
1

Probabilistic Analysis of Electronic Systems
via Adaptive Hierarchical Interpolation

Ivan Ukhov, Petru Eles, Member, IEEE, and Zebo Peng, Senior Member, IEEE

Abstract—We present a framework for system-level analysis of
electronic systems whose runtime behaviors depend on uncertain
parameters. The proposed approach thrives on hierarchical
interpolation guided by an advanced adaptation strategy, which
makes the framework general and suitable for studying various
metrics that are of interest to the designer. Examples of such
metrics include the end-to-end delay, total energy consumption,
and maximum temperature of the system under consideration.
The framework delivers a light generative representation that
allows for a straightforward, computationally efficient calculation
of the probability distribution and accompanying statistics of the
metric at hand. Our technique is illustrated by considering a
number of uncertainty-quantification problems and comparing
the corresponding results with exhaustive simulations.

Index Terms—Adaptive interpolation, computer simulation,
electronic system, probabilistic analysis, sparse grid, statistical
dependence, uncertainty quantification.

I. INTRODUCTION

P ROBABILISTIC ANALYSIS of electronic systems is an
extensive and diverse area, which is expanding with an

accelerating pace. The rapid growth is instigated by the fact
that electronic systems naturally become more sophisticated
and refined, and that they penetrate deeper into everyday life.
Therefore, the impact of uncertainty inevitably becomes more
prominent and entails more severe consequences, necessitating
an adequate treatment. Consequently, the designer of an
electronic system is obliged to account for the presence of
uncertainty in order to produce an efficient and reliable product.

In order to account for uncertainty, one has to quantify it first.
In this setting, one is usually interested in evaluating a certain
metric whose complete knowledge would be highly profitable
for the design at hand but cannot be attained since the metric
involves a number of parameters that are inherently uncertain
at design time. To give a concrete example, such a metric could
be the maximum temperature of an electronic system whose
thermal behavior depends on the runtime workload.

Uncertainty quantification is a broad area. The techniques
for uncertainty quantification can deliver radically different
pieces of information about the metric under consideration. In
this paper, we are interested in probability distributions rather
than, for instance, corner cases. Designing for the worst case
leads often to a poor solution as the system under consideration
might easily end up being too conservative, overdesigned [1].

When it comes to the estimation of probability distributions
and to uncertainty quantification in general, sampling methods
are of great use. The classical Monte Carlo (MC) sampling,
quasi-MC sampling, and Latin hypercube sampling are exam-
ples of such methods [2]. Compared to other techniques for
probabilistic analysis, these methods are straightforward to
apply. The system at hand is treated as an opaque object, and
one only has to evaluate this object a number of times in order

to start to draw conclusions about the system’s behavior.
The major problem with sampling techniques, however, is

in sampling: one should be able to obtain sufficient many
realizations of the metric of interest in order to accurately
estimate the needed statistics about that metric [3]. When
the subject under analysis is expensive to evaluate, sampling
methods are rendered slow and often unfeasible.

We propose a design-time system-level framework for the
analysis of electronic systems that are dependent on uncertain
parameters. Similar to sampling methods, our technique treats
the system at hand as a “black box” and, therefore, is
straightforward to apply since no handcrafting is required,
and existing codes need no change. Consequently, the metrics
that the framework is able to tackle are diverse. Examples
include those metrics concerned with timing-, power-, and
temperature-related characteristics of elaborate applications
running on heterogeneous multiprocessor platforms.

In contrast to sampling methods, our technique explores
and exploits the nature of the problem—that is, the way the
metric depends on the uncertain parameters—by exercising the
aforementioned “black box” at a set of points chosen adaptively.
The adaptivity that our framework leverages is hybrid [4]: it
tries to pick up both global (that is, on the level of individual
dimensions [5]) and, more importantly, local (that is, on the
level on individual points [6]) variations. This means that the
framework is able to benefit from many particularities that
might be present in the stochastic space, that is, the space of
the uncertain parameters. The adaptivity is the capital feature
of our technique, and we would like to elaborate on it now.

The uncertainties present in electronic systems originate from
both the physical world and the computer world. An example
of a physical source of uncertainty is process variation [7],
which is a side effect of contemporary fabrication processes.
Process variation has been central for many lines of research
[8], [9], [10], [11], [12]. An example of a digital source of
uncertainty (the computer world) is workload. To elaborate, the
characteristics of the codes running on modern devices change
from one activation to another depending on the environment
and input data. This source of uncertainty has not been deprived
of attention either, especially in the real-time community [1],
[13], [14], [15]. Regardless of the origin, such phenomena as
the ones mentioned above render the behavior of an electronic
system nondeterministic to the designer.

Due to its nature, the variability coming from the physical
world is typically smooth, well behaved. In such cases,
uncertainty quantification based on polynomial chaos (PC)
expansions [16] and other approximation techniques making
use of global polynomials generally work well, as in [8],
[10], [11], [12]. On the other hand, the variability coming
from the computer world has often steep gradients and favors

2

Uncertain parameter
0.0 0.2 0.4 0.6 0.8 1.0

En
d-

to
-e

nd
 d

el
ay

 (s
)

0.5

1.0
Exact
Polynomial chaos
Adaptive interpolation
Interpolation points of
the adaptive procedure

Figure 1. An illustration of the accuracy of polynomial chaos expansions
and adaptive interpolation applied to a nonsmooth metric of interest.

nondifferentiability and even discontinuity. In such cases, PC
expansions and similar techniques fail: they require extremely
many evaluations of the desired metric in order to deliver an
acceptable level of accuracy and, hence, are not worth it.

In order to illustrate this concern, let us consider an example.
Suppose that our system has only one processing element, and
it is running an application with only one task. Suppose further
that the task has two branches and takes either one depending
on the input data. Assume that one branch takes 0.1 s to execute
and has probability 0.6, and the other branch takes 1 s and
has probability 0.4. Our goal is to find the distribution of the
end-to-end delay of the application. In this example, the metric
is the end-to-end delay, and it coincides with the execution
time of the task; hence, we already know the answer. Let us
pretend we do not and try to obtain it by other means.

Suppose the above scenario is modeled by a random variable
u uniformly distributed on [0, 1]: the execution time of the task
(the end-to-end delay of the application) is 0.1 s if u ∈ [0, 0.6],
and it is 1 s if u ∈ (0.6, 1]. The response in this case is a step
function, which is illustrated by the yellow line in Fig. 1.

First, we try to quantify the end-to-end delay by constructing
and subsequently sampling a PC expansion founded on the
Legendre polynomial basis [16]. The orange line in Fig. 1 shows
a ninth-order PC expansion, which uses 10 points. It can be
seen that the approximation is poor—not to mention negative
execution times—which means that the follow-up sampling
will also yield a poor approximation of the true distribution.
The observed oscillating behavior is the well-known Gibbs
phenomenon stemming from the discontinuity of the response.
No matter how many points are used in the construction of a
polynomial, the oscillations will never go away completely.

Let us now see how the framework proposed in this paper
solves the same problem. For the purpose of the experiment,
our technique is constrained to make use of as many points as
the PC expansion did. The result is the blue curve in Fig. 1,
and the adaptively chosen points are plotted on the horizontal
axis. It can be seen that the approximation is good, and, in fact,
it would be indistinguishable from the true response with a
few additional points. One can note that the adaptive procedure
started to concentrate interpolation points at the jump and left
the insipid regions on both sides of the jump with no particular
attention. Having constructed such a representation, one can
proceed to the calculation of the probability distribution of
the metric, which, in general, is done via sampling followed

by such techniques as kernel density estimation. The crucial
point to note is that this follow-up sampling does not involve
the original system in any way, which implies that it costs
practically nothing in terms of the computation time.

The example discussed above illustrates the fact that the
proposed framework is well suited for nonsmooth response
surfaces. More generally, the adaptivity featured by our
technique allows for a reduction of the costs associated with
probabilistic analysis of the metric under consideration, as
measured by the number of times the metric needs to be
evaluated in order to achieve a certain accuracy level. The
magnitude of the reduction depends on the problem, and it can
be substantial when the problem is well disposed to adaptation.

The remainder of the paper is organized as follows. Section II
provides an overview of the prior work and summarizes our
contribution. In Sec. III, the problem that we consider is
formulated, and our solution to the problem is outlined. The
framework proposed to tackle the problem is presented in
Sec. IV, V, and VI. The experimental results are given in
Sec. VII. Finally, Sec. VIII concludes the paper.

II. PRIOR WORK AND OUR CONTRIBUTION

In this section, we elaborate on the prior work (Sec. II-A)
and the contribution of this paper (Sec. II-B).

A. Prior Work
Sampling methods would be a reasonable solution to proba-

bilistic analysis of electronic systems if electronic systems were
inexpensive (with respect to the computation time) to simulate.
In order to eliminate or reduce the costs associated with direct
sampling, a number of techniques have been introduced.

Let us first discuss physical sources of uncertainty and, more
concretely, process variation as it has been extensively studied.
Circuit-level timing and power analyses under process variation
are undertaken in [8] by means of polynomial chaos (PC)
expansions [16]. The work in [9] models static steady-state
temperature and accounts for process variation by leveraging the
linearity of Gaussian distributions and time-invariant systems.
A stochastic collocation [16] approach to static steady-state
temperature analysis is given in [10], which relies on global
interpolation using Newton polynomials. In [11], transient
temperature analysis is considered, and process variation is
addressed via PC expansions. The machinery of PC expansions
is also utilized in [12] in order to model dynamic steady-state
temperature [17] and to enhance reliability models.

