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Probabilistic Analysis of Power and Temperature Under
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Abstract—Electronic system design based on deterministic
techniques for power-temperature analysis is, in the context
of current and future technologies, both unreliable and inef-
ficient since the presence of uncertainty, in particular, due to
process variation, is disregarded. In this work, we propose a
flexible probabilistic framework targeted at the quantification
of the transient power and temperature variations of an elec-
tronic system. The framework is capable of modeling diverse
probability laws of the underlying uncertain parameters and
arbitrary dependencies of the system on such parameters. For
the considered system, under a given workload, our technique
delivers analytical representations of the corresponding stochastic
power and temperature profiles. These representations allow
for a computationally efficient estimation of the probability
distributions and accompanying quantities of the power and
temperature characteristics of the system. The approximation
accuracy and computational time of our approach are assessed
by a range of comparisons with Monte Carlo simulations, which
confirm the efficiency of the proposed technique.

Index Terms—Power analysis, process variation, system-level
design, temperature analysis, uncertainty quantification.

I. INTRODUCTION

Process variation constitutes one of the major concerns of
electronic system designs [1], [2]. A crucial implication of
process variation is that it renders the key parameters of a
technological process, e.g., the effective channel length, gate
oxide thickness, and threshold voltage, as random quantities.
Therefore, the same workload applied to two “identical” dies
can lead to two different power and, thus, temperature profiles
since the dissipation of power and heat essentially depends
on the aforementioned stochastic parameters. This concern
is especially urgent due to the interdependence between the
leakage power and temperature [2], [3]. Consequently, process
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Figure 1. Temperature fluctuations due to process variation.
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variation leads to performance degradation in the best case
and to severe faults or burnt silicon in the worst scenario.
Under these circumstances, uncertainty quantification [4] has
evolved into an indispensable asset of electronic system design
workflows in order to provide them with guaranties on the
efficiency and robustness of products.

To illustrate the above concern, consider a quad-core archi-
tecture exposed to the uncertainty of the parameters that affect
the leakage current. Assume first that these parameters have
all nominal values. We can then simulate the system under a
certain workload and observe the corresponding temperature
profile.1 The result, labeled as “Nominal,” is depicted in
Fig. 1 where, for clarity, only one curve, corresponding to one
processor, is presented. It can be seen that the temperature is
always below 90◦C. Now let us assume a mild deviation of
the parameters from the nominal values and run the simu-
lation once again. The result is the “Mild” curve in Fig. 1;
the maximal temperature is approaching 100◦C. Finally, we
repeat the experiment considering a severe deviation of the
parameters and observe the curve labeled as “Severe” in Fig. 1;
the maximal temperature is almost 110◦C. Imagine that the
designer, when tuning the solution constrained by a maximal
temperature of 90◦C, was guided exclusively by the nominal
parameters. In this case, even with mild deviations, the circuits
might be burnt. Another path that the designer could take is
to design the system for severe conditions. However, in this
scenario, the system might easily end up being too conserva-
tive and over-designed. Consequently, such uncertainties have
to be addressed in order to pursue efficiency and fail-safeness.
Nevertheless, the majority of the literature related to power-
temperature analysis of multiprocessor systems ignores this
important aspect, e.g., [5], [6], [7], [8].

The remainder of the paper is organized as follows. A sum-
mary of the main notations is given in Table I. Sec. II provides
an overview of the prior work. In Sec. III, we summarize the
contribution of the present paper. The objective of our study is
formulated in Sec. IV. The proposed framework is presented
in Sec. V. A particular application of our approach is discussed
in Sec. VI, and the corresponding results are compared with
MC simulations in Sec. VII. Sec. VIII concludes the paper.
The work contains a set of supplementary materials with
discussions on certain aspects of our framework.

II. PRIOR WORK

Since the appearance of the first digital computers in 1940s,
Monte Carlo (MC) sampling remains one of the most well-
known and widely used methods for the analysis of stochastic
systems. The reason for this popularity lies in the ease of

1The experimental setup will be detailed in Sec. VI and Sec. VII.
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implementation, in the independence of the stochastic dimen-
sionality of the considered problems, and in the fact that
the quantities estimated using MC simulations asymptotically
approach the true values (the law of large numbers). The
crucial problem with MC sampling, however, is the low rate
of convergence: the error decreases at the order of nmc

−1/2

where nmc is the number of samples.2 This means that, in
order to get an additional decimal point of accuracy, one has to
obtain hundred times more samples. Each such sample implies
a complete realization of the whole system, which renders
MC-based methods slow and often infeasible since the needed
number of simulations can be extremely large [9].

In order to overcome the limitations of deterministic power-
temperature analysis (PTA) and, at the same time, to com-
pletely eliminate or, at least, mitigate the costs associated
with MC sampling, a number of alternative stochastic PTA
techniques have been recently introduced. Due to the fact that
the leakage component of the power dissipation is influenced
by process variation the most [1], [2], [10], [11], the techniques
discussed below primarily focus on the variability of leakage.

A solely power-targeted but temperature-aware solution is
proposed in [12] wherein the driving force of the analysis is
MC sampling with partially precomputed data. A learning-
based approach is presented in [10] to estimate the maximal
temperature under the steady-state condition. Temperature-
related issues originating from process variation are also
considered in [11] where a statistical model of the steady-
state temperature based on Gaussian distributions is derived.
A statistical steady-state temperature simulator is developed
in [13] using polynomial chaos (PC) expansions and the
Karhunen-Loève (KL) decomposition [4], [14]. A KL-aided
stochastic collocation [4] approach to steady-state temperature
analysis is presented in [15]. In [16], PC expansions are
employed to estimate the full-chip leakage power. The KL
decomposition is utilized in [17] for leakage calculations. In
[18], the total leakage is quantified using the PC and KL
methods. The same combination of tools is employed in [19]
and [20] to analyze the response of interconnect networks and
power grids, respectively, under process variation.

The last five of the aforementioned techniques, i.e., [16],
[17], [18], [19], [20], perform only stochastic power anal-
ysis and ignore the interdependence between leakage and
temperature. The others are temperature-related approaches,
but none of them attempts to tackle stochastic transient PTA
and to compute the evolving-in-time probability distributions
of temperature. However, such transient curves are of prac-
tical importance. First of all, certain procedures cannot be
undertaken without the knowledge of the time-dependent
temperature variations, e.g., reliability optimization based on
the thermal-cycling fatigue [8]. Secondly, the constant steady-
state temperature assumption, considered, e.g., in [10], [11],
[13], [15], can rarely be justified since power profiles are not
invariant in reality. In addition, one can frequently encounter
the assumption that power and/or temperature follow a priori

2There are other sampling techniques that have better convergence rates
than the one of the classical MC sampling, e.g., quasi-MC sampling; however,
due to additional restrictions, their applicability is often limited [4].

Table I
MAIN NOTATIONS

Notation Meaning Notation Meaning

p Power np # of processing elements
q Temperature nn # of thermal nodes
T [·] Probability transform nt # of time moments
u Uncertain parameters nu # of elements in u
ξ Independent variables nξ # of elements in ξ

Cnξ
npo [ · ] PC expansion, (4) npo PC order
ψi Basis polynomials npc # of PC coefficients, (5)
〈·, ·〉 Inner product, (19) nqp # of quadrature points

known probability distributions, for instance, Gaussian and
log-normal distributions are popular choices as in [2], [11],
[17]. However, this assumption often fails in practice (also
noted in [11] regarding the normality of the leakage power)
due to: (a) the strict nonlinearities between the process-
related parameters, power, and temperature; (b) the nonlinear
interdependency of temperature and the leakage power [3].
To illustrate this, we simulated the example given in Sec. I
104 times assuming the widespread Gaussian model for the
variability of the effective channel length; the rest of the
experimental setup was configured as it will be described in
Sec. VI and Sec. VII. Then we applied the Jarque-Bera test
of normality to the collected data (temperature) directly as
well as after processing them with the log transformation.
The null hypothesis that the data are from an unspecified
Gaussian distribution was firmly rejected in both cases at the
significance level of 5%. Therefore, the two distributions are
neither Gaussian nor log-normal, which can also be seen in
Fig. 6 described in the experimental results, Sec. VII.

To conclude, the prior stochastic PTA techniques for elec-
tronic system design are restricted in use due to one or several
of the following traits: based on MC simulations (potentially
slow) [12], limited to power analysis [12], [16], [17], [18],
[19], [20], ignoring the leakage-temperature interplay [13],
[16], [17], [18], [19], [20], limited to the assumption of
the constant steady-state temperature [10], [11], [13], [15],
exclusive focus on the maximal temperature [10], and a
priori chosen distributions of power and temperature [2], [11],
[17]. Consequently, there is a lack of flexible stochastic PTA
techniques, which we aim to eliminate.

