
Lecture 1.3 INTERNATIONAL TEST CONFERENCE 1
1-4244-1128-9/07/$25.00 © 2007 IEEE

Abstract -- Integrated Circuits, Printed Circuits Boards,
and Multi-board systems are becoming increasingly com-
plex to test. A major obstacle is test access, which would be
eased by effective standards for the communication
between devices-under-test (DUTs) and the test manager.
Currently, the Internal Joint Test Access Group (IJTAG)
work at micro-level on a standard for interfacing embed-
ded on-chip instruments while the System JTAG (SJTAG)
work at macro-level on a standard for system-level test
management that connects IJTAG compatible instruments
with the system test manager. In this paper we discuss
requirements on a test protocol to be used in an SJTAG/
IJTAG environment. We have from a number of use sce-
narios made an analysis and defined protocol require-
ments. We have taken the Standard Test and Programming
Language (STAPL), which is built around a player (inter-
preter), and defined required extensions. The extensions
have been implemented in an extended version of STAPL
and we have made experiments with a PC acting as test
controller and an FPGA being the DUT.

I. INTRODUCTION1

The IEEE 1149.1 Boundary scan Standard, developed by the
Joint Test Action Group (JTAG), has become successful for
testing Printed Circuit Boards (PCBs) [5]. The standard
addresses the access problem for the increasingly crowded
PCBs. However, IEEE 1149.1 is not only used for PCB testing;
it is nowadays also used for the testing of Integrated Circuits
(ICs) and as the test bus in the backplane of multi-board sys-
tems.

As ICs, PCBs and multi-board systems are becoming
increasingly complex to test there is a need for further stan-
dardization both at device-level and at system-level. There is
an especial need for standards on test access. These standard-
ization initiatives will most likely be based on IEEE 1149.1
due to its wide usage and acceptance.

At device-level, micro-level, the Internal JTAG (IJTAG)

focus on how IEEE 1149.1 can be used for test access to a vari-
ety of test-and-measurement instruments embedded on-chip
such as LBIST (Logic Built-In Self-Test) controllers [2], [7],
[8]. The instruments can support device characterization, as
well as structural and functional test at device level. The stan-
dard will probably include a description language for charac-
terization of the embedded instruments, a protocol language for
communicating with the instruments and a method for interfac-
ing to the on-chip instruments.

The System JTAG (SJTAG) group with focus on macro-level
tries to find system-level solutions to address testing and trou-
bleshooting [4]. Multi-board implementations are often based
on IEEE 1149.1 as the backplane test bus for accessing tests
embedded on-board or for downloading tests that are applied
as part of a field service application. The SJTAG group has
identified the need for a language or communications protocol
for command control and for test data delivery and response.
The communication takes place between a test manager, which
is responsible for the overall test application management, and
a test controller, which is an embedded function in control of
the vector delivery, see Figure 1. The test manager in such a
system-test deployment could be local or remote. The language
should be independent of any vendor of IEEE 1149.1 based test
development platforms and the language should support the
following basic requirements on the test controller:

• embed test data (vectors) efficiently,
• read, write and manage test data stored on the board,
• run embedded test,
• configure and validate an on-board programmable logic

devices,
• capture the result of the test and compare result with

expected result,
• log test execution details such as time, date, result, etc.,
• send specific test reports and service logs to the test man-

ager.
In this paper we focus on the test data delivery and response

aspects. In particular, we:
• define use scenarios that must be handled,
• analyze the scenarios in order to define protocol require-

ments,
• investigate to what extent Standard Test and Programming

Language (STAPL), which is built around a player (inter-

1. The research is partially supported by the Strategic
Integrated Electronic Systems Research (STRIN-
GENT) programme.

Protocol Requirements in an SJTAG/IJTAG Environment

Gunnar Carlsson1, Johan Holmqvist2, Erik Larsson2

PDU Base Station1 Department of Computer Science2
Ericsson AB Linköping University

Sweden Sweden
contact: gunnar.carlsson@ericsson.com, erila@ida.liu.se

Lecture 1.3 INTERNATIONAL TEST CONFERENCE 2

preter) and a language, can handle the requirements,
• define required extensions to STAPL, the player and the

language, to meet the requirements,
• implement the required extensions in STAPL and
• make experiments with a PC as test controller and an

FPGA as DUT to show the feasibility.
The paper is organized as follows. Section II describes the

SJTAG environment; test requirements and Section III gives an
overview of IEEE 1149.1, IJTAG, and STAPL. The modifica-
tions to STAPL are introduced in Section IV and an example to
show the usefulness of extending STAPL is in Section V. A
discussion is in Section VI and conclusions and future work are
in Section VII.

