

Experimental Results	
 DIFFEQ # of lines (Behavioral VHDL): # of gates: # of faults: # of faults: 	59 4081 16222
 # of untestable faults: # of detected faults: Test generation time: 	384 15277 468 sec
 # of unique test vectors: # of applied test vectors: (includes vectors for reset etc.) Fault efficiency: (gate-level stuck-at coverage) 	199 20896 96.46% / 98.05%
Gert Jervan, IDA/SaS/ESLAB 23	Licentiate Thesis Presentation

Licentiate Thesis Pres

* {
 if (IN2 >= 0)
 X=IN1=IN2;

. = Y * 2

27

_

--

Tested 5616 faults

Untestable 0

Gert Jervan, IDA/SaS/ESLAB

Conclusions - Hybrid BIST

- Hybrid BIST solution which combines pseudorandom and deterministic test patterns in cost effective way
- The BIST area overhead can be reduced by implementing some of the required test structures in software
- Hybrid BIST approach can lead to the significant reduction of test length without losing in the fault coverage

Conclusions

- A novel high-level hierarchical ATPG
 - Testability evaluation at early stages of the design flow
 - Efficient test patterns for manufacturing test

• Hybrid BIST scheme

Gert Jervan, IDA/SaS/ESLAB

- Optimal combination between pseudorandom and deterministic test patterns
- Method for test cost minimization

Future Work

Licentiate Thesis Present

- Testability of HW/SW systems
- High-level fault models

an, IDA/SaS/ESLAB

Gert Jerv

Gert Jervan, IDA/SaS/ESLAB

- Hybrid BIST for sequential circuits
- Self-test methods for other fault models