
Linköping Studies in Science and Technology

Thesis No. 973

High-Level Test Generation and
Built-In Self-Test Techniques for Digital Systems

by

Gert Jervan

Submitted to the School of Engineering at Linköping University in partial
fulfilment of the requirements for the degree of Licentiate of Engineering

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 2002

ISBN 91-7373-442-X

ISSN 0280-7971

Printed by UniTryck, Linköping, Sweden, 2002

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

High-Level Test Generation and
Built-In Self-Test Techniques for Digital Systems

by

Gert Jervan

Oktober 2002
ISBN 91-7373-442-X

Linköpings Studies in Science and Technology
Thesis No. 973

ISSN 0280-7971
LiU-Tek-Lic-2002:46

ABSTRACT

The technological development is enabling production of increasingly complex electronic
systems. All those systems must be verified and tested to guarantee correct behavior. As the
complexity grows, testing is becoming one of the most significant factors that contribute to
the final product cost. The established low-level methods for hardware testing are not any
more sufficient and more work has to be done at abstraction levels higher than the classical
gate and register-transfer levels. This thesis reports on one such work that deals in particular
with high-level test generation and design for testability techniques.

The contribution of this thesis is twofold. First, we investigate the possibilities of generating
test vectors at the early stages of the design cycle, starting directly from the behavioral
description and with limited knowledge about the final implementation architecture. We have
developed for this purpose a novel hierarchical test generation algorithm and demonstrated
the usefulness of the generated tests not only for manufacturing test but also for testability
analysis.

The second part of the thesis concentrates on design for testability. As testing of modern
complex electronic systems is a very expensive procedure, special structures for simplifying
this process can be inserted into the system during the design phase. We have proposed for
this purpose a novel hybrid built-in self-test architecture, which makes use of both
pseudorandom and deterministic test patterns, and is appropriate for modern system-on-chip
designs. We have also developed methods for optimizing hybrid built-in self-test solutions
and demonstrated the feasibility and efficiency of the proposed technique.

This work has been supported by the Swedish Foundation for Strategic Research (SSF) under
the INTELECT program.

1

Abstract

The technological development is enabling production of
increasingly complex electronic systems. All those systems must be
verified and tested to guarantee correct behavior. As the complexity
grows, testing is becoming one of the most significant factors that
contribute to the final product cost. The established low-level
methods for hardware testing are not any more sufficient and more
work has to be done at abstraction levels higher than the classical
gate and register-transfer levels. This thesis reports on one such
work that deals in particular with high-level test generation and
design for testability techniques.

The contribution of this thesis is twofold. First, we investigate the
possibilities of generating test vectors at the early stages of the
design cycle, starting directly from the behavioral description and
with limited knowledge about the final implementation architecture.
We have developed for this purpose a novel hierarchical test
generation algorithm and demonstrated the usefulness of the
generated tests not only for manufacturing test but also for
testability analysis.

The second part of the thesis concentrates on design for testability.
As testing of modern complex electronic systems is a very expensive
procedure, special structures for simplifying this process can be
inserted into the system during the design phase. We have proposed
for this purpose a novel hybrid built-in self-test architecture, which
makes use of both pseudorandom and deterministic test patterns,
and is appropriate for modern system-on-chip designs. We have also
developed methods for optimizing hybrid built-in self-test solutions
and demonstrated the feasibility and efficiency of the proposed
technique.

2

3

Preface

Despite the fact that new design automation tools have allowed
designers to work on higher abstraction levels, test-related activities
are still mainly performed at the lower levels of abstraction. At the
same time, testing is quickly becoming one of the most time and
resource consuming tasks of the electronic system development and
production cycle. Therefore, traditional gate-level methods are not
any more practical nowadays and test activities should be migrated
to the higher levels of abstraction as well. It is also very important
that all design tasks can be performed with careful consideration of
the overall testability of the resulting system.

The main objective of this thesis work has been to investigate
possibilities to support reasoning about system testability in the
early phases of the design cycle (behavioral and system levels) and to
provide methods for systematic design modifications from a
testability perspective.

The work presented in this thesis was conducted at the Embedded
Systems Laboratory (ESLAB), Department of Computer and
Information Science, Linköping University. It has been supported by
the Swedish Foundation for Strategic Research (SSF) under the
INTELECT program. Additional support was provided by the
European Community via projects INCO-COPERNICUS 977133
VILAB (“Microelectronics Virtual Laboratory for Cooperation in
Research and Knowledge Transfer”) and IST-2000-29212 COTEST
(“Testability Support in a Co-design Environment”).

4

Our research is carried out in close cooperation with both the
industry and with other, Swedish and international, research groups.
We would like to mention here the very fruitful cooperation with the
groups at Ericsson CadLab Research Center, Tallinn Technical
University and Politecnico di Torino. Our work has also been
regularly presented and discussed in the Swedish Network of Design
for Test (SNDfT) meetings. This cooperation has opened new
horizons and produced several results, some of which are presented
in this thesis.

5

Acknowledgments

I would like to sincerely thank my supervisor Professor Zebo Peng
for all support in the work toward this thesis. Zebo has always given
me excellent guidance and I have learned a lot from him. He has also
given me the opportunity and support to work with problems not
directly related to the thesis, but very relevant for understanding the
research organization and administrative processes. A very special
thank should go to Professor Petru Eles, who has always been an
excellent generator of new ideas and enriched our regular meetings
with very useful remarks.

The colleagues at IDA have provided a nice working environment
and I would especially like to thank the former and present members
of ESLAB. They have through the past few years grown to be more
than colleagues but good friends. Their support and encouragement
as well as the wonderful atmosphere at ESLAB have been very
important.

Many thanks also to Professor Raimund Ubar from Tallinn
Technical University, who is responsible for bringing me to the
wonderful world of science. The continuing cooperation with him has
produced several excellent results, some of which are presented also
in this thesis.

6

The cooperation with Gunnar Carlsson from Ericsson CadLab
Research Center has provided invaluable insight into the industrial
practices and helped me to understand the real-life testing problems
more thoroughly.

Finally I would like to thank my parents, my sister and all my
friends. You have always been there, whenever I have needed it.

Gert Jervan

Linköping, September 2002

7

Contents

Abstract ... 1

Preface... 3

Acknowledgments ... 5

Chapter 1 Introduction.. 9
1.1 Motivation... 9
1.2 Problem Formulation ...11
1.3 Contributions..12
1.4 Thesis Overview ...13

Chapter 2 Background ... 15
2.1 Design Flow ..15
2.2 VHDL and Decision Diagrams ..17

2.2.1 System and Behavioral Specifications18
2.2.2 VHDL...18
2.2.3 Decision Diagrams..19

2.3 Digital Systems Testing...24
2.3.1 Failures and Fault models ...25
2.3.2 Test Pattern Generation ..28
2.3.3 Test Application..29
2.3.4 Design for Testability ...30
2.3.5 Scan-Design...31
2.3.6 Built-In Self-Test ..32

2.4 Constraint Logic Programming...34
2.5 Conclusions ...36

8

Chapter 3 Hierarchical Test Generation at the Behavioral
Level ...37

3.1 Introduction ..37
3.2 Related Work ..39

3.2.1 High-Level Fault Models..40
3.2.2 Hierarchical Test Generation ..42

3.3 Decision Diagrams at the Behavioral Level.........................43
3.3.1 Decision Diagram Synthesis ..44
3.3.2 SICStus Prolog representation of Decision Diagrams46

3.4 Hierarchical Test Generation Algorithm..............................47
3.4.1 Fault Modeling at the Behavioral Level47
3.4.2 Test Pattern Generation ..48
3.4.3 Conformity Test ..49
3.4.4 Testing Functional Units ...50

3.5 Experimental Results...54
3.6 Conclusions ...59

Chapter 4 A Hybrid BIST Architecture and its
Optimization for SoC Testing..61

4.1 Introduction ..62
4.2 Related Work ..64
4.3 Hybrid BIST Architecture ...66
4.4 Test Cost Calculation for Hybrid BIST.................................69
4.5 Calculation of the Cost for Stored Test.................................76
4.6 Tabu Search Based Cost Optimization.................................79
4.7 Experimental Results...83
4.8 Conclusions ...92

Chapter 5 Conclusions and Future Work93
5.1 Conclusions ...93
5.2 Future Work ...94

References...97

9

Chapter 1
 Introduction

This thesis deals with testing and design for testability of modern
digital systems. In particular, we propose a novel hierarchical test
generation algorithm that generates test vectors starting from a
behavioral description of a system and enables testability analysis of
the resulting system with very limited knowledge about the final
implementation architecture.

We also propose a hybrid built-in self-test (BIST) architecture for
testing systems-on-chip, which supports application of a hybrid test
set consisting of a limited number of pseudorandom and
deterministic test patterns, and methods for calculating the optimal
combination of those two test sets.

This chapter first presents the motivation behind our work and the
problem formulation. This will be followed by a summary of the main
contributions together with an overview of the structure of the
thesis.

1.1 Motivation

Hardware testing is a process to check whether a manufactured
integrated circuit is error-free. As the produced circuits may contain
different types of errors or defects that are very complex, we have to
define a model to represent these defects to ease the test generation

10

and test quality analysis problems. This is usually done at the logic
level. Test patterns are then generated based on a defined fault
model and applied to the manufactured circuitry. It has been proven
mathematically that the generation of test patterns is an NP-
complete problem [27] and therefore different heuristics are usually
used. Most of the existing hardware testing techniques work at the
abstraction levels where information about the final implementation
architecture is already available. Due to the growth of systems
complexity these established low-level methods are not any more
sufficient and more work has to be done at abstraction levels higher
than the classical gate and register-transfer level (RT-level) in order
to ensure that the final design is testable and the time-to-market
schedule is followed.

More and more frequently designers also introduce special
structures, called design for testability (DFT) structures, during the
design phase of a digital system for improving its testability. Several
such approaches have been standardized and widely accepted.
However, all those approaches entail an overhead in terms of
additional silicon area and performance degradation. Therefore it
will be highly beneficial to develop DFT solutions that not only are
efficient in terms of testability but also require minimal amount of
overhead.

Most of the DFT techniques require external test equipment for
test application. BIST technique, on the other hand, implements all
test resources inside the chip. This technique does not suffer from
the bandwidth limitations which exist for external testers and allows
to apply at-speed tests. The disadvantage of this approach is that it
cannot guarantee sufficiently high fault coverage and may lead to
very long test sequences. Therefore a hybrid BIST approach that is
implemented on-chip and can guarantee high fault coverage can be
very profitable when testing modern systems-on-chip (SoC).

11

1.2 Problem Formulation

The previous section has presented the motivation for our work
and indicated also the current trends in the area of digital systems
testing.

The aim of our work is twofold. First, we are interested in
performing test pattern generation and testability analysis as early
as possible in the design process and, secondly, we would like to
propose a BIST strategy that can be used for reducing the testing
effort for modern SoC deigns.

To deal with the first problem we would like to develop a method
that allows generation of test vectors starting directly from an
implementation independent behavioral description. The developed
method would have an important impact on the design flow, since it
would allow us to deal with testability issues without waiting for the
structural description of the system to be ready. For this purpose
high-level fault models and testability metrics should also be
investigated in order to understand the links between high- and low-
level testability.

Since BIST structures are becoming commonplace in modern
complex electronic systems, more emphasis should be put into
minimization of costs caused by insertion of those structures. Our
second objective is to develop a hybrid BIST architecture that can
guarantee high test quality by combining pseudorandom and
deterministic test patterns, while keeping the requirements for BIST
overhead low. We are particularly interested in methods to find the
optimal combination of those two test sets as this can lead to
significant reductions of the total test cost.

12

1.3 Contributions

The main contributions of this thesis are as follows:

• A novel hierarchical test pattern generation algorithm
at the behavioral level. We propose a test generation
algorithm that works at the implementation-independent
behavioral level and requires only limited knowledge about the
final implementation architecture. The approach is based on a
hierarchical test generation method and uses two different
fault models. One fault model is used for modeling errors in the
system behavior and the other is related to the failures in the
final implementation. This allows us to perform testability
evaluation of the resulting system at the early stages of the
design flow. Also it can identify possible hard-to-test modules
of the system without waiting for the final implementation. In
this way, appropriate DFT structures can be incorporated into
the early design to avoid the time-consuming testability-
improvement task in the later design stages. We perform
experiments to show that the generated test vectors can be
successfully used for detecting stuck-at faults and that our
algorithm, working at high levels of abstraction, allows
significant reduction of the test generation effort while keeping
the same test quality.

• A hybrid built-in self-test architecture and its
minimization. We propose to use, for self-test of a system, a
hybrid test set which consists of a limited number of
pseudorandom and deterministic test vectors. The main idea is
to first apply a limited number of pseudorandom test vectors,
which is then followed by the application of the stored
deterministic test set specially designed to shorten the
pseudorandom test cycle and to target the random resistant
faults. For supporting such a test strategy we have developed a
hybrid BIST architecture that is implemented using mainly the
resources available in the system. As the test length is one of
the very important parameters in the final test cost, we have to

13

find the most efficient combination of those two test sets, while
not sacrificing the test quality. In this thesis we propose
several different algorithms for calculating possible
combinations between pseudorandom and deterministic test
sequences and provide a method for finding the optimal
solution.

1.4 Thesis Overview

The rest of the thesis is structured as follows. Chapter 2 discusses
briefly a generic design flow for electronic systems, the VHDL
language and the decision diagrams which are used in our test
generation procedure and, finally, some basic concepts concerning
hardware test and testability.

Chapter 3 describes our hierarchical test pattern generation
algorithm. It starts with an introduction to the related work, which
is followed by a more detailed discussion of behavioral level decision
diagrams. Thereafter we describe selected fault models and present
our test pattern generation algorithm. The chapter concludes with
experimental results where we demonstrate the possibility to use our
approach for early testability analysis and its efficiency for
generating manufacturing tests.

In Chapter 4 we present our hybrid BIST architecture for testing
systems-on-chip. We describe the main idea of the hybrid BIST and
propose methods for calculating the total cost of such an approach
together with methods to find the optimal solution. The chapter is
concluded with experimental results to demonstrate the feasibility of
our approach.

Chapter 5 concludes this thesis and discusses possible directions
for our future work.

14

15

Chapter 2
Background

In this chapter a generic design flow for electronic systems is
presented first. It is then followed by a discussion of the test and
verification related activities with respect to the tasks which are part
of this design flow. Additionally, design representations on different
abstraction levels are discussed and, finally, some basic concepts
concerning test and testability are introduced.

2.1 Design Flow

Due to the rapid advances in technology and the progress in the
development of design methodologies and tools, the fabrication of
more and more complex electronic systems has been made possible in
recent years. In order to manage complexity, design activities are
moving toward higher levels of abstraction and the design process is
decomposed into a series of subtasks [45], which deal with different
issues. This thesis will focus on the hardware part of electronic
systems. We will therefore not discuss here aspects related to the
hardware/software co-design of embedded systems, nor the
development of software components.

16

The design process of a complex hardware system typically
consists of the following main tasks:

1. System-level synthesis: The specification of a system at the
highest level of abstraction is usually given by its functionality
and a set of implementation constraints. The main task at this
step is to decompose the system into several subsystems
(communicating processes) and to provide a behavioral
description for each of them, to be used as an input for
behavioral synthesis.

2. Behavioral synthesis starts out with a description, specifying
the computational solution of the problem, in terms of
operations on inputs in order to produce the desired outputs.
The basic elements that appear in such descriptions are similar
to those of programming languages, including control
structures and variables with operations applied to them.
Three major subtasks are:

• Resource allocation (selection of appropriate functional
units),

• Scheduling (assignment of operations to time slots), and

• Resource assignment (mapping of operations to functional
units).

The output of the behavioral synthesis process is a description
at a register-transfer level (RTL), consisting of a datapath and
a controller. The datapath, which typically consists of
functional units (FUs), storage and interconnected hardware,
performs operations on the input data in order to produce the
required output. The controller controls the type and sequence
of data manipulations and is usually represented as a state-
transition table, which can be used in later synthesis stages for
controller synthesis.

3. RT-level synthesis then takes the RTL description produced by
the previous step, which is divided into the datapath and the
controller, as input. For the datapath, an improvement of

17

resource allocation and assignment can be done, while for the
controller actual synthesis is performed by generating the
appropriate controller architecture from the input consisting of
states and state transitions.

4. Logic synthesis receives as input a technology independent
description of the system, specified by blocks of combinational
logic and storage elements. It deals with the optimization and
logic minimization problems.

5. Technology mapping has finally the task of selecting
appropriate library cells of a given target technology for the
network of abstract gates produced as a result of logic
synthesis, concluding thus the synthesis pipeline. The input of
this step is a technology independent multi-level logic
structure, a basic cell library, and a set of design constraints.

According to the current state of the art, for verification, designs
are simulated on different abstraction levels. Testability issues are
currently just becoming incorporated into the standard design-flows,
although several testability techniques, like scan and self-test, are
well investigated and ready to be used. At the same time, testing is
one of the major expenses in the integrated circuit (IC) development
and manufacturing process, taking up to 35% of all costs. Test,
diagnosis and repair cost of complex electronic systems reaches 40-
50% of the total product realization cost and very soon the industry
might face the challenge that test of a transistor is more expensive
than manufacturing it [28].