II. SYSTEM JTAG ENVIRONMENT

Figure 1 shows the test manager communicating with a
multi-board system. For such a system, a number of use sce-
narios can be defined. The following use scenarios has been
proposed by the SJTAG group:

• Low Level HW and SW Debug during Development
• Production Test and Programming
• Test in the Field
• Repair Diagnosis
• Test Program Verification and Debug
The use scenarios are detailed below.

1) Low Level HW and SW Debug during Development
This scenario applies when only HW and low level SW, e.g.

drivers and similar functionality, are available. Drivers and
other low level SW are downloaded to the system processor(s)
along with functional test routines and a simple command
interpreter. The test program is mainly a set of low level proce-
dures. Some of these may be interacting functions, which need
to run in parallel, and be synchronized by TCK. External

instruments may also be involved. The procedures are called
from scripts via the test manager. Flow control is mainly done
through the scripts. Response data from the procedures are
mainly collected as raw TDO data via the test manager. Diag-
nosis is done manually, using scripts or by ad hoc SW.

The debug operations are typically fairly low level opera-
tions, e.g. reading and writing to registers, single stepping of
instructions, etc. This requires that the user can use the test
manager to apply low level operations on the system through
the test manager.

2) Production Test and Programming
The production test and programming at the system level is

often divided into:
• Structural test, verifying interconnects and IC internal

structures.
• Functional test, mainly verifying performance and inter-

faces.
• Measurements of critical parameters and conformance to

standards and regulations.
• Programming of ID, application SW and parameters.
Structural test typically consists of a Boundary scan inter-

connect test, including inter-board connections and other sys-
tem level interconnect, Boundary scan based at-speed interface
test, memory tests, and IC BIST tests.

The Boundary scan interconnect test is ATPG generated, and
makes use of functions for configuration of scan chain seg-
ments (e.g. bridges and linkers), if present in the system. Pro-
cedures to support such functions should be provided by the
configuration element (components and IP) vendors, and
understood by the tools. Diagnosis of the interconnect test has
dependencies on the ATPG algorithms, and is best suited to
take place on a platform related to the ATPG. The test program
should take care of comparisons, and the test controller should
forward bad return TDO data to the test manager.

The structural at-speed interface test requires that procedures
that operate on related functions can run in parallel and be
coordinated. The requirement on parallelism has implications
on the test program language, but the co-ordination is mainly a
design issue.

Memory test and BIST operations also need parallel execu-
tion of procedures, but rather from an efficiency viewpoint. On
the other hand, it may not be possible to execute all procedures
at the same time, e.g. for power consumption reasons. For test
program development, procedures to configure scan chain seg-
ments at the system level as well as procedures to configure the
component level setup are needed. The component level con-
figuration may even be hierarchical. To diagnose parallel oper-
ations, information on the current configuration of the
registers, which constitutes the scan chain at the point of fail-
ure, is needed. However, the leaf test procedures are expected
to be responsible for comparison and report to the test man-
ager, via the test controller. Only data from the faulty segment
of the scan chain needs to be transferred to the test manager.

Functional test and Measurements are similar to the HW and

© Ericsson AB 2006 SJTAG Use Scenarios 2006-07-122

SJTAG and IJTAG
SD

R
A

M

Fl
as

h
µP

ASIC

PM

M
U

X

Br
id

ge

M
U

X

Br
id

ge

M
U

X

Br
id

ge

M
U

X

B
rid

geTest Manager

Test Controller Test Controller

TAP

Data Reg

Data Reg

Instruct. Reg

Data Reg

Data Reg

”Instrument”

IJTAG

Higher Bandwidth I/O

Emb. Test Fkn

Figure 1: System perspective: A test manager connected to
multi-board system where boards are equipped with IEEE
1149.1 and IJTAG instruments.

Lecture 1.3 INTERNATIONAL TEST CONFERENCE 3

SW Debug, as described above. A difference is that compari-
sons are made rather than collection of values.

Programming becomes easier using procedures for the pro-
gramming operations and data that is independent of the pro-
gramming algorithm. Data formats of the test program
language, and flow control features, such as loops, may con-
tribute to make the test programs more compact. Parallel pro-
gramming of several devices may enhance efficiency, thus
requiring the test program language to support parallel execu-
tion of procedures.