Let us now turn to digital sources of uncertainty. In this
context, timing analysis has drawn the major attention [1]. A
seminal work on response time analysis of periodic tasks with
random execution times on uniprocessors is reported in [13]. A
novel analytical solution to this problem is given in [15], which
makes milder assumptions and allows for addressing larger,
previously unsolvable problems. The framework proposed
in [14] facilitates task scheduling by providing probabilistic
bounds on the resource given to a task flow and the resource
needed by that task flow; the approach is based on real-time
calculus and is applicable to electronic systems.

Studying the literature on probabilistic analysis of electronic
systems, one can note a pronounced trend: the generality

3

and straightforwardness of sampling methods tend to be lost.
To elaborate, a technique typically: 1) requires restrictive
assumptions to be fulfilled such as the absence of correlations,
2) is tailored to one concrete metric such as the response time,
and 3) requires substantial effort to be deployed.

However, one should keep in mind what is practical. First
of all, although additional assumptions might make the mathe-
matics analytically solvable, they often do not hold in reality
and oversimplify the model. An exact analytical solution might
also be extremely complex, requiring a lot of computational
resources upon evaluation. Furthermore, it is often the case
that there has been developed a robust simulator evaluating
the metric at hand for the deterministic scenario. Switching to
probabilistic analysis based on analytical approaches means
discarding this battle-tested code and implementing something
else from scratch, which is wasteful and not desirable.

Some of the techniques listed earlier in this section, in fact,
preserve the generality and straightforwardness of sampling
methods. An example is the uncertainty analysis presented in
[12]. The reason is that the construction of PC expansions in
[12] is undertaken by means of so-called nonintrusive spectral
projections [16], which do not need to look inside the “black
box,” similar to sampling methods. However, as motivated
in Sec. I, nonsmoothness is a serious problem for global
approximation based on polynomials. The convergence of PC
expansions, for instance, deteriorates substantially in such cases,
requiring partitioning of the stochastic space in order to alleviate
the problem. Therefore, it is not straightforward to apply such
techniques as the one given in [12] in the context of digital
sources of uncertainty exhibiting nonsmoothness.

To conclude, the available techniques for probabilistic
analysis of electronic systems are restricted in use. Flexible,
capable, and easy-to-deploy frameworks are needed.

B. Our Contribution
Our work brings the following major contribution: we

develop an efficient framework for probabilistic analysis of elec-
tronic systems that is straightforward to use and is applicable
to a wide range of uncertainty-quantification problems.

The usage of our framework is streamlined because it has
the same low entrance requirements as sampling techniques:
one only has to be able to evaluate the metric given a set
of deterministic parameters. Moreover, the framework can
be utilized in scenarios with limited knowledge of the joint
probability distribution of the uncertain parameters, which are
common in practice (to be elaborated on in Sec. IV-A).

The scope of our framework is wide because the framework
features a powerful approximation engine. We make use of the
hierarchical interpolation with hybrid adaptivity developed in
[4], [5], [6], which enables us to tackle diverse design problems
while keeping the associated computation costs low.

To the best of our knowledge, our framework is the first one
to address systematically and efficiently nonsmooth problems
in the context of probabilistic analysis of electronic systems.
The importance of the characteristic is motivated in Sec. I.

In addition to the aforementioned contribution, we open-
source our implementation [18]. The code base also includes
the whole experimental setup described in Sec. VII.

III. PROBLEM FORMULATION AND OUR SOLUTION

After introducing a number of definitions (Sec. III-A), this
section formulates the problem that we consider (Sec. III-B) and
outlines our solution (Sec. III-C). It also contains an example
illustrating the solution process (Sec. III-D).

A. Preliminaries
Let (Ω,F ,P) be a probability space where Ω is a set of

outcomes, F ⊆ 2Ω is a σ-algebra, and P : F → [0, 1] is
a probability measure [19]. A random variable ξ defined on
(Ω,F ,P) is an F-measurable function ξ : Ω→ R. A random
variable is uniquely characterized by its distribution function
defined by Fξ(z) = P({ω ∈ Ω : ξ(ω) ≤ z}), written as ξ ∼ Fξ .
The expected value and variance of ξ are given by

E ξ =

∫
Ω

ξ(ω) dP(ω) =

∫
R
z dFξ(z) and (1)

Var ξ = E ξ2 − (E ξ)2, respectively. (2)

A random vector ξ = (ξi)
n
i=1 is a vector whose elements are

random variables. A random vector is fully characterized by
its distribution function Fξ, written as ξ ∼ Fξ. This function
is referred to as a joint or multivariate distribution function,
emphasizing the fact that the variables work together.

An n-variate distribution can be expressed as a set of n
marginal (univariate) distributions and an n-dimensional copula
[20]. The copula is a uniform distribution function on [0, 1]n

(referred to as the n-dimensional unit hypercube) that captures
the dependencies between the n individual variables.

B. Problem Formulation
Consider an electronic system composed of two major

components: a platform and an application. The platform is
a collection of heterogeneous processing elements, and the
application is a collection of interdependent tasks.

The designer is interested in evaluating a metric g that
characterizes the electronic system under consideration from
a certain perspective. Examples of g include the execution
delay of the application or a task, energy consumption of the
platform or a processing element, and maximum temperature
of the platform or a processing element.

The metric g depends on a set of parameters u that are
uncertain at the design stage. Examples of u include the amount
of data the application needs to process, execution times of
the tasks, and properties of the environment.

The parameters u are given as a random vector u = (ui)
nu
i=1

with an arbitrary but known distribution Fu. The dependency
of g on u, written as g(u), implies that g is random to the
designer. For a given outcome of u, however, the evaluation of g
is purely deterministic. This operation is typically undertaken
by an adequate simulator of the system at hand, and it is
assumed to be doable but computationally expensive.

Our objective is to develop an efficient framework for
estimating the probability distribution of the metric of interest
g dependent on the uncertain parameters u. The framework
is required to be able to handle nondifferentiable and even
discontinuous dependencies between g and u as they constitute
an important class of problems for electronic-system design.

4

PE1

PE2

T1

T2 T3

T4

u1

u2

g (end-to-end delay)

“Black-box” simulation Interpolation

Configuration

Sampling

z1

z2

g

Surrogate

z1

z2

0.054 0.058 0.062

100

300

500

0.05

Exact
Direct sampling
Our framework

Pr
ob

ab
ili

ty
 d

en
si

ty

End-to-end
delay (s)

Figure 2. The proposed framework applied to the end-to-end delay of an application whose two out of four tasks have random execution times.

C. Our Solution
As noted earlier, making use of a sampling method is a

compelling approach to uncertainty quantification. We would
readily apply such a method to study our metric g if only
evaluating g had a small cost, which it does not.

Our solution to the above predicament is to construct a light
representation of the heavy g and study this representation
instead of g. The surrogate that we build is based on adaptive
interpolation: g is evaluated at a number of strategically chosen
collocation nodes, and any other values of g are reconstructed
on demand (without involving g) using a set of basis functions
mediating between the collected values of g. The benefit of
this approach is in the number of invocations of the metric g:
only a few evaluations of g are needed, and the rest of our
probabilistic analysis is powered by the constructed interpolant,
which, in contrast to g, has a negligible cost.

Let us delineate the steps involved in the solution process.
Recall that g is parameterized by the uncertain parameters u,
and these variables are the only source of randomness. 1) The
metric g is reparameterized in terms of an auxiliary random
vector z extracted from u; the necessity of this stage will
become clear later on. 2) An interpolant of g is constructed by
considering g as a deterministic function of z and evaluating
g at a small set of carefully chosen points. 3) The probability
distribution of g is then estimated by applying an arbitrary
sampling method to the constructed interpolant of g.

The first two of the above steps should be undertaken with
a great care as interpolation of multivariate functions is a
challenging task. This aspect will be discussed in detail in
Sec. IV and Sec. V. However, before we proceed to those
sections, we would like to give an illustrative example.

D. Illustrative Example
In this section, we apply our framework to a small problem

in order to get a better understanding of the workflow of the
framework. A detailed description of our experimental setup
is given in Sec. VII-A; here we give only the bare minimum.

The addressed problem is depicted in Fig. 2. We consider
a platform with two processing elements, PE1 and PE2, and
an application with four tasks, T1–T4. The data dependencies
between T1–T4 and their mapping onto PE1 and PE2 can be
seen in Fig. 2. The metric g is the end-to-end delay of the
application. The uncertain parameters u are the execution times
of T2 and T4 denoted by u1 and u2, respectively.

The leftmost box in Fig. 2 represents a simulator of the
system at hand, and it could involve such tools as Sniper [21].
It takes an assignment of the execution times of T2 and T3,

u1 and u2, and outputs the calculated end-to-end delay g. The
second box corresponds to the reparameterization mentioned
in Sec. III-C (to be discussed in Sec. IV-A). It converts the
auxiliary variables z1 and z2 into u1 and u2 in accordance with
u1 and u2’s joint distribution. The third box is our interpolation
engine (to be discussed in Sec. V). Using a number of strategic
invocations of the simulator, the interpolation engine yields a
light surrogate for the simulator; the surrogate corresponds to
the slim box with rounded corners. Having obtained such a
surrogate, one proceeds to sampling extensively the surrogate
via a sampling method of choice (the rightmost box). The
surrogate takes z1 and z2 and returns an approximation of g
at that point. Recall that the computation cost of this extensive
sampling is negligible as g is not involved. The samples are
then used to compute an estimate of the distribution of g.

