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Abstract. This paper describes a hybrid BIST methodology for testing systems-on-chip. In our
hybrid BIST approach a test set is assembled, for each core, from pseudorandom test patterns that
are generated on-line, and deterministic test patterns that are generated off-line and stored in the
system. The deterministic test set is specially designed to shorten the pseudorandom test cycle and
to target random resistant faults. To support such a test strategy, we have developed severa hybrid
BIST architectures that target different test scenarios. As the test lengths of the two test sequences
is one of the important parameters in the fina test cost, we have to find the most efficient
combination of those two test sets without sacrificing the test quality. We describe methods for
finding the optimal combination of pseudorandom and deterministic test sets of the whole system,
consisting of multiple cores, under given memory constraints, so that the total test time is
minimized. Our approach employs a fast estimation methodology in order to avoid exhaustive
search and to speed up the calculation process. Experimental results have shown the efficiency of
the algorithms to find a near-optimal solutions.
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1. INTRODUCTION

Rapid advances of the microelectronics technology in recent years have
brought new possihilities to the design and manufacturing of integrated circuits
(ICs) [']. Nowadays many systems are designed by embedding pre-designed and
pre-verified complex functional blocks, usually referred as cores, into one single
die. Such core-based design technique has led to increased design productivity,
but at the same time it has introduced additional test-related problems. These
additional testing problems, together with the test problems induced due to the
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complexity and heterogeneous nature of such systems-on-chip (SoC), pose great
challenges to the SoC testing community [?]. Typically, a SoC consists of micro-
processor cores, digital logic blocks, analogue devices, and memory
structures [%]. These different types of components were traditionally tested as
separate chips by dedicated automatic test equipment of different types. Now
they must be tested all together as a single chip either by a super tester, which is
capable of handling different types of cores and is very expensive, or by multiple
testers, which is very time-consuming due to the time of moving from one tester
to another.

Another key issue to be addressed for SoC testing is the implementation of
test access mechanisms on the chip. For traditional system-on-board design,
direct test access to the peripheries of the basic components, in the form of
separate chips, is usually available. For the corresponding cores, embedded
deeply in a SoC, such access is impossible. Therefore, additional test access
mechanisms must be included in a SoC to connect the core peripheries to the test
sources and sinks, which are the SoC pins when testing by an external tester.

Many testing problems, discussed above, can be overcome by using a built-in
self-test (BIST) strategy. For example, the test access cost can be substantially
reduced by putting the test sources and sinks next to the cores to be tested. BIST
can aso be used to deal with the discrepancy between the speed of the SoC,
which isincreasing rapidly, and that of the tester, which will soon be too slow to
match typical SoC clock frequencies. The introduction of BIST mechanismsin a
SoC will also improve the diagnostic ability and field-test capability, which are
essential for many applications where regular operation and maintenance test is
needed [].

Since the introduction of BIST mechanisms into a SoC is a complex task, we
need to develop powerful automated design methods and tools to optimize the
test function together with other design criteria as well as to speed up the design
process. In this paper, we are going to concentrate on one of the improvements of
the classical BIST approach, namely on the hybrid BIST. We will describe the
basic concepts of the approach and propose optimization methods for satisfying
different test constraints.

2. RELATED WORK

A classical BIST architecture consists of atest pattern generator (TPG), atest
response analyser (TRA) and a BIST control unit (BCU), all implemented on the
chip. Different implementations of such BIST architectures have been available
and some of them have wide acceptance. One of the major problems of the
classical BIST implementations is related to the TPG design. Typically, such a
TPG isimplemented by linear feedback shift registers (LFSR) [>]. Since the test
patterns, generated by an LFSR, are pseudorandom by nature and have linear
dependencies [?], the L FSR-based approach often does not guarantee sufficiently
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high fault coverage (especially in the case of large and complex designs), and
demands very long test application times in addition to high overheads. There-
fore, several proposals have been made to combine pseudorandom test patterns,
generated by LFSRs, with deterministic patterns[*™], to form a mixed-mode
solution.

A mixed-mode scheme uses pseudorandom patterns to cover easy-to-detect
faults and, subsequently, deterministic patterns to target the remaining hard-to-
detect faults. The main strength of these approachesisin the possibility to have a
trade-off between test data storage and test application time by varying the ratio
of pseudorandom and deterministic test patterns.

One of the mixed-mode approaches is based on the LFSR reseeding. In this
approach, the quality of the test sequence is improved by generating only a
limited number of test patterns from one LFSR seed (initial state), and during the
test generation process the LFSR is reseeded with new seeds. This idea was first
proposed by Koenemann in 1991 [*]. These new seeds are used to generate
pseudorandom sequences and to encode the deterministic test patternsin order to
reduce the number of non-useful patterns. In this approach, only a set of LFSR
seeds have to be stored instead of the complete set of patterns, and as aresult less
storage is needed.

Severa heuristic approaches have been proposed to identify multiple seeds,
and the number of vectors applied starting with each seed, to minimize the
overall test application time under a given constraint on the maximum number of
seeds [***]. If asmall LFSR is used, it may not always be possible to find a seed
that will generate a required deterministic test pattern, hence the fault coverage
may remain low. Therefore, a different reseeding scenario, based on multiple-
polynomial LFSRs, has been proposed in [*°]. There, deterministic patterns are
encoded with a number of bits, specifying a seed and a polynomial identifier.
During testing, not only the appropriate seed, but also the corresponding feed-
back polynomial, have to be loaded into the LFSR. Another alternative is to use
variable-length seeds[*]. However, al these techniques generate test sets of
excessive length.