2.2 VHDL and Decision Diagrams

Throughout the design flow a system is modeled at different levels
of abstraction. At higher levels of abstraction it contains fewer
details and is therefore easier to handle. By going towards lower
levels of abstraction, more details will be added and the model will
become more implementation dependent.

18

In the following section a hardware description language and a
particular model of computation, which are relevant for this thesis,
will be shortly discussed.

2.2.1 System and Behavioral Specifications

A design process typically starts from an implementation
independent system specification. Among the synthesis tasks at the
system level are the selection of an efficient implementation
architecture and also the partitioning of the specified functionality
into components, which will be implemented by hardware and
software, respectively.

After the initial system specification and system synthesis steps
the hardware part of the system is described at a behavioral level. A
behavioral specification captures only the behavior of the design and
does not contain information about its final implementation, such as
structure, resources and timing. In our approach we use for the
behavioral synthesis the CAMAD high-level synthesis system [15],
developed at Linköping University. It accepts as an input a
behavioral specification given in S’VHDL [14], a subset of VHDL. For
test generation purposes the S’VHDL specification will be converted
into a Decision Diagram model. In the following, a short overview of
both VHDL and Decision Diagrams is given.

2.2.2 VHDL

The IEEE Standard VHDL hardware description language has its
origin in the United States Government’s Very High Speed
Integrated Circuits (VHSIC) program, initiated in 1980. In 1987 the
language was adopted by the IEEE as a standard; this version of
VHDL is known as the IEEE Std. 1076-1987 [29]. A new version of
the language, VHDL’92 (IEEE Std. 1076-1993) [30], is the result of a
revision of the initial standard in 1993.

 VHDL is designed to fill a number of needs in the design process.
It allows multi-level descriptions and provides support for both a

19

behavioral and a structural view of hardware models with their
mixture in description being possible.

S’VHDL [14] is defined as a subset of VHDL with the purpose of
using it as input for high-level hardware synthesis. It is designed to
accommodate a large behavioral subset of VHDL, particularly those
constructs relevant for synthesis and to make available most of
VHDL’s facilities that support the specification of concurrency.

2.2.3 Decision Diagrams

A Decision Diagrams (DD) (previously known also as Alternative
Graph) [57], [58] may represent a (Boolean or integer) function
y=F(X) implemented by a component or subcircuit in a digital
systems. Here, y is an output variable, and X is a vector of input
variables of the represented component or subcircuit.

In the general case, a DD that represents a function y=F(X) is a
directed, acyclic graph with a single root node. The nonterminal
nodes of a DD are labeled with variables and terminal nodes with
either variables, functional subexpressions or constants. Figure 1
shows, as an example, a fragment of an RT-level datapath and its
corresponding DD representation.

When using DDs to describe complex digital systems, we have, at
the first step, to represent the system by a suitable set of
interconnected components (combinational or sequential ones). At
the second step, we have to describe these components by their
corresponding functions which can be represented by DDs. DDs
which describe digital systems at different levels may have special
interpretations, properties and characteristics. However, for all of
them, the same formalism and the same algorithms for test and
diagnosis purposes can be used, which is the main advantage of
using DDs. In the following subsections some examples of digital
systems and their representation using DDs will be given.

20

REG1

REG2

REG3

SUB1

ADD1

REG4_enable

MUX1_address

REG4MUX1

OUT

REG4_enable
1

OUT

1

REG4'

0

REG1MUX1_address
0

REG1 + (REG2 - REG3)

Figure 1. A datapath fragment and its DD representation

2.2.3.1 Gate-Level Combinational Circuits

Each output of a combinational circuit is defined at the gate-level
by some Boolean function, which can be represented as a DD. The
nonterminal nodes of this type of DD are labeled by Boolean
variables and have consequently only two output branches. The
terminal nodes are labeled by logical constants {0, 1}, or Boolean
variables.

This type of DDs is called Binary Decision Diagrams (BDD), and
there exists a special type of BDD, called Structurally Synthesized
Binary Decision Diagrams (SSBDD). In SSBDDs there exists an one-
to-one relationship between the DD nodes and the signal paths in the
corresponding combinational circuit. This property of SSBDDs is
very important because it allows us to generate tests for structural
faults in circuits. An example of a combinational circuit and its

21

superposition-based construction of the corresponding SSBDD is
given in Figure 2.

c

b

a e

y
d

f

ay

f

b

b)

e

f

y

a)

ay b

d c

ay b

c

c) d)

a

A path corresponding
to node a

Figure 2. SSBDD for a combinational circuit

By convention the right-hand edge of an SSBDD node corresponds
to 1 and the lower edge to 0. In addition, terminal nodes holding
constants 0 and 1 are omitted. Therefore, exiting the SSBDD
rightwards corresponds to y=1 (y denotes the output), and exiting the
SSBDD downwards corresponds to y=0.

The SSBDD construction process starts from the output gate of the
circuit. We replace every gate with its corresponding BDD
representation. For example in Figure 2a the BDD of the output OR-
gate is depicted. By using superposition, starting from the output
gate, we can compress all BDDs in a tree-like subcircuit into one

22

single SSBDD. This process is illustrated in Figures 2b – 2d, where
at every stage one internal node is replaced with its corresponding
BDD. The final SSBDD is depicted in Figure 2d. As mentioned
earlier, in an SSBDD there exists an one-to-one relationship between
nodes and signal paths in the corresponding circuit. This situation is
illustrated in Figure 2d, where node a corresponds to the highlighted
path in the original circuit.

2.2.3.2 Digital Systems at the Register Transfer Level

In Boolean DD descriptions the DD variables have Boolean (i.e.
single bit) values, whereas in register-transfer level DD descriptions,
in general, multi-bit variables are used. Traditionally, on this level a
digital system is decomposed into two parts – a datapath and a
control part. The datapath is represented by sets of interconnected
blocks (functional units), each of which can be regarded as a
combinational circuit, sequential circuit or a digital system. In order
to describe these blocks, corresponding types of DDs can be used.

The datapath can be described as a set of DDs, in the form where
for each register and for each primary output a DD is used to capture
the corresponding digital function. Here, the non-terminal nodes
represent the control signals coming from the control part and
terminal nodes represent signals of the datapath, i.e. primary inputs,
registers, operations and constants. For example, Figure 3 depicts a
fragment of a datapath, which consists of one register, one
multiplexer and one FU, and the corresponding register-oriented DD.
Signals Si and OUTi are control signals coming from the control part.

The control part is described usually as a FSM state table. The
state table can be represented by a single DD where non-terminal
nodes represent current state and inputs for the control part (i.e.
logical conditions), and terminal nodes represent the next state logic
and control signals going to the datapath. Figure 4a shows a
fragment of a FSM state table with corresponding DD representation
given in Figure 4b. The example shows the situation when the
system is in state “S3” and INPUT1=1.

23

Mul
32_2

N_A13

N_A34

N_A51
Reg32

clock

N_A12
"0"

+

N_A13

S3S2

"1"

OUT1

0

"0"

0

1

0

Reg32'
1

N_A34

N_A12

N_A13 + "1"S3

S3S2
N_A13

1

N_A51
OUT1

Figure 3. DD representation of a datapath

current
state

input
vector

INPUT2

output
vector

next
state

INPUT1

 . . .
1 X S3 S2 X100
0 1 S3 S4 0X00
0 0 S3 S1 XX10
 . . .

q'

....

....q

INPUT1

INPUT2

....

....
0

0

1

1

S3
S2 "X100"

S4 "0X00"

S1 "XX10"

a) b)

Figure 4. DD representation of a FSM

 ,
out1,
out2,
out3,
out4

24

2.2.3.3 Digital Systems at the Behavioral Level

In the case of systems at the behavioral level, DDs describe their
behaviors instead of their structures. The variables in the
nonterminal nodes can be either Boolean (describing flags, logical
conditions, etc.) or integer (describing instruction words, control
fields, etc.). The terminal nodes are labeled with constants, variables
(Boolean or integer) or by expressions for calculating integer/Boolean
values. The number of DDs, used for describing a digital system, is
equal to the number of output and internal variables used in the
behavioral description.

More details about using DDs to describe digital systems at the
behavioral level will be given in chapter 3.

2.3 Digital Systems Testing

Reliable electronic systems are not only needed in the areas where
failures can lead to catastrophic events but also increasingly
required in all application domains. A key requirement for obtaining
reliable electronic systems is the ability to determine that the
systems are error-free [7].

Although electronic systems contain usually both hardware and
software, the main interest of this thesis is hardware testing and
especially digital hardware testing. Hardware testing is a process to
detect failures primarily due to manufacturing defects as well as
aging, environment effects and others. It can be performed only after
the design is implemented on silicon by applying appropriate stimuli
and checking the responses. Generation of such stimuli together with
calculation of the expected response is called test pattern generation.
Test patterns are in practice generated by an automatic test pattern
generation tool (ATPG) and typically applied to the circuit using
automatic test equipment (ATE). Due to the increasing speed of
systems and external tester bandwidth limitations, there exist
approaches where the main functions of the external tester have

25

been moved onto the chip. Such practice is generally known as built-
in self-test (BIST).

Test pattern generation belongs to a class of computationally
difficult problems, referred to as NP-complete [27]. Several
approaches have been developed to handle test generation for
relatively large combinational circuits in a reasonable time. Test
generation for large sequential circuits remains, however, an
unsolved problem, despite rapid increase of computational power.
According to [22], available test techniques can be classified into the
following categories:

1. Functional testing, which relies on exercising the device under
test (DUT) in its normal operational mode, and consequently,
at its rated operational speed;

2. Testing for permanent structural faults (like stuck-at, stuck-
open, bridging faults) that do not require the circuit to operate
at rated speed during test;

3. Testing based on interactive fault analysis in which faults are
derived from a simulation of the defect generation mechanisms
in an integrated circuit (IC) (such faults tend to be permanent
and do not require the circuit to be tested at rated speed);

4. Testing for delay faults that require the circuit to operate at
rated speed during test;

5. Current measurement based testing techniques, which
typically detect faulty circuits by measuring the current drawn
by the circuit under different input conditions while the circuit
is in the quiescent state.

2.3.1 Failures and Fault models

A failure is defined as an incorrect response in the behavior of the
circuit.

According to [22] there are two views of failures:

26

• Physical/Design domain: defects (they produce a deviation from
specification)

− On the device level: gate oxide shorts, metal-to-polysilicon
shorts, cracks, seal leaks, dielectric breakdown, impurities,
bent-broken leads, solder shorts and bonding.

− On the board level: missing component, wrong component,
miss-oriented component, broken track, shorted tracks and
open circuit.

− Incorrect design (functional defect).

− Wearout/environmental failures: temperature related, high
humidity, vibration, electrical stress, crosstalk and
radiation (alpha particles, neutron bombardment).

• Logical domain: faults (structural faults). A fault is a model
that represents the effect of a failure by means of the change
that is produced in the system signal.

− Stuck-at faults: single, multiple.

− Bridging faults: AND, OR, non-feedback and feedback.

− Delay faults: gate and interconnect.

The oldest form of testing relies on a functional approach, where
the main idea is to exercise the DUT in its normal operational mode.
The main task of functional testing is to verify that the circuit
operates according to its specifications. For functional testing, the
same set of test vectors that was used by the designer for verification
during the design phase can be used. Functional testing can cover a
relatively large percentage of faults in an IC but the disadvantage of
this technique is the large size of the test sequences needed to
achieve high test quality. Using this approach alone for testing
complex digital circuits is therefore not practical.

Structural fault model based techniques are the most investigated
testing techniques. The earliest and the most well-known structural
fault model is the single stuck-at (SSA) fault model (also called single
stuck line (SSL) fault model), which assumes that the defect will
cause a line in the circuit to behave as if it is permanently stuck at a

27

logic value 0 (stuck-at-0) or 1 (stuck-at-1). The SSA model assumes
that the design contains only one fault. However, with decreased
device geometry and increased gate density on the chip, the
likelihood is greater that more than one SSA fault can occur
simultaneously and they may mask each other in such a way that
the SSA test vectors cannot detect them. Therefore it may be
necessary to assume explicitly multiple stuck-at faults as well.

The single stuck-at fault model became an industrial standard in
1959 [13]. Experiments have shown that this fault model can be very
useful (providing relatively high defect coverage) and can be used
even for identifying the presence of multiple faults which can mask
each other’s impact on the circuit behavior. The possibility to analyze
the behavior of the circuit using Boolean algebra has contributed to
research in this domain very much. There are several approaches to
identify test vectors using purely Boolean-algebraic techniques,
search algorithm based techniques or techniques based on the
combination of the two. But there are also several problems related
to the SSA fault model, which become more obvious with the growth
of the size of an IC. The main problem lies on the fact that the
computation process to identify tests can be extremely resource and
time intensive and, additionally, the stuck-at fault model is not good
at modeling certain failure modes of CMOS, the dominant IC
manufacturing technology at the present time.

During recent years several other fault models (e.g. stuck-OPEN
and bridging) have gained popularity but these fault models still
cannot solve the problems with CMOS circuits. As a solution to these
problems, two technologies have been proposed: Inductive fault
analysis (IFA) [50] and, more recently, inductive contamination
analysis (ICA) [38]. These techniques present a closer relationship
between physical defects and fault models. The analysis of a fault is
based on analyzing the given manufacturing process and layout of a
particular circuit.

A completely different aspect of fault model based testing is testing
for delay faults. An IC with delay faults operates correctly at

28

sufficiently low speed, but fails at rated speed. Delay faults can be
classified into gate delay faults (the delay fault is assumed to be
lumped at some gate output) and path delay faults (the delay fault is
the result of accumulation of small delays as a signal propagates
along one or more paths in a circuit).

All methods mentioned above rely on voltage measurement during
testing; but there are also techniques which are based on current
measurement. These techniques are commonly referred as IDDQ test
techniques. The technique is based on measuring the quiescent
current and can detect some of the faults which are not detectable
with other testing techniques (except exhaustive functional testing).
IDDQ testing can be also used for reliability estimation. The
disadvantage of this technique is the very slow testing process, which
makes testing very expensive.

2.3.2 Test Pattern Generation

Test pattern generation is the process of determining the stimuli
necessary to test a digital system. The simplest approach for
combinational circuits is exhaustive testing where all possible input
patterns will be applied, which means applying 2n test patterns
(where n is the number of inputs). Such large number of test
patterns means that exhaustive testing is possible only with small
combinational circuits. As an example, a circuit with 100 inputs
needs already 2100≈1030 test patterns and is therefore practically
infeasible. An alternative for exhaustive testing is pseudorandom
testing, where test patterns are generated in pseudorandom manner.
The cost of this type of test is considerably reduced but
pseudorandom patterns cannot detect all possible faults and for so
called random pattern-resistant faults we still need some type of
deterministic tests.

To overcome those problems, several structural test generation
techniques have been developed. In this case we assume that the
elementary components are fault-free and only their interconnects
are affected [1]. This will reduce the number of test patterns to 2n in

29

the case of the single stuck-at fault model. The typical cycle of a
structural test generation methodology is depicted in Figure 5.

Generate a test for the fault (ATPG)

Select an uncovered fault

Define a Target Fault List (TFL)

Determine other faults covered
(Fault Simulation)

Are all TFL faults covered

Done

Yes

No

Figure 5. Structural test flow

There has been a lot of research in the area of test pattern
generation and the current status is that test pattern generation for
combinational circuits as well as for sequential circuits without
global feedback is a solved problem and there exist commercial tools
for it. Test pattern generation for complex sequential circuits
remains still an unsolved problem (due to high complexity involving
multiple time frames and other factors) and there is some skepticism
about the possibility to have efficient commercial solutions available
in the nearest future.

2.3.3 Test Application

As previously mentioned, hardware testing involves test pattern
generation, discussed above, and test application. Test application

30

can be performed either on-line or off-line. The former denotes a
situation where testing is performed during normal operational mode
and the latter when the circuit is not in normal operation. The
primary interest of this thesis is off-line testing although some of the
results can be applied also for on-line testing as well.

Off-line tests can be generated either by the system itself or
outside the chip and applied by using Automatic Test Equipment
(ATE). With the emerging of sub-micron and deep sub-micron
technologies, the ATE approach is becoming increasingly expensive,
the quality of the tests and therefore also the quality of the device
deteriorates, and time to market becomes unacceptably long.
Therefore several methods have been developed to reduce the
significance of external testers and to reduce the cost of the testing
process, without compromising on quality. Those methods are known
as design for testability (DFT) techniques. In the following, different
DFT techniques are described.

2.3.4 Design for Testability

Test generation and application can be more efficient when
testability is already considered and enhanced during the design
phase. The aim of such an enhancement is to improve controllability
and observability with minimal area and performance overhead.
Controllability and observability together with predictability are the
most important factors that determine the complexity of deriving a
test set for a circuit. Controllability is the ability to establish a
specific signal value at each node in a circuit by setting values on the
circuit’s inputs. Observability, on the other hand, is the ability to
determine the signal value at any node in a circuit by controlling the
circuit’s inputs and observing its outputs. DFT techniques, used to
improve a circuit’s controllability and observability, can be divided
into two major categories:

• DFT techniques which are specific to one particular design (ad
hoc techniques) and cannot be generalized to cover different

31

types of designs. Typical examples are test point insertion and
design partitioning techniques.

