
1

Fine-Grained Long-Range Prediction of
Resource Usage in Computer Clusters

Ivan Ukhov, Diana Marculescu, Petru Eles, and Zebo Peng

Abstract—In order to facilitate the development of intelligent
resource managers of computer clusters, we investigate the utility
of the state-of-the-art neural networks for the purpose of fine-
grained long-range prediction of the resource usage in one such
cluster. We consider a large data set of real-life traces and
describe in detail our workflow, starting from making the data
accessible for learning and finishing by predicting the resource
usage of individual tasks multiple steps ahead. The experimen-
tal results indicate that such fine-grained traces as the ones
considered possess a certain structure, and that this structure
can be extracted by advanced machine-learning techniques and
subsequently utilized for making informed predictions.

Index Terms—Computer cluster, machine learning, neural
network, prediction, resource management, uncertainty.

I. INTRODUCTION AND MOTIVATION

R ESOURCE MANAGEMENT is of great importance. It is
the activity that, if adequately executed, enables one to

exploit optimally the full potential of the computer system at
hand. However, there is typically very little control over the
production environment. In particular, the actual workload that
the system will have to process at runtime is rarely known in
advance. Therefore, efficient resource management is a difficult
endeavor, which has to cope with inherent uncertainty.

Uncertainty can be mitigated by predicting the future and
acting accordingly, which is what proactive resource managers
thrive on. However, accurate and useful prediction is not an easy
task either. Modern computer systems are elaborate, and their
resource managers require elaborate forecasting mechanisms.

Forecasting traditionally falls within the scope of machine
learning [1]. Machine learning has recently received a great
amount of due attention due the renaissance in neural networks
[2], which seemingly effortlessly superseded the then state-of-
the-art techniques for modeling and prediction.

We posit that modern neural networks constitute a highly
promising assistant for resource management. Despite the
fact that resource management has already seen a number
of applications of neural networks—which we shall touch
upon in Sec. II—the research in this direction has been limited.
In particular, only primitive architectures of neural networks
have been considered, and they have been applied to relatively
simple problems. This state of affairs is unfortunate provided
that neural networks have been nearly revolutionary in other
disciplines. Therefore, we feel strongly that more research
should be conducted in order to investigate the aid that the
recent advancements in the field of machine learning can give
to the design of resource managers of computer systems.

In this paper, we set out to conduct one such body of research.
More specifically, we study the resource usage in a large
computer cluster and aim to predict this usage multiple steps
ahead at the level of individual tasks executed in the cluster.
To this end, we intend to use recurrent neural networks [2].

Consider the example given in Fig. 1 where the CPU usage
of a task running on a machine in the cluster is depicted
three times (the solid-red-to-solid-blue lines). The three cases
correspond to three different time moments (the black dots)
as viewed by the resource manager of the cluster. The solid
red lines represent the history of the usage, which is known
to the manager, while the solid blue lines represent the future
usage, which is unknown to the manager. The latter is what
we are to predict in this work for each task of interest and
several steps ahead. In Fig. 1, our potential predictions up to
four steps ahead are depicted by a set of dashed blue lines.

Such detailed (for individual tasks) and foresighted (multiple
steps ahead) information about the future resource usage as
the one depicted in Fig. 1 can be of great help to the resource
manager. For instance, knowing the future resource usage of
the tasks that are currently being executed in the cluster, the
manager can more intelligently decide which of the cluster’s
machines the next incoming task should be delegated to.

The remainder of the paper is organized as follows. Section II
provides an overview of the prior work and summarizes our
contributions. In Sec. III, the problem that we address is
formulated. Our pipeline for data processing is presented
in Sec. IV, and our predictive model in Sec. V. The key
operational aspects of our workflow are described in Sec. VI.
The experimental results are reported and discussed in Sec. VII.
Lastly, Sec. VIII provides a number of concluding remarks.

II. PRIOR WORK AND OUR CONTRIBUTIONS

Let us have a look at a number of studies that leverage
various techniques from the field of machine learning in order
to facilitate resource management in computer systems.

