fault-tolerance,

considering overheads for several fault-tolerance techniques, in-

cluding replication, re-execution and recovery blocks.

Kandasamy [14] proposes a list-scheduling technique for

building a static schedule that can mask the occurrence of faults,

making the re-execution transparent.

In [12] we have presented a list scheduling-based heuristic for

the generation of fault-tolerant schedules. In [11] we have used

a tabu-search meta-heuristic on top of list scheduling to opti-

mize the assignment of fault-tolerance policies (i.e. re-execution

vs. active replication) in order to reduce the fault-tolerance over-

heads. Such heuristics are able to produce good quality solutions

in a reasonable time. Researchers have used constraint logic pro-

gramming (CLP) [18, 17, 19, 7] in the context of system-level

design, but not for fault-tolerance aspects. The advantages of

CLP are: it can capture complex design constraints and trade-

offs, it is flexible, general, and easy to extend.

In this paper we propose a CLP framework for producing

fault-tolerant schedules such that the application is schedulable

in the presence of transient faults, and the constraints and trade-

offs imposed by the designer are satisfied. We show how the

framework can be used to easily capture complex design opti-

mization problems, e.g. fault-tolerance policy assignment.

The next section presents the system architecture and fault

model. The application model is presented in section 3. Section

4 introduces the three scheduling approaches considered. We

present the CLP implementation in section 5, and design opti-

mization in 6. The experiments are presented in section 7.

2. Hardware Architecture and Fault-Model

An architecture consists of N heterogeneous processing ele-
ments connected by a bus. Processes, as well as messages, are

statically scheduled. We consider that at most k transient faults

may occur anywhere in the system during one operation cycle of

the application. Thus, several faults may occur on the same, or

different, processors k is determined as a design parameter, such

that the desired reliability for the system is achieved.

We assume a combination of hardware and software-based

error detection methods [13] to be part of the architecture. The

software architecture, including real-time kernel, error detection

and fault-tolerancemechanisms and communication bus are con-

sidered fault-tolerant. Worst-case execution times include fault-

detection and recovery.

3. Application Model

An application A(V ,E) is a set of directed, polar, acyclic
graphsGi(Vi,Ei)∈ A , with a sink and a source node. Each node
Pi ∈ V represents one process. Dependencies are denoted as
ei j ∈E , and a process is activated when all its inputs have arrived
and issues its outputs when it terminates. Processes are non-

preemptable. Communication between processes on the same

process is part of the worst-case execution time, whereas com-

munication between processes on different processors are passed

over the bus. Each process Pi has a corresponding start-time SPi ,

and mappingMPi .



Figure 1: Scheduling strategies

4. Scheduling Strategies

Each node runs a real-time kernel which does process acti-

vation and message transmission based on the local schedule ta-

ble. The initial schedule tables in the case of no-faults are called

root schedules. When a fault is detected the kernel switches to

an alternative schedule, the contingency schedule, which holds a

schedule that will allow for re-executing the process and recover-

ing. All contingency schedules are static. The worst-case delay

of an application is given by the finishing time of its longest fault

scenario.

Transparent recovery of processes, i.e. the operation of other

processes are not affected, has the advantages of fault contain-

ment, good debugability and less memory needed to store the

schedules, but, needs very large slacks to be scheduled, which

may make the application unschedulable [12]. Part of schedul-

ing is policy assignment, which is essentially mapping of re-

executions, either on the same processor, re-execution, or a dif-

ferent processor, passive replication.

In the following we propose three scheduling schemes that

each represent a different trade-off between transparency and

performance. For an example system the no-fault scenario is

shown in figure 1. An application of five processes is mapped on

two processing elements. Processes P1, P2, P4 and P5 are mapped

on PE1, and P3 is mapped on PE2. Messages m1 and m2 are sent

over the bus. The worst-case execution times on the correspond-

ing processing elements are given in the table. In the examples

we consider k = 1.

4.1. Fully Transparent Scheduling

The simplest approach to build a fault tolerant schedule is

to use transparent recovery. In this scheme a recovery slack of

length kCPi is inserted after each process. This gives the online

scheduler time to re-execute a failing process upto k times, with-

out violating the timing of other processes.

However, the fully transparent approach incurs long delays

which can make the application unschedulable, as is the case in

figure 1(a).

4.2. Slack Sharing Scheduling

To reduce the end-to-end delay, we allow processes on the

same processor to share the recovery slacks. In the schedule we

see that, e.g. processes P4 and P5 share recovery slack. The

size of the recovery slack is long enough to accommodate the k

re-executions of any the processes that share it.

