
Scheduling and mapping of conditional task graph for
the synthesis of low power embedded systems

D. Wu, B.M. Al-Hashimi and P. Eles

Abstract: A dynamic voltage scaling (DVS) technique for embedded systems expressed as
conditional task graphs (CTGs) is described. The idea is to identify and exploit the available worst
case slack time, taking into account the conditional behaviour of CTGs. Also the effect of
combining a genetic algorithm based mapping with the DVS technique is examined and it is shown
that further energy reduction can be achieved. The techniques are tested on a number of CTGs
including a real-life example. The results show that the DVS technique can be applied to CTGs with
an energy saving of up to 24%. Furthermore, it is shown that savings of up to 51% are achieved by
considering DVS during the mapping optimisation. Finally, the impact of communications and
communication link selection on the scheduling and mapping technique is investigated and results
are reported.

1 Introduction

Energy efficiency is becoming a central issue in embedded
system synthesis with increasing demand for portable
devices, and with heat dissipation caused by excessive
power consumption which can lead to reduced reliability.
One potentially effective technique for decreasing power
consumption in embedded systems is dynamic voltage
scaling (DVS), which dynamically scales the supply voltage
and operational frequency of system components during
run-time in accordance with the temporal performance
requirements of the application [1]. DVS exploits the slack
time, i.e. the intervals when a PE is idle, such as to reduce
power consumption.

Several approaches have demonstrated the efficiency of
task scheduling with DVS techniques in reducing the power
consumption of embedded applications [2–6]. The effi-
ciency of such techniques can be further increased if the
potential of voltage scaling is considered not only during the
scheduling step, but also for optimisation of the task
mapping [7]. In [8], a mobility based list scheduling was
modified towards DVS utilisation: the authors optimise a
static schedule towards the incorporation of aperiodic tasks.
The static schedule provides guidelines to the online
scheduler. In [9], a DVS optimised schedule was derived
using a constructive list scheduling technique with a
dynamic recalculation of task priorities based on average
energy dissipation. In [7], a two-step iterative synthesis
approach guided by a generalised DVS algorithm was
presented, which optimises both the mapping and schedule

towards energy efficiency by abetting the exploitation of
DVS.

All of the approaches mentioned above have considered
either systems consisting of independent tasks or purely data
dominated applications specified as dataflow models.
However, embedded system functionality often contains
both data and control statements. This feature has been
recognised by the research community and several system
level representations have been proposed to capture both the
data and control flow at task level [10, 11]. In [10, 12] such
an abstract system representation, called the conditional
task graph (CTG), has been defined and a scheduling
algorithm has been proposed whereby the worst case delay
is minimised. In [13], a technique performing mapping and
scheduling simultaneously to take advantage of the resource
sharing among mutual exclusive tasks was proposed.

Using system representations which capture both data and
control flow allows for a more accurate modelling of a large
class of embedded systems. This will lead to more exact
performance estimations, schedule generations and, in
general, more efficient system implementations. Based on
such considerations, researchers [10, 12–14] have addressed
scheduling and mapping of embedded systems expressed
with CTGs or similar representations. However, such an
accurate system representation also offers the potential of
efficient implementations in terms of energy dissipation.
Nevertheless, no work has yet addressed the problem of
energy minimisation during synthesis of system specifica-
tions which capture both dataflow and the flow of control.

The main aim of this paper is to investigate the
application of DVS techniques to data/control dominated
embedded systems. The following are the two main
contributions of this work:

1. A DVS technique for CTGs is proposed which is capable
of exploiting the slack time, taking into account the
conditional behaviour of the system.
2. A genetic algorithm (GA) based mapping technique is
introduced to optimise the system implementation such as to
efficiently exploit the proposed DVS technique, thus,
leading to further energy savings.

q IEE, 2003

IEE Proceedings online no. 20030837

doi: 10.1049/ip-cdt:20030837

D. Wu and B.M. Al-Hashimi are with the School of Electronics and
Computer Science, University of Southampton, Southampton, SO17 1BJ,
UK

P. Eles is with Department of Computer and Information Science,
Linköpings University, S-58183 Linköping, Sweden

Paper received 9th May 2003

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003262

2 Preliminaries

2.1 Conditional task graph and architectural
model

Consider an application specified as a directed, acyclic
graph G(V, ES; EC) called a conditional task graph (CTG)
[12]. Figure 1a shows an example CTG. Each node, ni 2 V
represents a task, an atomic unit to be executed without
being pre-empted. There are two nodes, called source and
sink, which represent the first and last node, respectively,
such that all other nodes in the graph are successors of the
source and predecessors of the sink. ES and EC are the sets
of simple and conditional edges, respectively. ES \ EC ¼ F
and ES [EC ¼ E; where E is the set of all edges. An edge
eij 2 E from ni to nj indicates that the output of ni is the
input of nj. An edge eij 2 EC is a conditional edge
(represented with thick lines in Fig. 1) and it has an
associated condition value. Transmission on such an edge
takes place only if the associated condition value is met.
A node with conditional edges at its output is called a
disjunction node. Executing a disjunction node produces a
condition value. For example in Fig. 1a, executing n1

produces condition value A or �AA. Alternative paths starting
from a disjunction node meet in a conjunction node. A
conjunction node can be activated after input from one of
the alternative paths has arrived. Depending on the
condition values, there exist different tracks through a
CTG which may be followed at a certain execution. The
CTG of Fig. 1a has three possible tracks, which are shown in
Figs. 1b, c and d respectively.

If we consider the activation time of the source task as a
reference, the finish time of the sink task is the delay of the
system at a certain execution. This delay must be, in the
worst case, smaller than a certain imposed deadline. Release
times of some tasks as well as multiple deadlines can be
easily modelled by inserting dummy nodes between certain
tasks and the source or the sink node respectively. These
dummy nodes represent tasks with certain execution time
but which are not allocated to any processing element (PE).
The above execution semantics is that of a so-called single
rate system. It assumes that a node is executed at most once
for each activation of the system. If tasks with different
periods have to be handled, this can be achieved by
generating several instances of the tasks and building a CTG
which corresponds to a set of tasks as they occur within a
time period that is equal to the least common multiple of the
periods of the involved tasks. For further details concerning
the CTG representation reference is made to [12].