In [3], temperature forecasting is based on an autoregressive
moving-average model [1], enabling the development of an
efficient thermal management strategy for multiprocessor sys-

Time

C
PU

x̂i5
x̂i6

x̂i7

xi0

xi1 xi2 xi3

ti0 ti1 ti2 ti3 ti4 ti5 ti6 ti7

x̂i4

Past Future

C
PU

C
PU

PredictionPresent

x̂i5
x̂i6

xi0

xi1 xi2 x̂i3 x̂i4

x̂i5
x̂i6

x̂i7

xi0

xi1 xi2 xi3 xi4

Time

Time

Figure 1. Example of predicting the CPU usage of a particular task up to
four steps ahead at three different time moments.



2

Raw
data

Trained
model

Data processing

Grouping Indexing Selection Training Validation Testing

LearningX

Figure 2. Overview of our workflow. The data-processing and learning stages are described in Sec. IV and Sec. VI, respectively.

tems. The work in [4] enhances runtime thermal management
by providing an on-chip temperature predictor based on feed-
forward neural networks [1]. The analysis and mitigation of
the impact of process variation undertaken in [5] are facilitated
by a linear regression model [1] trained on leakage-power
measurements with the goal of predicting peak temperatures.

Closer to our work, the work in [6] is concerned with
cloud data centers. The authors propose a framework for
predicting the number of virtual-machine requests together
with the required amount of CPU and memory. The framework
makes use of k-means clustering [1] for identifying different
types of requests, and it then uses Wiener filters in order to
estimate the workload with respect to each identified type.

Similar to [6], the work in [7] is focused on forecasting
virtual-machine requests in cloud data centers and relies on
k-means clustering as the first step. Unlike [6], the main
workhorse in the case of [7] is extreme learning machines,
which are feed-forward neural networks mentioned earlier.

An ensemble model [1] is presented in [8] targeted at
predicting the CPU usage in cloud environments. It relies
on multiple models including an exponential smoothing, auto
regressive, weighted nearest neighbors, and most similar pattern
model. The final predictions are obtained by combing the
predictions from these models by means of a scoring algorithm.

It can be seen in the above that, in general, machine learning
has been extensively utilized for aiding the design of resource
managers of computer systems. However, as mentioned in
Sec. I, the most recent advancements in machine learning have
not been sufficiently explored in this context yet. In particular,
the utility of neural networks have been studied only marginally:
feed-forward networks, as in [4], [7], are arguably the simplest
and least powerful members of their rich family.

In addition, note that the predictions delivered by [6], [7],
[8] are coarse, aggregative. The corresponding techniques treat
virtual-machine requests or computational resources as a fluid
and predict the amount of this fluid that will arrive or be
needed at the next time step. It means that the aforementioned
techniques are not capable of characterizing individual tasks.
Such fine-grained information, however, can be of help for the
resource manager of the computer cluster under consideration.

To conclude, only primitive architectures of neural networks
have been considered in the literature on resource management,
and only aggregative prediction has been addressed so far.
Thus, there is a need for further exploration and development.

Our work makes the following major contributions:

• We develop a data-processing pipeline for working with
large data sets that makes the data readily accessible for
machine learning, and we apply it to a data set of real
resource-usage traces collected in a large computer cluster.

• We present a model for making fine-grained long-range
prediction of the cluster’s resource usage that relies on
the state-of-the-art recurrent neural networks.

• We open-source the whole infrastructure that we have
developed for data processing and modeling [9].

To the best of our knowledge, we are the first to investigate the
utility of recurrent neural networks for predicting the resource
usage in a computer cluster. In addition, we are the first to
address this prediction at the level of individual tasks executed
in the cluster and multiple steps ahead, providing the resource
manager with more detailed and foresighted information and
allowing for more elaborate management of the cluster.

III. PROBLEM AND SOLUTION

Consider a cluster of machines that is serving a stream of
tasks which are distributed across the cluster by a resource
manager. Each task consumes certain resources during its
execution; examples include the CPU and memory usage over
time. The cluster has an adequate monitoring facility deployed
so that the resource usage of the tasks is at one’s disposal.