3) Test in the Field
Test in the field may be part of fault management in the oper-

ation and maintenance (O&M) subsystem. In this case, the test
manager is an integral part of the O&M SW. In other cases, an
external test manager may be connected to the system, at field
service, to take control of the test operations done by the test
controller. This may typically be the case with small embedded
systems without great O&M capabilities.

The major reasons for test in the field are to find latent faults
before they get an impact on system operation, and to verify
HW integrity at fault indications during system operation. The
test efficiency, i.e. test time vs. coverage, is often a crucial
characteristic. Beside verifying whether a fault exists, the pur-
pose is to identify either which part to replace or which unit to
fault-mark and take out of operation. The latter is important if
the system operation can continue with reduced capacity even
though a unit is faulty, given that the faulty unit is excluded
from the system operation (often called graceful degradation).

Tests may be executed both under O&M control and on
operator control. The tests may be directed to units at different
levels of the system hierarchy. For this reason, the system hier-
archy must be reflected in some sense in the test program, and
supported by the procedures, which in turn may be hierarchi-
cally arranged. A simple example is procedures for operations
on different BIST controllers in a component, called by a pro-
cedure for test of the component, which in turn may be called
by a procedure for test of a board, etc.

The test program may be structured in phases, where the first
phase is to verify whether a fault exists (go/nogo). This phase
is time critical. The next phases are aiming at pinpointing the
failing unit. The latter, diagnostic parts of the test, may even be
adaptive, i.e. depending on test results the test flow may take
different directions. Since the diagnostic parts of the test may
have an impact on the operation of the system (parts of the sys-
tem may be allowed to be turned on again), it is reasonable that
the test manager (which in turn is controlled by O&M), has
control of the test execution flow. This also allows the operator
to perform directed tests.

Programming in the field of volatile devices, such as FPGA,
takes place at system or board start/re-start. The programming
files may be updated remotely. Programming of other devices,
e.g. PLD and flash memories may take place during system
upgrade, which could be remotely controlled. In both cases the
same mechanisms as in test operations could be used, i.e. the

test manager and test controller(s). In the field, similar require-
ments on programming as in production, as described above,
apply.

Debug of microprocessor code and DSP code may also occur
in the field. The debug procedure as well as the related require-
ments are quite similar as those for debug during development,
as described above.

4) Repair Diagnosis
At repair diagnosis, field returns or failing units from system

test in production are inserted in a known good reference sys-
tem, and tested in an environment which resembles the one in
which the unit failed. The purpose is to verify the fault and to
find the root cause down to a level which translates to a repair
action.

The faults may be sensitive to environmental conditions,
which makes them difficult to repeat in the reference system.
Hence, sections of the test program need to be able to loop
while the environmental conditions are stressed. Further, exter-
nal instruments may be needed, which also may require loop-
ing and other active control over the program flow.

While production test programs usually stops on failure,
repair tests sometimes need to continue at failure, but report
failing results during execution. Such results may be used with
fault dictionaries to support diagnosis. Other types of reporting
may also be required during execution, e.g. report of measure-
ment values (analog-to-digital converted results from embed-
ded instruments).

The operator usually wants more flexibility than in produc-
tion test in terms of changing the test program on the fly. It can
be to change an algorithm or add a test. This requires opportu-
nities to send additions and changes from the test manager to
the test controller, which in turn must be able to change the
stored test program.

5) Test Program Verification and Debug
Test program verification and debug is similar to conven-

tional SW verification and debug. The addition is that faults
need to be inserted in the DUT, which can be a challenge in
some cases. Typical actions are setting breakpoints, writing
trace messages from the test program, and read and write to
variables.

III. OVERVIEW OF STANDARDS

In this section we give a short introduction to the IEEE
1149.1 (Boundary scan) standard, the IEEE P1687 (IJTAG)
standard under development, and the Jam Standard Test and
Programming Language (STAPL) which is adopted as JEDEC
standard JESD-7.

A. IEEE 1149.1

The IEEE 1149.1 (Boundary scan) was designed for testing
PCBs; however, today it is also used for testing sub-blocks of
integrated circuits, and is useful as a mechanism for debugging

Lecture 1.3 INTERNATIONAL TEST CONFERENCE 4

embedded systems, providing a convenient "back door" into
the system. The standard adds a special four/five-pin interface
to a chip, designed such that multiple chips on a board can
have their lines daisy-chained together; a test probe need only
connect to a single "JTAG port" to have access to all chips on a
circuit board. The connector pins are TDI (Test Data In), TDO
(Test Data Out), TCK (Test Clock), TMS (Test Mode Select),
and an optional TRST (Test ReSeT). Figure 2 shows two
devices equipped with Boundary scan.