The architecture considered in this work consists of
multiple and heterogeneous PEs. DVS-enabled PEs can run
at voltages between the threshold voltage and maximum

voltage. Continuous voltages are calculated here, but these
can be easily adapted for discrete voltages [7]. An
assumption is made that the tasks are of sufficiently coarse
granularity and that the PEs can continue operation during
the voltage scaling, which allows for neglect of the scaling
overhead in terms of power and time. Furthermore, the PEs
may employ power management techniques, i.e. they may
shut themselves down when idle. An infrastructure of
communication links (CLs) connects these PEs through
communication interfaces (CIs), which are able to adapt to
the different operational frequencies caused by DVS. Figure 2
shows an example architecture, where CL1 connects PE1;
PE2; and PE3; CL2 connects PE2 and PE3: We assume that
there is at least one CL directly connecting two commu-
nicating PEs. Multi-hop communication is not considered.

Each task in a CTG may have multiple implementation
alternatives, thus, it may potentially be mapped to several
PEs able to execute this task. For each possible task
mapping, certain implementation properties, e.g. execution
time and power consumption, are given in a technology
library. These values are either based on previous design
experience or on estimation techniques.

The schedule table produced in [12] captures all the
details related not only to task activation but also to
communication scheduling. In [7, 15] we have also shown
how communication aspects have to be considered for
scheduling and mapping with DVS. In Section 3 it is
assumed that communications between tasks takes zero time
and consumes zero energy. However, the impact of
communications is investigated in Section 4.

2.2 Schedule table

For a given execution of a CTG, a subset of the tasks is
activated corresponding to the actual track, which depends
on the values of certain conditions. In [12] a scheduling
algorithm is proposed for mapped conditional task graphs
whereby the worst case delay is as small as possible. The
output of the algorithm is a schedule table which contains
activation times for each task, corresponding to different
values of the conditions. Table 1 is an example schedule
table for the CTG of Fig. 1a, assuming that the task
mappings and task execution times are as shown in Table 2.
The table has one row for each task, which contains a start

A

_
A

B

_
A

_
B

n6

n7

ba c d

column true

column A _
column A^B

 _
column A

column true

 _ _
column A^B

A

_
A

B
_
B

n2 n2

n7 n7

n6

n4

n3
n3

n1
n1

n4 n5 n5

n3

n1
n1

n6

n7

Fig. 1 Conditional task graph and its tracks

a CTG
b Track 1
c Track 2
d Track 3

Table 1: Schedule table

true A �AA �AA ^B �AA ^ �BB

n1 0, 10

n2 10, 15

n3 10, 14

n4 14, 16

n5 14, 20

n6 16, 17 20, 21

n7 15, 20 17, 22 21, 26

Fig. 2 Example architecture

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003 263

and end time for that task corresponding to different
condition values. Each column in the table is headed by
a logical expression constructed as a conjunction of
condition values. The schedule table represents the
schedules of all possible tracks corresponding to different
condition values. As shown in Figs. 1b–d, there are three
possible tracks. The schedule of track 1 is represented in
column true and A. The schedule of track 2 is captured in
column true, �AA, and �AA ^ B: The schedule of track 3 is given
in column true, �AA, and �AA ^ �BB:

The schedule table captures a quasistatic schedule of the
system specified by the CTG considering the given task
mapping. This means that all decisions which could be taken
offline are made by the scheduling algorithm and are written
into the schedule table. Based on this information, the real-
time kernels running on each processing element will take
the actual decisions on activation of tasks and communi-
cations, depending on the current values of conditions.

The problem formulation may be stated as follows:
considering a system specified as a CTG, find a mapping, a
schedule table and the voltage scaling, such that the
deadline is satisfied and the energy dissipation is minimised.
The execution of a CTG can proceed along different tracks
depending on the actual condition values. Our objective is to
minimise the total energy dissipation assuming that every
track is executed with equal probability.

It should be noted that the scheduling is static and not
online. However, this does not mean exhaust exploration.
The scheduling algorithm traverses the CTG analysing each
possible alternative track and considering for each track
only the tasks executed for the respective condition values.
Thus the algorithm proceeds along a binary decision tree

corresponding to the alternative tracks, which is explored in
depth first order.

3 Scheduling and mapping techniques with DVS
for CTGs

The relation between energy dissipation EðVddÞ; execution
time dðVddÞ and supply voltage Vdd are expressed in [7]:

EðVddÞ ¼
V2

dd

V2
max

� EðVmaxÞ ð1Þ

dðVddÞ ¼
ðVmax 	 VtÞ2

Vmax

� Vdd

ðVdd 	 VtÞ2
� dðVmaxÞ ð2Þ

where Vmax is the maximum supply voltage, EðVmaxÞ and
dðVmaxÞ are the energy dissipation and execution time at
Vmax; and Vt is the threshold voltage. Equations (1) and (2)
will be used in the DVS technique in the following Sections.
The application of DVS techniques for offline task
scheduling is based on the assumption that a certain slack
time is available and that this slack is also predictable, at
least to a certain extent, at design time. In the case of system
specifications which also capture the flow of control, as is
the case with CTGs, constructing a quasistatic schedule with
voltage scaling is even more difficult than for pure data flow
systems, due to the additional problems related to the
prediction of slacks. The values of the conditions are
unpredictable, so the decision on how much slack time can
be distributed to a task is taken without knowing which
values the downstream conditions will later get, i.e. the
execution path is determined incrementally during runtime.
On the other hand, at a certain moment during execution,
when the values of some conditions are already known
(upstream conditions), they have to be used in order to take
the best possible decisions.