In the graph on the right-hand side of Fig. 2, the blue
line shows the probability density function of g computed by
applying kernel density estimation to the samples obtained
from our surrogate. The yellow line (barely visible behind
the blue line) shows the true density of g; its calculation is
explained in Sec. VII. It can be seen that our solution closely
matches the exact one. In addition, the orange line shows the
estimation that one would get if one sampled g directly 156
times and used only those samples in order to calculate the
density of g. We see that, for the same budget of simulations,
the solution delivered by our framework is substantially closer
to the true one than the one delivered by naïve sampling.

At this point, we are ready to present to the proposed
framework. We begin by elaborating on the modeling of
uncertain parameters and metrics of interest. We shall then
proceed to the interpolation engine (Sec. V).

IV. MODELING

The agenda for this section is as follows. In Sec. IV-A, the
uncertain parameters u are transformed into a form suitable
for the subsequent calculations. This stage is an essential part
of our framework, and it is denoted by T in Fig. 2. The rest
of the subsections, Sec. IV-B–IV-D, serve a strictly illustrative
purpose. They exemplify the leftmost box in Fig. 2 in order
to give the reader a better intuition about the utility of the
framework. The subsections introduce a number of models and
a number of metrics g; however, it should be well understood
that the essence of g is problem specific. In practice, g stands for
an adequate simulator of the system under consideration. The
modeling capabilities of this simulator are naturally inherited
by the proposed framework.

5

A. Uncertainty Parameters
The foremost step of our framework is to change the

parameterization of the problem from the random vector u =
(ui)

nu
i=1 ∼ Fu to an auxiliary random vector z = (zi)

nz
i=1 ∼ Fz

such that: 1) the support of Fz is the unit hypercube [0, 1]nz ,
and 2) nz ≤ nu has the smallest value needed to retain the
desired level of accuracy. The first is standardization, which
is done primarily for convenience. The second is model-order
reduction, which identifies and eliminates excessive complexity
and, hence, speeds up the solution process. The reduction is
possible whenever there are dependencies between (ui)

nu
i=1, in

which case one can find such (zi)
nz
i=1, nz < nu, that each ui

can be recovered from (zi)
nz
i=1. We shall denote the overall

transformation by u = T(z) where

T : Rnu → [0, 1]nz . (3)

For any point z ∈ [0, 1]nz , we are now able to compute the
corresponding u and, consequently, the metric g as (g◦T)(z) =
g(T(z)) = g(u); recall Sec. III-B and see Fig. 2.

Let us consider an example of T in order to understand
the concept better. To this end, we begin by assuming that
the distribution of u = (ui)

nu
i=1, Fu, is given as a set of

marginal distribution functions {Fui}
nu
i=1 and a copula [20]

(see also Sec. III-A). Furthermore, the copula is assumed to be
a Gaussian copula whose correlation matrix is R ∈ Rnu×nu .

Remark 1. A set of marginals and a copula entirely char-
acterize the joint distribution of u, that is, Fu. However, we
consider this distribution as an approximation rather than as
the true one. The knowledge of the true joint would be an
impractical assumption to make. A more realistic assumption
is the availability of the marginals and correlation matrix of
u. In general, these two pieces are not sufficient to recover
the joint of u; however, the joint can be approximated well by
accompanying the available marginals by a Gaussian copula
constructed based on the available correlation matrix; see
[22] and also [11]. Hence, a set of marginals and a Gaussian
copula are practical inputs to probabilistic analysis.

The number of variables, which is so far nu, has a significant
impact on the complexity of the problem at hand. Therefore,
an important component of our framework is model-order
reduction, which we shall base on the discrete Karhunen–Loève
decomposition, also known as the principal component analysis.
We proceed as follows. Since any correlation matrix is real and
symmetric, R admits the eigendecomposition: R = VΛVT

where V ∈ Rnu×nu is an orthogonal matrix whose columns
are the eigenvectors of R, and Λ = diag(λi)

nu
i=1 is a diagonal

matrix whose diagonal elements are the eigenvalues of R.
The eigenvalues (λi)

nu
i=1 correspond to the variances of the

corresponding components revealed by the decomposition.
The model-order reduction boils down to selecting those
major components whose cumulative contributions to the total
variance is above a certain threshold. Formally, assuming that
(λi)

nu
i=1 are sorted in the descending order and given a threshold

η ∈ (0, 1] specifying the fraction of the total variance to be
preserved, we identify the smallest nz such that∑nz

i=1 λi∑nu
i=1 λi

≥ η. (4)

Denote by Ṽ ∈ Rnu×nz and Λ̃ ∈ Rnz×nz the matrices
obtained by truncating V and Λ, respectively, to preserve
only the first nz components where nz is as shown above.

Now, the transformation T in (3) is

u = F−1
u

(
Φ
(
ṼΛ̃

1
2 Φ−1(z)

))
(5)

where the random variables z = (zi)
nz
i=1 are independent

and uniformly distributed on [0, 1]nz ; Φ and Φ−1 are the
distribution function of the standard Gaussian distribution and
its inverse, respectively, which are applied elementwise; and
F−1
u = F−1

u1
× · · · × F−1

unz
is the Cartesian product of the

inverse marginal distributions of u, which are applied to the
corresponding element of the vector yielded by Φ. In the
absence of correlations, (5) is simply u = F−1

u (z), and no
model-order reduction is possible (nu = nz).

To summarize, we have found such a transformation T
and the corresponding random vector z ∼ Fz that: 1) Fz is
supported by [0, 1]nz , and 2) z has the smallest number of
dimensions nz needed to preserve η portion of the variance.
Let us emphasize that this T is an example; the framework
works with any T that yields z ∼ Fz for some nz .

B. Application Timing
Suppose the application is given as a directed acyclic graph.

The vertices represent tasks, and the edges data dependency
between these tasks. Suppose further that a static cyclic
scheduling policy is utilized. Note, however, these assumptions
are orthogonal to our framework: the framework can be applied
to any application model and any scheduling policy.

Each task has a start and a finish time. For task i, denote
these two time moments by bi and di, respectively, and let
b = (bi)

nt
i=1 and d = (di)

nt
i=1. Other timing characteristics of

the application can be derived from (b,d). An example is the
end-to-end delay, which is the difference between the finish
time of the latest task and the start time of the earliest task:

End-to-end delay =
nt

max
i=1

di −
nt

min
i=1

bi. (6)

Suppose the execution times of the tasks depend on u (see
Sec. III-B). Then the tuple (b,d) depends on u. Then the end-
to-end delay given in (6) depends on u and is a potential metric
g; it is used in Fig. 2. Note that this g is nondifferentiable as
the max and min functions are such. Hence, g is nonsmooth,
which renders PC expansions and similar techniques inadequate
for this problem, as illustrated in Sec. I.

Remark 2. In general, the behavior of g with respect to
continuity, differentiability, and smoothness cannot be inferred
from the behavior of u. Even when the parameters are perfectly
behaved, g can still and likely will exhibit nondifferentiability
or even discontinuity, which depends on how g works internally.
For example, as shown in [15], even if execution times of tasks
are continuous, due to the actual scheduling policy, end-to-end
delays are very often discontinuous.

C. Power Consumption
Denote the number of processing elements present on the

platform by nπ. Let the dynamic power consumed by task
j when running on processing element i be fixed during
the execution of the task and denote this dynamic power

6

by pd
ij . The fact that pd

ij is constant might seem restrictive.
However, one should keep in mind that it is an example. Our
framework does not have such a restriction. Even in this simple
model, the modeling accuracy can be substantially improved
by representing large tasks as sequences of smaller tasks.

Let the vector p(t) = (pi(t))
nπ
i=1 capture the total power

consumption of the system at time t. This vector is related to
the dynamic power introduced above as follows:

pi(t) =

nt∑
j=1

pd
ij δij(t) + ps

i(t), for i = 1, . . . , nπ, (7)

where δij(t) is an indicator function (outputs either zero or one)
of the event that processing element i executes task j at time t,
and ps

i(t) is the static power consumed by processing element
j at time t. The last component depends on time because the
leakage power and temperature are interdependent [23], and
temperature changes over time (see the next subsection).

Given a set of nt points on the timeline {ti}nti=1, (7) can be
used to construct a power profile of the system as follows:

P = (pi(tj))
nπ,nt
i=1,j=1 ∈ Rnπ×nt .

The above is a matrix where row i captures the power consumed
by processing element i at the nt time moments.

The total energy consumed by the system during an appli-
cation run can be computed by integrating (7) over the time
span of the application—which is demarcated by the minuend
and subtrahend in (6)—and the corresponding integral can be
estimated using the power profile as follows:

Total energy =

nπ∑
i=1

∫
pi(t) dt ≈

nπ∑
i=1

nt∑
j=1

pi(tj) ∆tj (8)

where ∆tj is either tj − tj−1 or tj+1 − tj , depending on how
power values are encoded in P. The assumption that (8) is
based on is that each ∆ti is sufficiently small so that the power
consumed within the interval does not change significantly.

Since the tuple (b,d) depends on u, the power consumption
of the system depends on u too. Consequently, the total energy
given in (8) depends on u and is a candidate for g. Note that
Remark 2 applies in this context to the full extent.