• Systematic DFT techniques are techniques that are reusable
and well defined (can be even standardized).

In the following sections some systematic DFT techniques are
discussed.

2.3.5 Scan-Design

To cope with the problems caused by global feedback and complex
sequential circuits, several different DFT techniques have been
proposed. One of them is internal scan. The general idea behind
internal scan is to break the feedback paths and to improve the
controllability and observability of the memory elements by
introducing an over-laid shift register called scan path. Despite the
increase in fault coverage, there are some disadvantages with using
scan techniques:

• Increase in silicon area,

• Larger number of pins needed,

• Increased power consumption,

• Increase in test application time,

• Decreased clock frequency.

There are two different types of scan-based techniques:

1. Full scan

2. Partial scan

In case of partial scan only a subset of the memory elements will
be included in the scan path. The main reason for using partial scan
is to decrease the cost and increase the speed of testing.

In the case of complex chips or printed circuit boards (PCB) it is
often useful for the purposes of testing and fault isolation to isolate
one module from the others. This can be achieved by using boundary
scan.

32

Boundary scan is well defined and standardized (IEEE 1149.1
standard). Boundary scan targets manufacturing defects around the
boundary of a device and the interconnects between devices. These
are the regions most likely to be damaged during board assembly.

2.3.6 Built-In Self-Test

As discussed earlier, the traditional form of off-line testing
requires the use of ATEs. One of the problems, while using ATEs, is
the growing disparity between the external bandwidth (ATE speed)
and the internal one (internal frequency of the circuit under test).
And as the importance of delay faults is increasing with newer
technologies, and the cost of test pattern generation as well as the
volume of test data keep increasing with circuit size, alternative
solutions are needed. One such solution is built-in self-test (BIST).

The main idea behind a BIST approach is to eliminate the need for
the external tester by integrating active test infrastructure onto the
chip. A typical BIST architecture consists of a test pattern generator
(TPG), usually implemented as a linear feedback shift register
(LFSR), a test response analyzer (TRA), implemented as a multiple
input shift register (MISR), and a BIST control unit (BCU), all
implemented on the chip (Figure 6). This approach allows applying
at-speed tests and eliminates the need for an external tester.
Furthermore, the BIST approach is also one of the most appropriate
techniques for testing complex SoCs, as every core in the system can
be tested independently from the rest of the system. Equipping the
cores with BIST features is especially preferable if the modules are
not easily accessible externally, and it helps to protect intellectual
property (IP) as less information about the core has to be disclosed.

There are two widely used BIST schemes: test-per-clock and test-
per-scan. The test-per-scan scheme assumes that the design already
has an existing scan architecture. During the testing phase the TPG
fills the scan chains which will apply their contents to the circuit
under test (CUT) [12]. All scan outputs are connected to the multiple
input signature register (MISR), which will perform signature

33

compaction. There are possibilities to speed up the test process by
using multiple scan chains or by using a partial scan solution. An
example of such an architecture is Self-Test Using MISR and
Parallel Shift Register Sequence Generator (STUMPS) [5].

BIST
Control Unit

Circuitry Under Test

CUT

Test Pattern Generation (TPG)

Test Response Analysis (TRA)

Chip

Figure 6. A typical BIST architecture

The test-per-clock scheme uses special registers that perform
pattern generation and response evaluation. This approach allows to
generate and to apply a new test pattern in each clock cycle. One of
the first proposed test-per-clock architectures was the Built-In Logic
Block Observer (BILBO), proposed in [40], which is a register that
can operate both as a test pattern generator and a signature
analyzer.

As the BIST approach does not require any external test
equipment it can be used not only for production test, but also for
field and maintenance test, to diagnose faults in field-replaceable
units. Since the BIST technique is always implemented on the chip,
using the same technology as the CUT, it scales very well with
emerging technologies and can become one of the most important
test technologies of the future.

34

2.4 Constraint Logic Programming

Most digital systems can be conceptually interpreted as a set of
constraints, which is a mathematical formalization of relationships
that hold in the system [44]. In the context of test generation, there
are two types of constraints: the system constraints and the test
constraints. The system constraints describe the relationships
between the system variables, which capture the system
functionality and requirements. The test constraints describe the
relationships between the system variables in order to generate tests
for the system. Constraint solving can be viewed as a procedure to
find a solution to satisfy the desired test constraints for a system, if
such a solution exists.

The easiest way for constraint solving is to enumerate all the
possible values for the constraints and test if there exists a solution.
Unfortunately enumeration methods are impractical in most cases.
The problem of enumeration methods is that they only use the
constraints in a passive manner, to test the result of applying values,
rather than using them to construct values that will lead to a
solution. There are lots of constraint solving strategies that make use
of the types and number of constraints in order to speed up the
solving process.

The backtracking strategy is a basic and important approach in
constraint solving. Most constraint solvers such as CHIP [10],
SICStus [51], etc., use the backtracking strategy as a basic method
for constraint satisfaction. The search for a solution always involves
a decision process. Whenever there are alternatives to solve a
problem, one of them is chosen. If the selected decision leads to an
inconsistency, backtracking is used in order to allow a systematic
exploration of the complete space of possible solutions and recovery
from the incorrect decision. Recovery involves restoring the state of
the computation to the state existing before the incorrect decision.

For example, there are two possible solutions for the problem in
Figure 7. We first choose one of them, D1, as a decision and try it. In
this case, D11 and D12 are alternative decisions for finding a

35

solution with decision D1. We can select either D11 or D12 to try to
find a solution. If decision D11 leads to an inconsistency, it means
that the decision {D1,D11} cannot find a solution for the given
problem. So the system will recover from D11 and try another
alternative decision, D12. If the decision D12 also fails, it will cause
the first decision D1 to fail. The system cannot find a solution with
the selected decision D1. So we will go back to try another decision,
D2, by backtracking. As shown in Figure 7, the selected decision D21
succeeds. It will lead to a solution for the given problem and the
decision {D2,D21} is a correct decision for the problem. It is obvious
that the ordering of the variables has an impact on the searching
time.

D1

D11 D12 D22D21

D2

fail

failfail

success

success

Problem

Figure 7: The backtracking strategy

Depending on the complexity of the problem, the search space,
while using the previous search strategy, can become huge, and
finding a solution is practically infeasible. Therefore, several
heuristics have been developed that explore only part of the search
space. Such is, for example, a search strategy which only spends a
certain number of search cycles (credits) in each branch. If this credit
is exhausted it goes back in the tree and chooses an alternative sub-

36

tree high-up in the (unexplored) tree to further explore. By
controlling the amount of credit which is provided, we can control the
search quite well. However, this approach may not be able to find the
(best) solution, as it explores the search space only partially.

2.5 Conclusions

In this chapter we have presented some concepts that are
important for understanding this thesis. We started with an
introduction of a generic design flow for digital systems together with
design representations at different levels of abstraction. We have
given an overview of some basic hardware testing and DFT
methodologies and, finally, introduced the concept of constraint
solving.

As we were able to see, the design activities are moving toward
higher levels of abstraction and there are well-established methods
and tools to support this process. On the other hand, most of the test
and DFT activities are still performed at the gate-level and this is
becoming one of the limiting factors in the digital systems
development cycle. Therefore, there is a strong demand for tools and
methods that can handle test problems at a high level of abstraction.

37

Chapter 3
Hierarchical Test
Generation at the
Behavioral Level

As it has been shown in the introductory chapter, most of the test
and DFT related activities are usually performed at the low
abstraction levels. At the same time, design related activities have
moved several levels up which has produced a large efficiency gap
between design and test related tools.

In this chapter we propose an approach to reduce this gap. We
present a novel hierarchical test generation approach, based on the
analysis of a behavioral specification, which is able to produce test
sequences during the early synthesis steps. Experimental results
show that this approach can reduce the test generation effort, while
keeping the same high quality in terms of fault coverage.

3.1 Introduction

In the past years, the introduction of new electronic design
automation tools allowed designers to work on higher-levels of
abstraction, leaving the synthesis of lower levels to automatic
synthesis tools. At those early stages of the design flow only the
behavior of the system is known, and very little information about

38

implementation is available. Even the partitioning between
hardware and software components may not yet be decided. At the
present time, such design environments, also known as
hardware/software co-design environments, support an interesting
set of facilities, allowing the designer to select the optimal solution
for his/her design in terms of performance, cost (silicon area) and
power consumption. Despite this trend, test-related activities are
still performed at the gate-level, mainly because test is usually
considered to be tightly linked to implementation details, which are
absent at the higher levels. As a result, test constraints are taken
into consideration much later in the design process, with some
significantly negative consequences. First, in some cases the designer
realizes very late (normally when a gate-level description of
hardware modules is available) that the system has some critical
points from the test point of view: this requires restarting from the
earlier design phases, with very negative impact on time-to-market
and cost. Secondly, since the area, performance, and power
evaluations given by the co-design environments do not take care of
test requirements, they can lead to significant approximations: as an
example, by neglecting BIST structures one can make significant
mistakes in the evaluation of the required silicon area.

Early information about testability of individual modules makes it
also simpler to choose the best possible test strategy for every
module and to perform test resource partitioning. For example, it can
be highly beneficial to migrate some of the test activities from
hardware to the software or vice versa. In such a way, the search
space that designers explore for identifying the best architecture of a
system is enriched with a new, test-related, dimension. Moreover,
addressing testability issues starting from high-level descriptions
can be highly beneficial, since it may allow the generation of good
test sequences with high efficiency, and reduce the cost of design-for-
testability structures.

In this thesis we propose an approach where tests are generated
based on high-level hierarchical descriptions. We use as an input to
our test pattern generator a behavioral level description of a system.

39

We extract behavioral level DDs, which will be used as a
mathematical platform for test generation and improve our test
generation environment by including some limited knowledge about
the final architecture.

One of the main objectives of this thesis is to show how
hierarchical test generation can be used at higher levels of
abstraction and thus make it possible to reason about testability at
very early stages of the design flow. We also want to demonstrate
how DDs can be used for test generation at the behavioral level.

In this way, significant advantages could be achieved in terms of
design cost (especially by reducing the time for designing a testable
system) and design quality.

In the following section we will present some related work. We will
turn our attention to some high-level fault models and hierarchical
test generation, which are essential from this thesis’ point of view.
Thereafter we will discuss about the behavioral level decision
diagrams and introduce the fault models we use. The following
section will describe our hierarchical test generation approach
together with some experimental results and finally the conclusions
will be drawn.

3.2 Related Work

Recently, several researches have proved that testing can be
addressed even when the circuit structure is not yet known, and that
suitable techniques can be devised to exploit the information existing
in a high-level description of a system for evaluating its testability
and for reducing the cost for testing in the following design steps. Up
to now, these new techniques have been experimented mainly with
RT-level descriptions, and very few work has been done at the
behavioral level. In the following we are looking into the high-level
fault models and test generation algorithms proposed in the
literature.

40

3.2.1 High-Level Fault Models

The ultimate task of a test generator is to generate such input
sequences, which can distinguish an erroneous behavior of the
system from the correct behavior. As it was discussed before, there
can be several reasons behind an erroneous behavior: manufacturing
defects, environmental or aging related failures, bugs in the
specification and many others. For test generation purposes we need
to describe the erroneous behavior through some type of
mathematical formalism, which is called fault model. One fault
model does not has to cover all possible defects, instead it usually
targets a selected set of possible faults which enables higher
accuracy of the model. As it was discussed earlier, there exists a wide
spectrum of fault models over different levels of abstraction. At one
end there are fault models describing electrical anomalies in deep
submicron designs, at another end we have code coverage metrics for
system level specifications. As an example, the dominant fault model
for digital designs at the gate level has been for several decades a
single stuck-at (SSA) fault model, as it can represent a large number
physical defects, while being technology independent and simple.
Although the SSA model has several limitations, it can be used
successfully as the reference measure to quantify a circuit’s
testability and has therefore become an industrial standard.
Therefore, also in this thesis the evaluation and comparison of
generated test sequences is done at the gate level based on the SSA
model.

One of the main problems while addressing test issues at an
abstraction level higher than the traditional gate level is the
identification of a suitable high-level fault model. At this level we
have very little or no knowledge about the final implementation and
therefore we cannot establish direct relationship between
manufacturing defects and the fault model.

The most common high-level fault models proposed in literature as
metrics of the goodness of sequences when working at high level of
abstraction are mostly taken from the software testing area:

41

• Path coverage [6] measures the percentage of all possible control
flow paths through the program executed by a given sequence. A
related metric is statement coverage which is intended to
measure the percentage of statements that are activated by a
given test pattern. A further metric is branch coverage, which
measures the percentage of branches of a model that are
activated by a given test pattern.

• Bit coverage was proposed in [16]. The authors assume that each
bit in every variable, signal or port in the model can be stuck to
zero or one. The bit coverage measures the percentage of stuck-
at bits that are propagated on the model outputs by a given test
sequence.

• Condition coverage [16] is related to faults located in the logic
implementing the control unit of a complex system. The authors
assume that each condition can be stuck-at true or stuck-at
false. Then, the condition coverage is defined as the percentage
of stuck-at conditions that are propagated on the model outputs
by a given test sequence.

• Mutation testing [11] concentrates on selecting test vectors that
are capable to distinguish a program from a set of faulty
versions or mutants. A mutant is generated by injecting a single
fault into the program. For example, if we have the expression:

X := (a + b) – c;

To rule out the fault that the first “+” is changed to “–”, b must
not be 0 (because a + 0 = a – 0 and this fault cannot be detected).
Additionally, to rule out the fault that instead of “+” there is “x”,
we have to assure that a + b ≠ a x b.

All those fault models target faults in the circuit’s behavior, not in
its structure. For targeting errors in the final implementation it is
very important to establish a relationship between the high-level
fault models and the lower level ones. This has been done so far only
experimentally (e.g. [37]) and there are no systematic methods
currently available. To overcome this problem, at least partially, we

42

propose to use a hierarchical fault model and hierarchical test
generation.

3.2.2 Hierarchical Test Generation

The main idea of the hierarchical test generation (HTG) technique
is to use information from different abstraction levels while
generating tests. One of the main principles is to use a modular
design style, which allows to divide a larger problem into several
smaller problems and to solve them separately. This approach allows
generating test vectors for the lower level modules based on different
techniques suitable for the respective entities.

In hierarchical testing, two different strategies are known: top-
down and bottom-up. In the bottom-up approach [47], tests generated
at the lower level will be assembled at the higher abstraction level.
The top-down strategy, introduced in [42], uses information,
generated at the higher level, to derive tests for the lower level.

Previously mentioned as well as more recent approaches [48] have
been successfully used for hardware test generation at the gate,
logical and register-transfer (RT) levels.

In this thesis, the input to the HTG is a behavioral description of
the design and a technology dependent, gate level library of
functional units. Figure 8 shows an example of such a hierarchical
representation of a digital design. It demonstrates a behavioral
specification, a fragment of a corresponding behavioral level decision
diagram and a gate level netlist of one of the functional units.

43

Behavioral level DD

Figure 8. Hierarchical representation of a digital design

3.3 Decision Diagrams at the Behavioral Level

Our high-level hierarchical test generation approach starts from a
behavioral specification, given in VHDL. At this level the design does
not include any details about the final implementation, however we
assume that a simple finite-state machine (FSM) has already been
introduced and therefore the design is conceptually partitioned into
the data path and control part. For this transformation we are using
the CAMAD high-level synthesis system [15].

DD synthesis from a high-level description language consists of
several steps, where data path and control part of the design will be
converted into the DDs separately. In the following, an overview of

if (IN1 > 0)
 X=IN2 + 3; --- q=1
else {
 if (IN2 >= 0)
 X=IN1+IN2; -- q=2
 else
 X=IN1*5; --- q=3
}

Y=X-10; -------- q=4
X=Y*2; -------- q=5
OUT=X + Y; -------- q=6

Gate level netlist of a FU

OUT q’

X+Y

OUT’

0,1,2,3,4,5

6

Behavioral description

44

the DD synthesis process, starting from a VHDL description, will be
given.

3.3.1 Decision Diagram Synthesis

In the general case, a DD is a directed, acyclic graph where non-
terminal nodes represent logical conditions, terminal nodes represent
operations, while branches hold the subset of condition values for
which the successor node corresponding to the branch will be chosen.
The variables in nonterminal nodes can be either Boolean (describing
flags, logical conditions etc.) or integer (describing instruction words,
control fields, etc.) The terminal nodes are labeled by constants,
variables (Boolean or integer) or by expressions for calculating
integer values.

At the behavioral level, for every internal variable and primary
output of the design a data-flow DD will be generated. Such a data-
flow DD has so many branches, as many times the variable appears
on the left-hand side of the assignment. Further, an additional DD,
which describes the control-flow, has to be generated. The control-
flow DD describes the succession of statements and branch activation
conditions.

Figure 9 depicts an example of DD, describing the behavior of a
simple function. For example, variable A will be equal to IN1+2, if
the system is in the state q=2 (Figure 9c). If this state is to be
activated, condition IN1≥0 should be true (Figure 9b). The DDs,
extracted from a specification, will be used as a computational model
in the HTG environment.