3.1 DVS technique for CTGs

To illustrate the problems connected to the generation of a
quasistatic schedule with voltage scaling for CTGs, we
consider the CTG of Fig. 1a and its mapping information of
Table 2. Let us assume that the deadline of the system is
30 ms. Figures 3a–c show the schedules of the three
possible tracks through the CTG, as given in Table 1. The
schedules are produced using the algorithm reported in [12],
where the aim is to produce a schedule such that the worst

Table 2: Task mapping and execution time

mapping execution time (ms)

n1 PE1 10

n2 PE2 5

n3 PE2 4

n4 PE1 2

n5 PE1 6

n6 PE2 1

n7 PE1 5

Fig. 3 Schedule of the CTG of Figure 1a

a Track 1
b Track 2
c Track 3

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003264

case delay is as small as possible. As can be seen from Fig. 3,
the amount of slack time varies with the tracks, ranging
from 4 ms in the case of track 3 to 10 ms in the case of track
1, since the deadline of 30 ms is not to be exceeded. Figures
3a–c also show the energy dissipation of each track,
assuming that the PEs’ power consumption at nominal
supply voltage is 5 W. For example, in Fig. 3a, the tasks in
track 1 consume an energy of 5W � ð10msþ 5msþ
5msÞ ¼ 100mJ: In order to make use of DVS techniques
for energy minimisation, a well-known technique [2, 9]
involves scaling the schedules such that they fit the imposed
deadlines as much as possible. The scaling factor is the ratio
between the deadline and the total length of the schedule.
For example, the scaling factor for track 1 is calculated by
30=20 ¼ 1:5: The schedules obtained after scaling each
track, considered in isolation from the others, is given in

Fig. 4a–c. Figures 4a–c also show the energy dissipation of
each track after scaling, assuming that the PEs’ nominal
voltage and threshold voltage are 3.3 V and 0.8 V respect-
ively. For example in Fig. 4a, the execution time of track 1
is extended from 20 ms to 30 ms. Thus, using (1)–(2), it can
be calculated that the supply voltage of PEs should be scaled
to 2.62 V and the energy dissipation of track 1 becomes
62.9 mJ. It can be observed that, in order to produce minimal
energy dissipation, the execution time of task n1 varies from
one track to the other. In the case of track 1, n1 runs from 0
to 15. In the case of track 2 the same task runs from 0 to
13.6, and for track 3, n1 runs from 0 to 11.5. During
execution, however, the condition values of the CTG are not
known in advance. If the supply voltage and, implicitly, the
execution time of n1 is decided upon improperly, the time
constraints may conflict, which cannot be tolerated in
systems with hard-real time properties. For example, as
shown in Fig. 5, if n1 runs from 0 to 15, and the condition
values come out to be �AA ^ �BB later, the deadline will be
missed even if the remaining tasks are run using maximum
supply voltage. Thus, in order to exploit slack time as much
as possible and, at the same time, meet time constraints, the
worst case slack time (the maximum slack time that can be
distributed to a task without later conflicting time
constraints during upcoming scheduling decisions) should
be identified dynamically and used to decide how much
slack time a task can exploit. The main goal of our DVS

Fig. 4 Schedule scaled for energy minimisation

a Track 1
b Track 2
c Track 3

Fig. 5 Improper scaling

Fig. 6 A CTG example and its scaling

a CTG
b Schedule when the condition vaule is A
c Scaling the schedule of (b)
d Exploring slack on non-critical path

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003 265

scheduling technique for CTGs is the identification of a
voltage schedule such that, under any possible set of
condition values, deadlines are satisfied and, at the same
time, high energy savings are achieved.

3.2 Energy-efficient scheduling

In this paper we propose a DVS technique for CTG. The
basic idea is to identify the available worst case slack time
taking into account the conditional behaviour of CTGs. This
is achieved by dynamically identifying the worst case track,
calculating the scaling factor (i.e. the ratio between the
deadline and the total length of the schedule) and modifying
the schedule table every time after a disjunction node (a node
producing a condition value) has been scheduled. The input
of our DVS technique is a schedule table generated by the
scheduling methodology presented in [12] whose aim is to
make the worst case delay as small as possible. A slack time
exploited schedule table is produced indicating voltage
levels and activation times such that deadlines are satisfied
and at the same time energy dissipation is reduced.

Our strategy is based on the idea of exploiting the
information concerning condition values, available at a
certain time, in order to apply the largest possible scaling
factor while still guaranteeing the deadline. The point in
time where additional information concerning the future
evolution of the system becomes available is the moment
when a disjunction node ends. Therefore, at the beginning of
the scheduling process, a more conservative scaling factor is
applied. Once a disjunction node has been scheduled and, as
a result, more available slack time can be identified, a higher

scaling factor should be applied. Thus, the schedule of
a CTG is divided into several scaling regions by the end
times of the disjunction nodes. Each scaling region is then
scaled with a certain, suitable scaling factor. Examining
Table 1, it can be seen that the schedules of the tasks in each
column correspond to such a scaling region. However, a
column of the initial schedule table need not directly
correspond to a scaling region. This will be the case
whenever, according to the generated schedule, a task is
running in parallel with a disjunction task and is finishing
after that one. Such a situation is illustrated with the CTG in
Fig. 6a. Figure 6b presents the schedule of the track
corresponding to condition value A according to the
schedule table in Table 3. Task n2 is running over the
finishing time of disjunction task n3: However, when task n3

has finished, the information concerning the selected tracks
‘in our case, the one corresponding to condition value A) is
available. Therefore, in order to make use of the available
slack, a larger scaling factor will be applied and, conse-
quently, the PE will be run at lower voltage, as shown in
Fig. 6c. The corresponding scaled schedule table is shown in
Table 4. It can be seen that task n2 belongs to three different
scaling regions, corresponding to the situations before and
after the end of disjunction task n3:

The central idea is to identify the scaling regions
delimited by the end times of disjunction tasks and to
scale the schedules of the tasks in each region after
determining the slack time available and the corresponding
scaling factor. The drawback of this scaling technique is that
the tasks on the non-critical paths do not take advantage of