III. OUR CONTRIBUTION

Our work makes the following main contribution. We de-
velop a probabilistic framework for the analysis of the transient
power and temperature profiles of electronic systems subject
to the uncertainty due to process variation. The proposed
technique is flexible in modeling diverse probability distri-
butions, specified by the user, of the uncertain parameters,
such as the effective channel length and gate oxide thickness.
Moreover, there are no assumptions on the distributions of the
resulting power and temperature traces as these distributions
are unlikely to be known a priori. The proposed technique
is capable of capturing arbitrary joint effects of the uncertain
parameters on the system since the impact of these parameters
is introduced into the framework as a “black box,” which is
also defined by the user. In particular, it allows for the leakage-
temperature interdependence to be taken into account with
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no effort. Our approach is founded on the basis of polyno-
mial chaos (PC) expansions, which constitute an attractive
alternative to Monte Carlo (MC) sampling. This is due to
the fact that PC expansions possess much faster convergence
properties and provide succinct and intuitive representations
of system responses to stochastic inputs. In addition, we
illustrate the framework considering one of the most important
parameters affected by process variation: the effective channel
length. Note, however, that our approach is not bounded
by any particular source of variability and, apart from the
effective channel length, can be applied to other process-
related parameters, e.g., the gate oxide thickness.

IV. PROBLEM FORMULATION

The probability space that we shall reside in is defined as
a triple (Ω,F ,P) where Ω is a set of outcomes, F ⊆ 2Ω

is a σ-algebra on Ω, and P : F → [0, 1] is a probability
measure [4]. A random variable is a function ζ : Ω → R
which is F-measurable. A random vector (matrix) is then a
vector (matrix) whose elements are random variables. In what
follows, the space (Ω,F ,P) will always be implied.

Consider a heterogeneous electronic system that consists
of np processing elements and is equipped with a thermal
package. The processing elements are the active components
of the system identified at the system level (ALUs, FPUs,
caches, etc.). Let S be a thermal specification of the system
defined as a collection of temperature-related information: (a)
the floorplans of the active layers of the chip; (b) the geometry
of the thermal package; and (c) the thermal parameters of the
materials that the chip and package are made of (e.g., the
silicon thermal conductivity and specific heat).

A (transient) power profile (P, τ [P]) is defined as a tuple
composed of a data matrix P ∈ Rnp×nt that captures the
power dissipation of the np processing elements at nt moments
of time and a (column) vector τ [P] = (ti) ∈ Rnt with
positive and strictly increasing components that specifies these
moments of time. The definition of a (transient) temperature
profile (Q, τ [Q]) is the same as the one for power except that
the data matrix Q contains temperature values.

The system depends on a set of process parameters that are
uncertain at the design stage. These parameters are denoted
by a random vector u : Ω → Rnu . Once the fabrication
process yields a particular outcome, u takes (potentially)
different values across each fabricated chip individually and
stays unchanged thereafter. This variability leads to deviations
of the actual power dissipation from the nominal values
and, therefore, to deviations of temperature from the one
corresponding to the nominal power consumption.

The goal of this work is to develop a system-level prob-
abilistic framework for transient power-temperature analysis
(PTA) of electronic systems where the actual power dissipation
and temperature are stochastic due to their dependency on
the uncertain parameters u.3 The user is required to: (a)
provide a thermal specification of the platform S; (b) have
prior knowledge (or belief) about the probability distribution

3Although the focal point of this paper is process variation, there can be
other uncertainties such as those related to the system load and environment.

of the uncertain parameters; and (c) specify a power model, in
which u is an input. The framework should provide the user
with the tools to analyze the system under a given workload,
without imposing any constraints on the nature/origins of
this workload, and obtain the corresponding stochastic power
(P, τ [P]) and temperature (Q, τ [Q]) profiles with a desired
level of accuracy and at low costs.

V. PROPOSED FRAMEWORK

The main idea of our framework is to construct a surrogate
model for the joint power and thermal models of the con-
sidered system using PC expansions. Having constructed this
surrogate, such quantities as cumulative distribution functions
(CDFs) and probability density functions (PDFs) can be easily
estimated. Moreover, the representations, which we compute,
provide analytical formulae for probabilistic moments, i.e., the
expected value and variance are readily available.

The major stages of our technique are depicted in Fig. 2.
Stage 1. Parameter Preprocessing (Sec. V-A). The PC

approach operates on mutually independent random variables.
The uncertain parameters u might not satisfy this requirement
and, thus, should be preprocessed; we denote the correspond-
ing independent random variables by ξ.

Stage 2. Power Modeling (Sec. V-B). The user specifies
the power model of the system via a “black-box” functional
Π, which computes the total power p(t,u) for a particular
temperature q(t,u) and an outcome of the parameters u.

Stage 3. Thermal Modeling (Sec. V-C). With respect to the
thermal specification S (defined in Sec. IV), a mathematical
formulation of the thermal system is attained. The thermal
model closely interacts with the power model from Stage 2
and produces the corresponding temperature profile.

Stage 4. Surrogate Modeling (Sec. V-D). The surrogate
model is obtained by traversing the desired time span and
gradually constructing polynomial expansions (in terms of the
processed uncertain parameters ξ from Stage 1) of the stochas-
tic power and temperature profiles. The output is essentially a
substitute for the model produced at Stage 3 with respect to
the power model determined at Stage 2.

Stage 5. Post-processing (Sec. V-E). The computed PC
expansions are analyzed in order to obtain the needed charac-
teristics of the system, e.g., CDFs, PDFs, and moments.

In the forthcoming subsections, Sec. V-A–Sec. V-E, the
proposed framework is presented. We shall pursue generality
such that the user can easily adjust the technique to a particular
application, characterized by specific uncertain parameters.

A. Parameter Preprocessing

Independence of the parameters is a prerequisite for PC
expansions. In general, however, u can be correlated and,
therefore, should be preprocessed in order to fulfill the re-
quirement. To this end, an adequate probability transformation
should be undertaken [21]. Denote such a transformation
by u = T [ξ], which relates the nu dependent uncertain
parameters u with nξ independent random variables ξ.

Correlated random variables can be transformed into uncor-
related ones via a linear mapping based on a factorization
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Figure 2. The structure of the proposed framework.

procedure of the covariance matrix or covariance function
of u; the procedure is known as the Karhunen-Loève (KL)
decomposition [14]. If, in addition, the correlated variables
form a Gaussian vector then the uncorrelated ones are also
mutually independent. In the general case (non-Gaussian),
the most prominent solutions to attain independence are the
Rosenblatt [22] and Nataf transformations [23].4 Rosenblatt’s
approach is suitable when the joint probability distribution
function of the uncertain parameters u is known; however,
such information is rarely available. The marginal probability
distributions and correlation matrix of u are more likely to
be given, which are already sufficient for perform the Nataf
transformation.5 The Nataf transformation produces correlated
Gaussian variables, which are then turned into independent
ones by virtue of the KL decomposition mentioned earlier.

Apart from the extraction of the independent parameters ξ,
an essential operation at this stage is model order reduction
since the number of stochastic dimensions of the problem
directly impacts the complexity of the rest of the computations.
The intuition is that, due to the correlations possessed by
the random variables in u, some of them can be harmlessly
replaced by combinations of the rest, leading to a smaller
number of the random variables in ξ. This operation is often
treaded as a part of the KL decomposition.

In Sec. VI-A, we shall demonstrate the Nataf transformation
together with the discrete KL decomposition. A description of
the latter can also be found in Appendix B.

B. Power Modeling

As stated in Sec. IV, the user of the framework is supposed
to decide on the power model for the system under considera-
tion. Such a model can be generally expressed as the following
np-dimensional functional Π:

p(t,u) = Π (t,q(t,u),u) (1)

where np is the number of processing elements in the system,
and p(t,u) ∈ Rnp and q(t,u) ∈ Rnp are random vectors of
power and temperature, respectively, at time t.

The user can choose any Π. It can be, for instance, a closed-
form formula, a piece of code, or an output of a system/power
simulator that takes in, for some fixed u ≡ u(ω), ω ∈ Ω,
the temperature vector q(t,u) and uncertain parameters u
and computes the corresponding total power p(t,u). The only

4Only a few alternatives are listed here, and such techniques as indepen-
dent component analysis (ICA) are left outside the scope of the paper.

5The transformation is an approximation, which operates under the
assumption that the copula of the distribution is elliptical.

assumption we make about Π is that the function is smooth
in ξ and has a finite variance, which is generally applicable
to most physical systems [4]. Note also that the operation
performed by this “black box” is purely deterministic. It can
be seen that the definition of Π is flexible enough to account
for such effects as the interdependency between leakage and
temperature [2], [3], which is discussed in Sec. VI-B.