45

if (IN1 < 0) then

 A := IN1 * 2; ------ q=1

else

 A := IN1 + 2; ------ q=2

endif;

B := IN1 * 29; ------ q=3

A := B * A; ------ q=4

B := A + 43; ------ q=5

a) Specification
 (comments start with “--“)

q' IN1 1

0

<00q

1,2
3

2

3
4

4
5

5

b) The control-flow DD
(q denotes the state
variable and q’ is the
previous state)

q
1

2

q
3

IN1 * 2

IN1 + 2

A'

IN1 * 29

A+43

B'

A B

B*A
4

5

1, 2, 4

3, 5

c) The data-flow DD

Figure 9. A decision diagram example

46

3.3.2 SICStus Prolog representation of Decision Diagrams

As described earlier, at the behavioral level there exist two types of
DDs: control-flow DD and data-flow DDs. The control-flow DD
carries two types of information: state transition information and
path activation information. The state transition information
captures the state transitions that are given in the FSM
corresponding to the specified system. The path activation
information holds conditions associated to state transitions.

For each internal or primary output variable corresponds one data-
flow DD. In a certain system state, the value of a variable is
determined by the terminal node in the data graph. In this case, the
relationship between the terminal node and the variable can be
viewed as a functional constraint on the variable at the state.

To generate a test pattern for a fault we have to excite the fault
(justification) and to sensitize the fault effect at the primary outputs
(propagation). For example, if we want to test the statement that is
highlighted in Figure 9a, we have to bring the system to the state
q=2. This can be guaranteed only when q’=0 and IN1 ≥ 0. Those
requirements can be seen as justification constraints.

For observing the fault effect at primary outputs, we have to
distinguish between the faulty and the correct behavior of a variable
under test (Variable “A” in our example). This requires, that B ≠ 0
(from the statement A:=B*A) and consequently IN1*29 ≠ 0 (from the
statement B:=IN1*29), otherwise the variable “A” will have always
value 0 and the fault cannot be detected. Those conditions can be
seen as propagation constraints.

By solving the extracted constraints we will have a test pattern
(combination of input values) which can excite the fault and
propagate the fault effect to the primary outputs. For solving these
constraints we employ a commercial constraint solver SICStus [51]
and have developed a framework for representing a DD model in the
form of constraints. First, we translate the control-flow DD into a set
of state transition predicates and path activation constraints are
extracted along the activated path. Then all the data-flow DDs are

47

parsed as functional constraints at different states by using
predicates. Finally, a DD model is represented as a single Prolog
module. See [54] for technical details about the translation process.

3.4 Hierarchical Test Generation Algorithm

This section presents our high-level hierarchical test generation
algorithm. At first we introduce fault models used in our approach.
Thereafter the corresponding tests are discussed and finally the
whole test generation environment is presented.

3.4.1 Fault Modeling at the Behavioral Level

In this thesis we propose to use a hierarchical fault model where at
the higher level we target errors in the system behavior and at the
lower level our aim is to detect failures related to the chosen
implementation style. In our approach we have chosen for the high
level the branch coverage metric, while the low-level faults are
modeled by using a SSA fault model. Those two fault models are
complimentary to each other and the aim is to generate such test
sequences, which can be used for manufacturing test of the final
circuit.

As the fault model we are using is hierarchical, the HTG algorithm
has to generate two types of tests. The first set is generated from the
pure behavioral description based on the code coverage metric [32].
This test set targets errors in branch selection (nonterminal nodes of
the control-flow DD). During the second test generation phase the
functional blocks (e.g., adders, multipliers and ALUs) composing the
behavioral model are identified (terminal nodes of the data-flow DD),
and suitable test vectors are generated for the individual blocks.
During the block-level test generation phase each block is considered
as an isolated and fully controllable and observable entity; and a gate
level test generation tool is used for this purpose. The test vectors
generated for the basic blocks are then justified and their fault
effects propagated in the behavioral model of the circuit under test.

48

In this way we can incorporate accurate structural information into
the high-level test pattern generation environment while keeping the
propagation and justification task still on a high abstraction level.

3.4.2 Test Pattern Generation

The test generation task is performed in the following way (Figure
10). Tests are generated sequentially for each nonterminal node of
the control-flow DD. Symbolic path activation is performed and
functional constraints are extracted. Solving the constraints gives us
the path activation conditions to reach a particular segment of the
specification. In order to test the operations, presented in the
terminal nodes of the data-flow DD, different approaches can be
used. In our approach we employ a gate level test pattern generator.
In this way we can incorporate accurate structural information into
the high-level test pattern generation environment while keeping the
propagation and justification task still on a high abstraction level.

If the constraint solver is not able to find a solution, a new test
case should be generated, if possible. This cycle should be continued
until a solution is found or a timeout occurs.

In the following, the test pattern generation algorithm is described
in more detail.

49

No

Generate a test case
(Conformity test or gate-level ATPG)

Yes

BEGIN

Success?

Yes

No

Extract functional and path activation
constraints for justification

Extract funtional and path activation
constraints for fault effect propagation

Solve constraints

A solution?
No No

Yes

Yes
Timeout?

Any
unprocessed nodes

in the DD?

Select an unprocessed node

END

Figure 10. The general flow for hierarchical test generation algorithm

3.4.3 Conformity Test

For the nonterminal nodes of the control-flow DD, conformity tests
will be applied. The conformity tests target errors in branch
activation. For example, in order to test nonterminal node IN1

50

(Figure 11), one of the output branches of this node should be
activated. Activation of the output branch means activation of a
certain set of program statements. In our example, activation of the
branch IN1<0 will activate the branches in the data-flow DD where
q=1 (A:=X). For observability the values of the variables calculated in
all the other branches of IN1 have to be distinguished from the value
of the variables calculated by the activated branch. In our example,
node IN1 is tested, in the case of IN1<0, if X≠Y. The path from the
root node of the control-flow DD to the node IN1 has to be activated
to ensure the execution of this particular specification segment and
the conditions generated here should be justified to the primary
inputs of the module. This process will be repeated for each output
branch of the node. In the general case there will be n(n-1) tests, for
every node, where n is the number of output branches.

q q'
0

...

IN1 1

2

<0

A q
1

2

X

Y

Figure 11. Conformity test

3.4.4 Testing Functional Units

Synthesis is the translation of a behavioral representation of a
design into a structural one. One of the most important parameters
guiding the synthesis process is the technology that will be used in
the final implementation. After the technology is defined, the
implementation details of the functional units (FUs), that will be
used in the final design, can be found usually in the technology
library. Our hierarchical test generation algorithm employs this

 ≠

 ≠

Control-flow DD:

Data-flow DD:

51

structural information for generating tests and estimating the
testability of the final implementation when using one or another
implementation of the FU from the same or even from completely
different libraries. This reveals another advantage of our test pattern
generation algorithm: we can derive information about the testability
of a system, depending on what target technology it will be
implemented in. We can generate tests for different possible
implementations (different implementations of the same FU) and to
select the solution that is the best from the testability point of view.
This information can be used later in the synthesis while performing
allocation and mapping.

Tests are generated in cooperation with low-level test pattern
generators. The functional unit test generation is performed one by
one for every FU given in the specification as depicted in Figure 12,
where an example of generating low-level tests for an adder is given.

Figure 12. Testing functional units

We start by choosing a not tested operator from the specification
and employ a gate level ATPG to generate a test pattern targeting
structural faults in the corresponding FU. In our approach a PODEM
like ATPG [31] is used but, in the general case, any gate level test

1

X

X

0

0

X

Fragment of a gate level netlist

if (IN1 > 0)
 X=IN2+3; --- q=1
else {
 if (IN2 >= 0)
 X=IN1+IN2; -- q=2
 else
 X=IN1*5; --- q=3
}

Y=X-10; -------- q=4
X=Y*2; -------- q=5
OUT=X+Y; -------- q=6

Behavioral description

OUT q’

X+Y

OUT’

0,1,2,3,4,5

6

OUT q’

X+Y

OUT’

0,1,2,3,4,5

6

52

pattern generation algorithm can be applied. If necessary,
pseudorandom patterns can be used for this purpose as well. The test
patterns, which are generated by our current approach, can have
some undefined bits (don’t cares). As justification and propagation
are performed at the behavioral level by using symbolic methods
these undefined bits have to be set to a defined value. Selecting the
exact values is an important procedure since not all possible values
can be propagated through the environment, which potentially can
lead to the degradation of fault coverage. A test vector that does not
have any undefined bits is thereafter forwarded to the constraint
solver, where together with the environmental constraints it forms a
test case. Solving such a test case successfully means that the
generated low-level test vector can be justified till the primary inputs
and the fault effect is observable at the primary outputs. If the
constraint solver cannot find an input combination that would satisfy
the given constraints, another combination of values for the
undefined bits has to be chosen and the constraint solver should be
employed again. This process is continued until a solution is found or
a timeout occurs. If there is no input combination that satisfies the
generated test case, the given low-level test pattern will be
abandoned and the gate level ATPG will be employed again to
generate a new low-level test pattern. This task is continued until
the low-level ATPG cannot generate any more patterns.

This can be illustrated with the following example (Figure 13). Let
us assume that we want to test the FU which is in the statement
Y=X+IN2. For this purpose the gate-level ATPG is employed and it
returns a test vector X=0X0X and IN2=1X11. From the environment
we know that variable X can hold only a very limited range of values.
Either X=1 or X has a value which is a multiple of 5 (0, 5, 10, 15, …).
Therefore, if we replace the undefined bits so that X=0001, the
justification process will be successful, but if X=0100 (decimal value
4), the justification will fail.

We generate tests for every FU one by one and finally the fault
coverage for every individual FU under the given environmental

53

constraints can be reported, which gives the possibility to rank all
modules according to their testability.

if (IN1>0)

 X=IN1*5;

else

 X=1;

Y=X+IN2;

Behavioral description

X

IN2

Y+

FU under test

X IN2
ATPG: 0X0X 1X11

0001 (1) 1011 (11) SUCCESS
0100 (4) 1011 (11) FAILURE
0101 (5) 1011 (11) SUCCESS

Test vectors

Figure 13. Selection of a test vector

The HTG environment is depicted in Figure 14. Our HTG
environment accepts as input a behavioral VHDL specification. The
VHDL code is translated into the DD model, which is used as a
formal platform for test generation, and later into a Prolog model,
which is used by the constraint solver. In our approach we use a
commercial constraint solver SICStus [51]. The HTG algorithm
generates test cases and forwards them in form of constraints to the
constraint solver, which generates the final test vectors. Propagation
and justification of the gate level test patterns are performed by the
constraint solver as well.

54

Constraint Solver Interface

DD Model

DD2Prolog

Prolog DD model

CCoonnssttrraa iinn tt SS oo llvveerr
((SS IICC SSttuuss -- eexx ttee rrnnaa ll ttooooll))

Test Vectors

VHDL2DD

Behavioral VHDL

Test Cases Generator

Test Cases

FU Library

GG aattee -- lleevvee ll AATTPPGG
((eexxttee rrnnaall ttoooo ll))

Figure 14. Our hierarchical test generation environment

3.5 Experimental Results

In this section we present our experimental results. We
demonstrate that test sequences generated from high-level
descriptions provide fault coverage figures comparable with figures
obtained at the gate level, while the test generation time is reduced
significantly. We will also demonstrate that our approach can
successfully be used for testability evaluation.

We performed experiments on the DIFFEQ circuits taken from the
High-Level Synthesis’91 benchmark suite. We have synthesized two
gate level implementations of the same circuit: one optimized for
speed (DIFFEQ 1) and the other optimized for area (DIFFEQ 2).
Generated test patterns are applied to the gate level
implementations of the circuit and the fault coverage is measured
based on the SSA model. The results are reported in Table 1, where
for every approach we have presented the obtained stuck-at fault

55

coverage (FC), number of generated test vectors (Len) and CPU time
spent (CPU) for test generation.

We compare our results with pure high-level ATPG [37] and pure
gate level ATPG (testgen from Synopsys). The pure high-level
ATPG works at the behavioral level and generates tests based on
different code coverage metrics. The gate-level ATPG, on the other
hand, uses only gate-level information and can therefore be used only
at the latter stages of the design cycle. The results show that the test
sequences provided with our HTG approach can be successfully used
for detecting stuck-at faults. These results also show that when
moving test vector generation toward lower levels of abstractions,
where more detailed information about the tested circuits are
available, the obtained results in terms of fault coverage figures are
improved. The fault coverage obtained by the hierarchical ATPG is
higher than that of the pure high-level ATPG, while the fault
coverage working at the gate level is the highest. However, all three
different approaches can obtain very high and comparable fault
coverage figures. On the other hand, moving test generation towards
the higher levels of abstraction has positive effects on the test
generation time and on the test length that are both significantly
reduced.

We can also note, that our HTG approach can generate test
sequences faster and with higher quality than pure high-level ATPG.
This can be partially explained with the very simple test generation
algorithm employed in the pure high-level ATPG approach reported
here.

Pure High-level
ATPG

Our Hierarchical
ATPG

Gate-level ATPG
testgen

FC
[%]

Len
[#]

CPU
[s]

FC
[%]

Len
[#]

CPU
[s]

FC
[%]

Len
[#]

CPU
[s]

DIFFEQ 1 97.25 553 954 98.05 199 468 99.62 1,177 4,792

DIFFEQ 2 94.57 553 954 96.46 199 468 96.75 923 4,475

Table 1. Results for the DIFFEQ benchmark circuit.

56

We have also investigated possibilities to apply our ATPG
approach to an industrial design F4 [52], which is part of the F4/F5
layer of the ATM protocol, covering the main functionality as
specified by standard references. The F4/F5 layer covers the
Operation and Maintenance (OAM) functionality of the ATM
switches. The F4 level handles the OAM functionality concerning
virtual paths and the F5 level handles the OAM functionality
concerning virtual channels. We have extracted two blocks from the
specification: F4_InputHandler_1 and F4_OutputHandler_1.
Experimental results of these two examples are compared with those
obtained using the commercial gate level ATPG tool from Mentor
Graphics (FlexTest) and are presented in Table 2:

Our Hierarchical
ATPG

Gate level ATPG
FlexTest

Design
VHDL
Lines

[#]

Stuck-at
faults

[#] Len
[#]

CPU
[s]

FC
[%]

Len
[#]

CPU
[s]

FC
[%]

F4_Input
Handler_1 175 4872 62 228 64.22% 219 811 38.22%

F4_Output
Handler_1 54 872 26 1.52 76.26% 170 5 81.30%

Table 2: ATPG results with F4 design

As it can be seen, HTG can produce results which are comparable
with results obtained at the gate level, while having shorter test
generation time and reduced test length. In case of the
F4_InputHandler_1 block, our HTG approach obtains even higher
fault coverage figure than that of the gate-level ATPG. This
illustrates very well the situation when a gate-level ATPG cannot
produce high quality test vectors due to the higher complexity of
descriptions at lower levels of abstraction, and a high-level ATPG
tool can outperform a gate-level ATPG tool by producing test
patterns with higher fault coverage.

In order to investigate the possibility of using the HTG approach
for testability evaluation we have also performed a more thorough
analysis using the DIFFEQ design. The results are presented in

57

Figure 15. We have associated with every FU a set of data. We use
the instruction y_var := y_var + t7; in order to explain the
significance of this data:

y_var := y_var + t7;
 -- Tested 389 faults

Total number of detected stuck-at faults in the FU, when
implemented in the target technology.

 -- Untestable 0

Total number of untestable faults in the FU, when
implemented in the target technology.

 -- Aborted 39
Total number of aborted faults (the faults that cannot be
detected due to different reasons. For example, the
generated gate-level test pattern could not be propagated
and/or justified till primary inputs/outputs).

 -- Fault coverage: 90.887850
Final stuck-at fault coverage.

 -- 11 Vectors
Number of test vectors that were generated by a gate level
ATPG and successfully justified till primary inputs and
propagated till primary outputs.

As it can be seen, the fault coverage of functional units differs
significantly, depending of the location and type of every individual
FU. This information can be exploited at the latter design stages in
order to improve the global testability of the design.