Table 3: Original schedule table

true A �AA

n1 0, 2

n2 2, 6

n3 2, 4

n4 4, 6

n5 4, 8

n6 6, 8 8, 10

n7 8, 10 10, 12

Table 4: Scaled schedule table

true A �AA

n1 0, 2.5

n2 2.5, 5 5, 8.3 5, 7.5

n3 2.5, 5

n4 5, 8.3

n5 5, 10

n6 8.3, 11.6 10, 12.5

n7 11.6, 15 12.5, 15

Fig. 7 DVS technique for CTGs

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003266

the available slack time. For example, as shown in Fig. 6c
after scaling the tasks with corresponding scaling factors, a
slack time s3 is still available. This must be exploited for
further energy saving. The approach in [5] is used to exploit
such slack times. This is achieved by: (1) identifying the
extendable tasks (in our case only n2); (2) identifying the
task, among those extendables, leading to the highest energy
saving if it is extended with a certain quantum of time; (3)
extending the identified task with that quantum. The three
steps above are repeated until there are no slack left.
Figure 6d is the result after exploit slack time s3.

Our DVS technique is described in Fig. 7. Step 01 pre-
processes the input schedule table, so that each column
corresponds to a scaling region. As discussed before, this
practically means that certain tasks have to be split and
distributed over several columns. Table 5 shows two lines of
the schedule table resulting after pre-processing Table 3. In
this case task n2 is the one which had to be split. Steps 02-10
apply DVS to all the columns in SchTable, in a left-to-right
sequence. For each column col, step 04 firstly identifies all
possible tracks which will be followed after the condition
values heading col are known; then, the track with the latest
end time (the end time of the sink node in the track) is
identified, which is referred as the worst case track
trackworst: Step 05 calculates the worst case total slack
time slackworst which is obtained by subtracting the end time
of trackworst from the deadline Td: Step 06 calculates the
slack time distributable to col, slackcol; by distributing slac
kworst to the columns along the trackworst in proportion to
the columns’ duration (i.e. the difference between the latest
end time and the earliest start time of the tasks in the
column). Step 07 scales col with the scaling_ factor given
by:

scaling factor ¼ durationcol þ slackcol

durationcol

ð3Þ

where durationcol is the duration of col. Step 08 exploits the
slack times on a non-critical path using the DVS technique
in [5]. Due to the scaling of col, Step 09 must update the
contents in the columns which are successive to col along all
the possible tracks.

To illustrate the proposed DVS technique for CTGs, we
apply it to the schedule table for the CTG of Fig. 1a and
Table 1. In this case, because the columns already corre-
spond to the scaling regions, we can simply skip step 01.

Then, we begin to process column true. Step 04: taking into
account that no condition value is yet known, there are three
possible tracks: track1, track 2, and track 3 (Fig. 1). Track 3
is the worst case track, where the sink node n7 ends at 26,
compared to 20 in track 1 and 22 in track 2. Step 05: since
the worst case track finishes at 26 and the deadline is 30, the
worst case total slack time is 4 ms. Step 06: 1.5 ms slack
time is distributed to column true which is given by (4*(10/
26)), where 10 is the column’s duration and 26 is the time
needed to finish the worst case track. Step 07: the task in
column true, n1; is scaled with the scaling factor 1.15, which
is given by ðð10 þ 1:5Þ=10Þ using (3). Step 08: since there is
no non-critical path in column true, this step can be skipped.
Step 09: column true is a part of track 1, track 2, and track3.
In track 1, column A is successive to column true; in track 2,
columns �AA and �AA ^ B are successive to column true; in track
3 columns A and �AA ^ �BB are successive to column true.
Therefore, the schedules of columns A, �AA, �AA ^ B, and �AA ^ �BB
are updated due to the scaling of column true. Table 6 is
produced after the end of Step 09. Starting with Table 6, by
repeating steps 04-09 for column A, Table 7 is generated,
where the tasks placed in column A, i.e. n2 and n7; are both
extended by 4.25 ms. Considering columns �AA, �AA ^ B, and
�AA ^ �BB separately, applying steps 04-09 to them, the final

schedule table is obtained as shown in Table 8.
Using Table 8, Figs. 8a–c show the actual schedules of

the three possible tracks of the CTG of Fig. 1a, which meet
the deadline and at the same time produce minimal energy
dissipation. By comparing Fig. 4 and Fig. 8, it can be
observed that the actual schedule is the same as the schedule
of Fig. 4 only in the case of track 3, which is the worst case
track. It is important to note that the schedules of the other
tracks in Fig. 4 are impracticable! This is because the
schedules in Fig. 4 are produced upon the assumption that
the condition values are known before executing the
disjunction nodes, which is not true during the runtime of
the application. In reality, the condition values are not
known until all the disjunction nodes have finished their
execution. Hence, it is not possible for an online voltage

Table 5: Pre-processed schedule table

true A �AA

n1 0, 2

n2 2, 4 4, 6 4, 6

Table 6: Result after processing column true

true A �AA �AA ^ B �AA ^ �BB

n1 0, 11.5

n2 11.5, 16.5

n3 11.5, 15.5

n4 15.5, 17.5

n5 15.5, 21.5

n6 17.5, 18.5 21.5, 22.5

n7 16.5, 21.5 18.5, 23.5 22.5, 27.5

Table 7: Result after processing column A

true A �AA �AA ^ B �AA ^ �BB

n1 0, 11.5

n2 11.5, 20.75

n3 11.5, 15.5

n4 15.5, 17.5

n5 15.5, 21.5

n6 17.5, 18.5 21.5, 22.5

n7 20.75, 30 18.5, 23.5 22.5, 27.5

Table 8: Final schedule table

true A �AA �AA ^ B �AA ^ �BB

n1 0, 11.5

n2 11.5, 20.75

n3 11.5, 16.2

n4 16.2, 19.6

n5 16.2, 23.1

n6 19.6, 21.3 23.1, 24.2

n7 20.75, 30 21.3, 30 24.2, 30

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003 267

scheduler to immediately use this information to achieve
feasible and energy-efficient settings.