C. Thermal Modeling

Given the thermal specification S of the system at hand (see
the second paragraph of Sec. IV), an equivalent thermal RC
circuit with nn thermal nodes is constructed [24]. The structure
of the circuit depends on the intended level of granularity
and, therefore, impacts the resulting accuracy. Without loss of
generality, we assume that each processing element is mapped
onto one corresponding node, and the thermal package is
represented as a set of additional nodes.

The thermal behavior of the constructed circuit is modeled
with the following system of differential-algebraic equations
(see Appendix A for a derivation):

d s(t,u)

dt
= A s(t,u) + B p(t,u) (2a)

q(t,u) = BT s(t,u) + qamb (2b)

where p(t,u) and q(t,u) are the input power and output
temperature vectors of the processing elements, respectively,
and s(t,u) ∈ Rnn is the vector of the internal state of the
system. Note that, as shown in (1), p(t,u) is an arbitrary
function of q(t,u). Therefore, in general, the system in (2a)
is nonlinear and does not have a closed-form solution.

Recall that the power and temperature profiles we work with
are discrete-time representations of the power consumption
and heat dissipation, respectively, which contain nt samples, or
steps, covering a certain time span (see Sec. IV). As detailed
in Appendix A, we let the total power be constant between
neighboring power steps and reduce the solution process of
(2) to the following recurrence, for k = 1, . . . , nt,

sk = Ek sk−1 + Fk pk (3)

where s0 = 0. In the deterministic case, (3) can be readily
employed to perform deterministic transient PTA [7], [8]. In
the stochastic case, however, the analysis of (3) is substantially
different since pk and, consequently, sk and qk are probabilis-
tic quantities. The situation is complicated by the fact that, at
each step of the iterative process in (3), (a) pk is an arbitrary
transformation of the uncertain parameters u and stochastic
temperature qk (see Sec. V-B), which results in a multivariate
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random variable with a generally unknown probability dis-
tribution, and (b) u, pk, sk, and qk are dependent random
vectors as the last three are functions of the first. Hence, the
operations involved in (3) are to be performed on dependent
random vectors with arbitrary probability distributions, which,
in general, have no closed-form solutions. To tackle this
difficulty, we utilize PC expansions as follows.

D. Surrogate Modeling

The goal now is to transform the “problematic” term in
(3), i.e., the power term defined by (1), in such a way that
the recurrence in (3) becomes computationally tractable. Our
solution is the construction of a surrogate model for the power
model in (1), which we further propagate through (3) to obtain
an approximation for temperature. To this end, we employ
polynomial chaos (PC) [4], which decomposes stochastic
quantities into infinite series of orthogonal polynomials of
random variables. Such series are especially attractive from
the post-processing perspective as they are nothing more than
polynomials; hence, PC expansions are easy to interpret and
easy to evaluate. An introduction to orthogonal polynomials,
which we rely on in what follows, is given in Appendix C.

1) Polynomial basis: The first step towards a polynomial
expansion is the choice of a suitable polynomial basis, which
is typically made based on the Askey scheme of orthogonal
polynomials [4]. The step is crucial as the rate of convergence
of PC expansions closely depends on it. Although there are
no strict rules that guarantee the optimal choice [25], there
are best practices saying that one should be guided by the
probability distributions of the random variables that drive
the stochastic system at hand. For instance, when a random
variable follows a beta distribution, the Jacobi basis is worth
being tried first; on the other hand, the Hermite basis is
preferable for Gaussian distributions. In multiple dimensions,
which is the case with the nξ-dimensional random variable ξ,
several (possibly different) univariate bases are to be combined
together to produce a single nξ-variate polynomial basis,
which we denote by {ψi : Rnξ → R}∞i=1; see [4].

2) Recurrence of polynomial expansions: Having chosen an
appropriate basis, we apply the PC expansion formalism to the
power term in (3) and truncate the resulting infinite series in
order to make it feasible for practical implementations. Such
an expansion is defined as follows:

Cnξ
npo [pk] :=

npc∑
i=1

p̂ki ψi(ξ) (4)

where {ψi : Rnξ → R}npc
i=1 is the truncated basis with npc

polynomials in nξ variables, and p̂ki ∈ Rnp are the coefficients
of the expansion, which are deterministic. The latter can
be computed using spectral projections as it is described in
Sec. V-D3. npo denotes the order of the expansion, which
determines the maximal degree of the nξ-variate polynomials
involved in the expansion; hence, npo also determines the
resulting accuracy. The total number of the PC coefficients

npc is given by the following expression, which corresponds
to the total-order polynomial space [21], [26]:

npc =

(
npo + nξ
nξ

)
:=

(npo + nξ)!

npo!nξ!
. (5)

It can be seen in (3) that, due to the linearity of the
operations involved in the recurrence, sk retains the same poly-
nomial structure as pk. Therefore, using (4), (3) is rewritten
as follows, for k = 1, . . . , nt:

Cnξ
npo [sk] = Ek C

nξ
npo [sk−1] + Fk C

nξ
npo [pk] . (6)

Thus, there are two PC expansions for two concurrent stochas-
tic processes with the same basis but different coefficients.

Using (4), (6) can be explicitly written as follows:
npc∑
i=1

ŝki ψi(ξ) =

npc∑
i=1

(
Ek ŝ(k−1)i + Fk p̂ki

)
ψi(ξ).

Multiplying the above equation by each polynomial from the
basis and making use of the orthogonality property (given in
(18) in Appendix C), we obtain the following recurrence:

ŝki = Ek ŝ(k−1)i + Fk p̂ki (7)

where k = 1, . . . , nt and i = 1, . . . , npc. Finally, (2b) and (7)
are combined together to compute the coefficients of the PC
expansion of the temperature vector qk.

3) Expansion coefficients: The general formula of a trun-
cated PC expansion applied to the power term in (3) is given in
(4). Let us now find the coefficients {p̂ki} of this expansion,
which will be propagated to temperature (using (7) and (2b)).
To this end, a spectral projection of the stochastic quantity
being expanded—that is, of pk as a function of ξ via u = T [ξ]
discussed in Sec. V-A—is to be performed onto the space
spanned by the nξ-variate polynomials {ψi}

npc
i=1, where npc is

the number of polynomials in the truncated basis. This means
that we need to compute the inner product of (1) with each
polynomial from the basis as follows:

〈pk, ψi〉 =

〈 npc∑
j=1

p̂kj ψj , ψi

〉
where i = 1, . . . , npc, k = 1, . . . , nt, and 〈·, ·〉 stands for the
inner product (see Appendix C for a definition), which should
be understood elementwise. Making use of the orthogonality
property of the basis, we obtain

p̂ki =
1

νi
〈pk, ψi〉 (8)

where {νi = 〈ψi, ψi〉}
npc
i=1 are normalization constants.

In general, the inner product in (8), given in (19) in
Appendix C, should be evaluated numerically. This task is ac-
complished by virtue of a quadrature rule, which is a weighted
summation over the integrand values computed at a set of
prescribed points. These points along with the corresponding
weights are generally precomputed and tabulated since they
do not depend the quantity being integrated. Denote such a
quadrature-based approximation of (8) by

p̂ki =
1

νi
Qnξ
nql [pk ψi] (9)
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where nql is the level of the quadrature utilized. The procedure
is detailed in Appendix D; for the development in this section,
we only need to note that nξ and nql dictate the number of
quadrature points, which we shall denote by nqp. Also, it is
worth emphasizing that, since power depends on temperature
as shown in (1), at each step of the recurrence in (7), the
computation of p̂ki should be done with respect to the PC
expansion of the temperature vector qk−1.

4) Computational challenges: The construction process of
the stochastic power and temperature profiles, implemented
inside our prototype of the proposed framework, has been
estimated to have the following time complexity:

O(nt nn
2 npc + nt np nqp npc + nt nqp Π (np))

where O(Π (np)) denotes the complexity of the computations
associated with the power model in (1). The expression can
be detailed further by expanding npc and nqp. The exact
formula for npc is given in (5), and the limiting behavior
of npc with respect to nξ is O(nξ

npo/npo!). For brute-force
quadrature rules, log(nqp) is O(nξ), meaning that the depen-
dency of nqp on nξ is exponential. It can be seen that the
theory of PC expansions suffers from the so-called curse of
dimensionality [4], [21]. More precisely, when nξ increases,
the number of polynomial terms as well as the complexity
of the corresponding coefficients exhibit a growth, which is
exponential without special treatments. The problem does not
have a general solution and is one of the central topics of
many ongoing studies. In this paper, we mitigate this issue by:
(a) keeping the number of stochastic dimensions low using
the KL decomposition as we shall see in Sec. VI-A and
(b) utilizing efficient integration techniques as discussed in
Appendix D. In particular, for sparse integration grids based
on Gaussian quadratures, log(nqp) isO(log(nξ)), meaning that
the dependency of nqp on nξ is only polynomial [27].