Another class of mixed-mode schemes embeds deterministic test patterns into
LFSR sequences by mapping LFSR states to deterministic test patterns. This can
be achieved by adding extra circuitry to generate control signals that complement
certain bits or fix them either as 0 or 1[*']. A hardware for implementing the bit-
flipping or bit-fixing sequence generation logic is the major cost of this approach,
as it has to be customized for a given CUT and LFSR. An alternative approach
transforms the LFSR-generated patterns into a new set of test patterns with
higher fault coverage. The transformation is carried out by a mapping logic,
which decodes sets of ineffective patterns and maps them into vectors that detect
the hard-to-test faults[?]. The outputs of an n-stage random TPG are input to a
mapping logic and the outputs of the mapping logic drive the inputs of the CUT.
Nevertheless, most of these variations of controlling the bits of the LFSR
sequence have not yet solved the problems with random resistance.
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The main objective of all these previously mentioned methods has been
improvement of the test quality in terms of fault coverage, while different aspects
related to the test cost, like test length, area overhead and tester memory require-
ments, were largely omitted or handled in isolation. In this paper an alternative
approach, called hybrid BIST, will be described. In particular, different test
optimization algorithms, based on the proposed hybrid BIST architecture, will be
presented.

3.HYBRID BIST

As described earlier, atypical self-test approach employs usually some form
of pseudorandom test pattern generators. These test sequences are often very long
and not sufficient to detect all the faults. To avoid the test quality loss due to
random pattern resistant faults and to speed up the testing process, we can apply
deterministic test patterns targeting the random resistant and difficult to test
faults. Such a hybrid BIST approach starts usually with a pseudorandom test
sequence of length L. After the application of pseudorandom patterns, a stored
test approach will be used [*®]. For the stored test approach, pre-computed test
patterns are applied to the core under test in order to reach the desirable fault
coverage level. For off-line generation of deterministic test patterns, arbitrary
software test generators may be used based on, for example, deterministic or
genetic algorithms.

In a hybrid BIST technique, the length of the pseudorandom test is an
important design parameter, which determines the behaviour of the whole test
process. A shorter pseudorandom test sequence implies alarger deterministic test
set. This requires additional memory space, but at the same time, shortens the
overal test time. A longer pseudorandom test, on the other hand, will lead to
larger test application time with reduced memory requirement. Therefore it is
crucial to determine the optimal length of pseudorandom test in order to
minimize the total testing cost.

Figure 1 illustrates graphically the total cost of a hybrid BIST, consisting of
pseudorandom test patterns and stored test patterns generated off-line. The
horizontal axis in Fig. 1 denotes the fault coverage, achieved by the pseudo-
random test sequence before switching from the pseudorandom test to the stored
one. Zero pseudorandom test coverage is the case when only stored test patterns
are used and therefore the cost of stored test is the biggest at this point. The
figure illustrates the situation where 100% fault coverage is achievable with
pseudorandom vectors alone.

Thetotal test cost of the hybrid BIST C;4;,. Can therefore be defined as

Crorar =Coen +Cyem =aL +fS, (1)

where Cgg, isthe cost related to the effort for generating L pseudorandom test
patterns (number of clock cycles), C,,g, isrelated to the memory cost for storing
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Fig. 1. Cost caculation for the hybrid BIST (under 100% assumption).

S pre-computed test patterns to improve the pseudorandom test set, and a and
[ are constants to map the test length and memory space to the costs of the two
parts of the test solutions.

We should note that defining the test cost as a sum of two costs, the cost of time
for the pseudorandom test generation and the cost of memory associated with
storing the TPG produced test, is a rather simplified cost model for the hybrid
BIST technique. In this simplified model, neither the basic cost of silicon (or its
equivalent), occupied by the LFSR-based generator, nor the effort, needed for
generating deterministic test patterns, are taken into account. Similarly, al aspects
related to test data transportation are omitted. However, these aspects can easily be
added to the cost calculation formula after the desired hardware architecture and
deterministic test pattern generation approaches are chosen. In the following
sections, we are going to provide the algorithms to find the best trade-off between
the length of pseudorandom test sequence and the number of deterministic patterns.
For making such a trade-off, the basic implementation costs are invariant and will
not influence the optimal selection of the hybrid BIST parameters.

On the other hand, the attempt to add “time” to “space” (even in terms of their
cost) seems rather controversial asit isvery hard to specify which one costs more
in general (or even in particular cases) and how to estimate these costs. This is
also the reason why the total cost of the BIST function is not considered here.
The values of the parameters @ and £ in the cost function are left to be
determined by the designer and can be seen as one of the design decisions. If
needed, it is possible to separate these two costs (time and memory space) and
consider, for example, one of them as a design constraint.