B. IEEE P1687 - Internal JTAG

The IJTAG P1687 statement of scope: “This standard will
develop a methodology for access to embedded test and debug
features, (but not the features themselves) via the IEEE 1149.1
Test Access Port (TAP) and additional signals that may be
required. The elements of the methodology include a descrip-
tion language for the characteristics of the features and for
communication with the features, and requirements for inter-
facing to the features” [2], [3].

The P1687 standard focuses on access and control of instru-
mentation embedded within a semiconductor device; hence
defining the interface to instruments. Examples of instruments
are scan, BIST, Memory BIST, compressors, debug logic, and
so on. Note that P1687 will define the interface to instruments
but not the instruments.

C. Standard Test and Programming Language (STAPL)

The Jam Standard Test and Programming Language
(STAPL) developed by Altera [1] was adopted as JEDEC stan-
dard JESD-71 in August, 1999. The Jam Player is software that
reads the Jam File and applies vectors for programming and
testing devices in a IEEE 1149.1 Boundary scan chain.

A STAPL program consists of the following elements:
• NOTE statement
• ACTION statement
• PROCEDURE blocks and DATA blocks
• CRC statement

The NOTE statements include description on documentation
and functionality of the program. The ACTION statement is a
sequence of procedures describing an operation. A PROCEDURE
includes STAPL statements, and DATA block includes variable
declarations. CRC is for verification of the file. An example of
a STAPL program is in Figure 3.

1) Program Flow
The execution starts by a user selecting an ACTION that is to

be executed. When the ACTION is terminated, the program
stops. If another action is to be executed, the player has to be
restarted. PROCEDURE blocks are called in order of appearance.
A PROCEDURE block is terminated by an ENDPROC statement.
CALL statement can be used to initiate execution of procedures
from a procedure. GOTO statement can be used to jump within
a procedure.

There is no support for linking several STAPL files and it is
not possible to include other files in a STAPL file.

2) Data Management
All variables that are to be used must be declared. A variable

declared in a PROCEDURE can only be used within that PROCE-
DURE block. A variable declared in a DATA block can on the
other hand be shared. STAPL supports 32-bit signed numbers
and BOOLEANS. Single dimension arrays can be used.

3) Input and Output
The input and output is handled through IEEE 1149.1.

IV. EXTENSIONS

We have extended the STAPL language and the way test pro-
grams are executed (the STAPL player; interpreter). The lan-
guage extensions include object oriented constructs for
handling hierarchy and parallel constructs for handling paral-
lelism. We have introduced INSTANTIATE, CLASS, BODY, PAR-
ALLEL, and we have made modifications to IRSCAN, DRSCAN,
IF, and EXPORT. The introduced extensions are detailed below.
All extensions in the language have been done such that the
language remains backwards compatible with the original
STAPL. Hence, programs written for standard STAPL can be
used in our extended STAPL version.

A. Program execution modifications

Executing a STAPL program means that ACTIONS are called
and when EXIT is reached, the program terminates. In order to
run a new ACTION, the program must be restarted. We have
therefore extended the program flow such that the program is
not terminated. Hence, several ACTIONS can be called after
each other without having to restart the player. Further, as we
would like to allow the possibility to execute parts of the tests
in an interactive way, alternatively under control by diagnostic
SW, we have made it possible to directly call procedures and
access variables.

Figure 2: Two devices (s200 and 02s) with Boundary scan.

TDI

TCK

TDO
TAP TAP

s200 02s

TMS

Lecture 1.3 INTERNATIONAL TEST CONFERENCE 5

B. Hierarchy

A hierarchical representation is introduced to:
• ease the reuse of code,
• enable context free operation on only a segment of the

TDI-TDO chain,
• ease access of variables and procedures from the test man-

ager, and
• to make the test program more readable.
Reuse of code is useful for embedded instruments such as

LBIST and MBIST where there usually are a number of
instances. Instead of reproducing code for each such instru-
ment, the same code can be used for several of the same type.
The test programs also become more readable and easier to
overview if a hierarchical representation is used. The structural
representation also makes it easy to access variables and proce-
dures at any level in the hierarchy from a Test Manager, which
is useful at manual operation of the test features of a system,
e.g. at debug or diagnosis. Further, diagnosis is simplified since
the processes can return error messages and data only relevant
for the particular part of the TDI-TDO they operate on.