D. Heat Dissipation
Based on the specification of the platform including its ther-

mal package, an equivalent thermal RC circuit is constructed
[24]. The circuit comprises nn thermal nodes, and its structure
depends on the intended level of granularity, which impacts the
resulting accuracy. For clarity, we assume that each processing
element is mapped onto one corresponding node, and the
thermal package is represented as a set of additional nodes.

The thermal dynamics of the system are modeled using the
following system of differential-algebraic equations [11], [17]: C

ds(t)

dt
+ Gs(t) = Mp(t) (9a)

q(t) = MT s(t) + qamb (9b)
The coefficients C ∈ Rnn×nn and G ∈ Rnn×nn are a diagonal
matrix of thermal capacitance and a symmetric, positive-definite
matrix of thermal conductance, respectively. The vectors p(t) ∈
Rnπ , q(t) ∈ Rnπ , and s(t) ∈ Rnn correspond the system’s
power, temperature, and internal state at time t, respectively.

The vector qamb ∈ Rnπ contains the ambient temperature. The
matrix M ∈ Rnn×nπ is a mapping that distributes the power
consumption of the processing elements across the thermal
nodes; without loss of generality, M is a rectangular diagonal
matrix whose diagonal elements are equal to one.

Given a set of nt points on the timeline {ti}nti=1, (9) can be
used to compute a temperature profile of the system as follows:

Q = (qi(tj))
nπ,nt
i=1,j=1 ∈ Rnπ×nt .

Then the maximum temperature of the system can be estimated
using the temperature profile as follows:

Max temperature =
nπ

max
i=1

sup
t
qi(t) ≈

nπ
max
i=1

nt
max
j=1

qi(tj). (10)

Since the power consumption of the system is affected by u
(see Sec. IV-C), the system’s temperature is affected by u as
well. Therefore, the temperature in (10) can be considered as
a metric g. Note that, due to the maximization involved, the
metric is nondifferentiable and, hence, cannot be adequately
addressed using polynomial approximations, specially taking
into account the concern in Remark 2.

To sum up, we have discussed the transformation that needs
to be applied to u prior to the interpolation of g. We have also
covered three aspects of electronic systems, namely, timing,
power, and temperature, and introduced a number of metrics
associated with them; we shall come back to these metrics in
the section on experimental results, Sec. VII.

V. INTERPOLATION

In this section, we present the algorithm that constitutes the
core of the proposed framework for probabilistic analysis of
electronic systems. It corresponds to the third box from the
left in Fig. 2. The algorithm features a sparse-grid structure,
hierarchical construction, and hybrid adaptivity. The benefits
of these features are interconnected and can be summarized
as follows: the ability to efficiently tackle multidimensional
problems, the ability to perform gradual refinement of the
approximation with a natural error control, and the ability to
make the refinement fine-grained and, therefore, gain further
efficiency. The mathematics presented in Sec. V-A–V-E is a
distilled version of the one developed in [4], [5], [6].

Let f be a function that we would like to approximate; the
connection between f and g will be explained in Sec. VI. The
function is assumed to be in C([0, 1]nd), the space of continuous
functions in the unit hypercube [0, 1]nd . The assumption is a
formality and does not impose any restrictions in practice.

A. Tensor Product
In one dimension (nd = 1), f is approximated by virtue of

the following interpolation formula:

Qi(f) =
∑
j∈Ji

f(xij) eij (11)

where i ≥ 0 signifies the level of interpolation; Xi =
{xij}j∈Ji ⊂ [0, 1] are the collocation nodes; Ei = {eij}j∈Ji ⊂
C([0, 1]) are the basis functions; and Ji = {j − 1}nij=1 is
an index set enumerating (starting from zero) the nodes and
functions of level i. The subscript j ∈ Ji is referred to as
the order of a node or function. The choice of Xi and Ei is
important and will be discussed thoroughly later on.

7

In multiple dimensions (nd > 1), f is approximated by the
tensor product of nd one-dimensional interpolants:

Qi(f) =

(
nd⊗
k=1

Qik

)
(f) =

∑
j∈Ji

f(xij) eij (12)

where i = (ik)nd
k=1 and j = (jk)nd

k=1 are (multi-)indices
specifying levels and orders, respectively, for each of the
dimensions, and Ji = Ji1×· · ·×Jind

is an index set obtained
by computing the Cartesian product of one-dimensional index
sets. In the above formula,

Xi = Xi1 × · · · × Xind
(13)

= {xij = (xikjk)nd
k=1}j∈Ji

⊂ [0, 1]nd

and

Ei =

nd⊗
k=1

Eik =

{
eij =

nd⊗
k=1

eikjk

}
j∈Ji

⊂ C([0, 1]nd) (14)

are the collocation nodes and basis functions, respectively,
corresponding to index i. In (14), for any x ∈ [0, 1]nd ,

eij(x) =

(
nd⊗
k=1

eikjk

)
(x) =

nd∏
k=1

eikjk(xk). (15)

Finally, the cardinality of Ji is as follows:

ni = |Ji| =
nd∏
k=1

|Jik | =
nd∏
k=1

nik . (16)

Equation (16) elucidates the prohibitive expense of the tensor-
product construction shown in (12) for multidimensional
problems: the number of nodes grows exponentially as nd
increases. However, (12) serves well as a building block for
more efficient algorithms, which we discuss next.

B. Smolyak Algorithm
One of the central algorithms in the field of multidimensional

integration and interpolation is the Smolyak algorithm [25].
Intuitively speaking, the algorithm takes a number of small
tensor-product structures and composes them in such a way
that the resulting grid has a drastically reduced number of
nodes while preserving the approximating power of the full
tensor-product construction for the classes of functions that
one is typically interested in integrating or interpolating [5].

The Smolyak interpolant for f is as follows:

Sl(f) =
∑

l−nd+1≤|i|≤l

(−1)l−|i|
(
nd − 1

l − |i|

)
Qi(f) (17)

where l ≥ 0 is the index of the interpolation step, which we
shall refer to as the Smolyak level, and |i| = i1+· · ·+ind . It can
be seen that the algorithm is indeed just a peculiar composition
of cherry-picked tensor products. However, the formula has an
implication of paramount importance. The function f needs to
be evaluated only at the nodes of the grid underpinning (17):

Yl =
⋃

l−nd+1≤|i|≤l

Xi. (18)

The cardinality of the above set does not have a general closed-
form formula; however, it can be several orders of magnitude
smaller than the one of the full tensor product given in (16),
which depends on the dimensionality of the problem at hand
and the one-dimensional rules utilized (Sec. V-A).

A better intuition about the properties of the Smolyak
construction can be obtained by rewriting (17) in an incremental
form. To this end, let ∆Q−1(f) = 0,

∆Qi(f) = (Qi −Qi−1)(f), and (19)

∆Qi(f) =

(
nd⊗
k=1

∆Qik

)
(f).

Then, (17) is identical to

Sl(f) =
∑
i∈Il

∆Qi(f) = Sl−1(f) +
∑

i∈∆Il

∆Qi(f) (20)

where S−1(f) = 0, and we let Il = {i : |i| ≤ l} and ∆Il =
{i : |i| = l}. It can be seen that a Smolyak interpolant can
be efficiently refined: the work done in order to attain one
Smolyak level l is entirely recycled to go to the next.

The sparsity and incremental refinement of the Smolyak
approach, which are shown in (18) and (20), respectively, are
remarkable properties per se, but they can be taken even further.
To this end, let ∆X−1 = ∅,

∆Xi = Xi \ Xi−1, and ∆Xi = ∆Xi1 × · · · ×∆Xind
.

Then, (18) can be rewritten as

Yl =
⋃
i∈Il

∆Xi = Yl−1 ∪
⋃

i∈∆Il

∆Xi, (21)

which is analogous to (20). It can be seen now that it is benefi-
cial to the refinement to have Xi−1 be entirely included in Xi
since, in that case, the cardinality of Yl \ Yl−1 =

⋃
i∈∆Il ∆Xi

derived from (21) decreases. In words, the values of f obtained
on lower levels (lower l) can be reused to attain higher levels
(higher l) if the grid grows without abandoning its previous
structure. With this in mind, the rule used for generating
successive sets of points {Xi}i should be chosen to be nested,
that is, in such a way that Xi contains all nodes of Xi−1.

The final step in this subsection is to rewrite (20) in a
hierarchical form. To this end, we require the interpolants of
higher levels to represent exactly the interpolants of lower
levels. In one dimension, it means that

Qi−1(f) = Qi(Qi−1(f)). (22)

The condition in (22) can be satisfied by an appropriate
choice of collocation nodes and basis functions, which will be
discussed later. If (22) holds, using (11) and (19),

∆Qi(f) =
∑
j∈∆Ji

(f(xij)−Qi−1(f)(xij)) eij

where ∆Ji = {j ∈ Ji : xij ∈ ∆Xi}. The above sum is over
∆Xi due to the fact that the difference in the parentheses is
zero whenever xij ∈ Xi−1 since Xi−1 ⊂ Xi.

In multiple dimensions, using the Smolyak formula,

∆Qi(f) =
∑

j∈∆Ji

(
f(xij)− S|i|−1(f)(xij)

)
eij (23)

where ∆Ji = {j ∈ Ji : xij ∈ ∆Xi}. The delta

∆f(xij) = f(xij)− S|i|−1(f)(xij) (24)

is called a hierarchical surplus. When increasing the interpola-
tion level, this surplus is nothing but the difference between
the actual value of f at a new node and the approximation of
this value computed by the interpolant constructed so far.