Figure 1 illustrates also how the cost of pseudorandom test is increasing when
striving to higher fault coverage (the Cgg, curve). In generd, it can be very
expensive to achieve high fault coverage with pseudorandom test patterns alone.
The Cy,gy curve describes the cost that we have to pay for storing additional pre-
computed tests at the given fault coverage level, reached by pseudorandom
testing. The total cost C;qra. 1S the sum of the above two costs. The Cgra,
curveisshown in Fig. 1, where the minimum point is marked as C,, .
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Fig. 2. Cost calculation for the hybrid BIST.

As mentioned earlier, in many situations 100% fault coverage is not achiev-
able with only pseudorandom vectors. Therefore we have to include this assump-
tion to the total cost calculation. The situation is illustrated in Fig. 2, where the
horizontal axis indicates the number of pseudorandom patterns applied, instead
of the fault coverage level. The curve of the total cost Crqra, IS Still the sum of
two cost curves Cggy +Cyey With the new assumption that the maximum fault
coverage is achievable only by either the hybrid BIST or pure deterministic test.

4. HYBRID BIST ARCHITECTURES

The previous section described the basic principles of the hybrid BIST and
introduced the test cost calculation formulas. In this section, some basic concepts
of hybrid BIST architectures will be discussed. Although our optimization methods
are not devised for a particular test architecture and different architectural
assumptions can easily be incorporated into the algorithms, some basic assump-
tions have to be made.

4.1. Core-level hybrid BIST architecture

We have divided cores into two large classes. To the first class belong the
cores that are equipped with their own pseudorandom test pattern generator and
only deterministic patterns have to be transported to the cores. The second class
consists of cores with no pre-existing BIST structures. Such cores require an
aternative approach, where pseudorandom and deterministic test patterns have to
be transported to the core under test from external sources.

At the core level, pseudorandom testing can be performed using many
different scenarios, as described earlier. We have assumed a core-level hybrid
BIST architecture that is depicted in Fig. 3, where the pseudorandom pattern
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Fig. 3. Hardware-based core-level hybrid BIST architecture.

generator (PRPG) and the Multiple Input Signature Analyser (MISR) are
implemented inside the core under test (CUT) using LFSRs or any other structure
that provides pseudorandom test vectors with a required degree of randomness.
The deterministic test patterns are precomputed off-line and stored outside the
core, either inaROM or inan ATE [*9].

Core test is performed in two consecutive stages. During the first stage,
pseudorandom test patterns are generated and applied. After a predetermined
number of test cycles, additional test is performed with deterministic test patterns
from the memory. For combinatorial cores, where a test-per-clock scheme can be
used, each primary input of the CUT has a multiplexer at the input that
determines whether the test is coming from the PRPG or from the memory
(Fig. 3). Theresponse is compacted into the MISR in both cases. The architecture
can easily be modified with no or only minor modification of the optimization
algorithmsto be presented in the following sections.

As testing of sequential cores is very complex, it is assumed here that every
sequential core contains one or several scan paths (full scan). Therefore a test-
per-scan scheme has to be used and, for every individua core, the “Self-Test
Using MISR and Parallel Shift Register Sequence Generator” (STUMPS) [
architecture is assumed. Both internally generated pseudorandom patterns and
externally stored deterministic test patterns are therefore applied via scan chains.
In both situations, every core's BIST logic is capable of producing a set of
independent pseudorandom test patterns, i.e. the pseudorandom test sets for all
the cores can be carried out simultaneously and independently.
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4.2. System-level hybrid BIST architectures
4.2.1. Parallel hardware-based hybrid BIST architecture

We start with a system-level test architecture, where every core has its own
dedicated BIST logic. The deterministic tests are applied from the external source
(either on-chip memory or ATE), one core at atime; in the current approach we
have assumed for test data transportation an AMBA-like test bus[%]. AMBA
(Advanced Microcontroller Bus Architecture) integrates an on-chip test access
technigue that reuses the basic bus infrastructure. An example of a multi-core
system with such atest architectureis givenin Fig. 4.

Our optimization methods are not dependent of the location of the deter-
ministic test patterns. These patterns can be applied either from the external ATE
or from an on-chip memory (ROM). As we have assumed a bus-based test
architecture, the time needed for test data transportation from the particular test
source to a given CUT is always the same. The corresponding time overhead,
related to the test data transportation, can easily be incorporated into the pro-
posed algorithms.

Considering the assumed test architecture, only one deterministic test set can
be applied at any given time, while any number of pseudorandom test sessions
can take place in parallel. To enforce the assumption that only one deterministic
test can be applied at atime, a simple ad-hoc scheduling can be used.

The above type of architecture, however, may not always be feasible as not all
cores may be equipped with self-test structures. It may also introduce a
significant area overhead and performance degradation, as some cores may
require excessively large LFSRs.

(NIRRT IR IR NI RIR NN IR RN RN R IR NN IR RN RN RN RIN NN IR NIRRT

Embedded
tester

AMBA system bus

Core 3 \ Core 4 \
SoC

LR RN R IR R N RN R R RN RN R RN NI RN IR R

Tester
memory

Test
controller

Fig. 4. An example of a core-based system with independent BIST resources.
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4.2.2. Software-based hybrid BIST architecture

To make the BIST approach more attractive, we have to tackle the hardware
overhead problem and to find solutions to reduce the additional delay and the
long test application times. At the same time, fault coverage has to be kept at a
high level. The simplest and most straightforward solution is to replace the hard-
ware LFSR implementation by software, which is especially attractive to test
SoCs, because of the availability of computing resources directly in the system (a
typical SoC usualy contains at least one processor core). The software-based
approach, on the other hand, is criticized because of the large memory require-
ments, as we have to store the test program and some test patterns, which are
required for initialization and reconfiguration of the self-test cycle [*]. However,
some preliminary results regarding such an approach for PCBs have been
reported in [*] and show that a software-based approach is feasible.

