
On Minimization of Peak Power for Scan Circuit during Test

Jaynarayan T. Tudu∗, Erik Larsson†, Virendra Singh∗, and Vishwani D. Agrawal‡
∗ Indian Institute of Science, Bangalore 560012, India

Email: jayttudu@csa.iisc.ernet.in, viren@serc.iisc.ernet.in
† Linköping University, SE-581 83 Linköping, Sweden

Email: erila@ida.liu.se
‡ Auburn University, Auburn, AL 36849, USA

Email: vagrawal@eng.auburn.edu.

Abstract

Scan circuit generally causes excessive switching activity
compared to normal circuit operation. The higher switching
activity in turn causes higher peak power supply current
which results into supply voltage droop and eventually
yield loss. This paper proposes an efficient methodology
for test vector re-ordering to achieve minimum peak power
supported by the given test vector set. The proposed method-
ology also minimizes average power under the minimum
peak power constraint. A methodology to further reduce the
peak power, below the minimum supported peak power, by
inclusion of minimum additional vectors is also discussed.
The paper defines the lower bound on peak power for a
given test set. The results on several benchmarks shows that
it can reduce peak power by up to 27%.1

1. Introduction

Power consumption during testing of scan circuit is an

important issue to address for today’s very complex sequen-

tial circuits. It becomes especially important when chips

are designed with small feature size and higher frequency;

hence, at-speed test becomes necessary. Excessive average

power results into burn out of chip whereas excessive peak

power results into power droop problem which can falsely

classify a good chip as a faulty chip. Average power can

be reduced by reducing clock frequency. Reduction of peak

power during test becomes very important for two reasons:

1. Higher peak power causes yield loss due to power droop

and cross talk, 2. If the scan circuit is a module in an SoC

then multiple module can be scheduled together to minimize

test time. Our methodology shows that the test vector order

under minimum achievable peak power, determined by our

approach, would also smooth out the power profile. The

smooth power profile can facilitate us to use box model [11]

for test scheduling in an SoC. Otherwise, a more complex

1. This research is partly supported by The Swedish Foundation for
International Cooperation in Research and Higher Education (STINT)
through Institutional Grant for Younger Researchers for collaboration with
Indian Institute of Science (IISc), Bangalore, India.

cycle accurate model [12], [13] must be used for SoC test

scheduling [14].

The problem of test power reduction is an active area of

research for quite sometime. Most of the solutions [3], [8],

[11] are aimed at average power reduction. However, they

have also achieved small reduction in peak power as a by-

product. Test vector reordering [8] is used to achieve average

power reduction. Bonhomme et al. [10] used scan chain

reordering technique to minimize the total number of tran-

sitions to reduce average power. The scan chain reordering

leads to extra interconnect area and power dissipation. In [4]

and [9], logic is added to hold the output of the scan cells at a

constant value during scan shifting thereby reducing power

dissipation. This approach greatly reduces average power,

and will avoid peak power problems during scan shifting

but these approaches lead to area overhead. Moreover, this

approach degrades circuit performance because it adds extra

logic in the functional paths. Another set of solutions which

have been proposed in the literature are the low activity

pattern generation using ATPG. Corno et al. [5] proposed

a test pattern generation technique which modifies test

sequence for sequential non-scan testing for reducing peak

power. The approaches proposed by Shankarlingam and

Touba [6] and Wen et al. [7] assign don’t care bits of the

deterministic test cubes used during test in such a way that it

can reduce the peak power. Badereddine et al. [2] proposed

a solution based on a power-aware assignment of don’t care

bits in deterministic test patterns. This solution proposes that

X values of generated pattern is filled before doing the test

pattern minimization, thereby the algorithm may put limits

on the test pattern compaction and it may increase test time.

This paper proposes methodology to minimize peak power

by test vector ordering. We also provide the bound on the

achievable minimum peak power for a given test set.

The rest of the paper is organized as follows. Section 2

presents the problem formulation where we formulated three

problems and also describe the lower bound on peak power.