8

0 10.50.25 0.75

l = 0

l = 1

l = 2

x10, x12

x00

x20, x22, x24, x26

Figure 3. The first three levels of the grid described in Sec. V-C. The empty
circles represents the nodes inherited from the levels below.

The final formula for nonadaptive hierarchical interpolation
is obtained by substituting (23) into (20):

Sl(f) =
∑
i∈Il

∑
j∈∆Ji

∆f(xij) eij

= Sl−1(f) +
∑

i∈∆Il

∑
j∈∆Ji

∆f(xij) eij (25)

where ∆f(xij) is computed according to (24).

C. Collocation Nodes
A sparse grid that is fully nested and, moreover, well

disposed to adaptivity, as we shall see, can be constructed
using the (one-dimensional) Newton–Cotes rule [6]. For each
level, the rule is merely a set of equidistant nodes on [0, 1].

There are two types of the rule: closed and open. The only
difference between the two is that the former includes the
endpoints, that is, 0 and 1, while the latter does not. Now, in
Sec. V-B, we postulated that the assumption in (22) was needed
in order to proceed. The closed rule satisfies this assumption,
and it is the one used in the original version of local adaptivity
presented in [6]. The open Newton–Cotes rule, on the other
hand, violates the assumption close to the boundaries of the
interval. However, we found that the open rule is a viable
option since it performs well in practice, which was also noted
in [5]. In fact, we were able to obtain better results with the
open rule and decided to present it here.

The open Newton–Cotes rule of level i ≥ 0 is

Xi =

{
xij =

j + 1

ni + 1

}
j∈Ji

(26)

where Ji = {i− 1}nii=1 and ni = 2i+1 − 1. The first three
levels of the rule are depicted in Fig. 3. It can be seen that
the number of nodes (in one dimension) grows as 1, 3, 7, 15,
31, and so on, and that the rule is fully nested. In multiple
dimensions, the nodes are formed as shown in (13).

D. Basis Functions
The basis functions that correspond the open Newton–Cotes

rule described in Sec. V-C are the following piecewise linear
functions. For i = 0 and j = 0, we have that e00(x) = 1. For
i > 0 and j = 0 (close to the left endpoint),

ei0(x) =

{
2− (ni + 1)x, if x < 2

ni+1 ,

0, otherwise.

For i > 0 and j = ni − 1 (close to the right endpoint),

ei(ni−1)(x) =

{
(ni + 1)x− ni + 1, if x > ni−1

ni+1 ,

0, otherwise.

In other cases,

1

2 e10, e12

e20, e22, e24, e26

e00

0 10.50.25 0.75

Figure 4. The first three levels of the basis described in Sec. V-D. The basis
functions correspond to the collocation nodes show in Fig. 3.

eij(x) =

{
1− (ni + 1) |x− xij |, if |x− xij | < 1

ni+1 ,

0, otherwise.

The basis functions corresponding to the first three levels of
one-dimensional interpolation are depicted in Fig. 4. In multiple
dimensions, the basis functions are formed as shown in (14).

Lastly, let us mention the volumes (integrals over the whole
domain) of the basis functions denoted by vij ; they will be
needed in continuation. Namely, v00 = 1 and, for i > 0,

vij =

∫ 1

0

eij(x) dx =

{
2

ni+1 , if j ∈ {0, ni − 1},
1

ni+1 , otherwise.
(27)

In multiple dimensions, the volumes are products of the one-
dimensional components, analogous to (15).

Imagine now a function that is nearly flat on the first
half of [0, 1] and rather irregular on the other. Under these
circumstances, it is natural to expect that, in order to attain
the same accuracy, the first half would require much fewer
collocation nodes than the other one; recall Fig. 1. However,
if we followed the construction procedure described so far, we
would not be able to benefit from this peculiar behavior: we
would treat both sides equally and would add all the nodes of
each level. The solution to the above problem is to make the
interpolation algorithm adaptive, which we shall discuss next.

E. Adaptivity
In order to make the algorithm adaptive, we first need to

find a way to measure how good our approximation is at any
point in the domain of f . Then, when refining the interpolant,
instead of evaluating the function at all possible nodes, we
shall only choose those that are located in the regions with
poor accuracy as indicated by the yet-to-be-found criterion.

We already have a good foundation for building such
a criterion. Recall (24). Hierarchical surpluses are natural
indicators of the interpolation error: they are the difference
between the values of the true function and those of an
approximation at the nodes of the underlying sparse grid.
Hence, they can be recycled in order to effectively identify
“problematic” regions. Specifically, we first assign a score to
each node xij or, equivalently, to each pair of level and order
indices (i, j):

sij = |∆f(xij) vij| (28)

where ∆f(xij) and vij are given by (24) and (27), respectively,
and this score is then used in order to guide the algorithm as
we shall explain in the rest of this subsection.

The Smolyak construction in (25) is rewritten as follows:

Al(f) = Al−1(f) +
∑

i∈∆Il

∑
j∈∆Ji

∆f(xij) eij. (29)

9

The different with respect to (25) is that l ≥ 0 is no longer the
Smolyak level (see (17)) but a more abstract interpolation step,
and Al is the interpolant at that step. As always, A−1 = 0,
and the definition of ∆f given in (24) is adjusted accordingly.
From now on, all index sets will be generally subsets of their
full-fledged counterparts defined in Sec. V-B.

Each Al is characterized by a set of level indices Il, and each
i ∈ Il by a set of order indices ∆Ji. At each interpolation step
l ≥ 0, a single index il is chosen from Il−1 with I−1 = {0}.
The chosen index then gives birth to ∆Il and {∆Ji}i∈∆Il ,
which shape the increment in the right-hand side of (29).

The set ∆Il contains the so-called admissible forward
neighbors of il. Let us now parse the previous sentence. First,
the forward neighbors of an index i are given by

{i + 1k : k = 1, . . . , nd} (30)

where 1k is a vector whose elements are zero except for
element k equal to unity. Next, an index i is admissible if
its inclusion into the index set I in question keeps the set
admissible. Finally, I is admissible if it satisfies the following
condition [5]:

i− 1k ∈ I, for i ∈ I and k = 1, . . . , nd, (31)

where, naturally, the cases with ik = 0 need no check.
Now, how is il chosen from Il−1 at each iteration of (29)?

First of all, each index can be obviously picked at most
once. The rest is resolved by prioritizing the candidates. It is
reasonable to assign a priority to a level index i based on the
scores of the order indices associated with it, that is, on the
scores of Ji. We compute the priority as the average score:

si =
1

|∆Ji|
∑

j∈∆Ji

sij

Consequently, the answer to the above question is that, at each
step l, the index i with the highest si gets promoted to il.

Let us now turn to the content of ∆Ji where i = il+1k for a
fixed k. It also contains admissible forward neighbors, but they
are order indices, and their construction is drastically different
from the one in (30). Concretely, these indices are identified by
inspecting the backward neighborhood of i (analogous to (30)).
For each backward neighbor î = i − 1k̂ and each j ∈ ∆Jî,
we begin by checking the following condition: ŝij ≥ εs where
εs is a user-defined constant, which we shall refer to as the
score error. If the condition holds, the forward neighbors of j
in dimension k are added to ∆Ji. This procedure is illustrated
in Fig. 3 for the open Newton–Cotes rule (see Sec. V-C).
The arrows emerging from a node connect the node with its
forward neighbors. It can be seen that each node has two
forward neighbors (for each dimension); their order indices are

(j1, . . . , 2jk, . . . , jnd) and (j1, . . . , 2jk + 2, . . . , jnd).

The above refinement procedure is repeated for each index
i ∈ ∆Il with respect to each dimension k = 1, . . . , nd.

The final question is the stopping condition of the approxima-
tion process in (29). Apart from the natural constraints on the
maximum number of function evaluations and the maximum
allowed Smolyak level l in (17), we rely on the following
criterion. Assume that we are given two additional constants: εa
and εr referred to as the absolute and relative error, respective.

Then, the process is terminated as soon as

max
(i,j)
|∆f(xij)| ≤ max {εa, εr(fmax − fmin)} (32)

where fmin and fmax are the minimum and maximum observed
value of f , respectively, and the left-hand side is the maximum
surplus whose level index has not been refined yet (considered
as il at some step l in (29)). The above criterion is a sound
way to curtail the process as it is based on the actual progress.

The adaptivity presented in this subsection is referred to as
hybrid as it combines features of global and local adaptivity;
the combination was proposed in [4]. Local adaptivity, which
has already been sufficiently motivated, is due to [6], and it
operates on the level of individual nodes. Global adaptivity is
due to [5], and it operates on the level of individual dimensions.
The intuition behind global adaptivity is that, in general, the
input variables manifest themselves (impact f) differently, and
the interpolation algorithm is likely to benefit by prioritizing
those variables that are the most influential.

To summarize, we have obtained an efficient algorithm for
adaptive hierarchical interpolation in multiple dimensions. The
main equation is (29) where ∆f , xij, and eij are the ones
given in Sec. V-B, Sec. V-C, and Sec. V-D, respectively, and
the interpolation procedure is undertaken according to the rules
given in Sec. V-E. In the next subsection, we shall discuss the
algorithmic structure of our interpolation.