The resource-usage trace of task i is defined as a sequence
of equally spaced d-dimensional measurements in time, which
we shall represent as the following tensor of size li × d:

xi = (xi0, . . . , xik, . . . , xi,li−1) (1)

where xik is the measurement taken at time tik, and li denotes
the length of the sequence. Such a sequence is called fine-
grained data as it contains multiple measurements over the
execution of the task as opposed to having only one aggregative
measurement such as the average or maximum value.

Consider now task i and suppose that the current time is tik;
an illustration for k ∈ {2, 3, 4} is given in Fig. 1. This means
that xi0, . . . , xik are known. Given these previous values, our
goal is to estimate its next h values, which we shall denote
by x̂i,k+1, . . . , x̂i,k+h; in Fig. 1, h = 4. Such an estimation is
called a long-range prediction as it provides multiple future
values as opposed to only one. This operation is to be performed
for each active task of interest at any time moment of interest.

In order to attain the objective, we reside to learning from
historical data. Specifically, it is assumed first that there is a
data set of resource-usage traces available, and that these past
resource-usage traces are representative of the future ones:

X = {xi : i = 0, . . . , n− 1} (2)

where n is the total number of traces, and xi is as in (1).
We apply machine learning to the data in order to construct
an adequate model offline, and this model is then used in
order to make predictions at runtime. We specifically aim
at investigating the utility of the state-of-the-art in machine
learning; to this end, we use recurrent neural networks [2].

It should be understood that, in order for learning to be
possible, the resource-usage traces that we consider have to
have a certain structure that could be extracted and used for
intelligent prediction. An important question is whether real-life
traces of this kind, at all, exhibit such a structure. Investigating
this question is part of our objective in this work.



3

Let us now adumbrate our workflow, which is illustrated in
Fig. 2. Given raw resource-usage traces, we first (pre)process
them in order to make these data suitable for the subsequent
computations. This part is explained in the next section, Sec. IV,
and can be seen on the left of Fig. 2. The processed traces are
then used in order to obtain an adequately trained predictive
model. The modeling part is covered in Sec. V while the
learning one in Sec. VI; the latter can also be seen on the
right of Fig. 2. The above operations are to be undertaken
offline while the obtained model is supposed to be used by the
resource manager of the computer system at hand at runtime.

IV. DATA PROCESSING

Before we describe our data-processing pipeline, let us first
give a brief introduction to the considered data set: the Google
cluster-usage traces [10]. The traces were collected over 29
days in May 2011 and encompass more than 12 thousand
machines serving requests from more than 900 users.

In the data set’s parlance, a user request is a job; a job
comprises one or several tasks; and a task is a Linux program
to be run on a single machine. Each job is ascribed a unique
ID, and each task is given an ID that is unique in the scope
of the corresponding job. Apart from other tables, the data set
contains the so-called resource-usage table. The table records
the resource usage of the executed tasks with the granularity of
five minutes. Each record corresponds to a specific task and a
specific five-minute interval, and it provides such measurements
as the average and maximum values of the CPU, memory, and
disk usage. There are more than 1.2 billion records, which
correspond to more than 24 million tasks or, equivalently,
resource-usage traces and to more than 670 thousand jobs.

The resource-usage table is provided in the form of 500
archives. Each archive contains a single file with measurements
over a certain time window. Such a format is inconvenient
and inefficient to work with, which is what we address in this
section. Consider now the three leftmost boxes in Fig. 2.

A. Grouping
At the first stage, the data from the 500 archives are

distributed into separate databases so that each such database
contains all the data points that belong to a particular job,
resulting in as many databases as there are jobs. In order to
reduce the space requirements, only the used columns of the
table are preserved. In our experiments, these columns are the
start time stamp, job ID, task ID, and average CPU usage.

B. Indexing
At the second stage, an index of the traces is created in order

to be able to efficiently navigate the catalog of the databases
created at the previous stage. Each record in the index contains
metadata about a single task, the most important of which are
the task ID and the path to the corresponding database. We
also include the length of the trace in question into the index in
order to be able to efficiently filter the traces by their lengths.