Section 3 describes algorithms for all three problems. Sec-

tion 4 presents the experimental results. The paper concludes

Section 5.

2009 European Test Symposium

1530-1877/09 $25.00 © 2009 IEEE
DOI 10.1109/ETS.2009.36

25

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 8, 2009 at 07:18 from IEEE Xplore. Restrictions apply.

N1
14 ��

11

��

12

��

7

��

N2
12

��

8

��

10

��

6

��
Mi

7

��
7

		

3

5
���������

�����������

Mo

N4

8

��

8

6
��

5

		

N37��

10

��

10

��

6

��

Figure 1. A weighted digraph for patterns in Example 1

2. Problem Formulation

Problem Statement: Determination of the minimum

achievable peak power during test for a given test set

and find out a test vector sequence which can support the

minimum achievable peak power.

The proposed work formulates a graph theoretic problem

by mapping test vector sequence to a complete weighted

directed graph. The complete weighted directed graph Dc

can be constructed in the following way: Each test pattern Ti

corresponds to the node Ni of the digraph. There would be

a directed edge, Eij , from node Ni to node Nj if pattern Ti

and Tj can be applied consecutively. The weight of the edge

Eij , EWij , is the maximum of number of transitions occurs

in scan chain per clock cycle for complete scan operation

including load/unload, and launch and capture cycles while

applying test pattern Ti followed by Tj . Since any pattern

can follow any other pattern, the constructed graph would be

a complete graph. Example 1 helps understanding the graph

construction. We use Example 1 as a running example in

this paper.

Example 1: Let length of scan chain be 15 and test set

size be 5. Test patterns and responses are listed below:

T1: 111111101010111 R1: 111010101111000

T2: 111111111010101 R2: 101010111111111

T3: 111111111110101 R3: 101011111111001

T4: 111111111111101 R4: 110111111110110

Figure 1 shows the weighted diagraph for this test set.

We introduce a dummy node Mi to scan in the first vector

assuming scan chain is initially in reset state and Mo to scan

out the last response.

We have formulated three problems to obtain the mini-

mum peak power for a given test vector set and the order

of test vectors. The first problem gives test vector sequence

without time penalty and the other two problems give the

test vector sequences with marginal increase in time. At the

end we’ll define the lower bound on the minimum achievable

peak power.

2.1. Formulation of Problem-1

Definition 1. path-weight is defined as the maximum of
weight of each edge in the path in a digraph.

Problem Statement: Given a complete weighted directed

graph Dc, find out a Hamiltonian path which has minimum

path-weight.
Consider three different Hamiltonian paths, Path1, Path2

and Path3 for the digraph shown in Figure 1:

Mi
7 ��N1

12 ��N3
7 ��N4

8 ��N2
6 ��Mo

Mi
7 ��N2

8 ��N4
6 ��N3

10 ��N1
7 ��Mo

Mi
5 ��N3

10 ��N1
14 ��N2

8 ��N4
5 ��Mo

Let PW1, PW2 and PW3 be the correspond-

ing path-weights. Then, we have PW1 =
max{(Mi, N1), (N1, N3), (N3, N4), (N4, N2), (N2, Mo)} =
12. Similarly, PW2 = 10 and PW3 = 14. Thus,

Minimum Peak Power = min(PW1, PW2, PW3) = 10
To obtain a solution, we have transformed the problem to

an unweighted directed graph problem. The transformation

of a weighted digraph for a given threshold peak power

value, Pth to an unweighted digraph is as follows:

• Every node in weighted graph has a corresponding node

in unweighted graph.

• Remove all the edges whose weight is greater than Pth.

• Replace all other edges EWij ≤ Pth, with unweighted

edges.

The problem can be restated as: For a given complete

weighted directed graph Dc, find out the minimum peak

power P 1
th, such that its corresponding unweighted graph,

Du has at least one Hamiltonian path.

The above problem formulation obtains minimum possi-

ble peak power P 1
th. There may be more than one possible

Hamiltonian paths in the unweighted graph. Although min-

imization of peak power minimizes average power, we can

further optimize for given peak power P 1
th by choosing a

path that gives minimum average power. Note that we will

visit every node only once and will not increase the test

time.