58

ENTITY diff IS
 PORT
 (x_in : IN integer;
 y_in : IN integer;
 u_in : IN integer;
 a_in : IN integer;
 dx_in : IN integer;
 x_out : OUT integer;
 y_out : OUT integer;
 u_out : OUT integer
) ;
END diff ;

ARCHITECTURE behavior OF diff IS
BEGIN
 PROCESS
 variable x_var, y_var, u_var,
 a_var, dx_var : integer;
 variable t1,t2,t3,t4,t5,
 t6,t7: integer ;
 BEGIN
 x_var := x_in;
 y_var := y_in;
 a_var := a_in;
 dx_var := dx_in;
 u_var := u_in;

 while x_var < a_var loop

 t1 := u_var * dx_var;
 -- Tested 5634 faults
 -- Untestable 0
 -- Aborted 14
 -- Fault coverage: 99.752125
 -- 52 Vectors

 t2 := x_var * 3;
 -- Tested 4911 faults
 -- Untestable 0
 -- Aborted 737
 -- Fault coverage: 86.951133
 -- 11 Vectors

 t3 := y_var * 3;
 -- Tested 4780 faults
 -- Untestable 0
 -- Aborted 868
 -- Fault coverage: 84.631728
 -- 10 Vectors

 t4 := t1 * t2;
 -- Tested 5621 faults
 -- Untestable 0
 -- Aborted 27
 -- Fault coverage: 99.521955
 -- 38 Vectors

 t5 := dx_var * t3;
 -- Tested 5616 faults
 -- Untestable 0
 -- Aborted 32
 -- Fault coverage: 99.433428
 -- 35 Vectors

 t6 := u_var - t4;
 -- Tested 368 faults
 -- Untestable 0
 -- Aborted 60
 -- Fault coverage: 85.981308
 -- 9 Vectors

 u_var := t6 - t5;
 -- Tested 424 faults
 -- Untestable 0
 -- Aborted 4
 -- Fault coverage: 99.065421
 -- 15 Vectors

 t7 := u_var * dx_var;
 -- Tested 1123 faults
 -- Untestable 0
 -- Aborted 4525
 -- Fault coverage: 19.883144
 -- 1 Vectors

 y_var := y_var + t7;
 -- Tested 389 faults
 -- Untestable 0
 -- Aborted 39
 -- Fault coverage: 90.887850
 -- 11 Vectors

 x_var := x_var + dx_var;
 -- Tested 414 faults
 -- Untestable 0
 -- Aborted 14
 -- Fault coverage: 96.728972
 -- 15 Vectors

 end loop ;

 x_out <= x_var;
 y_out <= y_var;
 u_out <= u_var;

 END PROCESS ;

END behavior;

Figure 15. DIFFEQ benchmark with testability figures for
every individual functional unit

59

3.6 Conclusions

In this chapter we have proposed a novel high-level hierarchical
test pattern generation approach. It uses, as input, a behavioral
specification of the system, which is enriched with some information
about the final architecture. This information can be derived from a
technology library and, as a result, we can evaluate the testability of
the final implementation. The test patterns are generated based on a
hierarchical test generation technique that employs a dedicated
constraint solver.

As our hierarchical test generation approach takes into account
information from several abstraction levels it is able to generate test
sequences with higher fault coverage than those produced using a
pure behavioral test generator. Improvements in fault coverage are
obtained by integrating structural information coming from lower
levels of abstractions, while still mainly working at the behavioral
level for test vector justification and propagation. We have also
demonstrated the higher efficiency of our approach compared to the
gate level ATPG in terms of required CPU time and the number of
test vectors produced.

60

61

Chapter 4
A Hybrid BIST Architecture

and its Optimization for
SoC Testing

As demonstrated in the previous chapter it is feasible to reason
about testability already in very early phases of the design cycle.
Test sequences generated at the behavioral level can be used as a
starting point for constructing manufacturing tests. Test generation
results from the behavioral level can also be used for identification of
hard to test modules of a design. After identification of such modules,
suitable DFT technique has to be chosen and DFT modifications
performed in order to guarantee a good testability of the final circuit.

In our approach we have selected a built-in self-test technique, as
one of the mainstream DFT techniques for deep submicron designs.
In this chapter we propose a hybrid self-test architecture, which is
very attractive for modern SoCs. We also propose methods for
calculating the total cost of such a self-test scheme and introduce a
technique for finding the optimal test solution.

62

4.1 Introduction

Many systems are nowadays designed by embedding predesigned
and preverified complex functional blocks, usually referred as cores,
into one single die. The cores can be very different by their nature
(from analog to memories, including all types of logic) and can be
represented in several different ways (RTL code, netlist or layout)
[59]. Such a design style allows designers to reuse previous designs
and will lead therefore to a shorter time to market and a reduced
cost. Such a System-on-Chip (SoC) approach is very attractive from
the designers’ perspective. Testing of SoC, on the other hand, shares
all the problems related to testing modern deep submicron chips, and
introduces also some additional challenges due to the protection of
intellectual property as well as the increased complexity and higher
density [34].

To test the individual cores on SoC, the test pattern source and
sink have to be available together with an appropriate test access
mechanism (TAM) [41], [62] as depicted in Figure 16. We can
implement such a test architecture in several different ways. One
widespread approach is to implement both source and sink off-chip
and require therefore the use of external Automatic Test Equipment
(ATE). But, as discussed earlier, the internal speed of SoC is
constantly increasing and, thus, the demands for the ATE speed and
memory size are continuously increasing too. However, the
technology used in ATE is always one step behind the one used for
advanced SoCs and, the ATE solution will soon become unacceptably
expensive and inaccurate [28]. Therefore, in order to apply at-speed
tests and to keep the test costs under control, on-chip self-test
solutions are becoming more and more popular.

63

SRAM SRAM

CPU

Wrapper

Core
Under
Test

ROM

MPEG UDL
DRAM

Peripherial
Component
Interconnect

Test Access
Mechanism

Source

Sink

Test Access
Mechanism

Figure 16. Testing a system-on-chip

A typical BIST architecture consists of a test pattern generator
(TPG), a test response analyzer (TRA) and a BIST control unit
(BCU), all implemented on the chip. This approach allows applying
at-speed tests and eliminates the need for an external tester.
Different BIST approaches have been available for a while and have
got wide acceptance especially for memory test. For logic BIST
(LBIST) there is still no industry-wide acceptance. One of the main
reasons is the hardware overhead required to implement a BIST
architecture. The BIST approach can also introduce additional delay
to the circuitry and requires a relatively long test application time.
At the same time, BIST is basically the only practical solution to
perform at-speed test and can be used not only for manufacturing
test but also for periodic field maintenance tests [17].

64

4.2 Related Work

The classical way to implement the TPG for LBIST is to use linear
feedback shift registers (LFSR) [2], [5], [60]. The effectiveness of such
TPG for a given circuit depends on the appropriate choice of the
LFSRs as well as their length and configuration. This can yield
relatively high fault coverage, but only for a combinational part of
the circuitry. The problem with such approaches is that the test
patterns generated by the LFSR are pseudorandom by nature [21].
Therefore the LFSR-based approach often does not guarantee
sufficiently high fault coverage, especially in the case of large and
complex designs, and demands very long test application times in
addition to high area overheads. Several proposals have therefore
been made to combine pseudorandom test patterns, generated by
LFSRs, with deterministic patterns [9], [24], [25], [53], [55], [61] to
form a hybrid BIST solution.

In [24] and [61] the authors have proposed methods to increase the
quality of LFSR-based BIST schemes via reseeding while in [9] the
authors have proposed using additional combinatorial logic to alter
the generated pseudorandom sequences. The main concern of those
approaches has been to improve the fault coverage, while the issue of
cost minimization has not been addressed directly. An additional
disadvantage of these approaches is the supplementary hardware
needed to implement the hybrid BIST architecture.

To make the LBIST approach more attractive, we have to tackle
the hardware overhead problem and to find solutions to reduce the
additional delay and the long test application times. At the same
time, fault coverage has to be kept at a high level. The simplest and
most straightforward solution is to replace the hardware LFSR
implementation by software, which is especially attractive to test
SoCs, because of the availability of computing resources directly in
the system (a typical SoC usually contains at least one processor
core). The software-based approach, on the other hand, is criticized
because of the large memory requirements, as we have to store the
test program and some test patterns, which are required for

65

initialization and reconfiguration of the self-test cycle [25]. However,
some preliminary results regarding such an approach for PCBs has
been reported in [4] and shows that a software-based approach is
feasible.

Similar work has been reported also in [25]. However, the
approach presented there has no direct cost considerations and can
therefore lead to very long test application times because of the large
number of random test patterns used.

In our approach we propose to use a hybrid test set which contains
a limited number of pseudorandom and deterministic vectors. The
pseudorandom test vectors can be generated either by hardware or
by software and is complemented by the stored deterministic test set
which is specially designed to shorten the pseudorandom test cycle
and to target the random resistant faults [33].

The main objective of our approach is to support the combination
of pseudorandom and deterministic test vectors and to find the
optimal balance between these two test sets to perform core test with
minimum cost of time and memory, without losing test quality. In
the following, two different algorithms to calculate the total cost of
the hybrid BIST solution will be proposed. Additionally a method is
proposed to estimate, with very low computational time, the time-
moment that is close to the optimal moment to stop pseudorandom
test generation and to apply deterministic patterns. This method is
used to find a good starting point to search for the global optimum by
sampled calculation of the real cost. The search is carried out by
using a Tabu search method [18], [19], [20].

A similar problem has been addressed in [53], where an approach
to minimize testing time has been presented. The authors have
shown that hybrid BIST (or CBET in their terminology) can achieve
shorter testing time than both pseudorandom and deterministic test.
However, the proposed algorithm is not addressing total cost
minimization (time and memory) and is therefore only a special case
of our approach.

66

4.3 Hybrid BIST Architecture

A hardware-based hybrid BIST architecture is depicted in Figure
17, where the pseudorandom pattern generator (PRPG) and the
Multiple Input Signature Analyzer (MISR) are implemented inside
the core under test (CUT). The PRPG and MISR can be implemented
by using LFSRs or any other structure able to provide pseudorandom
test vectors with a required degree of randomness. The deterministic
test patterns are precomputed off-line and stored inside the system.

PRPG

. . .
. . .

. . .

MISR

B
IS

T
 C

on
tr

ol
le

r

SoC
. . .

ROM

. . .

CUT

Core

Figure 17. Hardware-based hybrid BIST architecture

Core test is performed in two consecutive stages. During the first
stage pseudorandom test patterns are generated and applied. After a
predetermined number of test cycles, additional test is performed
with deterministic test patterns from the memory. Each primary

67

input of CUT has a MUX at the input that determines whether the
test is coming from the PRPG or from the memory (Figure 17).

To avoid the hardware overhead caused by the PRPG and MISR,
and the performance degradation due to excessively large LFSRs, a
software-based hybrid BIST can be used where pseudorandom test
patterns are produced by the test software. However, the cost
calculation and optimization algorithms to be proposed are general,
and can be applied to the hardware-based as well as to the software-
based hybrid BIST optimization.

In case of a software-based solution, the test program, together
with all necessary test data (LFSR polynomials, initial states,
pseudorandom test length, signatures) are kept in a ROM. The
deterministic test vectors are generated during the development
process and are stored in the same place. For transporting the test
patterns, we assume that some form of TAM is available.

In test mode the test program will be executed by the processor
core. The test program proceeds in two successive stages. In the first
stage the pseudorandom test pattern generator, which emulates the
LFSR, is executed. In the second stage the test program will apply
precomputed deterministic test vectors to the core under test.

The pseudorandom TPG software is the same for all cores in the
system and is stored as one single copy. All characteristics of the
LFSR needed for emulation are specific to each core and are stored in
the ROM. They will be loaded upon request. Such an approach is
very effective in the case of multiple cores, because for each
additional core only the BIST characteristics for this core have to be
stored. The general concept of the software based pseudorandom
TPG is depicted in Figure 18.

As the LFSR is implemented in software, there are no hardware
constraints for the actual implementation except for the ROM. This
allows to develop for each particular core the most efficient
pseudorandom scheme without concerning about the hardware cost. As
has been shown by experiments, the selection of the best possible
pseudorandom scheme is an important factor for such an approach [25].

68

SoC ROMCPU Core
LFSR1: 001010010101010011
N1: 275

LFSR2: 110101011010110101
N2: 900
...

load (LFSRj);
 for (i=0; i<Nj; i++)
 ...
end;

Core j Core j+1
Core j+...

Figure 18. LFSR emulation

The quality of the pseudorandom test is of great importance. It is
assumed that for the hybrid BIST the best pseudorandom sequence
will be chosen. However, not always all parts of the system are
testable by a pure pseudorandom sequence. It takes often a very long
test application time to reach a good fault coverage level. In case of
hybrid BIST, we can dramatically reduce the length of the initial
pseudorandom sequence by complementing it with deterministic
stored test patterns, and achieve the 100% fault coverage.

As discussed in [25], the program to emulate the LFSR can be very
simple and therefore the memory requirements for storing the
pseudorandom TPG program together with the LFSR parameters are
relatively small.

In the ideal case, the LFSR-based test generator can be developed
in such a way that a high fault coverage will be reached by a
sufficiently short test sequence. In our approach, the task is not to
develop a new “ideal” LFSR-based test generator for BIST with the
length equal to the minimal test set with 100% fault coverage. In
general, for complex circuits such a task is rather difficult and may
be even impossible to solve, especially for sequential circuits. In this
sense, the hybrid BIST considered here suggests a more general and
simple solution, applicable also for sequential cores.

69

4.4 Test Cost Calculation for Hybrid BIST

As mentioned earlier, the test patterns generated by LFSRs are
pseudorandom by nature. Such test sequences are usually very long
and not sufficient to detect all the faults. Figure 19 shows the fault
coverage of the pseudorandom test as a function of the test length for
some larger ISCAS’85 [8] benchmark circuits. This figure illustrates
an inherent property of pseudorandom test: the first few test vectors
can detect a large number of faults while later test vectors can detect
very few new faults, if any. There may also exist faults that will
never be detected with pseudorandom test vectors, which is due to
random pattern resistance.

Figure 19. Pseudorandom test for some ISCAS’85 circuits

To avoid the test quality loss due to random pattern resistant
faults and to speed up the testing process, we have to apply
deterministic test patterns targeting the random resistant and

70

difficult to test faults. Such a hybrid BIST approach starts with a
pseudorandom test sequence of length L. At the next stage, the
stored test approach takes place: precomputed test patterns, stored
in the system, are applied to the core under test to reach the
desirable fault coverage. For off-line generation of the deterministic
test patterns, arbitrary software test generators may be used, based
on deterministic, random or genetic algorithms.

In a hybrid BIST technique the length of the pseudorandom test is
an important parameter that determines the behavior of the whole
test process [25]. It is assumed here that for the hybrid BIST the best
polynomial for the pseudorandom sequence generation will be
chosen. Removing the latter part of the pseudorandom sequence
leads to lower fault coverage achievable by the pseudorandom test.
The loss in fault coverage should be compensated by additional
deterministic test patterns. In other words, a shorter pseudorandom
test set implies a larger deterministic test set. This requires
additional memory space, but at the same time, shortens the overall
test process. A longer pseudorandom test, on the other hand, will
lead to longer test application time with reduced memory
requirements. Therefore it is crucial to determine the optimal length
LOPT of the pseudorandom test sequence, in order to minimize the
total testing cost.

Figure 20 illustrates graphically the total cost of a hybrid BIST
consisting of pseudorandom test patterns and stored test patterns,
generated off-line. The horizontal axis in Figure 20 denotes the fault
coverage achieved by the pseudorandom test sequence before
switching from the pseudorandom test to the stored test. Zero fault
coverage is the case when only stored test patterns are used and
therefore the cost of stored test is the largest in this point. The figure
illustrates the situation where 100% fault coverage is achievable
with pseudorandom vectors alone although it can demand a very long
pseudorandom test sequence. In the case of large and complex
designs 100% fault coverage is not always achievable.

71

We can define the total test cost of a hybrid BIST, CTOTAL, as:

CTOTAL = CGEN + CMEM (1)

where CGEN is the cost related to the effort for generating the
pseudorandom test patterns (proportional to the number of clock
cycles) and CMEM is related to the memory cost for storing the
precomputed test patterns to improve the pseudorandom test set.
Please note that the proposed cost calculation formula is not
complete. For example, in case of hardware-based hybrid BIST
architecture the cost of the LFSR’s implementation should be taken
into account, but as those costs are constant, regardless of the size
and ratio of selected test sets, we are not considering them here.

 Fault Coverage (%)

Cmin

CTOTAL

Cost of stored
test CMEM

to reach 100%
fault coverage

Cost of
pseudorandomly

generated test
CGEN

100%

Cost

Figure 20. Cost calculation for hybrid BIST
(under 100% assumption)

Figure 20 illustrates also how the cost of the pseudorandom test is
increasing when striving for higher fault coverage (the CGEN curve).
In general, it can be very expensive to achieve high fault coverage
with pseudorandom test patterns only. The CMEM curve describes the
cost that we have to pay for storing additional precomputed tests

72

from the fault coverage level reached by pseudorandom testing to
100%. The total cost CTOTAL is the sum of the above two costs. The
CTOTAL curve is illustrated in Figure 20, where the minimum point is
marked as Cmin. One of the main objectives of our approach is to find
a fast method for calculating the curve CTOTAL and to find the
minimal cost point Cmin.

As mentioned before, in many cases 100% fault coverage is not
achievable with pseudorandom vectors only. Therefore we have to
include this assumption to the total cost calculation and the new
situation is illustrated in Figure 21, where the horizontal axis
indicates the number of pseudorandom test patterns applied, instead
of fault coverage level. The curve for the total cost CTOTAL is still the
sum of two cost curves CGEN + CMEM with the new assumption that
the maximum fault coverage reachable by only deterministic ATPG
is achieved by the hybrid BIST.

 Total Cost
 CTOTAL

Cost of
pseudorandom test

patterns CGEN

Number of remaining
faults after applying k

pseudorandom test
patterns rNOT(k)

Cost of stored
test CMEM

Number of pseudorandom
test patterns applied, k

Cost/Faults

Figure 21. Cost calculation for hybrid BIST

73

We can also simplify the total cost of a hybrid BIST, CTOTAL, as:

CTOTAL = αL + βS (2)

where L is the length of the pseudorandom test sequence, S is the
number of deterministic patterns, and weights α and β reflect the
correlation between the cost and the pseudorandom test time
(number of clock cycles used) and between the cost and the memory
size needed for storing the deterministic test sequence, respectively.