C. Selection
At the last stage of our pipeline, a subset of the resource-

usage traces is selected using the index according to the needs
of a particular training session (to be discussed in Sec. VII)
and then stored on disk. Concretely, the traces are fetched from

Recurrent layersInput Regression layer Output

xik x̂i,k+1

Figure 3. Schematic representation of our predictive model.

the databases and stored in the native format of the machine-
learning library utilized; we shall refer to a file in such a
format as a binary file. Instead of writing all the selected traces
into one binary file, we distribute them across several files.
Such a catalog of binary files is created for each of the three
commonly considered parts [1] of the data at hand: one is for
training, one for validation, and one for testing; see also Fig. 2.
We shall refer to these parts as X1, X2, and X3, respectively.

Lastly, it is common practice to standardize data before
feeding them into a machine-learning algorithm [1]. In our
case, it is done along with creating the aforementioned three
catalogs, which requires a separate pass over the training set.

In conclusion, the benefit of the above pipeline is in the
streamlined access to the data during one or multiple training
sessions. The binary files can be read efficiently as many
times as needed, and they can be straightforwardly regenerated
whenever the selection criteria change; note that the artifacts
of the procedures in Sec. IV-A and Sec. IV-B stay the same.
The presence of multiple binary files allows also for shuffling
the training data at the beginning of each training epoch.

Now we are ready to make use of the processed data.

V. MODELING

As mentioned in Sec. I and Sec. III, a part of our goal
is to assess the applicability of the latest advancements in
neural networks [2] to modeling and prediction of fine-grained
resource-usage data. The architectures of neural networks are
very diverse: one network can be nothing like another. Since
the data that we study are inherently sequential, it is natural
to found our model on the basis of recurrent neural networks
[2], which are specifically designed for such cases.

A schematic representation of our model can be seen in
Fig. 3; many of the actual connections between the model’s
parts are simplified or not shown at all in order to make the
figure legible. In the following subsections, we shall describe
each part in detail. A number of important operational aspects
of the model will be covered in the next section, Sec. VI.

A. Input and Output
The input to the model is a single d-dimensional data point,

which can be seen on the left-hand side of Fig. 3. Similarly, the
output is a single d-dimensional data point, which is depicted
on the right-hand side of Fig. 3. The input xik is the value
of the resource usage of an individual task at step k, and the
output x̂i,k+1 is a one-step-ahead prediction of the usage.

B. Recurrent Layers
The core of the model is formed by a number of recurrent

layers, which are also called cells. They are shown as a group



4

of blue boxes in Fig. 3. The network can be made as many
layers deep as needed. Each cell is composed of a number of
units, which are depicted by double circles in Fig. 3. We let c
and u be the number of cells and units per cell, respectively.

A unit is the smallest processing elements. The key char-
acteristics of a unit are that it has internal memory, and that
it has access to its previous output, which makes it recurrent.
There are different types of units; each one defines how a
unit lets data flow through it and updates its memory. One
notable type is called LSTM [11], which stands for long short-
term memory. It has been designed to overcome the problems
of traditional recurrent networks—such as vanishing gradient
when training—and it is now one of the most widely used
types. The recurrent layers of our model are LSTM cells.

In addition, during training, each cell is enhanced by
a dropout mechanism [12], which gives control over the
regularization of the model and is to prevent potential overfitting
[1]. We let p be the probability of dropping an output of a cell.

C. Regression Layer
The output of the last cell is typically a large tensor, which

is proportional in size to the number of units in the cell. Each
entry of such a tensor can be considered as a feature that
the network has extracted and activated in accordance with
the trace that is currently being fed into the model. The task
now is to combine these features in order to produce a single
prediction. To this end, we mount a regression layer on top of
the last cell, which is depicted by a red box in Fig. 3. Unlike
the recurrent layers in Sec. V-B, which feature highly nonlinear
transformations, this layer performs an affine transformation.