To summarize, let us recall the stochastic recurrence in (3)
where, in the presence of correlations, an arbitrary functional
pk of the uncertain parameters u and random temperature
qk (see Sec. V-B) needs to be evaluated and combined with
another random vector sk. Now the recurrence in (3) has
been replaced with a purely deterministic recurrence in (7).
More importantly, the heavy thermal system in (2) has been
substituted with a light polynomial surrogate defined by a
set of basis functions {ψi}

npc
i=1 and the corresponding sets of

coefficients, namely, {p̂ki}
npc
i=1 for power and {q̂ki}

npc
i=1 for

temperature, where k traverses the nt intervals of the con-
sidered time span. Consequently, the output of the proposed
PTA framework constitutes two stochastic profiles: the power
and temperature profiles denoted by (P, τ [P]) and (Q, τ [Q]),
respectively, which are ready to be analyzed.

Finally, note the ease and generality of taking the uncer-
tainty into consideration using the proposed approach: the
above derivation is delivered from any explicit formula for any
particular uncertain parameter. In contrast, a typical solution
from the literature related to process variation is based on ad
hoc expressions and should be tailored by the user for each
new parameter individually; see, e.g., [13], [18], [20]. Our
framework provides a great flexibility in this regard.

E. Post-processing

Due to the properties of PC expansions—in particular, due
to the pairwise orthogonality of the basis polynomials as
discussed in Appendix C—the obtained polynomial traces
allow for various prospective analyses to be performed with no
effort. For instance, consider the PC expansion of temperature
at the kth moment of time given by

Cnξ
npo [qk] =

npc∑
i=1

q̂kiψi(ξ) (10)

where q̂ki are computed using (2b) and (7). Let us, for
example, find the expectation and variance of the expansion.
Due to the fact that, by definition [4], the first polynomial
ψ1 in a polynomial basis is unity, E (ψ1(ξ)) = 1. Therefore,
using the orthogonality property in (18), we conclude that
E (ψi(ξ)) = 0 for i = 2, . . . , npc. Consequently, the expected
value and variance have the following simple expressions
solely based on the coefficients:

E (qk) = q̂k1 and Var (qk) =

npc∑
i=2

νi q̂2
ki (11)

where the squaring should be understood elementwise. Such
quantities as CDFs, PDFs, probabilities of certain events, etc.
can be estimated by sampling (10); each sample is a trivial
evaluation of a polynomial. Furthermore, global and local
sensitivity analyses of deterministic and non-deterministic
quantities can be readily conducted on (10).

VI. ILLUSTRATIVE EXAMPLE

So far we have not made any assumptions regarding the
cause of the variability of the power term in the thermal system
given by (2). In this section, we shall consider a particular
application of the proposed framework. To this end, we begin
with the problem formulation of this application.

The total dissipation of power is composed of two major
parts: dynamic and static. The influence of process variation
on the dynamic power is known to be negligibly small [2]; on
the other hand, the variability of the static power is substantial,
in which the subthreshold leakage current contributes the most
[10], [11]. Hence, we shall focus on the subthreshold leakage
and, more specifically, on the effective channel length, denoted
by L, since it has the strongest influence on leakage and is
severely deteriorated by process variation [1]. In particular, L
also affects the threshold voltage [10].

It is well known that the dispersion due to process vari-
ation of the effective channel length around the nominal
value resembles a bell shape, which is similar to the ones
owned by Gaussian distributions. Therefore, such variations
are often conveniently modeled using Gaussian variables [2],
[10], [11], [12], [13], [15], [16], [17], [20]. In this work, due
to both the underlying physics and demonstration purposes,
we make a step further and bake right into the model the
fact that the effective channel length—occupying the space
between the drain and source of a nanoscopic transistor—
cannot be arbitrarily large or take a negative value, as Gaussian
distributions allow it to do. In other words, we require the
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Figure 3. The standard Gaussian distribution and a fitted beta distribution.

model of L to have a bounded support. With this in mind,
we propose to model physically-bounded parameters using
the four-parametric family of beta distributions: Beta(a, b, c, d)
where a and b are the shape parameters, and c and d are the
left and right bounds of the support, respectively. a and b
can be chosen in such a way that the typically found bell
shape of the distribution is preserved. An illustration is given
in Fig. 3 where we fitted a beta distribution to the standard
Gaussian distribution.6 It can be seen that the curves are nearly
indistinguishable, but the beta one has a bounded support
[−4, 4], which can potentially lead to more realistic models.

The variability of L is split into global δL(g) and local
δL(l) parts [12], [16].7 δL(g) is assumed to be shared among
all processing elements whereas each processing element has
its own local parameter δL(l)

i . Therefore, the effective channel
length the ith processing element is modeled as follows:

Li = Lnom + δL(g) + δL
(l)
i (12)

where Lnom is the nominal value of the effective channel
length. Hence, the uncertain parameters of the problem are

u =
(
δL

(l)
1 , . . . , δL(l)

np
, δL(g)

)T
. (13)

Global variations are typically assumed to be uncorrelated
with respect to the local ones. The latter, however, are known
to have high spatial correlations, which we shall model using
the following correlation function:

k(ri, rj) = η kSE(ri, rj) + (1− η)kOU(ri, rj) (14)

where ri ∈ R2 is the spatial location of the center of the
ith processing element relative to the center of the die. The
correlation function is a composition of two kernels:

kSE(ri, rj) = exp

(
−‖ri − rj‖2

`2SE

)
and

kOU(ri, rj) = exp

(
−| ‖ri‖ − ‖rj‖ |

`OU

)
,

which are known as the squared-exponential and Ornstein-
Uhlenbeck kernels, respectively. η ∈ [0, 1] is a weight coef-
ficient balancing the kernels; `SE and `OU > 0 are so-called
length-scale parameters; and ‖ · ‖ stands for the Euclidean
distance. The choice of the correlation function in (14) is
guided by the observations of the correlations induced by the
fabrication process [1], [28], [29]: kSE imposes similarities
between the spatial locations that are close to each other,

6Alternatively, one can match the moments of the distributions.
7Without loss of generality, δL(g) can be treated as a composition of

independent inter-lot, inter-wafer, and inter-die variations; likewise, δL(l) can
be treated as a composition of independent and dependent local variations.

and kOU imposes similarities between the locations that are
at the same distance from the center of the die (see also [13],
[14], [15], [18], [20]). The length-scale parameters `SE and `OU
control the extend of these similarities, i.e., the range wherein
the influence of one point on another is significant.

Although (14) captures certain features inherent to the fab-
rication process, it is still an idealization. In practice, it can be
difficult to make a justifiable choice and tune such a formula,
which is a prerequisite for the techniques in Sec. II based on
the (continuous) KL decomposition. A correlation matrix, on
the other hand, can readily be estimated from measurements
and, thus, is a more probable input to PTA. Thus, we use (14)
with the only purpose of constructing a correlation matrix of
{δL(l)

i }. For convenience, the resulting matrix is extended by
one dimension to pack δL(g) and {δL(l)

i } together. In this
case, the correlation matrix obtains one additional non-zero
element on the diagonal. Taking into account the variances of
the variable, the final covariance matrix of the whole random
vector u (see (13)) is formed, which we denote by Σu.

To conclude, an input to our analysis is the marginal
distributions of the parameters u, which are beta distributions,
and the corresponding covariance matrix Σu.

A. Parameter Preprocessing

At Stage 1, u should be preprocessed in order to extract a
vector of mutually independent random variables denoted by
ξ. Following the guidance given in Sec. V-A, the most suitable
transformation for the ongoing scenario is the Nataf transfor-
mation. Here we describe the algorithm in brief and refer the
interested reader to [23] for additional details. The transfor-
mation is typically presented in two steps. First, u ∈ Rnu ,
nu = np + 1, is morphed into correlated Gaussian variables,
denoted by ξ′ ∈ Rnu , using the knowledge of the marginal
distributions and covariance matrix of u. Second, the obtained
correlated Gaussian variables are mapped into independent
standard Gaussian variables, denoted by ξ′′ ∈ Rnu , using one
of several available techniques; see [23].

The number of stochastic dimensions, which so far is np+1,
directly impacts the computational cost of PC expansions as
it is discussed in Sec. V-D4. Therefore, one should consider a
possibility for model order reduction before constructing PC
expansions. To this end, we perform the second step of the
Nataf transformation by virtue of the discrete Karhunen-Loève
(KL) decomposition [14] as the reduction comes naturally in
this way. A description of this procedure can be found in
Appendix B. Let us denote the trimmed independent variables
by ξ′′′ and their number by nξ. We also denote the whole
operation, i.e., the reduction-aware Nataf transformation, by

u = Nataf−1
[
ξ′′′
]

where the superscript “−1” signifies the fact that we are
interested in expressing u via ξ′′′ and, hence, need to perform
all the operations in the reversed order.