The idea of defining the test cost as a sum of two costs, the cost of
time for the pseudorandom test generation, and the cost of memory
associated with storing the TPG produced test, is a rather simplified
cost model for the hybrid BIST. For example, neither the basic cost of
memory (or its equivalent) occupied by the LFSR-based generator,
nor the time needed for generating deterministic test patterns are
taken into account. However, the goal of this thesis is not to develop
a complete cost function for the whole BIST solution. The goal is to
find the tradeoff between the length of the pseudorandom test
sequence and the number of deterministic patterns. For making such
a tradeoff the basic implementation costs are not important (they are
basically the same for every combination of pseudorandom and
deterministic test patterns) and will not influence the optimal
solution of the hybrid BIST.

On the other hand, the attempt to add “time” to “space” (even in
terms of their cost) seems rather controversial as it is very hard to
specify which one costs more in general (as well as even in a
particular case) and how to estimate these costs. This was also the
reason why modeling the total cost of a BIST implementation was
not considered as the research objective of our work. The values of
parameters α and β in the cost function are determined by the
system designer according to the particular requirements and can be
used to drive the final implementation towards different alternatives
(for example slower, but more memory efficient solutions). If needed,
it is possible to separate these two different costs (time and space),
consider certain restrictions on each of them, etc. For guiding the

74

search towards an acceptable solution, nevertheless, a simplified
guiding cost function is still needed.

Creating the curve CGEN = αL is not difficult. For this purpose, the
cumulative fault coverage (like in Figure 19) for the pseudorandom
sequence generated by an LSFR should be calculated using fault
simulation. As the result we find for each clock cycle the list of faults
which were covered at this time moment.

• As an example, in Table 3, a fragment of the results of BIST
simulation for the ISCAS’85 circuit c880 [8] is demonstrated.

k rDET(k) rNOT(k) FC(k)

1 155 839 15.593%
2 76 763 23.239%
3 65 698 29.778%
4 90 608 38.832%
5 44 564 43.259%
6 39 525 47.183%

11 104 421 57.645%
16 66 355 64.285%
21 44 311 68.712%
28 42 269 72.937%
51 51 218 78.068%
71 57 161 83.802%

101 16 145 85.412%
149 13 132 86.720%
201 18 114 88.531%
323 13 101 89.839%
412 31 70 92.957%
708 24 46 95.372%
955 18 28 97.183%

1536 4 24 97.585%
1561 8 16 98.390%
2154 11 5 99.496%
3450 2 3 99.698%
4520 2 1 99.899%
4521 1 0 100.000%

Table 3. Pseudorandom test results

75

Here

• k is the number of the clock cycle,

• rDET(k) is the number of new faults detected (covered) by the test
pattern generated at the clock signal k,

• rNOT(k) is the number of faults not yet covered by the sequence of
patterns generated by the k clock signals,

FC(k) is the fault coverage reached by the sequence of patterns
generated by the k clock signals

In the list of BIST simulation results not all clock cycles are
presented. We are only interested in the clock numbers at which at
least one new fault will be covered, and the total fault coverage for
the pseudorandom test sequence up to this clock number increases.
Let us call such clock numbers and the corresponding pseudorandom
test patterns efficient clocks and efficient patterns. The rows in Table
3 correspond to selected efficient clocks for the circuit c880. If we
decide to switch from pseudorandom mode to the deterministic mode
after the clock number k, then L = k.

It is more difficult to find the values for CMEM = βS, the cost for
storing additional deterministic patterns in order to reach the given
fault coverage level (100% in the ideal case). Let t(k) be the number
of test patterns needed to cover rNOT(k) not yet detected faults (these
patterns should be precomputed and used as stored test patterns in
the hybrid BIST). As an example, these data for the circuit c880 are
depicted in Table 4. Calculation of the data in the column t(k) of
Table 4 is the most expensive procedure. In the following section the
difficulties and possible ways to solve the problem are discussed.

76

k t(k)

1
2
3
4
5
6

11
16
21
29
51
71

101

104
104
100
101

99
99
95
92
87
81
74
58
52

149
201
323
412
708
955

1536
1561
2154
3450
4520
4521

46
41
35
26
17
12
11

7
3
2
1
0

Table 4. ATPG results

4.5 Calculation of the Cost for Stored Test

There are two approaches to find t(k): ATPG based and fault table
based. Let us have the following notations:

• i – the current number of the entry in the table of
pseudorandom test results (Table 3);

• k(i) – the number of the efficient clock cycle;

• RDET(i) - the set of new faults detected (covered) by the
pseudorandom test pattern generated at k(i);

77

• RNOT(i) - the set of not yet covered faults after applying the
pseudorandom pattern number k(i);

• T(i) - the set of test patterns needed and found by the ATPG to
cover the faults in RNOT(i);

• N – the number of all efficient patterns in the sequence created
by the pseudorandom test;

• FT – the fault table for a given set of test patterns T and for
the given set of faults R: the table defines the subsets R(tj)∈R
of detected faults for each pattern tj ∈ T.

Algorithm 1: ATPG based approach for finding test sets T(i)

1. Let q:=N;

2. Generate for RNOT(q) a test set T(q), T := T(q), t(q) := |T(q)|;

3. For all q= N-1, N-2, … 1:
Generate for the faults RNOT(q) not covered by test T a test set
T(q), T := T+ T(q), t(q) := |T|.

End.

This algorithm generates a new deterministic test set for the not
yet detected faults at every efficient clock cycle. In this way we have
the complete test set (consisting of pseudorandom and deterministic
test vectors) for every efficient clock, which can reach to the maximal
achievable fault coverage. The number of deterministic test vectors
at all efficient clocks are then used to create the curve CMEM(βS). The
algorithm is straightforward, however, very time consuming because
of repetitive use of ATPG. The whole experiment of simulating the
pseudorandom generation (PRG) behavior and of finding the
numbers of test patterns to be stored for all possible switching points
from PRG to stored test patterns for the whole set of ISCAS’85
benchmark circuits took approximately 8 hours.

Since usage of ATPG is a very costly procedure, we present in the
following another algorithm based on iterative transformations of

78

fault tables. This algorithm allows a dramatic reduction of
computation time for the hybrid BIST cost calculation.

The fault table FT for a general case is defined as follows: given a
set of test patterns T = {ti} and a set of faults R = {rj}, FT = || εij ||
where εij = 1 if the test ti ∈ T detects the rj ∈ R, and εij = 0 otherwise.
We denote by R(ti) ⊂ R the subset of faults detected by the test
pattern ti ∈ T.

We start the procedure for a given circuit by generating a test set
T which gives the 100% (or as high as possible) fault coverage. This
test set can be served as a stored test if no on-line generated
pseudorandom test sequence will be used. By fault simulation of the
test set T for the given set of faults R of the circuit, we create the
fault table FT. Suppose now, that we use a pseudorandom test
sequence TL with a length L which detects a subset of faults RL ⊂ R.
It is obvious that when switching from the pseudorandom test mode
with a test set TL to the precomputed stored test mode with a T, the
test set T can be significantly reduced. At first, by the fault
subtraction operation R(ti) - RL we can update all the contributions
of the test patterns ti in FT (i.e. to calculate for all ti the remaining
faults they can detect after performing the pseudorandom test). After
that we can use any procedure of static test compaction to minimize
the test set T.

The described procedure of updating the fault table FT can be
carried out iteratively for all possible breakpoints i =1, 2, …, N of the
pseudorandom test sequence by the following algorithm [34].

Algorithm 2: Fault Table based approach for finding
test sets T(i)

1. Calculate the whole test T = {tj} for the whole set of faults R =
{rj} by any ATPG to reach as high fault coverage C as possible

2. Create for T and R the fault table FT = {R(tj)}

3. Take i = 1; Rename: Ti = T, Ri = R, FTi = FT

4. Take i = i + 1

5. Calculate by fault simulation the fault set RDET,i

79

6. Update the fault table: ∀j, tj ∈ Ti: R(tj) - RDET,i

7. Remove from the test set Ti all the test patterns tj ∈ Ti where
R(tj) = ∅

8. Optimize the test set Ti by any test compaction algorithm; fix
the value of Si = | Ti | as the length of the stored test for L = i;

9. If i < L, go to 4;

End.

It is easy to understand that for each value L = i (the length of the
pseudorandom test sequence) the procedure guarantees the constant
fault coverage C of the hybrid BIST. The statement comes from the
fact that the subset Ti of stored test patterns is complementing the
pseudorandom test sequence for each i = 1, 2, …, N to reach the
same fault coverage reached by T.

As the result of algorithm 2, the numbers of precomputed
deterministic test patterns Si = |Ti| to be stored and the subsets of
these patterns Ti for each i =1, 2, …, N are calculated. On the basis of
this data the cost of stored test patterns for each i can be calculated
by the formula CMEM = βSi. From the curve of the total cost CTOTAL(i)
= αL + βS the value of the minimum cost of the hybrid BIST
min{CTOTAL (i)} can be easily found.

In case of very large circuits both algorithms presented will lead to
very expensive and time-consuming runs. It would be desirable to
find the global optimum of the total cost curve by as few sampled
calculations of the total cost for selected values of k as possible.
Therefore we introduce here an approach, based on a Tabu search
heuristic, to speed up the calculations.

4.6 Tabu Search Based Cost Optimization

Tabu search was introduced by Fred Glover ([18], [19] and [20]) as
a general iterative heuristic for solving combinatorial optimization
problems. Some initial ideas related to this technique were also
proposed by Hansen [23] in his steepest ascent descent heuristic.

80

Tabu search is a form of local neighborhood search. Each solution
SO∈Ω, where Ω is the search space (the set of all feasible solutions),
has an associated set of neighbors Ν(SO)⊆Ω. A solution SO'∈Ν(SO)
can be reached from SO by an operation called a move. At each step,
the local neighborhood of the current solution is explored and the
best solution is selected as a new current solution. Unlike local
search which stops when no improved new solution is found in the
current neighborhood, Tabu search continues the search from the
best solution in the neighborhood even if this solution is worse than
the current one. To prevent cycling, visited solutions are kept in a
list called Tabu list. Tabu moves (moves stored in the current Tabu
list) are not allowed. However, the Tabu status of a move is
overridden when a certain criterion (aspiration criterion) is satisfied.
One example of an aspiration criterion is when the cost of the
selected solution is better than the best seen so far, which is an
indication that the search is actually not cycling back, but rather
moving to a new solution not encountered before [19]. Moves are only
kept in the Tabu list for a given number of iterations (the so called
“Tabu tenure”).

The procedure of the Tabu search starts from an initial feasible
solution in the search space Ω, which becomes the first current
solution SO. A solution is defined as the switching moment from the
pseudorandom test mode to the stored test mode. The search space Ω
covers all possible switching moments. A neighborhood Ν(SO) is
defined for each SO. Based on the experimental results it was
concluded that the most efficient step size for defining the
neighborhood N(SO) in our optimization problem was 3% of the
number of efficient clocks. A larger step size, even if it can provide
considerable speedup, will decrease the accuracy of the final result.
In our algorithm a sample of neighbor solutions V* ⊂ Ν(SO) is
generated. Those solutions can be generated by using either the
Algorithm 1 or 2. In our current approach Algorithm 2 was used. An
extreme case is to generate the entire neighborhood, that is to take
V* = Ν(SO). Since this is generally impractical (computationally
expensive), a small sample of neighbors is generated, and called trial

81

solutions (V*= n << Ν(SO)). In case of ISCAS’85 benchmark
circuits the best results were obtained, when the size of the sample of
neighborhood solutions was 4. An increase of the size of V* had no
effect on the quality of results. From these trial solutions the best
solution, say SO*∈V*, is chosen for consideration as the next
solution. The move to SO* is considered, even if SO* is worse than
SO, that is, Cost(SO*) > Cost(SO). It is this feature that enables
escaping from local optima. The cost of a solution is calculated
according to Equation 2 for calculating the total cost of hybrid BIST
CTOTAL, presented in section 4.4. A move from SO to SO* is made
provided certain conditions are satisfied.

One of the parameters of the algorithm is the size of the Tabu list.
A Tabu list T is maintained to prevent returning to previously visited
solutions. The list contains information concerning forbidden moves.
Generally, the Tabu list size is small. The size should also be
determined by experimental runs, watching the occurrence of cycling
when the size is too small, and the deterioration of solution quality
when the size is too large [49]. Results have shown that the best
average size for the ISCAS’85 benchmark family was 3. Larger sizes
lead to a loss of result quality.

For finding a good initial feasible solution in order to make Tabu
search more productive, a fast estimation method for an optimal L
proposed in [33] is used. For this estimation, the number of not yet
covered faults in RNOT(i) can be used. The value of RNOT(i) can be
acquired directly from the PRG simulation results and is available
for every significant time moment (see Table 3). Based on the value
of RNOT(i) it is possible to estimate the expected number of test
patterns needed for covering the faults in RNOT(i). The starting point
for the Tabu search procedure can be found by considering a rough
estimation of the total cost based on the value of RNOT(i). Based on
statistical analysis of the costs calculated for ISCAS’85 benchmark
circuits, in [33] the following approximation is proposed: 1 remaining
fault = 0,45 test patterns needed to cover it. In this way, a simplified
cost prediction function was derived: C’TOTAL(k) = CGEN(k) +

82

0,45β⋅RNOT(k). The value k*, where C’TOTAL(k*) = min(C’TOTAL(k)) was
used for the initial solution for Tabu search.

To explain the algorithm, let’s have the following additional
notations: E - number of allowed empty iterations (i.e. iterations that
do not result in finding a new best solution), defined for each circuit,
and SOtrial - solution generated from the current solution as a result
of the move.

Algorithm 3: Tabu Search

Begin
 Start with initial solution SO ∈ Ω;
 BestSolution:=SO;
 Add the initial solution SO to Tabu list T, T={SO};
 While number of empty iterations < E Or
 there is no return to previously visited solution Do

 Generate the sample of neighbor solutions V*⊂ Ν(SO);
 Find best Cost(SO*⊂V*);

 M: If (solution SO* is not in T) or
 (aspiration criterion is satisfied) Then

SOtrial:=SO*;
Update tabu list T;
Increment the iteration number;

 Else
 Find the next best Cost(SO*⊂V*);

Go to M;
 EndIf

 If Cost(SOtrial) < Cost(BestSolution) Then
BestSolution := SOtrial;

 Else
Increment number of empty iterations

 EndIf
 SO:=SOtrial;

 EndWhile
End.

83

4.7 Experimental Results

Experiments were carried out on the ISCAS’85 benchmark circuits
for comparing the algorithms 1 and 2, and for investigating the
efficiency of the Tabu search method for optimizing the hybrid BIST
technique. Experiments were carried out using the Turbo Tester
toolset [31], [56] for deterministic test pattern generation, fault
simulation, and test set compaction. The results are presented in
Table 5 and illustrated by several diagrams.

For calculating the total cost of hybrid BIST we used the formula
CTOTAL = αL + βS. For simplicity, we assume here that α = 1, and β =
B where B is the number of bytes of an input test vector to be applied
to the CUT. Hence, to carry out some experimental work for
demonstrating the feasibility and efficiency of the following
algorithms, we use, as the cost units the number of clocks used for
pseudorandom test generation and the number of bytes in the
memory needed for storing the precomputed deterministic test
patterns.

In the columns of Table 5 the following data is depicted: ISCAS’85
benchmark circuit name, L - length of the pseudorandom test
sequence, FC - fault coverage, S - number of test patterns generated
by deterministic ATPG to be stored, CT – total cost of the hybrid
BIST, TG - the time (sec) needed for ATPG to generate the
deterministic test set, TA - the time (sec) needed for carrying out
manipulations on fault tables (subtracting faults, and compacting the
test set), N - number of efficient patterns in the pseudorandom test
sequence, T1 and T2 - the time (sec) needed for calculating the cost
curve by Algorithms 1 and 2, T3 – the time (sec) to find the optimal
cost by using Tabu search. TS – the number of iterations in Tabu
search, Acc – accuracy of the Tabu search solution in percentage
compared to the exact solution found from the full cost curve, The
total time for performing the calculations for Algorithms 1 and 2 and
for Tabu Search was calculated as follows:

T1 = N * TG

84

T2 = TG + N * TA

T3=T2*(TS /N)+∆

where ∆ is the time needed to perform the Tabu search calculations
(was below 0.1 sec in the given experiments)

Pseudorandom test Stored test Hybrid test

Circuit L FC S FC L S CT

C432 780 93.0 80 93.0 91 21 196

C499 2036 99.3 132 99.3 78 60 438

C880 5589 100.0 77 100.0 121 48 505

C1355 1522 99.5 126 99.5 121 52 433

C1908 5803 99.5 143 99.5 105 123 720

C2670 6581 84.9 155 99.5 444 77 2754

C3540 8734 95.5 211 95.5 297 110 1067

C5315 2318 98.9 171 98.9 711 12 987

C6288 210 99.3 45 99.3 20 20 100

C7552 18704 93.7 267 97.1 583 61 2169

Calculation cost

Circuit TG TA N T1 T2 T3 Ts Acc

C432 20.1 0.01 81 1632 21 2.85 11 100.0

C499 0.7 0.02 114 74 3 0.50 19 100.0

C880 0.2 0.02 114 17 2 0.26 15 99.7

C1355 1.2 0.03 109 133 5 0.83 18 99.5

C1908 11.7 0.07 183 2132 25 3.83 28 100.0

C2670 1.9 0.09 118 230 13 0.99 9 99.1

C3540 85.3 0.14 265 22601 122 7.37 16 100.0

C5315 10.3 0.11 252 2593 38 1.81 12 97.2

C6288 3.8 0.04 53 200 6 1.70 15 100.0

C7552 53.8 0.27 279 15004 129 3.70 8 99.7

Table 5. Experimental results

85

In fact, the values for TG and TA differ for the different values of i =
1,2, …, N. However the differences were in the range of few percents,
which allowed us to neglect this impact and to use the average
values of TG and TA.