To summarize, we have described a predictive model that is
composed of a number of LSTM cells and a linear regression
layer. Due to its internal memory, the model is capable of
efficiently taking into account the entire past of the resource-
usage trace under consideration when making predictions. Let
us now discuss how the model is supposed to be used.

VI. LEARNING

The output of the data-processing pipeline in Sec. IV is the
data set X , which is split into three parts: X1 is for the training
stage, X2 for the validation stage, and X3 for the testing stage.
We now elaborate on the operations that take place during
these three stages, which are also displayed in Fig. 2.

A. Training
The model in Sec. V has a large number of parameters that

have to be learned during training; they are primarily various
weights and biases inside the layers. For this purpose, X1 is
utilized. The training is undertaken via backpropagation through
time using stochastic gradient descent [2] whose objective is
to minimize a certain loss function, which we shall specify
shortly. There are two aspects to be discussed first.

The first concerns the way a single resource-usage trace
is fed into the model. To begin with, the internal memory is
nullified before feeding a trace. Next, note that a trace, as in
(1), has multiple data points (li > 1), and that two traces are
likely to have different lengths (li 6= lj) since the execution
times of two tasks are likely to differ. With this in mind, all the
points of a trace are fed in one pass using a technique called
dynamic unrolling. An illustration for li = 4 is given in Fig. 4,

Output

Input
xi0

x̂i1

xi1

x̂i2

xi2

x̂i3

xi3

x̂i4

Regression layer

Recurrent layers

Figure 4. Example of dynamic unrolling during the model’s usage.

in which the representation in Fig. 3 has been simplified even
further and rotated 90◦ counterclockwise. It can be seen that
the model has been replicated as many times as there are data
points in the trace. However, it is still the same model, and all
the replicas share the same parameters and internal memory.
It can also be seen in Fig. 4 how information flows from one
time step to the next, which is what makes the model recurrent.

Now, it is not efficient to feed only one trace at a time due to
the inevitable overhead imposed by the computations involved.
Therefore, these computations should be performed in batches
whenever possible. Since li 6= lj in general, it is not possible
to stack multiple arbitrary traces into a single tensor directly.
In order to circumvent this problem, we reside to bucketing.
Specifically, each read trace is put into one of many queues
depending on its length. When a queue, accumulating traces
of length from some l′ to l′′, has collected the desired number
of traces—denoted by b and referred to as the batch size—it
pads traces shorter than l′′ with zeros and emits a tensor of
size b× l′′ × d to be further consumed by the model.

The loss function that we minimize during training is the
mean squared error (MSE) [1] of one-step predictions over the
whole batch. The correct prediction for the very last time step,
which goes beyond the time window of the traces in question,
is assumed to be zero. For instance, in Fig. 4, x̂i4 has no xi4

to be compared with; xi4 is assumed to be zero.

B. Validation
As it is the case with arguably all nontrivial machine-

learning models, the one presented in Sec. V has a number
of hyperparameters. They include the number of cells c,
number of units per cell u, and probability of dropout p,
which are introduced in Sec. V-B. Unlike ordinary parameters,
which are to be optimized during training (see Sec. VI-A),
the hyperparameters are to be set prior to training and kept
unchanged thereafter. The impact of the hyperparameters is
profound; therefore, they should be carefully selected.

The validation set X2 is used to assess the performance of the
model trained (using X1 as usual) under different configurations
of the hyperparameters of the model. As before, the error
metric utilized is the MSE, and it is beneficial to perform these
computations in batches. The trained model that has the best
performance on X2 is then chosen as the one to be used.

Despite all the techniques employed to speed up training, it is
still a time-consuming operation. As a result, brute-force search
in the space of hyperparameters for the best configuration is
impractical; a certain intelligent strategy should be followed.



5

In our workflow, we use the Hyperband algorithm [13].
Instead of adaptively choosing new configurations to evaluate—
which is the case with many algorithms of this kind—it
adaptively allocates resources to configurations chosen at
random, which has been shown to be a very efficient strategy.
In particular, the algorithm allows one for saving a lot of
compute power, which otherwise would be burnt in vain
evaluating overtly inadequate configurations of hyperparameters.
In this context, resources refers a user-defined measure of how
extensively a configuration is exercised. For instance, it can be
the amount of wall-clock time spent or the number of training
steps taken; in our experiments in Sec. VII, we use the latter.