3.3 Energy-efficient mapping

In Sections 3.1 and 3.2 the DVS technique has been applied
to an existing mapped and scheduled CTG. In this Section,
we introduce a mapping approach specifically designed for
better utilisation of DVS for CTG. Combining the mapping
with the DVS technique for CTG can reduce system energy
dissipation further. The flow of a mapping optimisation is
shown in Fig. 9a. It is based on a genetic algorithm (GA)
[16]. In each generation, a new population evolves from the
current population by mating the fittest individuals and
mutating. In our case, each individual is represented by a
mapping string and represents a candidate mapping.
Figure 9b shows a possible mapping string for the CTG of
Fig. 1a, which means n1 is mapped to PE1, n2 is mapped to
PE2, and so on. The algorithm constructs and evaluates
many different mapping strings during an iterative optim-
isation process. The optimisation is guided by a fitness
function. In our case, the fitness function is:

Fitness ¼
X

i

EðniÞ
 !

� maxðTd; TeÞ
Td

� �2

ð4Þ

where EðniÞ is the energy dissipation of task ni; Td is the
deadline of the CTG, and Te is the real execution time of the
CTG. The first part of the fitness function is the total energy
dissipation of all tasks, which has to be minimised. The
second part of the function introduces a penalty factor due to
deadline violations. If the length of the schedule is smaller
than the deadline, the value of the second part is one: hence,
no penalty is applied. In the opposite case, the squaring
introduces a higher penalty to the fitness. Thus, the
optimisation process is driven towards solutions with
reduced energy dissipation, while, at the same time, the
deadline is satisfied.

As can be seen in Fig. 9a, an initial population of
mapping strings is first created randomly (initialisation).
Then, for each individual in the population, a mapping is
generated according to the mapping string (perform
mapping). Next, a schedule table is produced for the
mapped CTG using the scheduling algorithm in [12]
(perform scheduling). After this, the schedule table is
passed to the proposed DVS technique for CTG (Section 3.2)
to generate a low energy schedule (perform DVS).
According to the results of DVS, the fitness for the mapping
string is calculated using (4) (evaluation). If no improved
individual has been produced for a certain number of
generations, the synthesis is stopped and the best
implementation is reported. Otherwise, the synthesis
continues with generation evolvement. This step implies
the selection of high ranked individuals and the application
of mating and mutation operators.

Mating selects a pair of high-ranked mapping strings as
parent. Offspring are produced by replacing part of the first
parent string with part of the second parent string. Hence,
crossover results in two new offspring strings. By selecting
high quality mapping strings for crossover, the chances to
evolve mapping strings of higher quality are increased.
Mating of the two strings is carried out with respect to an
arbitrarily selected crossover point. In order to enter an
unexplored region of the search space, the genetic algorithm
also mutates the mapping strings occasionally with a low
probability. The mutation is carried out by randomly
changing an element of a randomly selected mapping
string. For further details concerning the genetic algorithm
based mapping see [7, 16]. The aim of this iterative process

Fig. 8 Actual schedule modified with DVS

a Track 1
b Track 2
c Track 3

Fig. 9 Energy-efficient mapping

a Energy-efficient mapping
b Mapping string

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003268

is to finally produce an implementation which has
low energy dissipation, and at the same time meets the
deadline.

3.4 Experimental results

The proposed DVS and mapping technique has been tested
on a number of CTG examples to demonstrate its capability
in reaching high quality solutions in terms of low energy

dissipation. The experiments were carried out on a Pentium
III 866/256MB PC running CYGWIN. The examples
consist of two sets: (1) A real-life example taken from
[17]. It is a vehicle cruise controller modelled as a CTG,
which consists of 32 tasks, 35 edges, and 2 conditions. The
system specification has been mapped into an architecture
consisting of five PEs connected through a communication
bus. The initial PEs, considered in [17], are not DVS-
enabled. We extended the same PEs with DVS capabilities,
such that Vt ¼ 0:8 v and Vmax ¼ 3:3 v: (2) We have
generated 15 random mapped CTG examples ðctg1 	
ctg15Þ using the tool provided by [12], with various
complexities in terms of the number of nodes, edges,
conditions, and considering DVS-enabled PEs with
Vt ¼ 0:8 v and Vmax ¼ 3:3 v:

Firstly, to test the effectiveness of the proposed DVS
technique for CTG, we used the algorithm presented in [12]
to generate a schedule for each example and then applied the
proposed DVS technique (Section 3.2) to it. Table 9 gives
the experimental results for the real-life example with
different deadlines. It can be seen that the proposed DVS
technique reduces the energy dissipation, and the reduction
becomes greater as the deadline increases, e.g. the energy
dissipation is 355.15 with a deadline of 100% of the length
of the schedule produced by [12]. The energy dissipation is
reduced further to 288.87 with a 120% deadline. Table 10
shows the results for the randomly generated examples with
a deadline equivalent to 110% of the minimal one produced
by [12]. For this experiment, the task mapping is not
optimised, but we consider an implicit mapping generated
randomly together with the task graph. It can be seen
that, for all the examples, the proposed DVS technique
reduces the energy dissipation effectively. For example, the
energy dissipation of ctg1 before DVS is 525.00, and it is
reduced to 391.29 after DVS; similarly, ctg10 consumes
1803.75 energy before DVS, and it is reduced to1540.26
after DVS.

We have performed another set of experiments in order to
demonstrate the quality of our mapping approach. The
results are shown in Table 11. Column 2 of the table shows
the energy reduction when our DVS technique is applied to
the mapping and scheduling solution proposed in [13].