2.2. Formulation of Problem-2

A directed graph, D, which does not contain any Hamil-

tonian path may have a possible walk [1] that visits each and

every node at least once. This is illustrated by the following

scenario shown in Figure 2.

a ��b ��c ��d

����
��

��
��

��f ��g

e

����������

Figure 2. An unweighted digraph

It can be observed from Figure 2 that Hamiltonian path

does not exist in the graph but there is a walk from node

26

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 8, 2009 at 07:18 from IEEE Xplore. Restrictions apply.

a to node g which revisit node e, b, c and d and visit each

node at least once.

Definition 2. We define walk-weight as the maximum edge-
weight in the walk in a digraph.

Problem Statement: For a given complete weighted

digraph Dc, find a walk which visits each and every nodes

at least once with minimum walk-weight.
The problem can be redefined for unweighted graph as

follows: For a given weighted directed graph D, find out the

minimum peak power value, P 2
th, such that its corresponding

unweighted graph has at least one walk.

The possible walk will revisit a few nodes; hence, it

will increase the test time. The increase in test time is

proportional to the number of revisited nodes.

2.3. Formulation of Problem-3

Problem-1 obtains Hamiltonian path having minimum

peak power P 1
th and Problem-2 finds a walk having

minimum peak power P 2
th(less than P 1

th) at the cost of

revisiting some nodes. If we further reduce Pth(minimum

achievable peak power), the corresponding unweighted

graph, Du, will not have a walk to apply complete test set.

Further reduction would result into disjoint paths. These

paths can be joined to form a single walk by introduction of

some extra low activity nodes (currently we consider only

all 0’s patterns and all 1’s patterns whose corresponding

nodes are Na0 and Na1) to Du. We refer, this walk with

these additional nodes as extended-walk and the graph Du

with these additional nodes as extended graph. Note that

we only scan in these patterns and will not apply so that

scan out would have same value. The above stated scenario

is illustrated in Figure 3.

a ��b ��c d ��f ��g

e

����������

Figure 3. Disconnected unweighted digraph

In Figure 3, the possible disjoint paths could be

a �� b �� c , d �� f �� g , and e. After

interconnecting these paths the resultant will be as follows:

a �� b �� c �� x �� d �� f �� g
�� y �� e , where x and y are new nodes. Therefore,

the problem can be defined in following way.

Problem statement: For a given complete weighted di-

rected graph Dc, find the minimum peak power value, P 3
th

such that its corresponding unweighted extended graph has

at least one extended-walk.

2.4. Lower Bound on Minimum Peak Power

Problem-3 can achieve the minimum possible peak power by

inserting additional nodes Na0 (all 0’s) and Na1 (all 1’s).

Theorem 1. The lower bound on minimum achievable peak
power for a test set is

max
∀i

[max{min(EWa0i, EWa1i), min(EWia0, EWia1)}]
(1)

Proof: In order to achieve the minimum peak power

the graph should be augmented by additional nodes Na0

and Na1 to construct an extended graph. In extended

graph, EWij ≥ max{min(EWia0, EWia1),min(EWa0j ,

EWa1j)}. Therefore, it is guaranteed that visiting node j
directly from node i would be expensive or equal to visiting

through either node Na0 or Na1. In worst case, we may

always need to traverse through extended nodes while going

from node i to node j. The minimum power to traverse

node j from node i would be max{min(EWia0, EWia1),

min(EWa0j , EWa1j)}. Hence, the minimum achievable

peak power for a given test set would be the maximum

of minimum peak power computed for all nodes, that is

max∀i
[max{min(EWa0i, EWa1i), min(EWia0, EWia1)}].

Lemma 1. Let there be a test set of n vectors and scan
chain length be l. The worst case test time to achieve the
lower bound is (3n − 1) × l + n − 1.