C. Testing
After a trained model has been selected during the validation

stage, it has to be assessed anew [1]: one cannot aver that the
error with respect to X2 is a good estimate of the generalization
error because the selection was biased (we deliberately chose
the configuration that had the best performance on X2).

In order to have an unbiased evaluation, the testing set X3

is utilized. As it is with training and validation, the MSE is
considered as a quality metric, and the bucketing mechanism is
used (see Sec. VI-A). However, unlike training and validation,
the error is calculated in a more elaborate way as follows.

Recall first that our objective is making long-range pre-
dictions of resource usage (see Sec. III). Note also that, in
Sec. VI-A and Sec. VI-B, we are only concerned with what
happens one time step ahead. The reason is that we would like
to have as high throughput as possible since the training and
validation operations are to be performed many times. Testing,
on the other hand, is done only once, and it is during testing
we make and assess multiple-step-ahead predictions.

In order to compute long-rage predictions, we use refeeding:
at time step k, the predicted value x̂i,k+1 is fed into the model
as if it was the actual resource usage xi,k+1 at step k+1, which
is not yet known at step k. It might be helpful to consider the
example given in Fig. 1. The process continues until all the
desired h future values are estimated. It is natural to expect
that the more accurate the one-step-ahead prediction is, the
more accurate the multiple-step-ahead one will be.

There is more to it. Consider how a trained model will be
used in practice. Potentially at each step k, one might want
to predict the next h values of the resource usage of task
i, that is, x̂i,k+1, . . . , x̂i,k+h. Therefore, in order to test the
model properly, we have to sweep over all the time steps of the
trace in question while making h predictions at each step. An
important aspect to note here is that the state of the model’s
memory should be saved before computing x̂i,k+1, . . . , x̂i,k+h

at step k and restored before feeding xi,k+1 in order to advance
to step k + 1. The memory becomes contaminated when one
feeds predictions instead of observations into the model.

At this point, the main aspects of our workflow, which is
illustrated in Fig. 2, have been discussed. The output of the
workflow is a predictive model that has been trained on X1,
validated on X2, and tested on X3.

VII. EXPERIMENTAL RESULTS

The infrastructure developed for the experiments presented
below is open source and available online at [9]. The imple-
mentation is based on TensorFlow [14]. The experiments are

conducted on a GNU/Linux machine equipped with 8 CPUs
Intel Core i7-3770 3.4 GHz, 16 GB of RAM, and an HDD
of 500 GB. The machine has no modern GPUs; therefore, the
reported results have an immense room for improvement.

A. Data Processing
Recall that the considered data set is the Google cluster-

usage traces [10] described in Sec. IV. In the experiments, we
focus on one particular resource (d = 1), which is the CPU
usage of the tasks executed in the cluster. The resource-usage
table contains two apposite columns: the average and maximal
CPU usage over five-minute intervals; we extract the former.

The grouping and indexing steps of the data-processing
pipeline described in Sec. IV-A and Sec. IV-B, respectively,
and depicted in Fig. 2 take approximately 57 hours to finish
(no parallelism). Since they have to be done only once, their
computational cost can be safely considered negligible.

Regarding the selection stage delineated in Sec. IV-C, we
filter those resource-usage traces that contain 5–50 data points;
consequently, li ∈ [5, 50] in (1). Such traces constitute around
74% of the total number of traces (around 18 out of 24 million).
We experiment with a random subset of two million traces,
which is around 11% of the 5–50 resource-usage traces; hence,
n = 2× 106 in (2). The data sets X1, X2, and X3 constitute
70%, 10%, and 20% of X , respectively. Fetching and storing
on disk these many traces take approximately four hours. Recall
that this operation has to be repeated only when the selection
criteria change, which happens rarely in practice.