INSTANTIATE is used to create and define boards, compo-
nents, and embedded instruments (also hierarchical implemen-
tations) as CLASS objects.

CLASS defines a PCB, a component and so on and INSTANTI-

ATE creates an instance of the class. CLASS declaration
includes a PROCEDURE and a DATA block. In the DATA block,
variables common for the class are declared. These can be seen
as variables global to the CLASS, but local in the test program
scope. At instantiation of a class, the instance is given a unique
name. This name is used to access variables and procedures.
For example, to access the variable result, device.result_32 is
used. And to run the procedure id_check, CALL
board.device2.id_check is used.

A BODY expression is introduced to allow CLASS objects to
be instantiated at different hierarchical levels. Every CLASS
declaration includes a BODY expression that is executed when
the CLASS object is instantiated.

In the original STAPL, all variables are global and every
variable name must be unique. We have, in order to ease the
development of test programs, changed the scope of variables.
We have introduced local variables. These local variables do
not need to have unique names. The same variable name can be
used in other classes or in other hierarchical levels. It means
that local variables are invisible outside of the class. Test pro-
grams developed for standard STAPL where no hierarchy is
used can still be executed.

Figure 3: STAPL program with an action that does bypass and check_id.

ACTION run_test = bypass,check_id;

DATA maindata;

 BOOLEAN test_fail;
ENDDATA;

PROCEDURE bypass USES maindata;
 BOOLEAN result_2[2];

 'Load the BYPASS instruction

 IRSCAN 14, $3FFF;
 'Scan "11", compare "00"

 DRSCAN 2, #11, CAPTURE result_2[], COMPARE #00, #11, test_fail;

 IF test_fail THEN GOTO l1;
 EXPORT "FAILURE TYPE BYPASS_TEST", result_2[];

 EXIT 17;

 l1:
ENDPROC; 'bypass

PROCEDURE check_id USES maindata;
 BOOLEAN result_64[64];

 'Load the IDCODE instruction

 IRSCAN 14, $09FE;
 'Check the ID code

 DRSCAN 64, $0000000000000000, CAPTURE result_64[], COMPARE $F1414093F5045093, $0FFFFFFF0FFFFFFF,

test_fail;

 IF test_fail THEN GOTO l2;
 EXPORT "FAILURE TYPE IDCODE_TEST", result_64[];

 EXIT 2;

 l2:
ENDPROC; 'check_id

Lecture 1.3 INTERNATIONAL TEST CONFERENCE 6

C. Parallel block

Procedures sometimes need to run in parallel for efficiency
reasons or to coordinate test activities. Further, the parallel pro-
cedure concept also supports dynamic configuration of the
Boundary scan chains, both at system level through bridges
and routers, and within components. Parallel execution means
that the procedures operate on the IEEE 1149.1 pins simulta-
neously, and that their TDI and TDO operations at IRSCAN
and DRSCAN are concatenated. To support parallel execution,
the PARALLEL block has been introduced.

Parallel execution implies that procedures that operates on
the Boundary scan chain are synchronized and that the TDI
data from IRSCAN and DRSCAN are connected to a TDI data
sequence and that the long TDO data sequence is partitioned
into sequences that corresponds to the TDI data.

In order to implement these operations we have introduced
the PARALLEL statement. Procedure calls within a PARAL-
LEL block will be executed pseudo parallel, which means that
the procedures within the block are executed sequentially until
an operation on the Boundary scan chain is to be executed. As
soon as an operation on the Boundary scan chain is detected,
all procedures that operates on the Boundary scan chain are
stitched together as the TDI data. The TDI data is formed
according to the order in which the procedures are called;
which is the same as in which the components are connected in
the Boundary scan chain. The created TDI data is executed and
the collected TDO data is partitioned according to the proce-
dures calls such that the TDO data for each component can be
distinguished. The TDI data is concatenated in the order of the
procedure calls, and the composite scan operation is executed.
The TDO data is then distributed in the same fashion between
the procedures to the CAPTURE and COMPARE part of the
statements. After this, the execution continues in pseudo-paral-
lel until the next IEEE 1149.1 pin operation is detected.

Procedures in PARALLEL blocks may call other procedures,
which in turn contains parallel blocks. This allows the TDI-
TDO data stream to be expanded when diving through the sys-
tem hierarchy (which is exploited in the example), e.g. when
lower level instance registers are linked into the TDI-TDO
path.