F. Implementation
The life cycle of interpolation has roughly two stages:

construction and usage. The construction stage invokes f at
a set of collocation nodes and produces certain artifacts. The
usage stage estimates the values of f at a set of arbitrary points
by manipulating the artifacts. In this subsection, we shall look
at the pseudocodes of the two stages. The purpose is to give
the big picture. All the details can be found online [18].

Let us first make a general note. We found it beneficial to
the clarity and ease of implementation to collapse the two
sums in (29) into one. This requires storing a level index i =
(ik)nd

k=1 and an order index j = (jk)nd
k=1 for each interpolation

element. It is also advantageous to encode each pair (ik, jk)
as a single unsigned integer, which, in particular, eliminates
excessive memory usage. In multiple dimensions, this results in
a single vector ι = (ιk)nd

k=1, which we simply call an index. The
encoding that we utilize is as follows: ιk = ik ∨ (jk � nbits)
where ∨ and � are the bitwise OR and logical left shift,
respectively, and nbits is the number of bits reserved for storing
Smolyak levels (see (17)), which can be adjusted according to
the maximum permitted deepness of interpolation.

The pseudocode of the construction stage is given in
Algorithm 1 called Construct. The target input is a function
f to be approximated. The surrogate output is a structure
containing the artifacts of interpolation, which are a set of
tuples {(ιk,∆f(xιk)}k, giving a comprehensive description
of an interpolant. The routine works as follows.

Line 2: Each iteration is an interpolation step in (29). It has
a state captured by a structure denoted by s. The strategy
object represents an adaptation strategy utilized and works as
described in Sec. V-E. The First method of strategy returns
the initial state of the first step so that the indices field of s

10

Algorithm 1 Construct an interpolant of a function.

Input: target // Function to interpolate
Output: surrogate // Interpolant

1: surrogate = New()
2: for s = strategy.First(); s != nil; s = strategy.Next(s) do
3: s.nodes = grid.Compute(s.indices)
4: s.values = Invoke(target, s.nodes)
5: s.estimates = Evaluate(surrogate, s.nodes)
6: s.surpluses = Subtract(s.values, s.estimates)
7: s.scores = strategy.Score(s.surpluses)
8: Append(surrogate, s.indices, s.surpluses)
9: end for

10: return surrogate

is initialized with the indices of that step. The body of the loop
populates the rest of the fields of s so that strategy.Next
can adequately produce the initial state of the next iteration.
The process terminates when a stopping condition is satisfied,
in which case Next returns a null state.

Line 3: The grid object represents the interpolation grid
utilized (see Sec. V-C), and its Compute method converts
the step’s indices into the coordinates of the corresponding
collocation nodes, that is, {ιk}k into {xιk}k.

Line 4: Invoke evaluates target at the collocation nodes.
This is by far the most time consuming function of the algorithm
as target is generally expensive to evaluate. This function
is also a prominent candidate for parallelization since the
algorithm does not impose any evaluation order.

Line 5: Evaluate exercises the interpolant constructed so
far at the collocation nodes, approximating the values obtained
on line 4. This function will be discussed separately.

Line 6: Subtract computes the difference between the true
and approximated values of target, which yields the step’s
hierarchical surpluses {∆f(xιk)}k, similar to (24).

Line 7: strategy.Score calculates the scores of the new
collocation nodes based on their surpluses; see (28).

Line 8: Append improves the interpolant by extending it
with the indices and surpluses of the current iteration.

We now turn to the usage stage of an interpolant. The
pseudocode is given in Algorithm 2 called Evaluate. This
algorithm is also involved in Algorithm 1; see line 5. Let us
make a couple of observations regarding Evaluate.

Line 4: The inner loop is an unfolded version of (29) (there
is no separation between individual interpolation steps taken).

Line 5: The basis object represents the interpolation basis
utilized (see Sec. V-D), and its Compute method evaluates a
single (multidimensional) basis function at a single point.

It is worth noting that the basis, grid, and strategy
objects conform to certain interfaces and can be easily swapped
out. This makes the two algorithms very general and reusable
with different configurations. In particular, the adaptation
strategy can be fine-tuned for each particular problem.

To recapitulate, in this section, we have presented the key
component of the proposed framework for probabilistic analysis
of electronic systems: an efficient approach to multidimensional
interpolation. The overall technique has been consolidated in

Algorithm 2 Evaluate an interpolant at a set of points.

Input: surrogate, points // Interpolant and points
Output: estimates // Approximated values

1: estimates = New()
2: for point in points do
3: estimate = 0
4: for (index, surplus) in surrogate do
5: weight = basis.Compute(index, point)
6: estimate = estimate + surplus× weight
7: end for
8: Append(estimates, estimate)
9: end for

10: return estimates

Algorithm 1 and Algorithm 2.

VI. ANALYSIS

In Sec. IV, we formalized the uncertainty affecting electronic
systems and discussed several aspects of such systems along
with metrics g, which the designer is interested in evaluating.
In Sec. V, we obtained an efficient interpolation algorithm
for approximating hypothetical multidimensional functions
f . We shall now amalgamate the ideas developed in the
aforementioned two sections.

Given an electronic system dependent on a number of
uncertain parameters u : Ω → Rnu , the goal is to analyze
a metric g representing a certain aspect of the system. For
instance, u can correspond to the execution times of the
tasks, and g can correspond the total energy consumed by
the processing elements, as we exemplify in Sec. IV-B and
Sec. IV-C. The goal is attained as follows; recall Fig. 2.

1) The parametrization of g is changed from u to random
variables z : Ω → [0, 1]nz via a suitable transformation T;
this stage is described in Sec. IV-A. 2) An interpolant of
the resulting composition g ◦ T is constructed by treating the
composition as a deterministic function f of z; this stage
is detailed in Sec. V. 3) An estimation of the probability
distribution of g is undertaken in the usual sampling-based
manner but relying solely on the constructed interpolant; g
is no longer involved. This last stage boils down to drawing
independent samples from Fz and evaluating the interpolant
Al(f) ≡ Al(g ◦ T) at those points. Having collected samples
of g, other statistics about g, such as probabilities of particular
events, can be straightforwardly estimated. We do not discuss
this estimation stage any further as it is standard.

There are two aspects concerning the usage of the proposed
framework that we would like to cover in what follows.

A. Expectation and Variance
Since the expected value and variance, which are defined in

(1) and (2), respectively, usually draw particular attention, we
would like to elaborate on them separately.

As shown in Sec. IV-A, g can be reparameterized in terms of
independent variables that are uniformly distributed on [0, 1]nz .
This means that the probability density function of z simply
equals to one. Therefore, using (1) and (29), we have

11

E g ≈ EAl(f) =

∫
[0,1]nz
Al(f)(z) dz =

∑
i∈Il

∑
j∈∆Ji

∆f(xij) vij

where

vij =

∫
[0,1]nz

eij(z) dz =

nz∏
k=1

∫ 1

0

eikjk(zk) dzk =

nz∏
k=1

vikjk .

In the above equation, vij is as shown in (27). Consequently,
we have obtained an analytical formula for the expected value
of g, which does not require any additional sampling.

Regarding the variance of g, it can be seen in (2) that the
variance can be assembled from two components: the expected
value of g, which we already have, and the expected value of
g2, which we are missing. The solution is to let h = (g, g2) be
the metric instead of g. Then the expected values of both g and
g2 will be available in analytical forms, and the variance of g
can be computed using (2). This approach can be generalized
to probabilistic moments of higher orders.

B. Multiple Outputs
The careful reader has noted a problem with the calculation

of variance in the previous subsection: h is vector valued.
More generally, the metric g in Sec. IV and the function
f in Sec. V have been depicted as having one-dimensional
codomains. This, however, has been done only for the sake of
clarity. All the mathematics and pseudocodes stay the same for
vector-valued functions. The only except is that, since a surplus
∆f(xij) naturally inherits the output dimensionality of f , the
operations that involve ∆f(xij) should be adequately adjusted.
If the outputs are on different scales and/or have different
accuracy requirements, one might want to have different εa
and εr in (32) for different outputs. In that case, one also needs
to device a more sensible strategy for scoring collocation nodes
in (28) such as rescaling individual outputs and then calculating
the uniform norm ‖ · ‖∞ or L2 norm ‖ · ‖2. Our code [18] has
been written with multiple outputs in mind.

To summarize, once an interpolant of g has been constructed,
the distribution of g is estimated using versatile sampling
methods applied to the interpolant. The framework extends
naturally to metrics with multiple outputs, and it provides
analytical formulae for expectations and variances.

Let us remind that the evaluation of g is an extensive
operation. Our technique is designed to keep this expense
as low as possible by choosing the evaluation points adaptively,
which is unlike traditional sampling methods. Moreover, in
contrast to PC expansions and similar techniques, the proposed
framework is well suited for the nonsmooth response surfaces.

VII. EXPERIMENTS

In this section, we evaluate the performance of our frame-
work. Our implementation is open source and can be found at
[18], which also includes the experimental setup along with
configuration files and input data. The experiments discussed
below are conducted on a GNU/Linux machine equipped with
16 processors Intel Xeon E5520 2.27 GHz and 24 GB of RAM.

We shall address 3× 2× 3 = 18 uncertainty-quantification
problems. Specifically, we shall consider three platform sizes
nπ: 2, 4, and 8 processing elements; two application sizes nt:
10 and 20 tasks; and three metrics g: the end-to-end delay,

total energy consumption, and maximum temperature defined
in (6), (8), and (10), respectively. At this point, it might be
helpful to recall the example in Fig. 2.