B. Learning
The training stage (see Sec. VI-A and recall Fig. 2) is

configured as follows. Ten buckets or, equivalently, queues are
used according to the following rule: l < 6 < 7 < 8 < 9 <
10 < 15 < 20 < 30 < 40 ≤ 50. The batch size b is set to 64.
The optimization algorithm that is employed for minimizing
the loss function is Adam [15], which is an adaptive technique.
The algorithm is applied with its default settings.

Regarding the validation stage, the considered hyperparame-
ters are the number of cells c (the blue boxes in Fig. 3), number
of units per cell u (the double circles in Fig. 3), and probability
of dropout p as discussed in Sec. VI-B. More concretely,
we let c ∈ {1, 2, 3, 4, 5}, u ∈ {100, 200, 400, 800, 1600}, and
p ∈ {0, 0.25, 0.5}, which yields 75 different combinations in
total. The candidates are explored by means of the Hyperband
algorithm introduced in Sec. VI-B with its default settings. The
maximum budget for one configuration is set to four training
epochs, which correspond to 4 × 0.7 × 2 × 106 = 5.6 × 106

resource-usage traces or 5.6×106÷64 = 87 500 training steps.
The above exploration, which encompasses both the training

and validation stages, takes approximately 15 days to finish.
During this process, we run up to four training sessions in
parallel, which typically keeps all the eight CPUs busy. It
should be noted that, since the training, validation, and testing
data sets have been cached on disk as a result of our data-
processing pipeline described in Sec. IV, individual training
sessions do not have any overhead in this regard.

The results of the validation stage are given in Table I,
which shows the mean squared error (MSE) of the top 10
configurations of the hyperparameters as measured using X2



6

Steps ahead

Our model

Reference model
Er

ro
r 

(M
SE

)

1 2 3 4

0.5

0.7

0.3

0.9

47%

Figure 5. Accuracy of predictions up to four steps ahead by our model (blue)
and by the reference one (red) with respect to the testing set X3.

(0.1 × 2 × 106 = 2 × 105 traces). The best trained model is
found to have the following hyperparameters: c = 3, u = 1600,
and p = 0. In general, deeper and wider architectures tend to
outperform shallower and narrower ones (the depth and breadth
are measured by c and u, respectively), which is expected. In
these experiments, the dropout mechanism does not have much
impact on the resulting accuracy, which is likely due to the
amount of data being enough for regularizing the model.

Table I also shows an estimate of the memory required by
each configuration, including the model’s trainable parameters
and internal state. It can be seen that, if the memory usage is
a concern, one could trade a small decrease in accuracy for
a considerable memory saving. For example, the fourth best
configuration requires 75% less memory than the first one.

After the exploration stage, the best trained model is taken
to the testing stage (see Sec. VI-C), which is undertaken using
X3 (0.2× 2× 106 = 4× 105 traces). At this stage, the model
is extensively assessed by predicting the resource usage of
individual tasks multiple time steps ahead at each step of the
testing traces in X3. In these experiments, we predict four steps
into the future (h = 4 in Sec. III). This elaborate sequential
testing procedure takes around 18 hours from start to finish.

In order to assess better the accuracy of our model, we
employ also an alternative one, which we shall refer to as
the reference model. The reference model is based on random
walk. It postulates that the best prediction of what will happen
tomorrow is what happens today plus an optional random
offset, which we set to zero. In other words, the next value
of a resource-usage trace is estimated to be the current one,
which results in four identical predictions at each time step.

The results of the testing stage can be seen in Fig. 5, which
shows the MSE of our model (the blue line) as well as the
one of the reference model (the red line) with respect to X3.
The magnitude of our model’s errors suggests that the amount
of regularity present in the data is not sufficient to make the
resource-usage predictions highly accurate. Nevertheless, it
can be seen in Fig. 5 that, relative to the reference model,
our model provides an error reduction of approximately 47%
at each of the four future time moments. This observation
indicates that a certain structure does exist, and that it can be
identified and utilized in order to make educated predictions.