At this point, we have nξ independent Gaussian random
variables stored in ξ′′′, which already suffice the independence
prerequisite for PC expansions (see Sec. V-A). However,
we prefer to construct PC expansions in terms of bounded
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variables since such expansions will also be bounded. To this
end, we undertake one additional transformation that yields
a vector of (independent) random variables ξ ∈ Rnξ whose
distributions have bounded supports. This transformation is a
standard technique based on the composition of the inverse
CDF of ξ′′′ and the CDF of ξ denoted by F−1

ξ′′′ and Fξ,
respectively. The overall probability transformation T (see
Sec. V-A) from u to ξ is then given as follows:

u = T [ξ] = Nataf−1
[
F−1
ξ′′′ (Fξ(ξ))

]
.

The distributions of ξ can be chosen arbitrary as long as
one can construct a suitable polynomial basis as described
in Sec. V-D1. We let ξ have beta distributions, staying in the
same family of distributions with the parameters u.

B. Power Modeling

At Stage 2 in Fig. 2, we need to decide on the power
model with the identified uncertain parameters as an input. To
this end, (1) is decomposed into the sum of the dynamic and
static components denoted by Πdyn (t,u) and Πstat (q(t,u),u),
respectively. As motivated earlier, we let Πdyn (t,u) = pdyn(t)
(does not depend on u). We assume that the desired workload
of the system is given as a dynamic power profile denoted by
(Pdyn, τ [Pdyn]). Without loss of generality, the development
of the static part is based on SPICE simulations of a reference
electrical circuit composed of BSIM4 devices (v4.7.0) [30]
configured according to the 45-nm PTM (high-performance)
[31]. Specifically, we use a series of CMOS invertors for this
purpose. The simulations are performed for a fine-grained two-
dimensional grid, the effective channel length vs. temperature,
and the results are tabulated. The interpolation facilities of
MATLAB (vR2013a) [32] are then utilized whenever we need
to evaluate the leakage power for a particular point within the
range of the grid, which is chosen to be sufficiently wide.

C. Thermal Modeling

We move on to Stage 3 where the thermal model of the
multiprocessor system is to be established. Given the thermal
specification S of the considered platform (the floorplan
of the die, the configuration of the thermal package, etc.),
we employ HotSpot (v5.02) [24] in order to construct an
equivalent thermal RC circuits of the system. Specifically,
we are interested in the coefficient matrices E(t) and F(t)
in (3) (see also Fig. 2), which HotSpot helps us to compute
by providing the corresponding capacitance and conductance
matrices of the system as described in Appendix A. In this
case, thermal packages are modeled with three layers, and the
relation between the number of processing elements and the
number of thermal nodes is given by nn = 4np + 12.

To conclude, the power and thermal models of the platform
are now acquired, and we are ready to construct the corre-
sponding surrogate model via PC expansions, which is the
topic for the discussion in the following subsection.

D. Surrogate Modeling

At Stage 4, the uncertain parameters, power model, and
thermal model developed in the previous sections are to be

fused together under the desired workload (Pdyn, τ [Pdyn]) to
produce the corresponding stochastic power (P, τ [P]) and
temperature (Q, τ [Q]) profiles. The construction of PC ex-
pansions, in the current scenario, is based on the Jacobi
polynomial basis as it is preferable in situations involving beta-
distributed parameters [4]. To give an example, for a dual-core
platform (i.e., np = 2) with two stochastic dimensions (i.e.,
nξ = 2), the second-order PC expansion (i.e., npo = 2) of
temperature at the kth time moment is as follows:8

C2
2 [qk] = q̂k1 ψ1(ξ) + q̂k2 ψ2(ξ) + q̂k3 ψ3(ξ)

+ q̂k4 ψ4(ξ) + q̂k5 ψ5(ξ) + q̂k6 ψ6(ξ) (15)

where the coefficients q̂ki are vectors with two elements
corresponding to the two processing elements,

ψ1(x) = 1, ψ2(x) = 2x1, ψ3(x) = 2x2, ψ4(x) = 4x1x2

ψ5(x) =
15

4
x2

1 −
3

4
, and ψ6(x) =

15

4
x2

2 −
3

4
.

The expansion for power has the same structure but different
coefficients. Such a series might be shorter or longer depend-
ing on the accuracy requirements defined by npo.

Once the basis has been chosen, we need to compute the
corresponding coefficients, specifically, {p̂ki}

npc
i=1 in (4), which

yield {q̂ki}
npc
i=1. As shown in Appendix C, these computations

involve multidimensional integration with respect to the PDF
of ξ, which should be done numerically using a quadrature
rule; recall Sec. V-D3. When beta distributions are concerned,
a natural choice of such a rule is the Gauss-Jacobi quadrature.
Additional details are given in Appendix D.

To summarize, we have completed four out of five stages
of the proposed framework depicted in Fig. 2. The result is a
light surrogate for the model in (2). At each moment of time,
the surrogate is composed of two np-valued polynomials, one
for power and one for temperature, which are defined in terms
of nξ mutually independent random variables; an example of
such a polynomial is given in (15).

E. Post-processing

We turn to Stage 5 in Fig. 2. It can be seen in, for
example, (15) that the surrogate model has a negligibly small
computational cost at this stage: for any outcome of the pa-
rameters ξ ≡ ξ(ω), we can easily compute the corresponding
temperature by plugging in ξ into (15); the same applies to
power. Hence, the constructed representation can be trivially
analyzed to retrieve various statistics about the system in (2).
Let us illustrate a few of them still retaining the example in
(15). Assume that the dynamic power profile (Pdyn, τ [Pdyn])
corresponding to the considered workload is the one shown
in Fig. 4. Having constructed the surrogate with respect to
this profile, we can then rigorously estimate, say, the PDF
of temperature at some kth moment of time by sampling the
surrogate and obtain curves similar to those shown Fig. 6 (dis-
cussed in Sec. VII). Furthermore, the expectation and variance
of temperature are trivially calculated using the formulae in
(11) where npc = 6. For the whole time span of the power

8The Jacobi polynomials have two parameters [4], and the shown
{ψi}6i=1 correspond to the case where both parameters are equal to two.
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Figure 5. The expected temperature (the solid lines) and one standard
deviation above it (the dashed lines).

profile (Pdyn, τ [Pdyn]) depicted in Fig. 4, these quantities are
plotted in Fig. 5. The displayed curves closely match those
obtained via MC simulations with 104 samples; however, our
method takes less than a second whilst MC sampling takes
more than a day as we shall see next.

VII. EXPERIMENTAL RESULTS

In this section, we report the results of the proposed frame-
work for different configurations of the illustrative example in
Sec. VI. All the experiments are conducted on a GNU/Linux
machine with Intel Core i7 2.66 GHz and 8 GB of RAM.

Now we shall elaborate on the default configuration of our
experimental setup, which, in the following subsections, will
be adjusted according to the purpose of each particular ex-
periment. We consider a 45-nanometer technological process.
The effective channel length is assumed to have a nominal
value of 17.5 nm [31] and a standard deviation of 2.25 nm
where the global and local variations are equally weighted.
Correlation matrices are computed according to (14) where
the length-scale parameters `SE and `OU are set to half the size
of the square die. In the model order reduction technique (see
Sec. VI-A), the threshold parameter is set to 0.99 preserving
99% of the variance of the data. Dynamic power profiles
involved in the experiments are based on simulations of
randomly generated applications defined as directed acyclic
task graphs.9 The floorplans of the platforms are constructed
in such a way that the processing elements form regular
grids.10 The time step of power and temperature traces is
set to 1 ms (see Sec. IV), which is also the time step of the

9In practice, dynamic power profiles are typically obtained via an
adequate simulator of the architecture of interest.

10The task graphs of the applications, floorplans of the platforms, config-
uration of HotSpot, which was used to construct thermal RC circuits for our
experiments, are available online at [33].

recurrence in (7). As a comparison to our polynomial chaos
(PC) expansions, we employ Monte Carlo (MC) sampling.
The MC approach is set up to preserve the whole variance of
the problem, i.e., no model order reduction, and to solve (2)
directly using the Runge-Kutta formulae (the Dormand-Prince
method) available in MATLAB [32].

Since the temperature part of PTA is the main contribution
of this work, we shall focus on the assessment of temperature
profiles. Note, however, that the results for temperature allow
one to implicitly draw reasonable conclusions regarding power
since power is an intermediate step towards temperature, and
any accuracy problems with respect to power are expected to
propagate to temperature. Also, since the temperature-driven
studies [10], [11], [13], [15] work under the steady-state
assumption ([10] is also limited to the maximal temperature,
and [13] does not model the leakage-temperature interplay), a
one-to-one comparison with our framework is not possible.