Table 9: Results for the real-life example

Energy dissipation after DVS (mJ)

Energy dissipation

before DVS (mJ)

100%

deadline

105%

deadline

110%

deadline

120%

deadline

440.00 355.15 335.61 318.28 288.87

Table 10: Results for the random examples

node/edge/condition/ Energy dissipation (mJ)

Example PE number before DVS after DVS

ctg1 13/16/2/2 525.00 391.29

ctg2 13/16/2/3 547.50 440.53

ctg3 13/16/3/2 625.00 548.12

ctg4 25/30/2/2 1475.00 1245.30

ctg5 25/30/2/4 1137.50 929.77

ctg6 25/30/3/2 1242.50 1131.11

ctg7 25/30/3/3 1413.75 1141.34

ctg8 25/29/4/2 1187.50 983.80

ctg9 35/41/2/2 1412.50 1122.18

ctg10 37/45/2/3 1803.75 1540.26

ctg11 35/41/2/5 1481.25 1191.05

ctg12 38/48/2/2 2072.50 1863.27

ctg13 42/52/2/4 2302.50 1921.13

ctg14 48/60/3/3 1845.00 1385.54

ctg15 59/71/3/3 3648.75 2998.32

Table 11: Results of the mapping techniques

Energy reduction (%) CPU time (s)

Examples

[13] þ proposed

DVS

[12] þ proposed

mapping & DVS

[13] þ proposed

DVS

[12] þ proposed

mapping & DVS

ctg1 23.86 38.65 0.80 10.74

ctg2 22.55 42.73 0.88 35.00

ctg3 18.06 33.56 0.72 9.82

ctg4 14.07 27.21 0.86 65.08

ctg5 18.18 31.23 0.77 143.23

ctg6 15.48 31.35 0.91 85.62

ctg7 17.27 27.69 0.93 256.40

ctg8 12.92 22.62 0.79 39.22

ctg9 21.10 30.49 0.75 14.82

ctg10 19.72 28.41 0.75 26.91

ctg11 22.32 30.68 0.76 39.15

ctg12 20.23 44.84 1.22 342.06

ctg13 19.07 50.99 0.81 1777.65

ctg14 22.21 33.22 1.30 116.34

ctg15 18.04 28.85 0.99 3639.51

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003 269

In column 3, we show the results obtained when the same
DVS technique is applied together with the mapping and
scheduling technique proposed in this paper. It can be seen
that, using the GA based mapping specifically developed for
DVS, the energy dissipation is reduced further, e.g. in the
case of ctg12, the reduction achieved is 44.84%, that is
24.51% higher than that achieved in [13]. Table 11 also
provides some information about the CPU time of the
proposed DVS and mapping technique. Due to the iterative
optimisation feature, the greater energy reduction achieved
by our approach is at a cost of increased CPU time. The
presented results show how our approach deals with CTGs
with condition numbers ranging from 2 to 4 which we
believe is realistic in some real-life applications. However,
we have also examined the proposed approach with CTGs
that have higher number of condition. It has been found that
for a CTG with a condition number of 8 and task number of
125, the CPU time is approximate 3 hours mainly due to the
large search space.

4 Integration of communications with scheduling
and mapping

In Section 3, low power scheduling and mapping techniques
for embedded systems expressed as conditional task graphs
(CTGs) are presented assuming that the time and energy
costs of communications between tasks are zero. This
Section investigates the impacts of communications and
communication link (CL) selection on system energy
efficiency through a motivational example (Section 4.1).

The integration of communications with the presented low
power scheduling and mapping is considered in Section 4.2.

4.1 Motivational example

Consider the CTG of Fig. 10 and its mapping to the
architecture of Fig. 10b consisting of PE1 and PE2
connected by CL. Task implementation information is
given in Table 12. Using the scheduling technique outlined
in Section 3 (i.e. without consideration of communications),
Figs. 11a and b show the schedules and energy dissipations
when the condition value is A, before and after DVS has
been applied. Now, assuming that communications have
time and energy costs, the costs of e12 (communication
between n1 and n2) and e24 are given in Table 13.
Considering communications, Fig. 12 shows the schedules
and energy dissipations before and after voltage scaling.
Finally, assume that PE1 and PE2 are connected by a faster
but more power-consuming communication link CL’
(Table 13). It can be shown that the energy dissipaton in
this case before and after voltage scaling is 201.5 mJ and
158.9 mJ respectively. Figure 13 summarises the results of
this example. It can be seen that taking communications into
consideration increases the energy dissipation, as expected.
Furthermore, the selection of CL considerably influences
the performance of the design. A system employing faster
and more power-consuming CL dissipates less energy than a
system employing slower and less power-consuming CL.
This is because using faster CL provides more slack time for
voltage scaling the tasks.

4.2 Communication energy model and
CL selection

Most of the previous work on integrating communication
within co-synthesis of embedded systems has focused on
optimising area and performance. In [18, 19], the automatic
generation of the necessary software and hardware for
communications in embedded systems was considered. In
[20], a communication model was presented to estimate the
performance of CLs with different parameters, including
bus width and operating frequency. The model is used to
integrate communication protocol selection with hardwar-
e-software partitioning. In [12, 21], the impact of
communication infrastructures and protocols on the overall
performance of task scheduling was investigated. There has

Fig. 10 Motivational example

a CTG
b Architecture

Fig. 11 Schedule without communication costs

a Schedule before voltage scaling
b Schedule after voltage scaling

Table 12: Task implementation information

Task Mapping Execution time (ms)

n1 PE1 10

n2 PE2 20

n3 PE2 20

n4 PE1 10

Table 13: Costs of communications

time (ms) power (W)

CL CL0 CL CL0

e12 2 0.5 1 1.5

e24 2 0.5 1 1.5

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003270

been some research examining the influence of communi-
cations on energy dissipations of embedded systems. In [22,
23], bus encoding techniques were proposed to reduce
the energy dissipation. Some modern communication
interfaces support multiple data rates. Recently in [24] a
speed selection method aiming to globally optimise the
energy dissipation of embedded systems was presented.
This is achieved by exploiting the power/performance
trade-offs between communications and computations on
DVS-capable processors. In this Section, we integrate CL
selection with the scheduling and mapping technique of
Section 3 with the aim of reducing system energy
dissipation.