The slack sharing approach sacrifices some of the trans-

parency in order to reduce the delays. In this scheduler, fault

information is shared on the local processor, but faults are still

transparent between processors. In this way, process P3 has to

wait until time 90 to start, to ensure that, if a fault has happened

in P1, process P1 has had time to recover.

The slack sharing scheduling approach has all of the advan-

tages of the fully transparent scheduler, but is able to reduce the

amount of slack to be scheduled.

4.3. Conditional Scheduling

To get better performance it is necessary to trade-off all trans-

parency, i.e. even processes on other processors may be affected

by faults on a processor, and only exactly k recoveries are sched-

uled for any fault scenario. This scheduling scheme is simi-

lar to online scheduling, but, since all contingency schedules

are calculated in advance, predictability and schedulability are

achieved.

In this case, the online schedulers in the nodes will have to

share information on fault occurrence. This allows the sched-

ulers to respond efficiently to faults, and hence the delay is fur-

ther reduced. Thus, the schedulers will rely on a conditional

schedule table, which contains start times for each fault scenario.

This scheduling approach reduces the overheads due to fault-

tolerance, by adapting online to the actual fault scenario. How-

ever, the time to broadcast the fault occurrence information on

the bus is not negligible, and the time needed to derive the condi-

tional schedule table offline, and the size for the stored schedules

grow exponentially with k.

5. CLP-Based Scheduling

For NP-hard problems CLP has very good performance, and

is hence an ideal platform for scheduling. In CLP, systems are

described by a set of logic constraints which define valid condi-

tions for the system variables. A solution to the modelled prob-

lem is an enumeration of all system variables, such that there are

no conflicting constraints. We have implemented our synthesis

approach using the ECLiPSe CLP system [1].

The logic constraints used in our model fall in four cate-

gories: (i) precedence, (ii) resources, (iii) timing, and (iv) fault

tolerance. The three first have been previously addressed by re-

searchers [18, 7], and we shall focus on the constraints for fault-

tolerance. The constraints for the first two schemes are applied

on the process graphsGi ∈A . The last scheme uses fault-tolerant
process graphs (FT-PG) [11, 12]. These are graphs that capture

all possible fault scenarios, using guarded transitions.

5.1. Fully Transparent Scheduling

In the fully transparent scheme, recovery slack is scheduled

after each process. Hence no process may run until after k+ 1
executions of its precedents:

SPj ≥ ∀ei jSPi+CPi(1+ k), for all Pj ∈ A (1)

5.2. SlackSharing Scheduling

For the slack sharing scheduler, processes with dependencies

on the same and different processors need to be treated different.

Processes on the Same Processing Element. Processes exe-

cuted on the same processor share recovery slack. This slack is

scheduled after the root processes, thus is expressed simply as:

MPi =MPj (2)



Figure 2: Special cases for slack sharing constraints.

Processes on Different Processing Elements. For processes

on different processors a receiving process cannot be started until

the recovery of its predecessors on all other processors is guaran-

teed. The situation where two processes on different processors

have to communicate, can be split into two special cases.

Example 1: Consider the dependency between processes P2
and P3. Figure 2(a) shows the critical recovery path, whenCP2 >

CP1 . This determines when P3 can safely be started:

SP3 ≥ SP2+CP2(1+ k) (3)

Example 2: In figure 2(b), whereCP2 <CP1m the availability

of data is not only determined by the sending process, but also

the process scheduled before:

SP3 ≥ SP1+CP1(1+ k)+CP2 (4)

To generalize the shown constraints, in a way that can be used

in a CLP model, detailed information of the longest recovery

path is needed. This is achieved by creating a separate recovery

schedule for the recovery processes.

The recovery schedule is set up in the followingway. For each

process Pi, a recovery process Si is inserted into the recovery

schedule with an edge ePi,Si . In the recovery schedule, the same

precedence and resource constraints as for the normal schedule

are imposed. The finishing times of the processes in the recovery

schedule are described by (F is the finishing time of a process):

FSi ≥ SPi+CPi(1+ k)

∧ FSi ≥ SSi+CPi (5)

Using the recovery schedule, the general logic constraint for pro-

cesses on different processors can now be written:

SPj ≥ FSi (6)

which leads to a general constraint for slack sharing:

MPi =MPj ∧SPj ≥ SPi+CPi
∨ SPj ≥ FSi , for all Pi ∈ A (7)

5.3. Conditional Scheduling

The conditional edges in the FT-PG form mutually exclusive

fault-scenarios. As a consequence, two processes, which depend

on mutually exclusive conditions (determined by the function

MutuallyExclusive), will never be active in the same scenario.