A. Approximation Accuracy

The first set of experiments is aimed to identify the accuracy
of our framework with respect to MC simulations. At this
point, it is important to note that the true distributions of
temperature are unknown, and both the PC and MC approaches
introduce errors. These errors decrease as the order of PC
expansions npo and the number of MC samples nmc, respec-
tively, increase. Therefore, instead of postulating that the MC
technique with a certain number of samples is the “universal
truth” that we should achieve, we shall vary both npo and nmc
and monitor the corresponding difference between the results
produced by the two alternatives.

In order to make the comparison even more comprehensive,
let us also inspect the effect of the correlation patterns between
the local random variables {δL(l)

i } (recall Sec. VI). Specifi-
cally, apart from npo and nmc, we shall change the balance
between the two correlation kernels shown in (14), i.e., the
squared-exponential kSE and Ornstein-Uhlenbeck kOU kernels,
which is controlled by the weight parameter η ∈ [0, 1].

The PC and MC methods are compared by means of three
error metrics. The first two are the normalized root mean
square errors (NRMSEs) of the expectation and variance of
the computed temperature profiles.11 The third metric is the
mean of the NRMSEs of the empirical PDFs of temperature
constructed at each time step for each processing element. The
error metrics are denoted by εE, εVar, and εf , respectively.
εE and εVar are easy to interpret, and they are based on the
analytical formulae in (11). εf is a strong indicator of the
quality of the distributions estimated by our framework, and
it is computed by sampling the constructed PC expansions. In
contrast to the MC approach, this sampling has a negligible
overhead as we discussed in Sec. V-E.

The considered values for npo, nmc, and η are the sets
{n}7n=1, {10n}5n=2, and {0, 0.5, 1}, respectively. The three
cases of η correspond to the total dominance of kOU (η = 0),
perfect balance between kSE and kOU (η = 0.5), and total
dominance of kSE (η = 1). A comparison for a quad-core

11In the context of NRMSEs, we treat the MC results as the observed data
and the PC results as the corresponding model predictions.
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Table II
ERROR MEASUREMENTS FOR η = 0 AND VARIOUS NUMBERS OF MC SAMPLES nmc AND PC ORDERS npo

εE,% εE,% εE,% εE,% εVar,% εVar,% εVar,% εVar,% εf ,% εf ,% εf ,% εf ,%
npo nmc=102 nmc=103 nmc=104 nmc=105 nmc=102 nmc=103 nmc=104 nmc=105 nmc=102 nmc=103 nmc=104 nmc=105

1 1.70 0.92 0.51 0.48 88.19 55.73 55.57 53.08 10.88 11.48 8.85 8.83
2 1.36 0.58 0.20 0.18 67.66 23.30 23.05 19.64 10.15 10.11 6.26 6.04
3 1.26 0.49 0.15 0.14 61.16 13.06 12.78 9.08 5.49 5.04 2.95 2.73
4 1.23 0.45 0.14 0.14 58.49 8.85 8.57 4.78 3.84 2.02 1.50 1.51
5 1.21 0.44 0.14 0.14 57.31 7.00 6.71 2.92 3.83 2.27 1.03 0.84
6 1.21 0.44 0.14 0.14 56.75 6.12 5.83 2.08 3.08 1.94 0.93 0.66
7 1.20 0.43 0.14 0.14 56.41 5.60 5.31 1.62 2.78 1.39 0.72 0.62

Table III
ERROR MEASUREMENTS FOR η = 0.5 AND VARIOUS NUMBERS OF MC SAMPLES nmc AND PC ORDERS npo

εE,% εE,% εE,% εE,% εVar,% εVar,% εVar,% εVar,% εf ,% εf ,% εf ,% εf ,%
npo nmc=102 nmc=103 nmc=104 nmc=105 nmc=102 nmc=103 nmc=104 nmc=105 nmc=102 nmc=103 nmc=104 nmc=105

1 1.66 0.98 0.60 0.57 65.82 64.11 66.13 66.70 10.97 10.69 9.27 8.77
2 1.31 0.63 0.27 0.23 49.55 29.21 30.49 28.24 6.43 5.42 3.87 3.59
3 1.13 0.44 0.16 0.14 43.44 15.94 16.88 13.48 5.60 3.80 1.83 1.53
4 1.17 0.48 0.17 0.14 40.24 9.11 9.80 5.71 5.48 3.80 1.77 1.47
5 1.07 0.38 0.16 0.16 39.68 7.96 8.56 4.35 3.80 1.72 1.59 1.62
6 1.19 0.49 0.18 0.15 38.23 5.19 5.51 1.24 4.62 2.86 1.16 0.86
7 0.99 0.30 0.21 0.21 38.27 5.27 5.59 1.29 3.45 2.01 1.82 1.68

Table IV
ERROR MEASUREMENTS FOR η = 1 AND VARIOUS NUMBERS OF MC SAMPLES nmc AND PC ORDERS npo

εE,% εE,% εE,% εE,% εVar,% εVar,% εVar,% εVar,% εf ,% εf ,% εf ,% εf ,%
npo nmc=102 nmc=103 nmc=104 nmc=105 nmc=102 nmc=103 nmc=104 nmc=105 nmc=102 nmc=103 nmc=104 nmc=105

1 1.49 0.27 0.15 0.15 44.86 42.41 43.10 46.51 12.45 11.19 9.57 9.21
2 1.42 0.22 0.17 0.14 26.47 8.89 1.56 5.03 11.84 6.22 5.52 4.79
3 1.40 0.21 0.19 0.15 24.90 7.54 4.08 1.39 10.62 2.93 1.66 1.42
4 1.45 0.24 0.16 0.14 24.78 7.57 4.50 1.27 9.92 1.98 0.72 0.40
5 1.38 0.20 0.20 0.16 25.14 7.63 3.41 1.77 10.19 1.90 0.78 0.70
6 1.48 0.25 0.15 0.14 24.64 7.58 4.93 1.34 9.90 2.27 1.14 0.74
7 1.34 0.19 0.23 0.19 24.86 7.48 4.13 1.40 8.47 1.57 1.13 1.24

architecture with a dynamic power profile of nt = 102 steps
is given in Table II, Table III, and Table IV, which correspond
to η = 0, η = 0.5, and η = 1, respectively. Each table contains
three subtables: one for εE (the left most), one for εVar (in the
middle), and one for εf (the right most), which gives nine
subtables in total. The columns of the tables that correspond
to high values of nmc can be used to assess the accuracy of the
constructed PC expansions; likewise, the rows that correspond
to high values of npo can be used to judge about the sufficiency
of the number of MC samples. One can immediately note that,
in all the subtables, all the error metrics tend to decrease from
the top left corners (low values of npo and nmc) to the bottom
right corners (high values of npo and nmc), which suggests that
the PC and MC methods converge. There are a few outliers,
associated with low PC orders and/or the random nature of
sampling, e.g., εVar increases from 66.13 to 66.70 and εf from
1.59 to 1.62 when nmc increases from 104 and 105 in Table III;
however, the aforementioned main trend is still clear.

For clarity of the discussions below, we shall primarily focus
on one of the tables, namely, on the middle table, Table III, as
the case with η = 0.5 turned out to be the most challenging
(explained in Sec. VII-B). The drawn conclusions will be
generalized to the other two tables later on.

First, we concentrate on the accuracy of our technique
and, thus, pay particular attention the columns of Table III
corresponding to high values of nmc. It can be seen that the
error εE of the expected value is small even for npo = 1: it is
bounded by 0.6% (see εE for npo ≥ 1 and nmc ≥ 104).

The error εVar of the second central moment starts from
66.7% for the first-order PC expansions and drops significantly
to 5.71% and below for the fourth order and higher (see εVar
for npo ≥ 4 and nmc = 105). It should be noted, however, that,
for a fixed npo ≥ 4, εVar exhibits a considerable decrease even
when nmc transitions from 104 to 105. The rate of this decrease
suggests that nmc = 104 is not sufficient to reach the same
accuracy as the one delivered by the proposed framework, and
nmc = 105 might not be either.