A communication involves a sender and a receiver. Thus,
the energy dissipation of a communication is the sum of
energy dissipated by the sender and the receiver:

Ecom ¼ Es þ Er ð5Þ

The energy dissipation of sender/receiver is dependent on
several factors, including communication interface, com-
munication protocol, and the size and pattern of communi-
cation data. Based on the observation that the power
consumption of an interface in sleep mode is trivial
compared with the power consumption in activity mode
(i.e. the duration when the interface is sending/receiving
data), the energy dissipation of the sender/receiver can be
estimated as:

E ¼ PT ð6Þ

where P is the power of the sender/receiver obtained from
the communication interface manufacturers, and T is the
time needed to send/receive the communication data. T can
be estimated using the complex model outlined in [12, 20].
However in this Section, T is simply calculated by dividing
the communication data size by the baud rate of CL.

Assuming that the sender and receiver use the same time for
a communication, the energy dissipation of a communi-
cation is:

Ecom ¼ ðPs þ PrÞT ð7Þ

The synthesis technique (including mapping, scheduling
and voltage scaling) of Section 3 has been extended to
utilise the communication energy model of (7). The aim is to
select a suitable CL, which leads to minimal system energy
dissipation. To allow for this selection, it is assumed that
there is a library of CLs with different characteristics (power
consumption and baud rate).

4.3 Experimental results

Two experiments have been performed under the assump-
tion that PEs are communicating with each other using a
single communication link. The first experiment examines
system energy dissipation employing different CLs. Two
CLs [25, 26] with different baud rate and power consump-
tion are considered, where CL1 has baud rate and power
consumption of 115 k bits/s and 4 mW, CL2 has baud rate
and power consumption of 1 M bits/s and 35 mW. Column
4, 5 and 6 of Table 14 show the results of ten CTGs with
variable complexities where CL1 and CL2 are employed.
To indicate the extra energy dissipation caused by
communications, column 3 gives the energy dissipations
where no communications are considered. It can be seen that
energy dissipation of ctg1,ctg10 employing CL2 is less
than where employing CL1, with up to 4.9% (ctg4)
reduction, this is because for a given size of communication
data, the energy dissipations (which are the products of
power and time) of the two CLs are similar. However, using
the faster bus (CL2) produces less communication time cost,
and as a result provides more slack time for voltage scaling
the tasks.

The second experiment examines the effect of increasing
communication data size transmitted through CLs. Column
7, 8 and 9 of Table 14 show the results, assuming the data
size is three times that of the first experiment (the data size
ranges from 0 , 320 bits in the first experiment). As can be
seen, energy reduction increases. For example, in the case of
ctg2, the energy reduction increases from 4.0% to 16.8%,
because where the data size is three times as large, a greater
slack time difference (between using CL2 and CL1) is found
than is the case with a small data size, which can be explored
during DVS. Based on the above analysis, a conclusion can
be drawn to the effect that CL selection involves a number
of factors including communication data size and CL
characteristics (baud rate and power consumption). Fast
CLs tend to produce less system energy dissipation than

Fig. 12 Schedule with communications costs (CL of Table 13)

a Schedule before voltage scaling
b Schedule after voltage scaling

Fig. 13 Summary of motivational example results

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003 271

slow CLs. This trend becomes more significant when
heavier communications are needed in the system. While
the presented results are based on a single CL between PEs,
it is possible to employ multiple CLs of different
characteristics. In this case, a communication is mapped
and scheduled on a CL after its predecessor task is
scheduled, such that the communication can finish as early
as possible.

5 Conclusions

We have presented, for the first time, a DVS technique and
an energy-efficient mapping technique for data/control
dominated embedded systems expressed as CTGs. The
DVS technique exploits the slack time, taking into account
the conditional behaviour of a CTG. The GA based mapping
produces a solution optimised for the utilisation of DVS.
Combining the proposed mapping and the DVS technique
for CTG with the scheduling proposed in [12], it is possible
to improve the power efficiency of data/control dominated
embedded systems and, at the same time, to meet the
imposed deadline. Experimental results show that the
proposed scheduling and mapping technique significantly
reduces system energy dissipation, compared with
approaches which neglect the availability of DVS, and
that this optimisation can be achieved in a reasonable
amount of time. It has also been shown that energy saving
can be achieved using the proposed technique, taking into
account the impact of communications.

6 Acknowledgments

The authors wish to thank the reviewer for providing useful
comments which enhance the paper’s presentation.

7 References

1 Burd, T.D., Pering, T.A., Stratakos, A.J., and Brodersen, R.W.:
‘A dynamic voltage scaled microprocessor system’, IEEE J. Solid-
State Circuits, 2000, 35, (11), pp. 1571–1580

2 Ishihara, T., and Yasuura, H.: ‘Voltage scheduling problem for
dynamically variable voltage processors’. Proc. 1998 Int. Symp. on
Low power electronics and design, Monterey, CA, USA, 10–12 August
1998, pp. 197–202

3 Hong, I., Kirovski, D., Qu, G., Potkonjak, M., and Srivastava, M.B.:
‘Power optimization of variable-voltage core-based systems’, IEEE
Trans. Comput.-Aided Des. Int. Circuits Syst., 1999, 18, (12),
pp. 1702–1714

4 Quan, G., and Hu, X.: ‘Energy efficient fixed-priority scheduling for
real-time systems on variable voltage processors’. Proc. 38th Design
automation Conf., Las Vegas, NV, USA, 18–22 June 2001, pp. 828–833

5 Schmitz, M.T., and Al-Hashimi, B.M.: ‘Considering power variations
of DVS processing elements for energy minimisation in distributed
systems’. Proc. Int. Symp. on System synthesis, Montreal, Que.,
Canada, 30 September–3 October 2001, pp. 250–255

6 Zhang, Y., Hu, X., and Chen, D.Z.: ‘Task scheduling and voltage
selection for energy minimisation’. Proc. Design automation Conf.
New Orleans, LA, USA, 10–14 June 2002, pp. 183–188

7 Schmitz, M.T., Al-Hashimi, B.M., and Eles, P.: ‘Energy-efficient
mapping and scheduling for DVS enabled distributed embedded
systems’. Proc. Design, automation and test in Europe Conf., Paris,
France, 4–8 March 2002, pp. 514–521