In case of a software-based solution, the test program, together with all
necessary test data (LFSR polynomials, initial states, pseudorandom test length
and signatures) are kept in a ROM. The deterministic test vectors are generated
during the development process and are stored usually in the same place. For
transporting the test patterns, we assume that some form of TAM is available.

In the test mode, the test program will be executed by the processor core. The
test program proceeds in two successive stages. In the first stage, the pseudo-
random test pattern generator, which emulates the LFSR, is executed. In the
second stage, the test program will apply precomputed deterministic test vectors
to the core under test.

The pseudorandom TPG software isthe same for all coresin the systemand is
stored as one single copy. All characteristics of the LFSR, needed for emulation,
are specific to each core and are stored in the ROM. They will be loaded upon
regquest. Such an approach is very effective in the case of multiple cores, because
for each additional core only the BIST characteristics for this core have to be
stored. This approach, however, may lead to a more complex test controller, as
every core requires pseudorandom patterns with different characteristics (poly-
nomial, initial state and length, for example). The general concept of the software
based pseudorandom TPG is depicted in Fig. 5.

As the LFSR is implemented in software, there are no hardware constraints
for the actual implementation. This allows devel oping for each particular core an
efficient pseudorandom scheme without concerning about the hardware cost
except the cost for the ROM. As has been shown by experiments, the selection of
the best possible pseudorandom scheme is an important factor for such an
approach [1].

As discussed in ["], the program to emulate the LFSR can be very simple and
therefore the memory requirements for storing the pseudorandom TPG program
together with the LFSR parameters are relatively small. This, however, does not
have any influence on the cost calculation and optimization algorithms, to be
proposed. These algorithms are general and can be applied to the hardware-based
as well asto the software-based hybrid BIST optimization.
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Fig. 5. LFSR emulation.

5.COST CALCULATION FOR HYBRID BIST

For hybrid BIST cost calculations we have to calculate costs of the pseudo-
random test Cgg =al and deterministic test C,,, = 8S. Creating the curve
Cgen 1S not difficult. For this purpose, a simulation of the behaviour of the
LSFR, used for pseudorandom test pattern generation, is needed. Fault simulation
should be carried out for the complete test sequence, generated by the LFSR. As
aresult of such asimulation, we find for each clock cycle the list of faults, which
were covered up to this clock cycle. By removing these faults from the complete
fault list, we know the number of faults remaining to be tested.

More difficult is to find the values of SS, the cost for storing additional
deterministic patterns in order to reach the given fault coverage level (100% in
theideal case). In [*¥] we proposed a method based on repetitive use of the ATPG
and in[®] a method based on fault table manipulations was described. Both
procedures are accurate but time-consuming and therefore not feasible for larger
designs.

To overcome the complexity explosion problem we have developed an
estimation methodology [*] that leads us to the approximate solution. This can
be used as an initia solution for the search of more accurate results, using
different optimization heuristics, like Simulated Annealing []. In [*°], a method
based on Tabu search [*'] has been proposed.

Let us denote the deterministic test set by TD and efficient pseudorandom
test set [®] by TPE. In the following we will use FD(i) and FPE(i) to denote
the fault coverage figures of the test sequences TD(i) and TPE(i), respectively,
where i isthe length of the test sequence.

Procedure 1. Estimation of the length of the deterministic test set TD

1. Calculate, by fault simulation, the fault coverage functions FD(i),
i=12...,|TD|, and FPE(i), i=12,...,|TPE]|. The patterns in TD are
ordered in such a way that each pattern, put into the sequence, contributes
with maximum increase in fault coverage.
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2. For each i* <|TPE|, find the fault coverage value F* that can be reached by
asequence of patterns (B, P,,..., B.) O TPE (Fig. 6).

3. By solving the equation FD(i) = F*, find the maximum integer value j* that
satisfies the condition FD(j*)<F*. The value of j* is the length of the
deterministic sequence that can achieve the same fault coverage F*.

4. Calculate the value of |TDE(i*)|=|TD|-j*, which is the number of test
patterns needed for the TD to reach the maximum achievable fault coverage.
The value |TD®(i*)| =|TD|-j*, calculated by the Procedure 1, can be used

to estimate the length of the deterministic test sequence TD* in the hybrid test

set TH ={TP*,TD*} with i* efficient test patterns in TP*. By finding

|TDE(j)| forall j=12,...,|TPE| we get the cost function estimate C=,,,, (j).
In the following we shall illustrate the Procedure 1 with an example. In Fig. 7

we have presented an extract of fault ssmulation results for both test sets (FC is

fault coverage). The length of the pseudorandom sequence has to be only so long
as potentially necessary. By knowing the length of the complete deterministic test
set and fault coverage figures for every individual pattern, we can estimate the
size of the additional deterministic test set for any length of the pseudorandom
test sequence, as illustrated in Fig. 7. We can see that for a given core, 60
deterministic test cycles are needed to obtain the same fault coverage as with 524

FPE()

'y

|TDE @l

\

Fig. 6. Estimation of the length of the deterministic test sequence.