Proof: According to Theorem 1, we can always achieve

minimum power by traversing through Na0 or Na1. Hence,

it adds one extra node in the traversal from node i to node

j. However, it can be observed that to achieve minimum

power, node j can be reached from node Na1 or Na0, and

Na0 or Na1 can be reached from node i. Therefore, in the

worst case we need to take the following path to reach node

j from node i: Ni to Na0 to Na1 to Nj . We walk through

additional (2n − 1) nodes in the worst case. Therefore, the

worst case time would be: (3n − 1) × l + n − 1.

Corrollary 1. The minimum achievable peak power under
maximum test time (2n − 1) × l + (n − 1) for a test set is
max∀i{max(EWa0i, EWa1i, EWia0, EWia1)}.

Proof: A walk from node i to node j under power con-

straint max(EWa0i, EWa1i, EWia0, EWia1) can be made

by the following traversal: Vi to Va0 to Vj , or Vi to Va1

to Vj . Hence, the worst case test time under above stated

power constraint would be (2n − 1) × l + n − 1.

Note that the costs of walks Na0 to Na1 to Nj , and

Ni to Na0 to Na1 to Nj differ by at the most one transi-

tion as max{min(EWa0i, EWa1i), min(EWia0, EWia1} −
max(EWa0i, EWa1i, EWia0, EWia1) = 1. Therefore, we

can infer from Corollary 1 that we can reduce the test time

significantly at the cost of one additional transition in the

worst case.

27

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 8, 2009 at 07:18 from IEEE Xplore. Restrictions apply.

3. Algorithms

3.1. Algorithm-1 for Problem-1

The following algorithm computes the Hamiltonian path

and minimum peak power value P 1
th.

AlgoMinHam(Input:Dc,Output:HamPath,P 1
th)

1 Let A be nondecreasing sorted array of edge-weight;

2 index = SelectInitialIndex;

3 while(TRUE)

4 UpLimit = A(index);

5 RemoveEdge(Dc, UpLimit, Du);

6 found = SearchHam(Du , HamPath) ;

7 if(found == TRUE)

8 then

9 P 1
min = UpLimit;

10 return HamPath and P 1
th;

11 else

12 index = SelectNextIndex;

13 CONTINUE ;

EndofAlgo

The procedure RemoveEdge removes all the edges with

edge-weight greater than UpLimit. SearchHam finds the

Hamiltonian path if one exists. The following example

illustrates this.
Example 2 : Let Dc be the digraph from Figure 1.

The Algorithm-1 will return the following Hamiltonian path:

Mi
3 ��N4

8 ��N2
10 ��N3

10 ��N1
7 ��Mo

and minimum peak power value P 1
th = 10.

3.2. Algorithm-2 for Problem-2

The following algorithm finds out a minimum-weight

walk if exist which visits every nodes of given digraph at

least once.

AlgoMinWalk(Input:Dc, Output:Walk, P 2
min)

1 Let A be nondecreasing sorted array of edge-weight;

2 index = SelectInitialIndex;

3 while(TRUE)

4 UpLimit = A(index);

5 RemoveEdge(Dc, UpLimit, Du);

6 Success = AlgoConDag(Du,DAG);

7 if(Success == TRUE)

8 AlgoConIpath(DAG, Ipath);

9 AlgoConWalk(Ipath, Walk);

10 P 2
min = UpLimit;

11 return Walk and P 2
th;

12 else

13 index = SelectNextIndex ;

14 CONTINUE ;

EndofAlgo.

N1

��

N2

��

��
Mi

�� 		

 ��������������������� Mo

N4

��

��

		

N3
��

��

Figure 4. Unweighted digraph with edge-weights ≤ 8

The procedure AlgoConDag constructs a directed acyclic

graph (DAG) from given digraph Du by forming each cycle

into corresponding supernode [15] if it can be constructed.

AlgoConIpath constructs an intermediate path Ipath from a

given DAG by using the concept of acyclic ordering [1].

Finally, AlgoConWalk procedure constructs a walk from

a given Ipath by unrolling supernodes into cycles and

connecting the nodes. The complexity of the algorithm

would be O(nodes3 + edges2), which is polynomial.