The results of the third metric εf allow us to conclude that
the PDFs computed by the third-order (and higher) PC expan-
sions closely follow those estimated by the MC technique with
large numbers of samples, namely, the observed difference
in Table III is bounded by 1.83% (see εf for npo ≥ 3 and
nmc ≥ 104). To give a better appreciation of the proximity of
the two methods, Fig. 6 displays the PDFs computed using our
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Figure 6. Probability density functions computed at time 50 ms using the
proposed framework (the dashed lines) and MC sampling (the solid lines).
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Table V
SCALING WITH RESPECT TO THE NUMBER OF PROCESSING ELEMENTS np

np nξ PC, seconds MC, hours Speedup, times

η
=

0

2 2 0.16 38.77 8.76× 105

4 2 0.16 39.03 8.70× 105

8 3 0.27 39.22 5.29× 105

16 4 0.83 40.79 1.77× 105

32 7 11.02 43.25 1.41× 104

η
=

0
.5

2 3 0.21 38.72 6.54× 105

4 5 0.62 38.92 2.28× 105

8 6 1.46 40.20 9.94× 104

16 10 23.53 41.43 6.34× 103

32 12 100.10 43.05 1.55× 103

η
=

1

2 3 0.20 38.23 6.88× 105

4 5 0.56 38.48 2.49× 105

8 7 2.47 39.12 5.71× 104

16 11 40.55 41.02 3.64× 103

32 8 21.41 43.82 7.37× 103

Table VI
SCALING WITH RESPECT TO THE NUMBER OF STEPS nt

nt PC, seconds MC, hours Speedup, times

η
=

0

10 0.01 0.51 1.77× 105

102 0.02 3.87 7.64× 105

103 0.16 38.81 8.72× 105

104 1.58 387.90 8.84× 105

105 15.85 3877.27 8.81× 105

η
=

0
.5

10 0.02 0.39 6.10× 104

102 0.07 3.84 2.08× 105

103 0.52 38.41 2.66× 105

104 5.31 383.75 2.60× 105

105 54.27 3903.28 2.59× 105

η
=

1

10 0.02 0.39 6.15× 104

102 0.07 3.88 2.05× 105

103 0.54 38.86 2.60× 105

104 5.31 390.95 2.65× 105

105 53.19 3907.48 2.64× 105

framework for time moment 50 ms with npo = 4 (the dashed
lines) along with those calculated by the MC approach with
nmc = 104 (the solid lines). It can be seen that the PDFs
tightly match each other. Note that this example captures one
particular time moment, and such curves are readily available
for all the other steps of the considered time span.

Now we take a closer look at the convergence of the MC-
based technique. With this in mind, we focus on the rows of
Table III that correspond to PC expansions of high orders.
Similar to the previous observations, even for low values
of nmc, the error of the expected values estimated by MC
sampling is relatively small, namely, bounded by 1.19% (see
εE for npo ≥ 4 and nmc = 102). Meanwhile, the case with
nmc = 102 has a high error rate in terms of εVar and εf : it
is above 38% for variance and almost 3.5% for PDFs (see
εVar and εf for npo = 7 and nmc = 102). The results with
nmc = 103 are reasonably more accurate; however, this trend is
compromised by Table IV: 103 samples leave an error of more
than 7% for variance (see εVar for npo ≥ 4 and nmc = 103).

The aforementioned conclusions, based on Table III (η =
0.5), are directly applicable to Table II (η = 0) and Table IV
(η = 1). The only difference is that the average error rates are
lower when either of the two correlation kernels dominates.
In particular, according to εVar, the case with η = 1, which
corresponds to kSE, stands out to be the least error prone.

Guided by the observations in this subsection, we conclude
that our framework delivers accurate results starting from
npo = 4. The MC estimates, on the other hand, can be
considered as sufficiently reliable starting from nmc = 104.
The last conclusion, however, is biased in favor of the MC
technique since, as we noted earlier, there is evidence that
104 samples might still not be enough.

B. Computational Speed

In this section, we focus on the speed of our framework. In
order to increase the clarity of the comparisons given below,
we use the same order of PC expansions and the same number
of MC samples in each case. Namely, based on the conclusions
from the previous subsection, npo is set to four, and nmc is
set to 104; the latter also conforms to the experience from

the literature [13], [15], [16], [18], [20] and to the theoretical
results on the accuracy of MC sampling given in [9].

First, we vary the number of processing elements np, which
directly affects the dimensionality of the uncertain parameters
u ∈ Rnu (recall Sec. VI). As before, we shall report the results
obtained for various correlation weights η, which impacts the
number of the independent variables ξ ∈ Rnξ , preserved after
the model order reduction procedure described in Sec. VI-A
and Appendix B. The results, including the dimensionality nξ
of ξ, are given in Table V where the considered values for
np are {2n}5n=1, and the number of time steps nt is set to
103. It can be seen that the correlation patters inherent to the
fabrication process [29] open a great possibility for model
order reduction: nξ is observed to be at most 12 while the
maximal number without reduction is 33 (one global variable
and 32 local ones corresponding to the case with 32 processing
elements). This reduction also depends on the floorplans,
which is illustrated by the decrease of nξ when np increases
from 16 to 32 for η = 1. To elaborate, one floorplan is a
four-by-four grid, a perfect square, while the other an eight-
by-four grid, a rectangle. Since both are fitted into square dies,
the former is spread across the whole die whereas the latter
is concentrated along the middle line; the rest is ascribed to
the particularities of kSE. On average, the kOU kernel (η = 0)
requires the fewest number of variables while the mixture of
kSE and kOU (η = 0.5) requires the most.12 It means that, in
the latter case, more variables should be preserved in order to
retain 99% of the variance. Hence, the case with η = 0.5 is
the most demanding in terms of complexity; see Sec. V-D4.

It is important to note the following. First, since the curse
of dimensionality constitutes arguably the major concern of
the theory of PC expansions, the applicability of our frame-
work primarily depends on how this curse manifests itself
in the problem at hand, i.e., on the dimensionality nξ of
ξ. Second, since ξ is a result of the preprocessing stage
depending on many factors, the relation between u and ξ is not
straightforward, which is illustrated in the previous paragraph.
Consequently, the dimensionality of u can be misleading when

12The results in Sec. VII-A correspond to the case with np = 4; therefore,
nξ is two, five, and five for Table II, Table III, and Table IV, respectively.



12

reasoning about the applicability of our technique, and nξ
shown Table V is well suited for this purpose.

Another observation from Table V is the low slope of the
execution time of the MC technique, which illustrates the well-
known fact that the workload per MC sample is independent
of the number of stochastic dimensions. On the other hand, the
rows with nξ > 10 hint at the curse of dimensionality charac-
teristic to PC expansions (see Sec. V-D4). However, even with
high dimensions, our framework significantly outperforms MC
sampling. For instance, in order to analyze a power profile
with 103 steps of a system with 32 cores, the MC approach
requires more than 40 hours whereas the proposed framework
takes less than two minutes (the case with η = 0.5).

Finally, we investigate the scaling properties of the proposed
framework with respect to the duration of the considered
time spans, which is directly proportional to the number of
steps nt in the power and temperature profiles. The results
for a quad-core architecture are given in Table VI. Due to
the long execution times demonstrated by the MC approach,
its statistics for high values of nt are extrapolated based on
a smaller number of samples, i.e., nmc � 104. As it was
noted before regarding the results in Table V, we observe the
dependency of the PC expansions on the dimensionality nξ of
ξ, which is two for η = 0 and five for the other two values
of η (see Table V for np = 4). It can be seen in Table VI
that the computational times of both methods grow linearly
with nt, which is expected. However, the proposed framework
shows a vastly superior performance being up to five orders
of magnitude faster than MC sampling.

It is worth noting that the observed speedups are due to
two major reasons. First of all, PC expansions are generally
superior to MC sampling when the curse of dimensionality
is suppressed [4], [21], which we accomplish by model order
reduction and efficient integration schemes; see Sec. V-D4.
The second reason is the particular solution process used
in this work to solve the thermal model and construct PC
expansions in a stepwise manner; see Sec. V-D2.

VIII. CONCLUSION

We presented a framework for transient power-temperature
analysis (PTA) of electronic systems under process variation.
Our general technique was then applied in a context of partic-
ular importance wherein the variability of the effective channel
length was addressed. Note, however, that the framework can
be readily utilized to analyze any other quantities affected
by process variation and to study their combinations. Finally,
we drew a comparison with MC sampling, which confirmed
the efficiency of our approach in terms of both accuracy and
speed. The reduced execution times, by up to five orders of
magnitude, implied by the proposed framework allow for PTA
to be efficiently performed inside design space exploration
loops aimed at, e.g., energy and reliability optimization with
temperature-related constraints under process variation.
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APPENDIX

A. Thermal Model

In this section, we provide additional details on the thermal
model utilized by the proposed framework at Stage 3 described
in Sec. V-C. We use the widespread model based on Fourier’s
heat equation [24], which, after a proper spacial discretization,
leads to the following system: C

d s̃(t)

dt
+ G s̃(t) = B̃ p(t) (16a)

q(t) = B̃T s̃(t) + qamb (16b)

where the number of differential equations is equal to the
number of thermal nodes denoted by nn; C ∈ Rnn×nn and
G ∈ Rnn×nn are a diagonal matrix of the thermal capacitance
and a symmetric, positive-definite matrix of the thermal con-
ductance, respectively; s̃ ∈ Rnn is a vector of the difference
between the temperature of the thermal nodes and the ambient
temperature; p ∈ Rnp and B̃ ∈ Rnn×np are a vector of the
power dissipation of the processing elements and its mapping
to the thermal nodes, respectively; q ∈ Rnp is a vector of the
temperature of the processing elements; and qamb ∈ Rnp is a
vector of the ambient temperature. B̃ distributes power across
the thermal nodes. Assuming that one processing element is
mapped onto one thermal node, B̃ is filled in with zeros
except for np elements equal to unity that are located on
the main diagonal. For convenience, we perform an auxiliary
transformation of the system in (16) using [8]

s = C
1
2 s̃, A = −C−

1
2 GC−

1
2 , and B = C−

1
2 B̃

and obtain the system in (2) where the coefficient matrix A
preserves the symmetry and positive-definiteness of G. In gen-
eral, the differential part in (16) (and in (2)) is nonlinear due
to the source term p(t) since we do not make any assumptions

about its structure (see the discussion in Sec. V-B). Therefore,
there is no closed-form solution to the system.