Pseudorandom test sequence

[TP| FC, % [TD] FC,%
1 21.9 1 43.3
2 34.7 2 45.6 524 s
524 97.5 60 97.5 <— Deterministic test sequence
1000 98.9 90 100 60 30

0 200 400 600 800 1000

Fig. 7. Estimation of the length of the deterministic test sequence.
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pseudorandom test cycles and it requires additional 30 deterministic test cyclesto
reach 100% fault coverage. Based on thisinformation we assume that if we apply
those 30 deterministic test cycles on top of the 524 pseudorandom cycles, we can
obtain close to the maximum fault coverage.

We have demonstrated [*] that this estimation methodology can efficiently be
used in different test cost minimization agorithms. In the following we shall use
it for test time minimization in the multi-core environment.

6. HYBRID BIST IN THE SoC ENVIRONMENT

Many publications are devoted to the testing of core-based systems[**%*%]. So
far the main emphasis has been on the test scheduling, TAM design and testability
analysis. The earlier test scheduling work has had the objective to determine start
times for each test so that the total test application time is minimized. This assumes
afixed set of tests and test resources together with atest access architecture. Some
approaches take into account also test conflicts and different constraints, e.g.
power. However, there have not been investigations to find the optimal test setsfor
testing every individua core in such amanner that the test time of the total system
isminimized and different ATE constraints satisfied.

As total cost minimization for multi-core systems is an extremely complex
problem and is rarely used in practice then the main emphasis here is on test time
minimization under memory constraints. The memory constraints can be seen as
limitations of the on-chip memory or automatic test equipment, where the
deterministic test set will be stored, and are therefore of gresat practical importance.
We shall concentrate on the test architecture, where every core is equipped with
its own pseudorandom pattern generator and only deterministic patterns have to
be transported to the cores (Fig. 4).

It is important to mention here that the following approach neither takes into
account the test power nor do we propose any methods for test access mechanism
optimization. Those problems can be solved after the efficient test set for every
individual core has been developed [*] and therefore are not considered here.

In order to explain the test time minimization problem for multi-core systems,
let us use an example design, consisting of 5 cores, each core as a different
ISCAS benchmark. Using the hybrid BIST optimization methodology [*]] we can
find the optimal combination between pseudorandom and deterministic test
patterns for every individual core (Fig.8). Considering the assumed test
architecture, only one deterministic test set can be applied at any given time,
while any number of pseudorandom test sessions can take place in parallel. To
enforce the assumption that only one deterministic test can be applied at atime, a
simple ad hoc scheduling method can be used. The result of this schedul e defines
the starting moments for every deterministic test session, the memory require-
ments, and the total test length t for the whole system. This situation is
illustrated in Fig. 8.

311



O Random
Oldle

. M Deterministic
880

Core | Random | Det.

c2670 - C1908 105 123

C880 121 48

: : C2670 444 77

¢1355 C1355 121 52

. C3540 297 110
3540
t

0 100 200 300 400 so0  clock cycles

¢1908

Fig. 8. Ad hoc test schedule for ahybrid BIST of the core-based system example.

As it can be seen in Fig. 8, the solution, where every individual core has the
best possible combination between pseudorandom and deterministic patterns,
usually does not lead to the best system-level test solution. In this example, we
have illustrated three potential problems:

e the total test length of the system is determined by the single longest
individual test set, while other tests may be substantially shorter;

¢ the resulting deterministic test sets do not take into account the memory
requirements, imposed by the size of the on-chip memory or the external test
equipment;

* the proposed test schedule may introduce idle periods, due to the scheduling
conflicts between the deterministic tests of different cores.

There are several possibilities for improvement. For example, the ad hoc
solution in Fig. 8 can easily be improved by using a better scheduling strategy.
This, however, does not necessarily lead to a significantly better solution as the
ratio between pseudorandom and deterministic test patterns for every individual
core is not changed. Therefore we have to explore different combinations between
pseudorandom and deterministic test patterns for every individual core in order to
find a solution, where the total test length of the system is minimized and the
memory congtraints are satisfied. In the following sections, we shall define this
problem more precisely and describe a fast iterative agorithm for calculating the
optimal combination between different test sets for the whole system.

6.1. Basic definitions and formulation of the problem

Let us assume that a system S consists of n cores C,,C,,...,C,. For every
core C,0S a complete sequence of deterministic test patterns TD; and a
complete sequence of pseudorandom test patterns TR, can be generated.

Definition 1. A hybrid BIST set TH, ={TR,TD,} for a core C, is a sequence
of tests, constructed from a subset TR, TR of the pseudorandom test
sequence and a deterministic test sequence TD, 0 TD, . The sequences TR, and
TD, complement each other to achieve the maximum achievable fault coverage.
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Definition 2. A pattern in a pseudorandom test sequence is called efficient if it
detects at least one new fault that is not detected by the previous test patternsin
the sequence. The ordered sequence of efficient patterns form an efficient
pseudorandom test sequence TPE, = (R, P,,..., B,) OTR,. Each efficient pattern
P, OTPE, is characterized by the length of the pseudorandom test sequence
TPk, from the start to the efficient pattern P, including P;. An efficient
pseudorandom test sequence TPE,, which mcludesall efficient patterns of TRF
is called full efficient pseudorandom test sequence and denoted by TPE; .