Following example illustrates this.

Example 3: Let Dc be complete digraph from Figure 1.

Then unweighted digraph Du after RemoveEdge() is shown

in Figure 4. After obtaining this digraph, resultant Walk
and P 2

th are obtained. The Walk is:

Mi
7 ��N2

8 ��N4
6 ��N3

7 ��N4
8 ��N1

7 ��Mo

and P 2
th = 8 which is < P 1

th.

3.3. Algorithm-3 for Problem-3

This algorithm find a minimum-weight, P 3
th,walk in an

extended graph.

AlgoMinEWalk(Input:Dc Output:EWalk, P 3
th)

1 Let A be nondecreasing sorted array of edge weight;

2 index=SelectInitialIndex;

3 while(TRUE)

4 UpLimit = A(index);

5 RemoveEdge(Dc, UpLimit, Du);

6 FindDisjointPath(Du, C);

7 JoinPath(C, EWalk);

8 TempWalk = EWalk;

9 P 3
th =UpLimit;

10 if(LowerBound < P 3
th)

11 index=SelectNextIndex;

12 CONTINUE;

13 else

14 return TempWalk and P 3
th;

EndofAlgo

Procedure FindDisjointPath finds the directed path cover.

Then procedure JoinPath introduces new nodes to intercon-

nect paths. Here we are using all 0’s Na0 or all 1’s Na1 nodes

to connect. The use node Na0 or Na1 depends upon the

28

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 8, 2009 at 07:18 from IEEE Xplore. Restrictions apply.

Table 1. Results for Algorithm-1
Benchmark #testpattern scanlength Peaktrans Peaktrans Improve Avgtrans Avgtrans Improve

GivenOrder Algo-1 ment% GivenOrder Algo-1 ment%
s9234 105 211 68 56 17.64 27.02 26.37 2.40
s38584 110 1426 444 379 14.63 120.99 119.45 1.24
s15850 95 534 120 96 20.00 37.09 36.42 1.80
s35932 12 1728 106 89 16.03 34.61 33.38 3.55
s38417 68 1636 473 342 27.69 161.35 158.84 1.55
s1196 136 18 17 14 17.64 9.21 8.80 4.45
b04 43 66 49 44 10.20 29.17 28.58 2.03
b07 52 45 34 31 08.82 19.37 18.95 2.17
b10 47 17 16 13 18.75 8.26 7.85 4.96
b14 627 215 163 150 7.97 98.10 98.00 0.11
b19 628 215 171 162 5.26 98.12 97.96 0.17

b21 1 488 215 144 129 10.41 99.34 99.20 0.15

response of the last vector or the stimuli of the first vector.

Note that the complexity of the algorithm is polynomial. The

following example illustrates the function of Algorithm-3.

Example 4: Let Dc be the digraph from Figure 1. The

unweighted digraph Du after RemoveEdge() is shown in

Figure 5.

N1

��

N2

��
Mi

�� 		

 ��������������������� Mo

N4
��

���������������������
N3

��

����������

Figure 5. Unweighted digraph having edge weight ≤ 7

In this example the possible disjoint path would be

Mi
3 ��N4

6 ��N3
, N1 and N2

6 ��Mo
. Then

resultant extended-walk would be,

Mi
3 ��N4

6 ��N3

6

����
��

��
��

Na1
6 ��N1

7 ��Na1
6 ��N2

6 ��Mo

and P 3
th = 7 which is < P 2

th.

4. Implementation and Experimental Results

All the three Algorithms are implemented in C. For exper-

imental evaluation we used ITC99 and ISCAS89 benchmark

circuits. Scan insertion and synthesis are carried out using

“DesignCompiler” and test patterns are generated using

“TetraMAX”. The results are shown in Tables I, II and

III, respectively, for Algo-1, 2 and 3. For each benchmark

circuit, the peak transition due to given order of test patterns

(given by TetraMax, peak transition using proposed algo-

rithms, and percentage gain achieved are shown in tables.