The time intervals of the power and temperature profiles
are assumed to be short enough such that the total power
of a processing element can be approximated by a constant
within one interval. In this case, (16a) (and (2a)) is a system
of linear differential equations that can be solved analytically.
The solution is as follows [8]:

s(t) = E(t) s(0) + F(t) p(0) (17)

where t is restricted to one time interval, p(0) is the power
dissipation at the beginning of the time interval with respect
to the corresponding temperature,

E(t) = eAt ∈ Rnn×nn , and

F(t) = A−1(eAt − I) B ∈ Rnn×np .

The procedure is to be repeated for all nt time intervals starting
from the initial temperature, which, without loss of generality,
is assumed to be equal to the ambient temperature. Note that,
when the power profile is evenly sampled, the coefficient
matrices E(t) and F(t) are constant and can be efficiently
computed using the technique in [8]. It is also worth noting
that the described solution method belongs to the family of
so-called exponential integrators, which have good stability
properties; refer to [34] for an overview. Finally, taking into
account u, we obtain (3), operating on stochastic quantities.

B. Discrete Karhunen-Loève (KL) Decomposition

This section contains a description of the discrete Karhunen-
Loève decomposition [14], which is utilized at Stage 1. We
shall use the notation introduced in Sec. VI-A. Let Σξ′ be the
covariance matrix of the centered random vector ξ′ (which
is the result of the first step of the Nataf transformation
discussed in Sec. VI-A). Since any covariance matrix is real
and symmetric, Σξ′ admits the eigenvalue decomposition as
Σξ′ = VΛVT where V and Λ are an orthogonal matrix of
the eigenvectors and a diagonal matrix of the eigenvalues of
Σξ′ , respectively. ξ′ can then be represented as ξ′ = VΛ

1
2 ξ′′

where the vector ξ′′ is centered, normalized, and uncorrelated,
which is also independent as ξ′ is Gaussian.

The aforementioned decomposition provides means for
model order reduction. The intuition is that, due to the corre-
lations possessed by ξ′ ∈ Rnu , this vector can be recovered
from a small subset ξ′′′ ∈ Rnξ of ξ′′ ∈ Rnu , nξ � nu. Such
redundancies can be revealed by analyzing the eigenvalues λi
stored in Λ. Assume λi, ∀i, are arranged in a non-increasing
order and let λ̃i = λi/

∑
j λj . Gradually summing up the

arranged and normalized eigenvalues λ̃i, we can identify a
subset of them that has the cumulative sum greater than a cer-
tain threshold. When this threshold is sufficiently high (close
to one), the rest of the eigenvalues and the corresponding
eigenvectors can be dropped as being insignificant, reducing
the stochastic dimensionality of the problem.

C. Polynomial Chaos (PC) Expansions

Here we elaborate on the orthogonality property [4] of
PC expansions, which is extensively utilized at Stage 4 in
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Sec. V-D. Due to the inherent complexity, uncertainty quantifi-
cation problems are typically viewed as approximation prob-
lems. More precisely, one usually constructs computationally
efficient surrogates of the initial models and then studies these
light representations instead. PC expansions [4] are one way
to perform such approximations, in which the approximating
functions are orthogonal polynomials. A set of multivariate
polynomials {ψi : Rnξ → R} is orthogonal if

〈ψi, ψj〉 = νiδij , ∀i, j, (18)

where 〈·, ·〉 denotes the inner product in the Hilbert space
spanned by the polynomials, δij is the Kronecker delta func-
tion, and νi = 〈ψi, ψi〉 is a normalization constant. The inner
product with a weight function f : Rnξ → R is defined as the
following multidimensional integral:

〈h, g〉 :=

∫
h(x) g(x) f(x) dx. (19)

In our context, the weight function corresponds to the PDF
of ξ (see Sec. V-A). For h = ψi and g = ψj , the inner
product yields the covariance of ψi and ψj , and the presence
of orthogonality is equivalent to the absence of correlations.

Many of the most popular probability distributions directly
correspond to certain families of the orthogonal polynomials
given in the Askey scheme [4]. A probability distribution
that does not have such a correspondence can be transformed
into one of those that do have using the technique shown
in Sec. VI-A. Another solutions is to construct a custom
polynomial basis using the Gram-Schmidt process. In addition,
apart from continuous, PC expansions can be applied to
discrete distributions. Refer to [4] for further discussions.

D. Numerical Integration

As mentioned in Sec. V-D, Sec. VI-D, and Appendix C, the
coefficients of PC expansions are integrals, which should be
calculated numerically at Stage 4. In numerical integration,
an integral of a function is approximated by a summation
over the function values computed at a set of prescribed
points, or nodes, which are multiplied by the corresponding
prescribed weights. Such pairs of nodes and weights are
called quadrature rules. A one-dimensional quadrature rule is
characterized by its precision, which is defined as the maximal
order of polynomials that the rule integrates exactly [27]. In
multiple dimensions, an nξ-variate quadrature rule is formed
by tensoring one-dimensional counterparts. Such a multidi-
mensional rule is characterized by its accuracy level nql, which
is defined as the index of the rule in the corresponding family
of multidimensional rules with increasing precision.

It can be seen in (19) that the integrand can be decomposed
into two parts: the weight function f and everything else. The
former always stays the same; therefore, a rule is typically
chosen in such a way that this “constant” part is automatically
taken into consideration by the corresponding weights since

there is no point of recomputing f each time when the
other part, i.e., the functions that the inner product operates
on, changes. In this regard, there exist different families of
quadrature rules tailored for different weight functions. Define
such a quadrature-based approximation of (19) by

〈h, g〉 ≈ Qnξ
nql [h g] :=

nqp∑
i=1

h(x̂i) g(x̂i) wi (20)

where x̂i ∈ Rnξ and wi ∈ R are the prescribed points and
weights, respectively; nqp is their number; and nql is the
accuracy level of the quadrature rule, which is said to be nξ-
variate. It is important to note that x̂i and wi do not change
when the quantity being integrated changes. Thus, once the
rule to use has been identified, it can be utilized to compute
the inner product of arbitrary h and f with no additional
computational effort. In our experiments in Sec. VII, we use
the library of quadrature rules available at [35].

Since in the example in Sec. VI we need to compute the
inner product with respect to beta measures, the Gauss-Jacobi
quadrature rule is of particular interest. The rule belongs
to a broad class of rules known as Gaussian quadratures.
The precision of a one-dimensional Gaussian quadrature with
ñqp points is 2ñqp − 1; this feature makes such quadratures
especially efficient [27]. Using (20), we rewrite (8) as shown
in (9) where {νi}

npc
i=1 are computed exactly, either by applying

the same quadrature rule or by taking products of the one-
dimensional counterparts with known analytical expressions
[4]; the result is further tabulated. It is important to note that
nql should be chosen in such a way that the rule is exact for
polynomials of the total order at least 2npo, i.e., twice the order
of PC expansions, which can be seen in (8) [21]. Therefore,
nql ≥ npo + 1 as the quadrature is Gaussian.

There is one more and arguably the most crucial aspect
of numerical integration that we ought to discuss: the algo-
rithm used to construct multidimensional quadratures. In low
dimensions, the construction can be easily based on the direct
tensor product of one-dimensional rules. However, in high
dimensions, the situation changes dramatically as the number
of points produced by this approach can easily explode. For
instance [27], if a one-dimensional rule has only four nodes,
i.e., ñqp = 4, then in 10 stochastic dimensions, i.e., nξ = 10,
the number of multivariate nodes becomes nqp = ñ

nξ
qp =

410 = 1 048 576, which is not affordable. Moreover, it can
be shown that most of the points obtained in such a way do
not contribute to the asymptotic accuracy and, therefore, are a
waste of time. In order to effectively alleviate this problem, we
construct so-called sparse grids using the Smolyak algorithm
[21], [27], [35]. The algorithm preserves the accuracy of the
underlying one-dimensional rules for complete polynomials
while significantly reducing the number of integration nodes.
For instance, in the example given earlier, the number of
points computed by the algorithm would be only 1 581, which
implies drastic savings of the computational time.