8 Luo, J., and Jha, N.K.: ‘Power-conscious joint scheduling of periodic
task graphs and aperiodic tasks in distributed real-time embedded
systems’. Proc. IEEE/ACM Int. Conf. Computer aided design
(ICCAD), San Jose, CA, USA, 5–9 November 2000, pp. 357–364

9 Gurian, F., and Kuchcinski, K.: ‘LEneS: task scheduling for low-energy
systems using variable supply voltage processors’. Proc. Asia and South
Pacific design automation Conf. ASP-DAC 2001, Yokohama, Japan,
30 January–2 February 2001, pp. 449–455

10 Eles, P., Kuchcinski, K., Peng, Z., Doboli, A., and Pop, P.: ‘Scheduling
of conditional process graphs for the synthesis of embedded systems’.
Proc. Design, automation and test in Europe Conf., Paris, France,
23–26 February 1998, pp. 132–138

11 Strehl, K., Thiele, L., Ziegenbein, D., Ernst, R., and Teich, J.:
‘Scheduling hardware/sofrware systems using symbolic techniques’.
Proc. 7th Int. Workshop on Hardware/software codesign (CODES),
Rome, Italy, 3–5 May 1999, pp. 173–177

12 Eles, P., Doboli, A., Pop, P., and Peng, Z.: ‘Scheduling with bus access
optimization for distributed embedded systems’, IEEE Trans. Very
Large Scale Integr. (VLSI) Sys., 2000, 8, (5), pp. 472–491

13 Xie, Y., and Wolf, W.: ‘Allocation and scheduling of conditional task
graph in hardware/software co-synthesis’. Proc. Design, automation
and test in Europe Conf., Munich, Germany, 13–16 March 2001,
pp. 620–625

14 Chakraborty, S., Erlebach, T., Kunzli, S., and Thiele, L.: ‘Schedul-
ability of event-driven code blocks in real-time embedded systems’.
Proc. 2002 Design automation Conf., New Orleans, LA, USA,
10–14 June 2002, pp. 616–621

15 Schmitz, M.T., Al-Hashimi, B.M., and Eles, P.: ‘Synthesizing energy-
efficient embedded systems with LOPOCOS’, Des. Autom. Embedded
Syst., 2002, 6, (4), pp. 401–424

16 Dick, R.P., and Jha, N.K.: ‘MOGAC: a multiobjective genetic
algorithm for hardware-software cosynthesis of distributed embedded
systems’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 1998,
17, (10), pp. 920–935

17 Pop, P.: ‘Scheduling and communication synthesis for distributed real-
time systems’. Licentiate thesis, (Linkopings University, 2000)

18 Ortega, R.B., and Borriello, G.: ‘Communication synthesis for
embedded systems with global considerations’. Proc. 5th Int. Workshop
on Hardware/software codesign, Braunschweig, Germany,
24–26 March 1997, pp. 69–73

19 Ortega, R.B., and Borriello, G.: ‘Communication synthesis for
distributed embedded systems’. Proc. IEEE/ACM Int. Conf. Computer
aided design, San Jose, CA, USA, 8–12 November 1998, pp. 437–444

20 Knudsen, P.V., and Madsen, J.: ‘Integrating communication
protocol selection with hardware/software codesign’, IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst., 1999, 18, (8),
pp. 1077–1095

21 Pop, P., Eles, P., and Peng, Z.: ‘Scheduling with optimized
communication for time-triggered embedded systems’. Proc. 7th Int.
Workshop on Hardware/software codesign, Rome, Italy, 3–5 May
1999, pp. 178–182

22 Stan, M.R., and Burleson, W.P.: ‘Bus-invert coding for low-power I/O’,
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 1995, 3, (1),
pp. 49–58

Table 14: Experimental results taking into account communications

1£ com data size 3£ com data size

node/edge//condition/ energy w/o com ene with com(mJ) ene with com(mJ)

PE number (mJ) CL1 CL2 reduction (%) CL1 CL2 reduction (%)

ctg1 13/16/2/5 282.76 297.80 286.29 3.9 345.6 290.85 15.8

ctg2 13/16/3/5 405.07 427.85 410.91 4.0 499.21 415.12 16.8

ctg3 25/30/2/3 932.54 1015.32 973.86 4.1 1078.98 994.57 7.8

ctg4 25/30/3/3 916.32 986.56 937.98 4.9 1042.98 965.13 7.5

ctg5 25/30/3/5 773.01 812.92 777.37 4.4 910.79 826.04 9.3

ctg6 25/29/4/2 687.07 744.33 718.34 3.5 805.57 730.25 9.3

ctg7 25/29/4/4 669.76 723.45 705.44 2.5 779.70 695.96 10.7

ctg8 25/29/4/5 599.76 634.88 603.55 4.9 727.07 616.04 15.3

ctg9 35/41/2/2 873.23 894.86 877.20 2.0 952.87 882.67 7.4

ctg10 37/45/3/3 1160.75 1228.69 1174.53 4.4 1315.51 1182.14 10.1

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003272

23 Benini, L., De-Micheli, G., Macii, E., Sciuto, D., and Silvano, C.:
‘Address bus encoding techniques for system-level power optimiz-
ation’. Proc. Design, automation and test in Europe, Paris, France,
23–26 February 1998, pp. 861–866

24 Liu, J., Chou, P.H., and Bagherzadeh, N.: ‘Communication speed
selection for embedded systems with network voltage-scalable

processors’. Proc. 10th Int. Symp. on Hardware/software codesign,
Estes Park, CO, USA, 6–8 May 2002, pp. 169–174

25 Philips, ‘SCC2691 universal asynchronous receiver/transmitter
(UART)’, 1995

26 Philips, ‘SC28L91 3.3V-5.0V universal asynchronous receiver/trans-
mitter (UART)’, 2000

IEE Proc.-Comput. Digit. Tech., Vol. 150, No. 5, September 2003 273

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