In Table I, the average transition due to given order and due

to Algo-1 are shown with percentage of improvement. For

Algo-1 test time remains unchanged. For Algo-2 and Algo-3

test time is reported in Tables II and III in columns named

“testtime overhead”.

4.1. Analysis of Experimental Results

The experimental results shown in Table I indicates that

Algo-1 can achieve up to 27% reduction in peak power

and average reduction in peak power is about 16% in

comparison to given order. It is important to note that it

also reduces average power up to 4.45%. Also due to the

NP-completeness, Algo-1 was aborted for s838, and b22,

and Algo-2 is used for these as it is faster algorithm - with

polynomial time complexity.

Algo-2 achieved about 8.33% improvement over Algo-1

while incurring test-time overhead of 1.33%. Algo-2 was not

able to reduce the peak power of other benchmarks below

the limit achieved by Algo-1 because either Algo-1 itself

achieved the lower bound or the benchmark did not have any

cycle that can make walk different than Hamiltonian path.

However, for the benchmarks which achieved lower bound in
Algo-1, Algo-2 was able to achieve the same result without
increase in test time (without revisiting a node) quickly in

comparison to Algo-1. For rest of the benchmarks (which are

not mentioned in Table II) reported in Table I, Algo-2 also

achieved the same results (in terms of peak power reduction

and average power reduction without test time overhead) as

obtained by Algo-1 and reported in Table I.

For benchmark b19 and b22 Algo-3 has marginal im-

provement over Algo-1 and Algo-2. It could not further

reduce the peak power for the other bench marks which

are not reported in Table III, because they already achieved

the lower bound by Algo-1 or Algo-2. It is important to

note that Algo-2 and Algo-3 are polynomial time complexity

algorithms. Therefore, these algorithms can be used for large

industrial circuits.

5. Conclusion

We have discussed graph theoretic approaches to mini-

mize peak power during the test, which is a concern for

a complex scan based design. A presented approach can

29

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 8, 2009 at 07:18 from IEEE Xplore. Restrictions apply.

Table 2. Results for Algorithm-2
Bench #test scan Peaktran Peaktran Improve improve% testtime Avgtran Avgtran Improve
mark pattern length GivenOrder Algo-2 ment% overAlgo-1 overhead GivenOrd Algo-2 ment%
s838 75 32 16 12 25.00 0.00 0.00 4.61 4.59 0.43

s838 75 32 16 11 31.25 08.332 1.33 4.61 4.57 0.80
b19 628 215 171 162 5.26 0.00 0.00 98.12 97.96 0.17
b22 622 215 172 158 6.97 0.00 0.00 98.23 98.07 0.16

Table 3. Results for Algorithm-3
Bench #test scan Peaktran Peaktran Improve improve% testtime Avgtran Avgtran Improve
mark pattern length GivenOrder Algo-3 ment% overAlgo-2 overhead GivenOrd Algo-3 ment%
b19 628 215 171 161 5.84 0.61 0.63 98.12 97.50 0.63
b22 622 215 172 157 8.72 0.63 0.64 98.23 97.61 0.63

achieve minimum peak power without increase in test time.

We also present two approaches that can further reduce the

peak power at a cost of increase in test time. Finally, we

have presented a lower bound on the minimum achievable

peak power for a given test set. The results indicate that

we can achieve up to 27% peak power reduction without

increase in test time. We can also reduce average power by

up to 4.96%. The proposed algorithms Algo2 and Algo-3 are

polynomial complexity algorithms, hence the methodology

is scalable. In the future, Algo-1 can be implemented as an

approximation algorithm to reduce the time complexity. Note

that the proposed method can be applied with the existing X-

fill based approaches because it uses fully specified vectors.

Hence, we can achieve more power saving in combination

with the existing techniques. It could also be more effective

if integrated with ATPG.

6. Acknowledgment

The authors thank to Prof. Michiko Inoue, NAIST, Japan

and Prof. Tim Cheng, UCSB, USA for their valuable sug-

gestions. The authors also thanks to Prof. Sunil Chandran,

IISc, Bangalore for helping in understanding graph theoretic

concepts, and Prof. Seiji Kajihara, KIT, Japan for providing

test pattern file for d695.