The results given in Table 5 demonstrate the high efficiency (in
number of required test vectors) of the hybrid BIST solution over
pure pseudorandom or deterministic approaches. As expected, the
optimal cost was found fastest with using the Tabu search algorithm,
while the accuracy was not less than 97,2% for the whole family of
ISCAS’85 benchmark circuits. In the following the experimental
results will be explained further.

For the Tabu search method the investigation was carried out to
find the best initial solution, the step defining N(SO), the size of V*
and the size of the Tabu list for using the Tabu strategy in a most
efficent way.

For finding the Tabu list size, experiments were carried out with
different sizes of the list. Results showed that the best average size
for the ISCAS’85 benchmark family was 3. Smaller list sizes would
cause cycling around local minimum, a larger size would result in
deterioration of the solution quality. The size of the sample of
neighborhood solutions V* giving the best results for all circuits, was
4. Smaller sizes would make the process of finding the minimum
very long, resulting in very small speedup. A larger size of V* did not
improve the results.

The efficiency of the search depends significally on the step size
defining the neighborhood N(SO). Based on the experimental results,
the charts of dependancy of the overall estimation accuracy and of
the overall speedup on step size were compozed and given in Figure
22 and Figure 23. Analyzing results depicted in those figures led to
the conclusion that the most favorable step size can be considered as
3% of the number of efficient clocks, where the average estimation
accuracy is the highest. Although a larger step size would result in a
speedup, it was considered impractical because of the rapid decrease
in the cost estimation accuracy.

86

96,50

97,00

97,50

98,00

98,50

99,00

99,50

100,00

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Step size (% of the number of resultative clocks)

Figure 22. Dependency of estimation accuracy from
neighborhood step size

0

2

4

6

8

10

12

14

16

1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Step size (% of the number of resultative clocks)

Figure 23. Dependency of average speedup from neighborhood size

87

In Figure 24, the curves of the cost CGEN =L (denoted on Figure 24
as T) for on-line pseudorandom test generation, the cost CMEM = Bk*S
(denoted as M) for storing the test patterns, the number |RNOT| of not
detected faults after applying the pseudorandom test sequence
(denoted as Fr), and the total cost function CTOTAL are depicted for
selected benchmark circuits C432, C499, C880, C1908, C3540 and
C7552 (Sc = 0 is used as a constant in the cost function formula).

Figure 24. Cost curves of hybrid BIST for some ISCAS’85
benchmark circuits

C432

88

Figure 24. Cost curves of hybrid BIST for some ISCAS’85
benchmark circuits (cont.)

C880

C499

89

Figure 24. Cost curves of hybrid BIST for some ISCAS’85
benchmark circuits (cont.)

C3540

C1908

90

Figure 24. Cost curves of hybrid BIST for some ISCAS’85
benchmark circuits (cont.)

C432 C499 C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552

0

10

20

30

40

50

60

70

80

90

100

Pseudorandom

Deterministic

Figure 25. Percentage of test patterns in the optimized test sets
compared to the original test sets

C7552

91

In Figure 25 the amount of pseudorandom and deterministic test
patterns in the optimal BIST solution is compared to the sizes of
pseudorandom and deterministic test sets when only either of these
sets is used. In the typical cases less than half of the deterministic
vectors and only a small fraction of pseudorandom vectors are
needed, however the maximum achievable fault coverage is
guaranteed and achieved.

Figure 26 compares the costs of different approaches using for
Hybrid BIST cost calculation equation 2 with the parameters α = 1,
and β = B where B is the number of bytes of the input test vector to
be applied on the CUT. As pseudorandom test is usually the most
expensive method, it has been selected as a reference and given
value 100%. The other methods give considerable reduction in terms
of cost and as it can be seen, the hybrid BIST approach has
significant advantage compared to the pure pseudorandom or stored
test approach in most of the cases.

0

10

20

30

40

50

60

70

80

90

100

C432 C499 C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552

Pseudorandom Test Cost

Deterministic Test Cost

Hybrid BIST Cost

Figure 26. Cost comparison of different methods.
Cost of pseudorandom test is taken as 100%

92

4.8 Conclusions

In this chapter we described a hybrid BIST architecture for testing
systems-on-chip. It supports the combination of pseudorandom test
patterns with deterministic test patterns in a cost-effective way. The
self-test architecture can be implemented either in classical way, by
using LFSRs, or in software to reduce the area overhead and to take
advantage of the SoC architecture. For selecting the optimal
switching moment from the pseudorandom test mode to the stored
test mode two algorithms were proposed for calculating the complete
cost curve of the different hybrid BIST solutions. The first one is a
straightforward method based on using traditional fault simulation
and test pattern generation. The second one is based on fault table
manipulations and uses test compaction. A Tabu search algorithm
was also developed to reduce the number of calculations in search for
the optimal solution for hybrid BIST. The experimental results
demonstrate the feasibility of the approach and the efficiency of the
fault table based cost calculation method combined with Tabu search
for finding optimized cost-effective solutions for hybrid BIST.

93

Chapter 5
Conclusions and

 Future Work

The aim of this thesis is to propose a technique for test pattern
generation at high abstraction level and to develop a built-in self-test
methodology that requires minimal amount of overhead. In this
section we summarize the thesis and outline possible directions for
the future work.

5.1 Conclusions

The introduction of new EDA tools has allowed designers to work
on higher abstraction levels, leaving the task of generating lower
level designs to automatic synthesis tools. Despite this trend, test-
related activities are still mainly performed at the gate level, and the
risk of reiterating through the design flow due to test problems is
high. Due to the increased complexity, the test generation process is
also one of the most expensive and time-consuming steps of the
entire design flow. Therefore, new methods for test pattern
generation and testability analysis at the early stages of the design
flow are highly beneficial. The design flow can be further improved
by different design-for-testability techniques. In this way, significant
improvement could be achieved in terms of design cost (especially by
reducing the time for designing a testable system) and design quality

94

(by identifying the optimal solution in terms not only of area, time,
and power constraints, but also of testing).

In this thesis we have proposed a novel high-level hierarchical test
pattern generation algorithm. It works at the implementation
independent behavioral level but also takes into account information
from lower abstraction levels and is therefore able to generate test
sequences with higher fault coverage than those test generation
algorithms that are working purely on a behavioral level. We have
demonstrated that the generated sequences can be successfully used
for manufacturing test as well as for testability evaluation at the
very early stages of the design cycle.

We have also proposed an architecture for self-testing systems-on-
chip. It is a hybrid BIST architecture, which supports application of a
hybrid test set. This architecture can be implemented either in
hardware or software. In the case of software implementation, only
small modifications of the existing system are required. The hybrid
test set is composed of a limited number of pseudorandom test
vectors and some additional deterministic test patterns that are
specially designed to shorten the pseudorandom test cycle and to
target random resistant faults. We have provided several methods
for finding the optimal balance between those two test sets and for
calculating the total cost of implementing a hybrid BIST solution.

5.2 Future Work

The following are some possible directions for future research:

High-level hierarchical test pattern generation:

• Testability of hardware/software systems. The testing of
the hardware and software parts of a system are, at this
moment, considered usually as separate problems and
solved with very different methods. It would be very
innovative to develop a test generation technique that is
both applicable to the hardware and the software domains.
As an example, the early generated test sequences could be

95

effective in testing hardware components against
manufacturing defects, but could also be useful for
debugging the code implementing the same component, if
the designer decides to choose a software solution. Future
work will investigate whether it is possible that, to some
extent, the concept of testability is independent of the
adopted implementation in hardware or software.

• High-level fault models. The problem with existing high-
level fault models is that their efficiency has been so far
demonstrated only experimentally. Therefore, it would be
highly beneficial to develop a theoretical framework
concerning high-level testability. Such a theoretical
foundation is crucial for generation of efficient test
sequences, testability analysis and DFT insertion at the
high level of abstraction. This may lead to the development
of new fault models that are able to represent the physical
defects or software bugs and to map them on high-level
descriptions.

Hybrid BIST:

• Hybrid BIST for sequential circuits. In this thesis we have
proposed a hybrid BIST approach for combinational
circuits. A more complex problem is to propose an
architecture and optimization mechanisms for sequential
circuits. The difficulty of developing such architecture and
mechanisms is not only due to the complex nature of
sequential circuits, but also related to pseudorandom
testability. In case of combinatorial circuits, pseudorandom
patterns have relatively high fault detection capabilities.
This is not valid for sequential circuits and alternative
methods for reducing the test data amount has to be
developed. One of the possibilities is to apply
pseudorandom patterns only for a combinatorial section of

96

the design while the rest of the design is tested with
deterministic patterns.

• Self test methods for other fault models. Most of the
existing work in the area of BIST is targeting the classical
SSA fault model. At the same time it has been
demonstrated that the SSA fault model can only cover
some failure modes in CMOS technology. Thus, the
importance of other fault models (like transition and path
delay) is increasing rapidly. Therefore, it would be very
interesting to analyze the quality of hybrid test set in
terms of defect detection capabilities and to develop a
methodology to support the detection of other failures than
the stuck-at ones.

97

References

[1] M. Abramovici, M. A. Breuer, A. D. Friedman, “Digital Systems
Testing and Testable Design,” IEEE Press, 1990.

[2] V. D. Agrawal, C. R. Kime, K. K. Saluja, “A Tutorial on Built-In
Self-Test,” IEEE Design and Test of Computers, pp. 73-82,
March 1993, pp. 69-77, June 1993.

[3] S. B. Akers, “Binary Decision Diagrams,” IEEE Trans. on
Computers, Vol. 27, pp. 509-516, 1978.

[4] C. Angelbro, “P-Bist Test Method Conquer the Ericsson World,”
Ericsson Telecom AB, 1997.

[5] P. H. Bardell, W. H. McAnney, J. Savir, “Built-In Test for VLSI
Pseudorandom Techniques,” John Wiley and Sons, 1987.

[6] B. Beizer, “Software Testing Techniques,” (2nd edition), Van
Nostrand Reinhold, 1990.

[7] M. A. Breuer, A. D. Friedman, “Diagnosis and Reliable Design of
Digital Systems,” Computer Science Press, 1976.

[8] F. Brglez, H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortran,” IEEE
Int. Symp. on Circuits and Systems, pp. 663-698, June 1985.

[9] M. Chatterjee, D. K. Pradhan, “A novel pattern generator for
near-perfect fault-coverage,” VLSI Test Symposium, pp. 417-425,
1995.

[10] CHIP V5, System Documentation, COSYTEC SA, 1998.

98

[11] R. A. DeMillo, R. J. Lipton, F. G. Sayward, “Hints on Test Data
Selection: Help for the Practical Programmer,” IEEE Computer,
Vol.11, No.4, April 1978.

[12] E. B. Eichelberg, E. Lidbloom, “Random Pattern Coverage
Enhancement and Diagnosis for LSSD Logic Self-Test,” IBM
Journal of Research and Development, Vol. 27, No. 3, pp. 265-
272, May 1983.

[13] R. D. Eldred, “Test Routines Based on Symbolic Logic Systems,”
Journal of the ACM, Vol. 6, No. 1, pp. 33-36, 1959.

[14] P. Eles, K. Kuchcinski, Z. Peng, M. Minea, “Compiling VHDL
into a High-Level Synthesis Design Representation,” EURO-
DAC, pp. 604-609, 1992.

[15] P. Eles, K. Kuchcinski, Z. Peng, “System Synthesis with VHDL”,
Kluwer Academic Publishers, 1997.

[16] F. Ferrandi, G. Ferrara, D. Scuito, A. Fin, F. Fummi,
“Functional Test Generation for Behaviorally Sequential
Models,” Design, Automation and Test in Europe (DATE 2001),
pp. 403-410, 2001.

[17] A. Flint, “Multichip Module Self-Test Provides Means to Test at
Speed,” EE-Evaluation Engineering, pp. 46-55, September 1995.

[18] F. Glover, “Future paths for integer programming and links to
artificial intelligence,” Computers & Ops. Res., pp. 533-549, No.
5, 1986.

[19] F. Glover, E. Taillard, and D. de Werra, “A user's guide to tabu
search,” Annals of Operations Research, 41:3-28, 1993.

[20] F. Glover and M. Laguna. “Modern Heuristic Techniques for
Combinatorial Problems”, Blackwell Scientic Publishing, pp. 70-
141, 1993.

[21] S. W. Golomb, “Shift Register Sequences,” Aegan Park Press,
1982.

[22] A. Grochowski, D. Bhattacharya, T. R. Viswanathan, K. Laker,
“Integrated Circuit Testing for Quality Assurance in
Manufacturing: History, Current Status, and Future Trends,”

99

IEEE Trans. on Circuits and Systems – II, Vol. 44, pp. 610-633,
August 1997.

[23] P. Hansen. The steepest ascent mildest descent heuristic for
combinational programming. Congress on Numerical Methods in
Combinatorial Optimization, 1986.

[24] S. Hellebrand, S. Tarnick, J. Rajski, B. Courtois, “Generation Of
Vector Patterns Through Reseeding of Multiple-Polynomial
Linear Feedback Shift Registers,” IEEE Int. Test Conference
(ITC’92), pp. 120-129, 1992.

[25] S. Hellebrand, H.-J. Wunderlich, A. Hertwig, “Mixed-Mode BIST
Using Embedded Processors,” Journal of Electronic Testing:
Theory and Applications, pp. 127-138, No. 12, 1998.

[26] W. E. Howden, “Weak Mutation Testing and Completeness of
Test Sets,” IEEE Transactions on Software Engineering,” Vol.
SE-8, No.4, July 1982.

[27] O. H. Ibarra, S. Sahni, “Polynomially Complete Fault Detection
Problems,” IEEE Transactions on Computers, Vol. C-24, No. 3,
pp. 242-249, March 1975.

[28] “The International Technology Roadmap for Semiconductors
(ITRS 2001),” Semiconductor Industry Association, 2001.

[29] ”IEEE Standard VHDL Language Reference Manual,” IEEE Std
1076-1987, March 31, 1988

[30] ”IEEE Standard VHDL Language Reference Manual,”
ANSI/IEEE Std 1076-1993, (Revision of IEEE Std 1076-1987),
June 6, 1994

[31] G. Jervan , A. Markus, P. Paomets, J. Raik, R. Ubar, “A CAD
system for Teaching Digital Test,” 2nd European Workshop on
Microelectronics Education, pp. 287-290, 1998.

[32] G. Jervan, P. Eles, Z. Peng, “A Hierarchical Test Generation
Technique for Embedded Systems,” Electronic Circuits and
Systems Conference (ECS’99), pp. 21-24, 1999.

[33] G. Jervan, Z. Peng, R. Ubar, “Test Cost Minimization for Hybrid
BIST,” IEEE Int. Symp. on Defect and Fault Tolerance in VLSI
Systems (DFT’00), pp.283-291, 2000.

100

[34] G. Jervan, Z. Peng, E. Orasson, R. Raidma, R. Ubar, “Fast Test
Cost Calculation for Hybrid BIST in Digital Systems,”
Euromicro Symposium on Digital Systems Design, pp. 318-325,
2001.

[35] G. Jervan, Z. Peng, R. Ubar, H. Kruus, “Using Tabu Method for
Optimizing the Cost of Hybrid BIST,” 16th Conference on Design
of Circuits and Integrated Systems (DCIS 2001), pp. 445-450,
2001.

[36] G. Jervan, Z. Peng, R. Ubar, H. Kruus, “A Hybrid BIST
Architecture and its Optimization for SoC Testing,” IEEE 2002
3rd International Symposium on Quality Electronic Design
(ISQED'02), pp. 273-279, 2002.

[37] G. Jervan, Z. Peng, O. Goloubeva, M. Sonza Reorda M. Violante,
“High-Level and Hierarchical Test Sequence Generation,” IEEE
International Workshop on High Level Design Validation and
Test (HLDVT’02), 2002 (to be published).

[38] J. Khare, W. Maly, N. Tiday, “Fault characterization of standard
cell libraries using inductive contamination analysis (ICA),” 14th

VLSI Test Symposium, pp. 405-413, 1996.

[39] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by
Simulated Annealing,” Science, Vol. 220, No. 4598, pp. 671-680,
1983.