EXIT statement in between scan operations are collected and
returned together to the calling procedure simultaneously. The
idea behind this is that no statement should be lost or missed in
the case that the program execution is stopped due to a test fail-
ure. Other parallel procedures that do not contain EXIT state-
ments will continue until next IEEE 1149.1 operation or
ENDPROC is found.

D. Other extensions

We have also made minor modifications to the statements
IRSCAN, DRSCAN, IF, EXPORT and EXIT.

1) Irscan and Drscan
In standard STAPL IRSCAN and DRSCAN can take zero, one

or two arguments. In order to be able to perform a check if the
result from a scan operation is correct or not, and, if it is not
correct, store the response, there is need for several arguments
in the test program.

We have done a modification of the scan commands such
that they can take both CAPTURE and COMPARE as arguments.
Thus, it is possible on a single line to both check the data that is
returned and in the case of a fault, store it for later export.

2) IF statement
In order to make the IF statement more powerful we have

extended the IF statement such that it not only can handle sin-
gle statements but also a BEGIN/END block.

3) EXPORT

The export statement is in STAPL limited to a single tuple, e.
g. <key string> <value>. In order to make the return possibili-
ties more powerful we have extended EXPORT to include an
arbitrary number of tuples.

V. EXAMPLE

We make use of the very small example in Figure 2 to dem-
onstrate the principal differences between standard STAPL and
the extended STAPL. First we discuss test program develop-
ment and then we discuss test program modifications.

A. Developing programs

The standard STAPL program in Figure 3 does the same test
on the example (Figure 2) as the extended STAPL program that
is described in Figure 4, Figure 5, and Figure 6.

The extended STAPL program is longer in text; however,
note that much of the code is identical. The differences
between the classes are the length of the instruction register,
the name of the class, and the instruction code to perform id
check.

Note also that in extended STAPL, each class is only
describing itself. Hence, there is no system level information at
a class/component. The advantage is that each component can
be developed without system knowledge. In the case of stan-
dard STAPL, each procedure contains information on which
part of the Boundary scan it operates on. In extended STAPL,
the respective position for each component in the Boundary
scan chain is given by the Procedure instance, which instanti-
ate each component and defines its place in the Boundary scan
chain (Figure 4).

B. Adding an additional PCB

Suppose we would like to extend our system by adding an
additional PCB that is identical to the previous one. We have
then a system with two identical PCBs as in Figure 2. It means
that the Boundary scan chain must be extended with the addi-
tional PCB. Changing the Boundary scan chain implies that
some modifications must be made to the programs that per-
forms the tests. Every statement that operates on the Boundary-

Lecture 1.3 INTERNATIONAL TEST CONFERENCE 7

Scan chain, i.e. the DRSCAN and IRSCAN statements, in the
program written in standard STAPL must be modified. The
length of the scan operations, the data sent to chain and the ref-
erence data must be modified.

For the program written in extended STAPL where there is
no system information at each component/class, and therefore
there is nothing to modify at each component/class description.
Instead, all modification are to be made at system level. In this
example, it is enough to add two statements in the instantiate
procedure and two statements in each PARALLEL block. This
is obviously much easier than editing hexadecimal vectors.

For the example, we have to make 14 modifications in the
standard STAPL program and only six modifications to the
extended STAPL program. The modifications to the STAPL
program consists most of editing hexadecimal vectors while
the modifications to the extended STAPL program consists of
modifying object instantiation.

The example is written for a Boundary scan chain consisting
of two ICs only, which is to be considered as an extremely
small design. It is not unusual that PCBs consist a much higher
number of components (ICs) where each have several BIST
controllers. Normally the BIST controllers are identical which
increases the possibility for reusing code. Writing code in stan-
dard STAPL for larger systems soon becomes confusing; how-
ever, in extended STAPL it is more about adding/creating more
instances, which is done in a single line, since the code for the
BIST controllers often are the same.

It is possible in standard STAPL to write code similar to the
extended STAPL by using the PRE and POST statements
where each DRSCAN and IRSCAN statement operate only on
a part of the Boundary scan chain. There are disadvantages
with using the PRE and POST statements. A Boundary scan
chain would demand twice as many operations on the Bound-
ary scan chain using PRE and POST statements as if one of the

two solutions (standard STAPL without PRE and POST and
extended STAPL). The number of operations on the Boundary
scan chain increases for every new component added to the
scan chain, e.g. four components demands four times as many
operations on the Boundary scan chain. Another disadvantage
is that two or more components cannot be executed in parallel,
only in sequential. It means that data from other components,
which corresponds to the PRE and POST statements, would be
lost. Using PRE and POST statements also presumes that the
programmer has knowledge of how the scan chain is mapped at
all time.