Hence, processes which are part of different scenarios can be

scheduled on the same resource at the same time. This addition

to the resource constraint is written as:

MutuallyExclusive(Pi, j,Pl,n)

∨MPi, j 6=MPl,n
∨ SPi, j ≥ SPl,n+CPl,n

∨ SPl,n ≥ SPi, j +CPi, j , for all Pj ∈ A (8)
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Figure 3: Fault-tolerance policy optimization

6. Design Optimization Problems

The framework can capture complex design constraints, and

handle several interesting design optimization problems.

Consider the example in figure 3, where the mapping of P1,

P2 is fixed on PE1, and P3 is mapped on PE2. These processes all

use re-execution to tolerate faults, and we wish to decide map-

ping and fault-tolerance policy for P4. The best mapping for P4
is on PE2, because then it can run in parallel to P1. If we use

re-execution for P4, the shared re-execution slack for P4 and P3
will miss the deadline, as we can see in figure 3(a). However,

if we re-execute P4 on PE1 instead (we say that P4 is passively

replicated on PE1), as depicted in 3(b), the deadline is net. Using

passive replication, the inputs of a process Pi have to be broad-

cast on the bus, and recovery slack on PE1 is enlarged from 60

ms to 70 ms to accommodate P4. Even with these overheads as-

sociated to passive replication, the overall delay is reduced and

the deadline is met.

7. Experimental Results

Using TGFF (task graphs for free) 10 synthetic applications

for each graph size 10, 15, 20, 25, and 30 processes are gener-

ated. A random 50% of the processes are made fault-tolerant, the

other half is considered non-critical. A random mapping on an

architecture consisting of three processing elements is applied.

To focus on fault-tolerance aspects we disregard messages. Ex-

periments are run on a ECLiPSe CLP system, version 5.10 44

on 2.2 GHz AMD 64-bit machines, with progressive time-out

set for each run, based on the application size, to 15, 30, 45, 60

and 75 minutes, respectively.

Firstly, we compare the three scheduling approaches in terms

of the length of the schedules produced. The results are shown

in figure 4(a)-(b) for k = 1 and k = 2. The x-axis marks the size
of the graphs, and the y-axis is the schedule length, relative to

the schedule produced using the fully transparent approach. The

plotted points are the average of the ten graphs generated for

each graph size.

From the graphs we see that for k = 1 the slack sharing
scheme produces results that are 10-15% faster, and the condi-

tional scheme does 20-30% better. This tendency is even more

obvious for k = 2, where the slack sharing scheduling performs
20% better, and the conditional scheduling is 50% better than the

transparent scheduling. The implementation is not able to find

any solutions for graph sizes larger than 20 when doing condi-

tional scheduling. This is due to the size of the internally used

FT-PGs which grows exponentially with k [21].

Secondly, we wish to compare the length of the produced

schedules with those produced by the FT-PG list scheduling

heuristic we have presented in [12]. The applications are ran-
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Figure 4: Experimental Results

domly mapped on an architecture with 4 processors, and all pro-

cesses are made redundant. The results are shown in the table in

figure 4(d) for 10, 15 and 20 processes. We see that list schedul-

ing results are far from optimal. In fact, for k = 2 the optimal
schedules are as much as 65% faster.

We have evaluated our CLP approach on a real-life applica-

tion, the mp3-decoder presented in [22]. The results are shown

in the table in figure 4(c), where finishing times are expressed

as number of cycles. Using slack sharing scheduling gives a

performance increase of 17% and 23% for k = 1 and 2, respec-
tively, compared to the fully transparent approach. For condi-

tional scheduling, these numbers are 26% and 35%.

8. Conclusions

In this paper we have addressed fault-tolerant applications

mapped on time-triggered embedded systems where both pro-

cesses and messages are statically scheduled. We have proposed

three scheduling approaches to the synthesis of fault-tolerant

schedules, which provide trade-offs in terms of performance,

memory consumption, runtime overhead and debugability.

The proposed strategies have been implemented using a CLP

framework. The framework produces the fault-tolerant sched-

ules such that the application is schedulable in the presence of

transient faults, and is able to capture complex design constraints

and design optimization problems such as mapping and fault-

tolerance policy assignment.

The evaluations show that the CLP framework can find op-

timal solutions even for large applications, and outperforms the

previously proposed list scheduling-based heuristics.

References

[1] K. Apt and M. Wallace. Constraint Logic Programming using

ECLiPSe. Cambridge University Press, 2007.
[2] A. Bertossi and L. Manchini. Scheduling algorithms for fault-

tolerance in hard-real time systems. Real Time Systems, 7(3):229–

256, 1994.
[3] A. Burns, R. Davis, and S. Punnekkat. Feasibility analysis of

fault-tolerant real-time task sets. In Proc. of the Euromicro Work-

shop on Real-Time Systems, pages 29–33, 1996.
[4] V. Claeson, S. Poldena, and J. Söderberg. The xbw model for
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