Definition 3. The cost of a hybrid test set TH, for a core C, is determined by
the total length of its pseudorandom and deterministic test sequences, which can
be characterized by their costs, COST,,, and COST}, ,, respectively:

COSTT,k = COSTP,k +COSI—D,k :UlTPk | +¢k |TDk |! (2)

and by the cost of recourses needed for storing the deterministic test sequence
TD, inthe memory:

COSTy « =V ITDy |- (©)

The parameters o and ¢, (k =1, 2, ..., n) can beintroduced by the designer to
align the application times of different test sequences. For example, when a test-
per-clock BIST scheme is used, a new test pattern can be generated and applied
in each clock cycleand in thiscase o =1. The parameter ¢, for aparticular core
C, is equal to the total number of clock cycles needed for applying one
deterministic test pattern from the memory. In a special case, when deterministic
test patterns are applied by an external test equipment, application of
deterministic test patterns may be up to one order of magnitude slower than by
applying BIST patterns. The coefficient y, is used to map the number of test
patterns in the deterministic test sequence TD, into the memory recourses,
measured in bits.

Definition 4. When assuming the test architecture described above, a hybrid test
set TH ={TH,;,TH,,...,TH,} for a syslem S={C,,C,,...,C} consists of
hybrid tests TH, for each individua core C,, where the pseudorandom
components of TH can be scheduled in parallel, whereas the deterministic
components of TH must be scheduled in sequence due to the shared test
resources.

Definition 5. J =(j;, j,,..., J,) is called the characteristic vector of a hybrid
test set TH ={TH,,TH,,...,TH.}, where j, =|TPE,| is the length of the
efficient pseudorandom test sequence TPE, O TR TH,. According to Defini-
tion 2, for each j, corresponds a pseudorandom subsequence TR (j,) O TR,
and according to Definition 1, any pseudorandom test sequence TR, (j,) should
be complemented with a deterministic test sequence, denoted with TD, (], ), that
is generated in order to achieve the maximum achievable fault coverage. Based
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on this we can conclude that the characteristic vector J determines entirely the
structure of the hybrid test set TH, for all cores C, OS.

Definition 6. The test length of a hybrid test TH ={TH,,TH,,...,TH,} for a
system S={C,,C,,...,C} isgiven by:

COST, =max{max(c |TR| +#, TD|), > 4, T} @)
k

The total cost of resources, needed for storing the patterns from all deterministic
test sequences TD, inthe memory, is given by

COST,, =3 COST,, . (5)
k

Definition 7. Let us introduce a generic cost function COST,, , = f, (COST; ,)
for every core C,00S, and an integrated generic cost function COST,, =
f (COST;) for the whole system S. The functions COST,, , = f, (COSI; )
will be created in the following way. Let us have a hybrid BIST set
TH, (j) ={TR.(j). TD,(j)} for a core C, with | efficient patterns in the
pseudorandom test sequence. By calculating the costs COSTy and COST,,
for al possible hybrid test set structures TH,(j), i.e. for al values
ji=1 2,...,|TPEkF |, we can create the cost functlons COSTTk fr (D)
and COST, , = fy, (). By taking the inverse function j = f (COSTT s and
msertlng it into the fu(J) we get the generic cost functlon COSIy, =

fa o (Fr (COSTT ) =1 (COSTT «) where the memory costs are directly related
to the Iengths of al possible hybrld test solutions. The integrated generic cost
function COST,, = f(COST;) for the whole system is the sum of all cost
functions COST,, = f, (COST; ) of individual cores C, [JS.

From the function COST,, = f (COST;) the value of COST; for every given
value of COST,, can befound. The value of COST; determines the lower bound
of the length of the hybrid test set for the whole system. To find the component
J, of the characteristic vector J, i.e. to find the structure of the hybrid test set
for all cores, the equation f; , (j) =COSI; should be solved.

The objective here is to find a shortest possible (min(COST;)) hybrid
test sequence THo,r When the memory constraints are not violated i.e.,
COsT,, <COSTy | imiT-

6.2. Minimization of the test length under memory constraints

As described above, the exact calculations for finding the cost of the
deterministic test set COST,, , = f, (COST; ) are very time-consuming. There-
fore, we shall use the cost estimates, calculated by Procedure 1, instead. Using
estimates can give us a close to minimal solution for the test length of the hybrid
test at given memory constraints. After obtaining this solution, the cost estimates
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can be improved and another, better solution can be calculated. This iterative
procedure will be continued until we reach the final solution.

Procedure 2. Test length minimization

1

2.

0.

Given the memory constraint COST | 7 flnd the estimated total test
length COST¥" as a solution to the equation f ©(COST{") = COSTy it
Based on COSI'TE , find a candidate solution J* =(j;, j5, ..+, ) where each
j is tEtle maximum integer value that satisfies the equation COSTT (i) €
COST;

To calculate the exact value of COST,, for the candidate solution J*, find
the set of not yet detected faults Fyor k( jx) and generate the corresponding
deterministic test set TD, by using an ATPG algorithm.