VI. DISCUSSION

The rationale behind this work is to elaborate on require-
ments for embedded Boundary scan based tests in a system
context. We chose STAPL as a basis for a test language since a
set of public domain supporting SW is available, and since
most commercial Boundary scan development platforms can
generate test programs, which are easily converted to STAPL.
This gave us a jump start into building a demonstrator to carry
out experiments on. However, STAPL may not be the ideal
candidate language, but since it is well established in the board
test and programming community, it should not be immedi-
ately excluded either.

Our preliminary rough requirements included parallelism in
test execution, reuse of test procedure code, and management
of hierarchy, which in turn implies some form of structural rep-
resentation of the system under test. Most of these require-
ments have been met with our experimental setup, however
somewhat clumsy, due to the restrictions set by the original
STAPL player and language constructs.

Some of our earlier findings are related to requesting higher
level chain operations from lower level embedded test func-
tions, e.g. requesting a series of DR scan operations on differ-
ent DR register segments, which in turn requires interleaving
different IR scan operations at a level, not known by the lower
level function. This is not yet properly handled by our demon-
strator. Another issue is to manage parallel operation of proce-
dures in different components, which in turn have different
number of required DR or IR scan operations. Today, this is
handled implicitly in the demonstrator, guided by a set of rules.

The plan is to continue refining the requirements on the
embedded test language, but using a more versatile experimen-
tal platform. One possibility would be to build a new extended
STAPL player from scratch, but it is probably better to use a
platform which already has inherent capabilities to handle
objects and processes, such as a conventional object oriented
language. To further extend this idea, we are discussing to
model both the test program and the vector delivery mecha-
nism in xUML (executable Unified Modelling Language).
With this approach, we can both run the model, and also gener-
ate e.g. C++ or Java code, to execute in a real system.

ACTION run_test = instance,bypass,check_id;

PROCEDURE instance;

 INSTANTIATE s200 device1;

 INSTANTIATE 02s device2;
ENDPROC; 'instance

PROCEDURE bypass;
 PARALLEL;

 CALL device1.bypass;

 CALL device2.bypass;
 ENDPARALLEL;

ENDPROC; 'bypass

PROCEDURE check_id;

 PARALLEL;

 CALL device1.id_check;
 CALL device2.id_check;

 ENDPARALLEL;

ENDPROC; 'check_id

Figure 4: The actions and procedures.

Lecture 1.3 INTERNATIONAL TEST CONFERENCE 8

VII. CONCLUSIONS AND FUTURE WORK

Standards are important for effective testing. For printed cir-
cuit boards the IEEE 1149.1 standard developed by the JTAG
(Joint Test Action Group) has been widely accepted. Integrated
circuits and multi-boards have become increasingly complex
and additional standards are required. At micro-level, the Inter-
nal Joint Test Access Group (IJTAG) is currently working on a
standard for embedded on-chip instruments and at macro-level
the System JTAG (SJTAG) is aiming at defining a standard for
system-level test management; mainly connecting the IJTAG
standard with the system test manager. The base for both
IJTAG and SJTAG is the IEEE 1149.1. In this paper we have
extended the Standard Test and Programming Language
(STAPL) such that it can be used as an SJTAG engine; han-
dling access between the test manager and embedded instru-
ments. We have identified a number of required extensions that
we have implemented in an extended version of STAPL. We
have performed initial experiments where we simulated an
embedded environment with a PC running the extended

STAPL player (interpreter) and an FPGA serving as device-
under-test.

Future work includes to continue the refinement of require-
ments using a more versatile platform, and to demonstrate the
proposed approach in a real embedded environment. We also
aim at finding a protocol for the interaction between the Test
Manager and the Test Controllers.

VIII. ACKNOWLEDGMENT

We would like to thank Ann Chen at Altera for the technical
support on the Jam STAPL player.