VIII. CONCLUSION

We have presented our experience of working with the
state-of-the-art recurrent neural networks in the context of
fine-grained long-range prediction of the resource usage in a
computer cluster. Our workflow—which starts from making the

Table I
VALIDATION RESULTS (TOP 10 CONFIGURATIONS)

Rank c u p Error (MSE) Memory (MB)

1 3 1600 0.00 0.3148 198
2 4 1600 0.00 0.3154 277
3 3 1600 0.25 0.3158 198
4 2 800 0.25 0.3194 30
5 5 200 0.00 0.3205 6
6 2 1600 0.05 0.3207 119
7 5 800 0.00 0.3251 90
8 3 800 0.00 0.3257 50
9 1 1600 0.25 0.3278 40
10 2 800 0.00 0.3316 30

data readily available for learning and finishes by predicting
the resource usage of individual tasks multiple time steps into
the future—has been described in detail and applied to a large
data set of real resource-usage traces of a computer cluster.

The experimental results suggest that the considered fine-
grained traces possess a certain structure, and that this structure
can be extracted by advanced machine-learning techniques and
subsequently utilized for making educated predictions. This
information can be of use to such a crucial component as the
resource manager of the computer cluster in question, allowing
the manager to more intelligently orchestrate the cluster.

REFERENCES

[1] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning: Data mining, inference, and prediction, 2nd ed. Springer New
York, 2009.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press,
2016. [Online]. Available: http://www.deeplearningbook.org

[3] A. Coskun, T. Rosing, and K. Gross, “Proactive temperature management
in MPSoCs,” in International Symposium on Low Power Electronics &
Design, 2008, pp. 165–170.

[4] P. Kumar and D. Atienza, “Neural network based on-chip thermal
simulator,” in IEEE International Symposium on Circuits and Systems,
May 2010, pp. 1599–1602.

[5] D.-C. Juan, S. Garg, and D. Marculescu, “Statistical peak temperature
prediction and thermal yield improvement for 3D chip multiprocessors,”
ACM Transactions on Design Automation of Electronic Systems, vol. 19,
no. 4, pp. 39:1–39:23, August 2014.

[6] M. Dabbagh et al., “Energy-efficient resource allocation and provisioning
framework for cloud data centers,” IEEE Transactions on Network and
Service Management, vol. 12, no. 3, pp. 377–391, September 2015.

[7] S. Ismaeel and A. Miri, “Using ELM techniques to predict data centre
VM requests,” in IEEE International Conference on Cyber Security and
Cloud Computing, November 2015.

[8] J. Cao et al., “CPU load prediction for cloud environment based on a
dynamic ensemble model,” Software: Practice and Experience, vol. 44,
no. 7, pp. 793–804, July 2014.

[9] (2017, September) Source code, configuration files, and input data.
Embedded Systems Laboratory at Linköping University. [Online].
Available: https://www.ida.liu.se/∼ivauk83/research/PRU

[10] C. Reiss, J. Wilkes, and J. Hellerstein, “Google cluster-usage traces:
Format + schema,” Google, Tech. Rep., November 2011. [Online].
Available: https://github.com/google/cluster-data

[11] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, November 1997.

[12] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network
regularization,” CoRR, vol. abs/1409.2329, 2014. [Online]. Available:
http://arxiv.org/abs/1409.2329

[13] L. Li et al., “Efficient hyperparameter optimization and infinitely many
armed bandits,” CoRR, vol. abs/1603.06560, 2016. [Online]. Available:
http://arxiv.org/abs/1603.06560

[14] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous distributed systems,” CoRR, vol. abs/1603.04467, 2016.
[Online]. Available: http://arxiv.org/abs/1603.04467

[15] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014. [Online]. Available: http://arxiv.org/
abs/1412.6980

http://www.deeplearningbook.org
https://www.ida.liu.se/~ivauk83/research/PRU
https://github.com/google/cluster-data
http://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1603.06560
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

	Introduction and Motivation
	Prior Work and Our Contributions
	Problem and Solution
	Data Processing
	Grouping
	Indexing
	Selection

	Modeling
	Input and Output
	Recurrent Layers
	Regression Layer

	Learning
	Training
	Validation
	Testing

	Experimental Results
	Data Processing
	Learning

	Conclusion
	References