A. Configuration
A platform with nπ processing elements and an application

with nt tasks are generated randomly by the TGFF tool [26].
The tool generates nπ tables and a directed acyclic graph with
nt nodes. Each table corresponds to a processing element,
and it describes certain properties of the tasks when they are
mapped to that particular processing element. Namely, each
table assigns two numbers to each task: a reference execution
time, chosen uniformly between 10 and 50 ms, and a power
consumption, chosen uniformly between 5 and 25 W. The graph
captures data dependencies between the tasks. The application
is scheduled using a list scheduler [27]. The mapping of the
application is fixed and obtained by scheduling the tasks based
on their reference execution times and assigning them to the
earliest available processing elements (a shared ready list).

The construction of thermal RC circuits needed for tempera-
ture analysis is delegated to the HotSpot tool [24]. The floorplan
of each platform is a regular grid wherein each processing
element occupies 2 × 2 mm2 on the die. The output of the
tool is a pair of a thermal capacitance matrix C and a thermal
conductance G matrix used in (9). The leakage modeling is
based on a linear fit to a data set of SPICE simulations of a
series of CMOS invertors [17], [23]; see also [11]. The time
step of power and temperature profiles is constant and equal
to one microsecond; see Sec. IV-C and Sec. IV-D.

The uncertain parameters u introduced in Sec. III-B are the
execution times of the tasks; see Sec. IV-B. All other parameters
are deterministic. Targeting the practical scenario described in
Sec. IV-A, the marginal distributions and correlation matrix of
u are assumed to be available. Without loss of generality,
the marginal of ui is a four-parametric beta distribution
Beta(αi, βi, ai, bi) where αi and βi are the shape parameters,
and ai and bi are the endpoints of the support. The left ai and
right bi endpoint are set to 80% and 120%, respectively, of
the reference execution time generated by the TGFF tool as
described earlier. The parameter αi and βi are set to two and
five, respectively, for all tasks, which skews the distribution
toward the left endpoint. The execution times of the tasks are
correlated based on the structure of the graph produced by
the TGFF tool: the closer task i and task j are in the graph
as measured by the number of edges between vertex i and
vertex j, the stronger ui and uj are correlated. The model-order
reduction parameter η in (4) (Sec. IV-A) is set to 0.9, which
results in nz = 2 and 3 preserved variables for applications
with nt = 10 and 20 tasks, respectively.

The configuration of the interpolation algorithm (the col-
location nodes, basis functions, and adaptation strategy with
stopping conditions) is as described in Sec. V. The parameters
εa, εr, and εs are around 103, 102, and 104, respectively,
depending on the problem; the exact values can be found
at [18], which, again, contains all other details too.

The performance of our framework with respect to each
problem is assessed as follows. First, we obtain the “true”
probability distribution of the metric in question g by sampling

12

g directly and extensively. Direct sampling means that samples
are drawn from g itself (not from a surrogate), and that there
is no any intermediate model-order reduction (see Sec. IV-A).
Second, we construct an interpolant for g and estimate g’s
distribution by sampling the interpolant. In both cases, we
draw 105 samples; let us remind, however, that the cost of
sampling the interpolant is practically negligible. Third, we
perform another round of direct sampling of g, but this time we
draw as many samples as many times the metric was evaluated
during the interpolation process. In each of the three cases, the
sampling is undertaken in accordance with a Sobol sequence,
which is a quasi-random low-discrepancy sequence featuring
much better convergence properties than those of the classical
Monte-Carlo (MC) sampling [28].

As a result, we obtain three estimates of g’s distribution:
reference (the one considered true), proposed (the one interpola-
tion powered), and direct (the one equal in terms of the number
of g’s evaluations to the proposed solution). The last two are
compared with the first one. For comparing the proximity
between two distributions, we use the well-known Kolmogorov–
Smirnov (KS) statistic [29], which is the supremum over
the distance (pointwise) between two empirical distribution
functions and, hence, is a rather unforgiving error indicator.

B. Discussion
The results of all 18 uncertainty-quantification problems

are given in Fig. 5 as a 6-by-3 grid of plots, one plot per
problem. The three columns correspond to the three metrics
at hand: the end-to-end delay (left), total energy (middle),
and maximum temperature (right). The three pairs of rows
correspond to the three platform sizes: 2 (top), 4 (middle), and
8 (bottom) processing elements. The rows alternate between
the two application sizes: 10 (odd) and 20 (even) tasks.

The horizontal axis of each plot shows the number of points,
that is, evaluations of the metric g, and the vertical one shows
the KS statistic on a logarithmic scale. Each plot has two lines.
The solid line represents our technique. The circles on this line
correspond to the steps of the interpolation process given in
(29). They show how the KS statistic computed with respect
to the reference solution changes as the interpolation process
takes steps (and increases the number of collocation nodes)
until the stopping condition is satisfied (Sec. V-E). Note that
only a subset of the actual steps is displayed in order to make
the figure legible. Synchronously with the solid line (that is, for
the same numbers of g’s evaluations), the dashed line shows
the error of direct sampling, which, as before, is computed
with respect to the reference solution.

Let us first describe one particular problem shown in Fig. 5.
Consider, for instance, the one labeled with F. It can be seen
that, at the very beginning, our solution and the solution of
direct sampling are poor. The KS statistic tells us that there are
substantial mismatches between the estimates and the reference
solution. However, as the interpolant is being adaptively refined,
our solution approaches rapidly the reference one and, by the
end of the interpolation process, leaves the solution of naïve
sampling approximately an order of magnitude behind.

Studying Fig. 5, one can make a number of observations.
First and foremost, our interpolation-powered approach (solid

lines) to probabilistic analysis outperforms direct sampling
(dashed lines) in all the cases. This means that, given a fixed
budget of the computation time—the probability distributions
delivered by our framework are much closer to the true ones
than those delivered by sampling g directly, despite the fact that
the latter relies on Sobol sequences, which are a sophisticated
sampling strategy. Since direct sampling methods try to cover
the probability space impartially, Fig. 5 is a salient illustration
of the difference between being adaptive and nonadaptive.

It can also be seen in Fig. 5 that, as the number of evaluations
increases, the solutions computed by our technique approach
the exact ones. The error of our framework decreases generally
steeper than the one of direct sampling. The decrease, however,
tends to plateau toward the end of the interpolation process
(when the stopping condition is satisfied). This behavior can
be explained by the following two reasons. First, the algorithm
has been instructed to satiate certain accuracy requirements
(εa, εr, and εs), and it reasonably does not do more than what
has been requested. Second, since the model-order reduction
mechanism is enabled in the case of interpolation, the metric
being interpolated is not g, strictly speaking; it is a lower-
dimensional representation of g, which already implies an
information loss. Therefore, there is a limit on the accuracy that
can be achieved, which depends on the amount of reduction.

The message of the above observations is that the designer
of an electronic system can benefit substantially in terms
of accuracy per computation time by switching from direct
sampling to the proposed technique. If the designer’s current
workhorse is the classical MC sampling, the switch might lead
to even more dramatic savings than those shown in Fig. 5.
Needless to mention that the gain is especially prominent in
situations where the analysis needs to be performed many times
such as when it resides in a design-space exploration loop.

Remark 3. The wall-clock time taken by the experiments is not
reported in this paper because this time is irrelevant: since the
evaluation of g is time consuming (see Sec. III-B), the number
of g’s evaluations is the most apposite expense indicator. For the
curious reader, however, let us give an example by considering
the problem labeled with ♣ in Fig. 5. Obtaining a reference
solution with 105 simulations in parallel on 16 processors took
us around two hours. Constructing an interpolant with 383
collocation nodes took around 30 seconds (this is also the time
of direct sampling with 383 simulations of g). Evaluating the
interpolant 105 times took less than a second. The relative
computation cost of sampling an interpolant readily diminishes
as the complexity of g increases; contrast it with direct sampling,
whose cost grows proportional to g’s evaluation time.

C. Real-life Example
Last but not least, we investigate the viability of deploying

the proposed framework in a real environment. It means that we
need to couple the framework with a battle-proven simulator,
which is used in both academia and industry, and let it simulate
a real application running on a real platform. Before we proceed,
we would like to remind that all the implementation and
configuration details including the infrastructure developed
for this example can be found at [18].

13

1 10 20 30 4010-3

10-2

10-1

100

1 20 40 60 80 10010-3

10-2

10-1

100

1 20 40 6010-3

10-2

10-1

100

1 20 40 60 80 10010-3

10-2

10-1

100

1 50 100 150 20010-3

10-2

10-1

100

1 50 100 15010-3

10-2

10-1

100

1 20 40 6010-3

10-2

10-1

100

1 50 100 15010-3

10-2

10-1

100

1 20 40 60 80 10010-3

10-2

10-1

100

1 50 100 150 20010-3

10-2

10-1

100

1 200 400 60010-3

10-2

10-1

100

1 100 200 300 40010-3

10-2

10-1

100

1 20 40 60 8010-3

10-2

10-1

100

1 50 100 150 200 25010-3

10-2

10-1

100

1 20 40 60 80 10010-3

10-2

10-1

100

1 50 100 150 200 25010-3

10-2

10-1

100

1 200 400 600 80010-3

10-2

10-1

100

1 100 200 30010-3

10-2

10-1

100

End-to-end delay Total energy Maximum temperature

nπ = 2, nt = 10

nπ = 2, nt = 20

nπ = 2, nt = 10

nπ = 2, nt = 20

nπ = 2, nt = 10

nπ = 2, nt = 20

nπ = 4, nt = 10

nπ = 4, nt = 20

nπ = 4, nt = 10

nπ = 4, nt = 20

nπ = 4, nt = 10

nπ = 4, nt = 20

nπ = 8, nt = 10

nπ = 8, nt = 20

nπ = 8, nt = 10

nπ = 8, nt = 20

nπ = 8, nt = 10

nπ = 8, nt = 20

Figure 5. Experimental results. The columns correspond to the metrics written at the very top. The horizontal axes show the number of points, and the
vertical ones the error on logarithmic scales. The solid lines correspond to the proposed technique, and the dashed ones to direct sampling.