REFERENCES

[1] Altera Jam STAPL Software, https://www.altera.com/support/
software/download/programming/jam/jam-index.jsp

[2] IJTAG P1687, http://grouper.ieee.org/groups/1687/
[3] B. Eklow and B. Bennetts, "New Techniques for Accessing Em-

bedded Instrumentation: IEEE P1687 (IJTAG)", Proceedings of

CLASS s200;

 DATA maindata;

 BOOLEAN test_fail;
 BOOLEAN result[1];

 BOOLEAN result_32[32];

 'Instruction codes
 BOOLEAN bypass_instruction [6] = $3F;

 BOOLEAN idcode_instruction [6] = $09;

 'ID code
 BOOLEAN idcode [32] = $F1414093;

 ENDDATA;

 PROCEDURE bypass;

 'Load the BYPASS instruction

 IRSCAN 6, bypass_instruction[];
 'Scan "1", compare "0"

 DRSCAN 1, #1, CAPTURE result[], COMPARE #0, #1, test_fail;

 IF !test_fail THEN BEGIN;
 EXPORT "FAILURE", NAME, "TYPE", "BYPASS_TEST", result[];

 EXIT 17;

 ENDIF;
 ENDPROC; 'bypass

 PROCEDURE id_check;
 'Load the IDCODE instruction

 IRSCAN 6, idcode_instruction[];

 'Check the ID code
 DRSCAN 32, $00000000, CAPTURE result_32[], COMPARE idcode[], $0FFFFFFF, test_fail;

 IF !test_fail THEN BEGIN;

 EXPORT "FAILURE", NAME, "TYPE", "IDCODE_TEST", result_32[];
 EXIT 2;

 ENDIF;

 ENDPROC; 'id_check

 BODY; 'Executes when s200 is instantiated

 'Empty

 ENDBODY;
ENDCLASS;

Figure 6: Device1: s200.

Lecture 1.3 INTERNATIONAL TEST CONFERENCE 9

European Test Symposium (ETS'06), pp. 253-254, Southamp-
ton, UK, May 2006.

[4] SJTAG, http://www.dft.co.uk/SJTAG/
[5] IEEE Std 1149.1-2001, “IEEE Standard Test Access Port and

Boundary-Scan Architecture,” IEEE, USA, 2001.
[6] J Holmqvist, G. Carlsson, and E. Larsson, “Extended STAPL as

SJTAG engine”, Informal Digest of Papers at European Test
Symposium (ETS), pp. 119-124, Freiburg, Germany, May 2007.

[7] J. Rearick, B. Eklow, K. Posse, A. Crouch, B. Bennetts, “IJTAG
(Internal JTAG): A Step Toward a DFT Standard”, Proceedings
of International Test Conference (ITC), paper 32.4, Austin, Tex-
as, USA, November 2005.

[8] K. Posse, A. Crouch, J. Rearick, B. Eklow, M. Laisne, B. Ben-
nets, J. Doege, M. Ricchetti, J.-F. Cote, “IEEE P1687: Toward
Standardized Access of Embedded Instrumentation”, Proceed-
ings of IEEE International Test Conference, Santa Clara, CA,
USA, October 2006, pages 1-8.

CLASS 02s;

 DATA maindata;

 BOOLEAN test_fail;
 BOOLEAN result[1];

 BOOLEAN result_32[32];

 'Instruction codes
 BOOLEAN bypass_instruction [8] = $FF;

 BOOLEAN idcode_instruction [8] = $FE;

 'ID code
 BOOLEAN idcode [32] = $F5045093;

 ENDDATA;

 PROCEDURE bypass;

 'Load the BYPASS instruction

 IRSCAN 8, bypass_instruction[];
 'Scan "1", compare "0"

 DRSCAN 1, #1, CAPTURE result[], COMPARE #0, #1, test_fail;

 IF !test_fail THEN BEGIN;
 EXPORT "FAILURE", NAME, "TYPE", "BYPASS_TEST", result[];

 EXIT 17;

 ENDIF;
 ENDPROC; 'bypass

 PROCEDURE id_check;
 'Load the IDCODE instruction

 IRSCAN 8, idcode_instruction[];

 'Check the ID code

 DRSCAN 32, $00000000, CAPTURE result_32[], COMPARE idcode[], $0FFFFFFF, test_fail;
 IF !test_fail THEN BEGIN;

 EXPORT "FAILURE", NAME, "TYPE", "IDCODE_TEST", result_32[];

 EXIT 2;
 ENDIF;

 ENDPROC; 'id_check

 BODY; 'Executes when 02s is instantiated

 'Empty

 ENDBODY;
ENDCLASS;

Figure 5: Device2: 02s.