[40] B. Könemann, J. Mucha, G. Zwiehoff, “Built-In Test for Complex
Digital Integrated Circuits”, IEEE J. Solid-State Circuits, Vol.
SC-15, No. 3, pp. 315-319, June 1980.

[41] E. Larsson, Z. Peng, “An Integrated Framework for the Design
and Optimization of SOC Test Solutions”, Journal of Electronic
Testing; Theory and Applications (JETTA), vol. 18, no. 4, August
2002.

[42] J. Lee, J. H. Patel, “Architectural Level Test Generation for
Microprocessors,” IEEE Trans. CAD, vol. 13, no. 10, pp. 1288-
1300, October 1994.

[43] E. J. Marinissen, Y. Zorian, “Challenges in Testing Core-Based
System ICs,” IEEE Communications Magazine, pp. 104-109,
June 1999.

101

[44] K. Marriott, P. J. Stuckey, Programming with Constraints:
Introduction, MIT Press, 1998.

[45] P. Michel, U. Lauther, P. Duzy, ”The Synthesis Approach To
Digital System Design,” Kluwer Academic Publishers, 1992

[46] G. E. Moore, “Cramming More Components Onto Integrated
Circuits”, Electronics, April 19, 1965.

[47] B. T. Murray, J. P. Hayes, “Hierarchical Test Generation Using
Precomputed Tests for Modules,” International Test Conference,
pp. 221-229, 1988.

[48] J. Raik, R. Ubar. “Fast Test Pattern Generation for Sequential
Circuits Using Decision Diagram Representations.” Journal of
Electronic Testing: Theory and Applications (JETTA), vol. 16,
no. 3, pp. 213-226, June, 2000.

[49] S. M. Sait, H. Youssef, “Iterative Computer Algorithms with
Application in Engineering. Solving Combinatorial Optimization
Problems,” IEEE Computer Society Press, Los Alamitos, CA,
1999.

[50] J. P. Shen, W. Maly, F. J. Ferguson, “Inductive Fault Analysis of
MOS Integrated Circuits,” IEEE Design and Test of Computers,
Vol. 2, No. 6, pp. 13-26, December 1985.

[51] SICStus Prolog User’s Manual, Swedish Institute of Computer
Science, 2001.

[52] M. Sonza Reorda, M. Violante G. Jervan, Z. Peng, “COTEST
Report D1: Report on benchmark identification and planning of
experiments to be performed”, Politecnico di Torino, 2002.
http://www.ida.liu.se/~eslab/cotest.html

[53] M. Sugihara, H. Date, H. Yasuura, “Analysis and Minimization
of Test Time in a Combined BIST and External Test Approach,”
Design, Automation & Test In Europe Conference (DATE 2000),
pp. 134-140, March 2000.

[54] Y. Sun, “Automatic Behavioral Test Generation By Using a
Constraint Solver”, Final Thesis, LiTH-IDA-Ex-02/13, Linköping
University, 2001.

102

[55] N. A. Touba, E. J. McCluskey, “Synthesis of mapping logic for
generating transformed pseudo-random patterns for BIST,”
IEEE Int. Test Conference (ITC’95), pp. 674-682, 1995.

[56] Turbo Tester Reference Manual. Version 3.99.03. Tallinn
Technical University 1999. http://www.pld.ttu.ee/tt

[57] R. Ubar, ”Test Generation for Digital Circuits Using Alternative
Graphs,” Proc. of Tallinn Technical University, Estonia, No. 409,
pp. 75-81, 1976.

[58] R. Ubar, ”Test Synthesis with Alternative Graphs,” IEEE
Design and Test of Computers, Vol. 13, No. 1, pp. 48-57, Spring
1996.

[59] “Virtual Socket Interface Architectural Document,” VSI
Alliance, Nov. 1996.

[60] V. N. Yarmolik, I. V. Kachan, “Self-Checking VLSI Design,”
Elsevier Science Ltd, 1993.

[61] N. Zacharia, J. Rajski, J. Tyzer, “Decompression of Test Data
Using Variable-Length Seed LFSRs,” 13th VLSI Test
Symposium, pp. 426-433, 1995.

[62] Y. Zorian, E. J. Marinissen, S. Dey, “Testing Embedded Core-
Based System Chips,” IEEE International Test Conference
(ITC), pp. 130-143, IEEE Computer Society Press, October 1998.

LINKÖPINGS UNIVERSITETLINKÖPINGS UNIVERSITET

Rapporttyp
Report category

Licentiatavhandling

Examensarbete

C-uppsats

D-uppsats

Övrig rapport

Språk
Language

Svenska/Swedish

Engelska/English

Titel
Title

Författare
Author

Sammanfattning
Abstract

ISBN

ISRN

Serietitel och serienummer ISSN
Title of series, numbering

Linköping Studies in Science and Technology

Thesis No. 973

Nyckelord
Keywords

Datum
Date

URL för elektronisk version

X

X

2002-10-15

Avdelning, institution
Division, department

Institutionen för datavetenskap

Department of Computer
and Information Science

http://www.ida.liu.se/~eslab

High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems

Gert Jervan

The technological development is enabling production of increasingly complex electronic systems. All those systems
must be verified and tested to guarantee correct behavior. As the complexity grows, testing is becoming one of the
most significant factors that contribute to the final product cost. The established low-level methods for hardware
testing are not any more sufficient and more work has to be done at abstraction levels higher than the classical gate
and register-transfer levels. This thesis reports on one such work that deals in particular with high-level test
generation and design for testability techniques.
The contribution of this thesis is twofold. First, we investigate the possibilities of generating test vectors at the early
stages of the design cycle, starting directly from the behavioral description and with limited knowledge about the
final implementation architecture. We have developed for this purpose a novel hierarchical test generation algorithm
and demonstrated the usefulness of the generated tests not only for manufacturing test but also for testability
analysis.
The second part of the thesis concentrates on design for testability. As testing of modern complex electronic systems
is a very expensive procedure, special structures for simplifying this process can be inserted into the system during
the design phase. We have proposed for this purpose a novel hybrid built-in self-test architecture, which makes use
of both pseudorandom and deterministic test patterns, and is appropriate for modern system-on-chip designs. We
have also developed methods for optimizing hybrid built-in self-test solutions and demonstrated the feasibility and
efficiency of the proposed technique.

This work has been supported by the Swedish Foundation for Strategic Research (SSF)
under the INTELECT program

High-Level Test, Test Generation, Testability Analysis, Design for Testability, Hybrid Built-In Self-Test

91-7373-442-X

0280-7971

LiU-Tek-Lic-2002:46

No 17

No 28

No 29
No 48
No 52
No 60
No 71
No 72
No 73
No 74
No 104

No 108
No 111
No 113
No 118

No 126
No 127

No 139
No 140
No 146
No 150
No 165
No 166
No 174
No 177
No 181
No 184
No 187
No 189
No 196
No 197
No 203
No 212
No 230
No 237
No 250
No 253
No 260
No 283

No 298
No 318

No 319

No 326
No 328
No 333
No 335

No 348
No 352

No 371
No 378
No 380
No 381
No 383
No 386
No 398
Department of Computer and Information Science
Linköpings universitet

Linköping Studies in Science and Technology
Faculty of Arts and Sciences - Licentiate Theses

Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at:
FOA, Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)
Arne Jönsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Realizing Al-
gorithms, 1984.
Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.
Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.
Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.
Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.
Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.
Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.
Ola Strömfors: A Structure Editor for Documents and Programs, 1986.
Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulation, 1986.
Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Com-
puter Methodology, 1987.
Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.
Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.
Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.
Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-
grams, 1987.
Dan Strömberg: Transfer and Distribution of Application Programs, 1987.
Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Sys-
tems, 1987.
Christer Bäckström: Reasoning about Interdependent Actions, 1988.
Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.
Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.
Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.
Jonas Löwgren: Supporting Design and Management of Expert System User Interfaces, 1989.
Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.
Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.
Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.
Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.
Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.
Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.
Magnus Merkel: Temporal Information in Natural Language, 1989.
Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.
Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.
Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.
Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.
Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.
Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.
Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.
Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.
Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.
Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge-
Bases, 1991.
Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.
Lena Srömbäck: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algo-
rithm for Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.
Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denota-
tional Specification, 1992.
Andreas Kågedal: Logic Programming with External Procedures: an Implementation, 1992.
Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.
Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.
Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Support Sytems,
1992.
Ulf Cederling: Industrial Software Development - a Case Study, 1992.
Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-
plementation, 1992.
Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.
Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.
Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.
Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.
Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.
Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.

Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.

No 402
No 406
No 414

No 417
No 436
No 437
No 440
FHS 3/94

FHS 4/94

No 441
No 446
No 450
No 451
No 452

No 455

FHS 5/94

No 462
No 463
No 464
No 469
No 473
No 475
No 476
No 478
FHS 7/95
No 482

No 488

No 489
No 497
No 498

No 503
FHS 8/95

FHS 9/95

No 513
No 517
No 518
No 522
No 538
No 545

No 546
FiF-a 1/96

No 549
No 550

No 557
No 558
No 561
No 563
No 567
No 575
No 576
No 587
No 589

No 591
No 595
No 597
Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.
Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.
Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsledarutköp ur ett agent-
teoretiskt perspektiv, 1994.
Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.
Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.
Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.
Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.
Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett verksamhetsinrik-
tat och samskapande perspektiv, 1994.
Karin Pettersson: Informationssystemstrukturering, ansvarsfördelning och användarinflytande - En kompa-
rativ studie med utgångspunkt i två informationssystemstrategier, 1994.
Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet och region, 1994.
Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.
Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.
Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.
Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques,
1994.
Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System
Developers in Usability-Oriented Systems Development, 1994.
Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende ar-
betssätt och arbetsformer, 1994.
Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.
Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco Verktyg, 1994.
Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.
Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.
Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.
Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.
Bo Lagerström: Successiv resultatavräkning av pågående arbeten. - Fallstudier i tre byggföretag, 1995.
Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.
Anders Avdic: Arbetsintegrerad systemutveckling med kalkylkprogram, 1995.
Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Compani-
on, 1995.
Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based
Programming, 1995.
Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.
Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.
Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual
Generation, 1995.
Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.
Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap
och metodanalys, 1995.
Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och
ansvarsroller, 1995.
Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.
Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.
Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.
Jörgen Andersson: Bilder av småföretagares ekonomistyrning, 1995.
Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.
Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in
Scientific Computing, 1996.
Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.
Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod,
1996.
Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.
Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter från fyra svenska före-
tag. 1996.
Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.
Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.
Anders Ekman: Exploration of Polygonal Environments, 1996.
Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.
Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.
Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.
Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.
Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.
Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,
1996.
Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.
Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.

Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.

No 598
No 599
No 607

No 609
FiF-a 4
FiF-a 6

No 615
No 623
No 626
No 627
No 629
No 631
No 639
No 640
No 643
No 653
FiF-a 13

No 674

No 676
No 668

No 675

FiF-a 14

No 695
No 700
FiF-a 16

No 712

No 719
No 723
No 725
No 730

No 731
No 733
No 734

FiF-a 21
FiF-a 22
No 737
No 738
FiF-a 25

No 742
No 748
No 751

No 752
No 753
No 754

No 766
No 769
No 775
FiF-a 30
No 787

No 788

No 790
No 791
No 800
No 807
Rego Granlund: C3Fire - A Microworld Supporting Emergency Management Training, 1997.
Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.
Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military Coalitions,
1997.
Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.
Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.
Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstruktion, värde-
ring och vidareutveckling i T50-bolag inom ABB, 1997.
Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.
Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.
David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.
Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.
Gunilla Ivefors: Krigsspel coh Informationsteknik inför en oförutsägbar framtid, 1997.
Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997
Jukka Mäki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.
Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.
Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.
Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.
Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet. Analys och vär-
dering av systemutvecklingsmodeller och dess användning, 1997.
Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,
1998.
Jan Håkegård: Hiera rchical Test Architecture and Board-Level Test Controller Synthesis, 1998.
Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets re-
kommendation om koncernredovisning (RR01:91), 1998.
Jimmy Tjäder: Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-
lingsprojekt, 1998.
Ulf Melin: Informationssystem vid ökad affärs- och processorientering - egenskaper, strategier och utveck-
ling, 1998.
Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.
Patrik Hägglund: Programming Languages for Computer Algebra, 1998.
Marie-Therese Christiansson: Inter-organistorisk verksamhetsutveckling - metoder som stöd vid utveckling
av partnerskap och informationssystem, 1998.
Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt
i personal inom skogsindustrin, 1998.
Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.
Henrik André-Jönsson: Indexing time-series data using text indexing methods, 1999.
Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.
Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i fem stora svens-
ka organisationers operativa informationsförsörjning, 1998.
Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.
Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.
Anders Bäckström: Värdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv,
1998.
Ulf Seigerroth: Integration av förändringsmetoder - en modell för välgrundad metodintegration, 1999.
Fredrik Öberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.
Jonas Mellin: Predictable Event Monitoring, 1998.
Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.
Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtaganden - En teori om
aktörsarenor i samverkan om utbyte av information, 1998.
Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.
Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.
Anders Ferntoft: Elektronisk affärskommunikation - kontaktkostnader och kontaktprocesser mellan kunder
och leverantörer på producentmarknader,1999.
Jo Skåmedal: Arbete på distans och arbetsformens påverkan på resor och resmönster, 1999.
Johan Alvehus: Mötets metaforer. En studie av berättelser om möten, 1999.
Magnus Lindahl: Bankens villkor i låneavtal vid kreditgivning till högt belånade företagsförvärv: En studie
ur ett agentteoretiskt perspektiv, 2000.
Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.
Jesper Andersson: Towards Reactive Software Architectures, 1999.
Anders Henriksson: Unique kernel diagnosis, 1999.
Pär J. Ågerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.
Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an
organisation, 1999.
Håkan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra revisionsbyråer,
2000.
Erik Berglund: Use-Oriented Documentation in Software Development, 1999.
Klas Gäre: Verksamhetsförändringar i samband med IS-införande, 1999.
Anders Subotic: Software Quality Inspection, 1999.
Svein Bergum: Managerial communication in telework, 2000.

No 809
FiF-a 32

No 808
No 820
No 823
No 832
FiF-a 34

No 842
No 844
FiF-a 37
FiF-a 40
FiF-a 41
No. 854
No 863
No 881
No 882

No 890

Fif-a 47
No 894
No 906
No 917
No 916

Fif-a-49

Fif-a-51

No 919

No 915
No 931

No 933

No 938
No 942
No 956

FiF-a 58
No 964
No 973
Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.
Karin Hedström: Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter
från ett FOU-samarbete, 2000.
Linda Askenäs: Affärssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.
Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.
Lars Hult: Publika Gränsytor - ett designexempel, 2000.
Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.
Göran Hultgren: Nätverksinriktad Förändringsanalys - perspektiv och metoder som stöd för förståelse och
utveckling av affärsrelationer och informationssystem, 2000.
Magnus Kald: The role of management control systems in strategic business units, 2000.
Mikael Cäker: Vad kostar kunden? Modeller för intern redovisning, 2000.
Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av ”knowledge management”, 2000.
Henrik Lindberg: Webbaserade affärsprocesser - Möjligheter och begränsningar, 2000.
Benneth Christiansson: Att komponentbasera informationssystem - Vad säger teori och praktik?, 2000.
Ola Pettersson: Deliberation in a Mobile Robot, 2000.
Dan Lawesson: Towards Behavioral Model Fault Isolation for Object Oriented Control Systems, 2000.
Johan Moe: Execution Tracing of Large Distributed Systems, 2001.
Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B
e-procurement, 2001.
Annika Flycht-Eriksson: Domain Knowledge Management inInformation-providing Dialogue systems,
2001.
Per-Arne Segerkvist: Webbaserade imaginära organisationers samverkansformer, 2001.
Stefan Svarén: Styrning av investeringar i divisionaliserade företag - Ett koncernperspektiv, 2001.
Lin Han: Secure and Scalable E-Service Software Delivery, 2001.
Emma Hansson: Optionsprogram för anställda - en studie av svenska börsföretag, 2001.
Susanne Odar: IT som stöd för strategiska beslut, en studie av datorimplementerade modeller av verksamhet
som stöd för beslut om anskaffning av JAS 1982, 2002.
Stefan Holgersson: IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och be-
slutsfattande som bygger på uppgifter hämtade från polisens IT-system, 2001.
Per Oscarsson:Informationssäkerhet i verksamheter - begrepp och modeller som stöd för förståelse av infor-
mationssäkerhet och dess hantering, 2001.
Luis Alejandro Cortes: A Petri Net Based Modeling and Verification Technique for Real-Time Embedded
Systems, 2001.
Niklas Sandell: Redovisning i skuggan av en bankkris - Värdering av fastigheter. 2001.
Fredrik Elg: Ett dynamiskt perspektiv på individuella skillnader av heuristisk kompetens, intelligens, mentala
modeller, mål och konfidens i kontroll av mikrovärlden Moro, 2002.
Peter Aronsson: Automatic Parallelization of Simulation Code from Equation Based Simulation Languages,
2002.
Bourhane Kadmiry: Fuzzy Control of Unmanned Helicopter, 2002.
Patrik Haslum: Prediction as a Knowledge Representation Problem: A Case Study in Model Design, 2002.
Robert Sevenius: On the instruments of governance - A law & economics study of capital instruments in li-
mited liability companies, 2002.
Johan Petersson: Lokala elektroniska marknadsplatser - informationssystem för platsbundna affärer, 2002.
Peter Bunus: Debugging and Structural Analysis of Declarative Equation-Based Languages, 2002.
Gert Jervan: High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems, 2002.