References

[1] J. Bang-Jensen and G. Gutin, Digraphs Theory, Algorithms
and Applications, Springer-Verlag, 2006.

[2] N. Badereddine, P. Girard, S. Pravossoudovitch, C. Landrault,
A. Virazel, and H.-J. Wunderlich, “Minimizing Peak Power
Consumption during Scan Testing: Test Pattern Modification
with X Filling Heuristics,” Proc. Int’l Conf. Design and Test
of Integrated System in Nanoscale Tech., pp. 359–364, 2006.

[3] R. Sankaralingam, R. Oruganti, and N. A Touba, “Static Com-
paction Technique to Control Scan Vector Power Dissipation,”
Proc. of VLSI Test Symposium, pp. 35-40, 2000.

[4] A. Hertwig and H.-J. Wunderlich, “Low Power Serial Built-In
Self-Test,” Proc. European Test Workshop, pp. 49–53, 1998.

2. when Algo-2 is used as approximation of Algo-1 - as in previous row

[5] F. Corno, M. Rebaudengo, M. Sonza Reorda, and M. Violante,
“On Reducing the Peak Power Consumption of Test Se-
quences,” Proc. European Conf. Circuit Theory and Design,
pp. 247–250, 1999.

[6] R. Sankaralingam and N. A. Touba, “Controlling Peak Power
during Scan Testing,” Proc. IEEE VLSI Test Symp., pp. 153–
159, 2002.

[7] X. Wen, Y. Yamashita, S. Kajihara, L.-T. Wang, K. K. Saluja,
and K. Kinoshita, “On Low-Capture-Power Test Generation
for Scan Testing,” Proc. IEEE VLSI Test Symposium, pp. 265–
270, 2005.

[8] V. Dabholkar, S. Chakravarty, I. Pomeranz, and S. M.
Reddy, “Techniques for Minimizing Power Dissipation in
Scan and Combinational Circuits During Test Application,”
IEEE Trans. Comp.-Aided Design, Vol. 17, No. 12, pp. 1325–
1333, Dec. 1998.

[9] S. Gerstendörfer, and H.-J. Wunderlich, “Minimized Power
Consumption for Scan-Based BIST,” Proc. Intl. Test Conf.,
pp. 77-84, 1999.

[10] Y. Bonhomme, P. Girard, C. Landrault, and S. Pravos-
sooudovitch, “Power Driven Chaining of Flip-Flops in Scan
Architectures,” Proc. Intl. Test Conf., pp. 796–802, 2002.

[11] R. M. Chou, K. K. Saluja, and V. D. Agrawal, “Scheduling
Test for VLSI Systems under Power Under Power Con-
straints,” IEEE Trans. VLSI Systems, Vol. 5, No. 2, pp. 175–
185, June 1997.

[12] S. Samii, M. Selkälä, E. Larsson, K. Chakrabarty, and Z. Peng
“Cycle-Accurate Test Power Modeling and Its Application to
SoC Test Architecture Design and Scheduling,” IEEE Trans.
Comp.-Aided Design, Vol. 27, No. 5, pp. 973–977, May 2008.

[13] S. Samii, E. Larsson, K. Chakrabarty, and Z. Peng “Cycle-
Accurate Test Power Modeling and its Application to SoC
Test Scheduling,” Proc. Intl. Test Conf. pp. 1-10, 2006.

[14] J. Pouget, E. Larsson, and Z. Peng “Multiple-constraint driven
system-on-chip test time optimization,” Journal Electronic
Testing: Theory and Application, Vol. 21, No. 6, pp. 599–
611, 2005.

[15] H. Gabow, Z. Galil and T. Spencer, “Efficient Implementation
of Graph Algorithms Using Contraction,” Proc. 25th Annual
Symp. Foundation of Computer Science, pp. 347-357, 1984.

30

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on November 8, 2009 at 07:18 from IEEE Xplore. Restrictions apply.