14

The scenario that we consider is the same as the one depicted
in Fig. 2 except for the fact that an industrial-standard simulator
is put in place of the “black box” on the left side, and that the
metric of interest g is now the total energy. Unlike the previous
examples, there is no true solution to compare with due to the
prohibitive expense of the simulator, which is exactly why our
framework is needed in such cases.

The simulator of choice is the well-known and widely used
combination of Sniper [21] and McPAT [30]. The architecture
that we simulate is Intel’s Nehalem-based Gainestown series.
Sniper is distributed with a configuration file for this archi-
tecture, and we use it without any changes. The platform is
configured to have three CPUs sharing one L3 cache.

The application that has been chosen for simulation is VIPS,
which is an image-processing piece of software taken from
the PARSEC benchmark suite [31]. In this scenario, VIPS
applies a fixed set of operations to a given image. The width
and height of the image to process are considered as the
uncertain parameters u (see Sec. III-B), which are assumed to
be distributed uniformly within certain ranges.

The real-life deployment has fulfilled our expectations. The
interpolation process successfully finished and delivered a
surrogate after 78 invocations of the simulator. Each invocation
took 40 minutes on average. The probability distribution of the
total energy was then estimated by sampling the constructed
surrogate 105 times. These many samples would take around 6
months to obtain on our machine if we sampled the simulator
directly in parallel on 16 processors; using the proposed
technique, the whole procedure took approximately 9 hours.

VIII. CONCLUSION

In this paper, we have presented a framework for probabilistic
analysis of electronic systems. Given a description of the
probability distribution of the uncertain parameters present in
the system under consideration and a simulator of a metric of
interest dependent on the parameters, the framework prescribes
the steps that need to be taken in order to computationally
efficiently obtain the probability distribution of the metric.

The proposed approach is powered by hierarchical interpo-
lation following a hybrid adaptation strategy. The adaptivity
makes the framework particularly suited for problems with
idiosyncratic behaviors and steep response surfaces, which
arise in electronic systems due to their digital nature.

The performance of our framework has been assessed by
comparing it with the performance of an advanced sampling
technique. The experimental results have shown that, for a
fixed budget of evaluations of the metric, our approach achieves
higher accuracy compared to direct simulations.

Finally, we would like to emphasize that, even though the
framework has been exemplified by considering a specific
source of uncertainty and specific metrics, it is general and
can be successfully applied in many other settings.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Nicholas Zabaras
and Dr. Xiang Ma from Cornell University and Dr. Stefan
Dirnstorfer from Munich Technical University for the help with
adaptive hierarchical interpolation and integration techniques.

REFERENCES

[1] S. Quinton, R. Ernst, D. Bertrand, and P. M. Yomsi, “Challenges and new
trends in probabilistic timing analysis,” in DATE, 2012, pp. 810–815.

[2] S. Asmussen and P. Glynn, Stochastic Simulation: Algorithms and
Analysis. Springer New York, 2007.

[3] I. Díaz-Emparanza, “Is a small Monte Carlo analysis a good analysis?”
Statistical Papers, vol. 43, pp. 567–577, October 2002.

[4] J. Jakeman and S. Roberts, “Local and dimension adaptive stochastic col-
location for uncertainty quantification,” in Sparse Grids and Applications.
Springer Berlin Heidelberg, 2012, pp. 181–203.

[5] W. A. Klimke, “Uncertainty modeling using fuzzy arithmetic and sparse
grids,” Ph.D. dissertation, Universität Stuttgart, 2006.

[6] X. Ma and N. Zabaras, “An adaptive hierarchical sparse grid collocation
algorithm for the solution of stochastic differential equations,” J.
Computational Physics, vol. 228, pp. 3084–3113, May 2009.

[7] A. Srivastava, D. Sylvester, and D. Blaauw, Statistical Analysis and
Optimization for VLSI: Timing and Power. Springer US, 2005.

[8] S. Bhardwaj, S. Vrudhula, and A. Goel, “A unified approach for full chip
statistical timing and leakage analysis of nanoscale circuits considering
intradie process variations,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 27, pp. 1812–1825, October 2008.

[9] D.-C. Juan, Y.-L. Chuang, D. Marculescu, and Y.-W. Chang, “Statistical
thermal modeling and optimization considering leakage power variations,”
in DATE, 2012, pp. 605–610.

[10] Y.-M. Lee and P.-Y. Huang, “An efficient method for analyzing on-chip
thermal reliability considering process variations,” ACM Trans. Design
Automation of Electronic Systems, vol. 18, pp. 41:1–41:32, July 2013.

[11] I. Ukhov, P. Eles, and Z. Peng, “Probabilistic analysis of power and
temperature under process variation for electronic system design,” IEEE
Trans. CAD Integr. Circuits Syst., vol. 33, pp. 931–944, June 2014.

[12] ——, “Temperature-centric reliability analysis and optimization of
electronic systems under process variation,” IEEE Trans. VLSI Syst.,
vol. 23, pp. 2417–2430, November 2015.

[13] J. L. Díaz, D. F. García, K. Kim, C.-G. Lee, L. L. Bello, J. M. López,
S. L. Min, and O. Mirabella, “Stochastic analysis of periodic real-time
systems,” in RTSS, 2002, pp. 289–300.

[14] L. Santinelli, P. M. Yomsi, D. Maxim, and L. Cucu-Grosjean, “A
component-based framework for modeling and analyzing probabilistic
real-time systems,” in ETFA, 2011, pp. 1–8.

[15] B. Tanasa, U. Bordoloi, P. Eles, and Z. Peng, “Probabilistic response
time and joint analysis of periodic tasks,” in ECRTS, 2015, pp. 235–246.

[16] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral
Method Approach. Princeton University Press, 2010.

[17] I. Ukhov, M. Bao, P. Eles, and Z. Peng, “Steady-state dynamic tempera-
ture analysis and reliability optimization for embedded multiprocessor
systems,” in DAC, 2012, pp. 197–204.

[18] (2017, February) Source code and input data used in the experimental
results. Embedded Systems Laboratory at Linköping University. [Online].
Available: https://www.ida.liu.se/~ivauk83/research/PAAI

[19] R. Durrett, Probability. Cambridge University Press, 2010.
[20] R. Nelsen, An Introduction to Copulas. Springer, 2007.
[21] T. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the level of

abstraction for scalable and accurate parallel multi-core simulations,” in
International Conference for High Performance Computing, Networking,
Storage and Analysis, November 2011, pp. 52:1–52:12.

[22] P.-L. Liu and A. D. Kiureghian, “Multivariate distribution models
with prescribed marginals and covariances,” Probabilistic Engineering
Mechanics, vol. 1, pp. 105–112, June 1986.

[23] Y. Liu, R. P. Dick, L. Shang, and H. Yang, “Accurate temperature-
dependent integrated circuit leakage power estimation is easy,” in DATE,
2007, pp. 1526–1531.

[24] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan, “Temperature-aware microarchitecture: Modeling and
implementation,” ACM Trans. Architecture and Code Optimization, vol. 1,
pp. 94–125, March 2004.

[25] S. A. Smolyak, “Quadrature and interpolation formulas for tensor products
of certain classes of functions,” Doklady Akademii Nauk SSSR, vol. 148,
pp. 1042–1045, 1963.

[26] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task graphs for free,”
in CODES/CASHE, March 1998, pp. 97–101.

[27] T. L. Adam, K. M. Chandy, and J. R. Dickson, “A comparison of list
schedules for parallel processing systems,” Communications of the ACM,
vol. 17, pp. 685–690, December 1974.

[28] S. Joe and F. Kuo, “Constructing sobol sequences with better two-
dimensional projections,” SIAM Journal on Scientific Computing, vol. 30,
pp. 2635–2654, 2008.

[29] C. R. Rao, Linear Statistical Inference and Its Applications. John Wiley
& Sons, 2009.

[30] S. Li, J. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi, “McPAT:
An integrated power, area, and timing modeling framework for multicore
and manycore architectures,” in IEEE/ACM International Symposium on
Microarchitecture, December 2009, pp. 469–480.

[31] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

https://www.ida.liu.se/~ivauk83/research/PAAI

	Introduction
	Prior Work and Our Contribution
	Prior Work
	Our Contribution

	Problem Formulation and Our Solution
	Preliminaries
	Problem Formulation
	Our Solution
	Illustrative Example

	Modeling
	Uncertainty Parameters
	Application Timing
	Power Consumption
	Heat Dissipation

	Interpolation
	Tensor Product
	Smolyak Algorithm
	Collocation Nodes
	Basis Functions
	Adaptivity
	Implementation

	Analysis
	Expectation and Variance
	Multiple Outputs

	Experiments
	Configuration
	Discussion
	Real-life Example

	Conclusion
	References