If COST,, =COSTy | mit» go to the Step 9.

If the dlfference |COST,, —COST,, _mir | is bigger than that in the
earlier iteration, make a correction 4t = 4t/2 and go to Step 7.

Calculate a new test length COSTFN from the equation f,F(COSTF) =
COST,,, and find the difference 4t = COSTE -COST=V,

7. Calculate anew cost estimate COSTF" = COST E* +At for the next iteration.
8.

If the value of COST™" is the same as in an earller iteration, go to Step 9,
otherwise go to Step 2.

END: Thevector J* =(j,, j,,..., j.) isthesolution.

Toillustrate the above procedure, in Figs. 9 and 10 an example of the iterative

search for the shortest length of the hybrid test is given. Fi gure 9 represents all
the basic cost curves COSTDk(j) COSTPEk(j) and COSTTk(j) as functions
of thelength j of TPE, where j.,, denotes the optimal solution for a single
core hybrid BIST optimization problem [*®]. Figure 10 represents the estimated

A COST

e e N Solution
COST Dk

Fig. 9. Cost curvesfor agiven core C,.
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Fig. 10. Minimization of the test length.

generic cost function COST: = f E(COSTF) for the whole system. At first
(Step 1), the estimated COST;~ for the given memory constraints is found
(point 1 in Fig. 10). Then (Step 2), based on COSTF thelength j, of TPE, for
the core C, in Fig. 9 is found. This procedure (Step 2) is repeated for al the
cores to find the characteristic vector J* of the system as the first iterative
solution. After that the real memory cost COST,;" is calculated (Step 3, point 1*
in Fig. 10). As we see in Fig. 10, the value of COST,; at the point 1* violates
the memory constraints. The difference 4t; is determined by the curve of the
estimated cost (Step 6). After correction, a new vaue of COSTF is found
(point 2 in Fig. 10). Based on COSTF, anew J* isfound (Step 2), and a new
COST"" is calculated (Step 3, point 2* in Fig. 10). An additional iteration via
points 3 and 3* can be followed in Fig. 10.

It is easy to see that Procedure 2 always converges. By each iteration we get
closer to the memory constraints level, and also closer to the minimal test length
a given constraints. However, the solution may be only near-optimal since we
only evaluate solutions, derived from the estimated cost functions.

7.EXPERIMENTAL RESULTS

We have performed experiments with several systems, composed of different
ISCAS benchmarks [*] as cores (S1: ¢5315, 880, c432, c499, c499, c5315; S2:
€432, ¢499, ¢880, c1355, ¢1908, c5315, ¢6288; S3: ¢880, c5315, ¢3540, c1908,
c880), using our in-house software tools[*"**]. The results are presented in
Tablel1. In Tablel our approach, where the test length is found based on
estimates, is compared with an approach, where deterministic test sets have been
found by manipulating the fault tables for every possible switching point between

316



pseudorandom and deterministic test patterns. As it can be seen from the resuilts,
our approach can give significant speedup (more than one order of magnitude),
while retaining acceptable accuracy (the biggest deviation is less than 9% from
the fault table based solution, and in average 2.4%).

In Fig. 11 the estimated cost curves for the individual cores and the estimated
and real cost curves for one of the systems with 7 cores are shown. In Fig. 11 is
also shown a test solution point for this system under given memory constraint
that has been found based on our algorithm. In this example a memory constraint

Table 1. Experimental results with combinatorial cores

System | Number | Memory Fault table based approach Our approach
of cores congt_:au Nt Total test length,| CPUtime’, | Tota testlength, | CPU time,
s clocks s clocks s

S1 6 20 000 222 3772.84 223 199.78
10 000 487 487 57.08
7 000 552 599 114.16

2 7 14 000 207 3433.10 209 167.3
5500 540 542 133.84
2500 1017 1040 200.76
S3 5 7 000 552 10 143.14 586 174.84
3500 3309 3413 291.40
2000 8549 487 199.78

" CPU time for calculating all possible hybrid BIST solutions.

8000

Memory usage: 5357 bits

Core name: Memory usage: Deterministic
time:
Memory constraint €499 1353 33
c880 480 8
6000 c1355 1025 25
c1908 363 11

5315 2136 12
5500 6288 0 0

€432 0 0

4000

Real cost Estimated cost

\ e

Cost estimates
for individual cores

Memory, bits

]

2000

500 542 1000 1500
Total test lenght, clocks

Fig. 11. Thefinal test solution for the system S2 (M, ;i = 5 500).
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My imir = 5500 bits has been used. The final test length for this memory constraint
is 542 clock cycles and that results in a test schedule depicted in Fig. 12. In
Fig. 13 another test schedule for the same system, when the memory constraints
are different (Mymir = 14 000 bits), is shown.

This approach can easily be extended to systems with full-scan sequential
cores. The main difference lies in the fact that in case of a test-per-scan scheme,
the test application is done via scan chains and one test cycle is longer than one
clock cycle. This is valid both for the pseudorandom and the deterministic test.
As every core contains scan chains with different lengths, the analysis procedure
has to account for this and switching from one core to another has to respect the
local, core-level test cycles. In the following, the experimental results with
systems where every individual core is equipped with Self-Test Using MISR and
Parallel Shift Register Sequence Generator (STUMPS) [] are presented [*).

c432

c6288

c880

c1908

c5315

c1355

c499

542

542

B Deterministic

OPseudorandom

1

-

534 [
T ‘\ Total test length: 542

523

511

486

453

200 300 400 500

o
=
=g
S

Fig. 12. Test schedule for the system S2 (M1 = 5500).

c432

6288

c880

€1908

c5315

c1355

c499

M Deterministic J

O Pseudorandom —‘

Total test length:

209

0

50

100

Fig. 13. Test schedule for the system S2 (M ;mi1 = 14 000).
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While every core has its own STUMPS architecture, at the system level we
assume the same architecture as described earlier: every core's BIST logic is
capable of producing a set of independent pseudorandom test patterns, i.e. the
pseudorandom test sets for all the cores can be carried out simultaneously. The
deterministic tests, on the other hand, can only be carried out for one core at a
time, which means that only one test access bus at the system level is needed. An
example of a multi-core system with such atest architectureisgivenin Fig. 14.

Experiments have been performed with several systems, composed of
different ISCAS 89 benchmarks as cores. All cores have been redesigned to
include full scan path (one or several). The STUMPS architecture was simul ated
in software and for deterministic test pattern generation acommercial ATPG tool
was used. The results are presented in Table2. In Table2 we compare our

L

s3271 5298
Scan Path Scan Path
Embedded tester Scan Path Scan Path
—__ScanPath | Scan Path
Test TAM
controller
Tester
memory
—__ScanPath I
Scan Path Scan Path
Scan Path Scan Path
Scan Path
SoC s1423 $838

T T T T T T T T T T T T T
Fig. 14. Example of a core-based system with the STUMPS test architecture.

Table 2. Experimental results with STUMPS architecture

SoC | Number | Memory Exhaustive approach Our approach
of cores Cong.ia' N [ Total test length, | CPU time', | Total test length, | CPU time,
Its clocks s clocks S
J 6 25000 5750 57 540 5775 270
22000 7100 7150 216
19 000 9050 9050 335
K 6 22000 5225 53 640 5275 168
17 000 7075 7075 150
13 000 9475 9475 427
L 6 15000 3564 58 740 3570 164
13500 4848 4863 294
12 200 9350 9350 464

" CPU time for calculating all possible hybrid BIST solutions.

319



approach, where the test length is found based on estimates, with an exact
approach, where deterministic test sets have been found by a brute force method
(repetitive use of test pattern generator) for every possible switching point
between pseudorandom and deterministic test patterns. Asit can be seen from the
results, our approach gives significant speedup (severa orders of magnitude),
while retaining very high accuracy.

8. CONCLUSIONS

In this paper we have presented an approach for improving the classical BIST
technigue, called hybrid BIST. The method is based on a hybrid test set that is
composed of alimited number of pseudorandom test vectors and some additional
deterministic test patterns that are specially designed to shorten the pseudo-
random test cycle and to target random resistant faults.

We have described hybrid BIST cost caculation models and proposed
algorithms for test time minimization, based on different test architectures. Due
to the complexity of optimizing several SoC test parameters simultaneously, we
have devised a solution, where one of the parameters is constrained (test
memory) and we try to minimize the second one (test time). This approach is
important, for example, in handheld devices where the available memory is
usually very limited. The experimental results have demonstrated the efficiency
of the proposed approach.
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Hubriidne mitmetuumaliste stisteemide
isetestimise metoodika

Gert Jervan, Raimund Ubar ja Zebo Peng

On kirjeldatud kiipstisteemide hibriidset isetestimise metoodikat. Iga Uksiku
tuuma testid kombineeritakse kahest erinevast vektorite jadast: pseudojuhuslikest
vektoritest, mis genereeritakse jooksvalt, ja slisteemi salvestatud, eelnevalt gene-
reeritud deterministlikest vektoritest. Deterministlikud vektorid on loodud nii, et
|Uhendada pseudojuhuslikku jada ja avastada vigu, mis on immuunsed juhudike
vektorite suhtes. Et vOimaldada sellist testimise strateegiat, on véja téétatud
mitmeid hibriidseid isetestimise arhitektuure. Kuna hibriidse isetestimise maksu-
must mdjutab véga palju erinevate testijadade pikkus, siis on oluline leida nende
jadade optimaalne koostis. Samas e tohi aga ohverdada testi kvaliteeti. On kirjel-
datud meetodeid, mida saab kasutada pseudojuhudlike ja deterministlike jadade
vahelise optimaalse kombinatsiooni leidmiseks kiipsiisteemide testimiseks. Need
meetodid voimaldavad leida etteantud malu kitsenduste juures Ithima testijada
Tapsete arvutuste asemel kasutatakse kiiret kaudse hinnangu meetodit, mille tule-
musel on voimalik véltida otsinguruumi téielikku uurimist ja kiirendada lahendi
leldmise protsessi. Eksperimendid on néidanud véljattétatud meetodite efektiivsust
optimaal sele 18hedaste tulemuste saamisal.
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