
 

1 

 

A STUDY OF INSTRUMENT REUSE AND 

RETARGETING IN P1687 
Farrokh Ghani Zadegan, Urban Ingelsson, Erik Larsson Gunnar Carlsson 
Linköping University Ericsson 

 

ABSTRACT 
Modern chips may contain a large number of embedded test, debug, configuration, and monitoring features, 
called instruments.  An instrument and its instrument data, instrument access procedures, may be pre-developed and 
reused and instruments may be accessed in different ways through the life-time of the chip, which requires 
retargeting.  To address instruments reuse and retargeting, IEEE P1678 specifies a hardware architecture, a hardware 
description language, and an access procedure description language. In this paper, we investigate how P1687 
facilitates instrument access procedure reuse and retargeting. 

REUSE AND RETARGETING IN 

TEST STANDARDS 
Design reuse is attractive because it reduces the IC 
design time and efforts, allows outsourcing portions 
of a large design to other companies, and therefore 
helps to manage the complexity of large designs 
through modular design approaches. However, when 
it comes to testing and verification, the benefits of 
design reuse cannot be completely utilized. For 
example, when a pre-developed test feature is reused 
and embedded inside another block of logic or 
another IC, the test patterns developed for that test 
feature—or in general the access procedures that 
describe how to use an on-chip feature—must be 
redeveloped. There are tools available to concatenate 
bit strings corresponding to the test patterns for each 
discrete IC on a PCB to perform tests at board-level. 
Such tools do not yet exist for operating on on-chip 
test features.  

In recent years, the need for reusing the access 
procedures for embedded test, debug, and monitoring 
features, called on-chip instruments, has become 
more apparent, since modern chips may contain a 
large number of such embedded instruments. This 
abundance of on-chip instruments inside on-chip 
modules or IP blocks—developed by their respective 
designers for test and debug purposes—has given rise 
to the idea of reusing that wealth of on-chip 
instruments. Even though designed for a particular 
time in the life cycle of a chip, instruments can be 
accessed throughout its whole life cycle. To 
efficiently reuse instruments, it is necessary to 
automatically retarget the instrument data—or the 
access procedures described for a given instrument at 
its terminals—to the higher design levels up to the 
chip pins through an instrument access infrastructure. 

If we want to make on-chip instrument access 
infrastructure available for off-chip usage, the 
ubiquitous IEEE 1149.1 (JTAG) [1] Test Access Port 
(TAP) is an attractive alternative. To implement and 
use JTAG, a set of languages are employed: to 
describe the JTAG circuitry there is the Boundary 
Scan Definition Language (BSDL), and to describe 
the JTAG TAP operations there are Serial Vector 
Format (SVF) [2] and Standard Test and 
Programming Language (STAPL) [3]. BSDL, 
however, is neither efficient nor sufficient to describe 
all types of instruments or the instrument access 
infrastructure. As an example, there are some 
SERDES implementations for which the Test Data 
Register (TDR) length varies depending on the 
performed operation. A variable length TDR is not 
supported by BSDL and therefore, a separate JTAG 
instruction should be used for each operation. Many 
JTAG instructions will lead to a long instruction 
register (IR) and complex decoding logic which may 
slow down the test clock (TCK). Similarly, SVF and 
STAPL do not lend themselves well to the design 
reuse practice inside the chip. For example, SVF does 
not support aliases or enumerations to make the code 
easy to reuse and to maintain. In particular, SVF and 
STAPL prove inefficient when we try to retarget the 
access procedures at the instrument’s terminals to the 
chip terminals. As an example, currently there is no 
standard way for third-party vendors to provide 
procedures for accessing instruments inside their 
designed IP blocks—which are to be embedded in a 
larger design. Therefore, the test engineer has the 
responsibility of generating access procedures at the 
terminals of the IP block and translating those IP-
level procedures to the system level. That is, even if 
we have the access procedures for a given instrument 
in the form of bit strings at its terminals, it is difficult 
to retarget those procedures to higher levels, since 
current EDA tools do the bit string concatenation 
only at the board level and not the chip-level. Another 



 

2 

 

alternative to describe both the instruments and the 
access procedures is to use the Core Test Language 
(CTL) of IEEE 1500. However, IEEE 1500 does not 
describe the chip-level network, and retargeting in 
IEEE 1500 is provided only from core terminals to 
core wrapper terminals. 

Since current standards are limited in terms of 
describing instruments, reuse, and retargeting, IEEE 
P1687 [4] introduces two new languages, Instrument 
Connectivity Language (ICL) and Pattern Description 
Language (PDL), to standardize the access and 
control of on-chip instruments. In this paper, we 
introduce P1687 and compare the ICL/PDL pair with 
BSDL/SVF regarding their utility in reuse and 
retargeting of instrument access procedures. 

P1687 specifies JTAG as off-chip to on-chip interface 
to the instrument access infrastructure (the P1687 
network) and is informally called Internal JTAG 
(IJTAG). P1687 includes (1) specifications on the 
hardware that interfaces the on-chip instruments to 
the outside world (see the Appendix), (2) ICL which 
describes the instrument’s port functions and logical 
connection to other instruments and to the JTAG 
TAP, and (3) PDL which describes how an 
instrument should be operated. The idea in 
introducing ICL and PDL is to provide an adequate 
and standardized description of the P1687 network, 
instruments, and instrument access procedures, to 
enable ICL and PDL interpreter tools to automate the 
retargeting of access procedures. 

In comparing ICL/PDL with BSDL/SVF, note that 
ICL and BSDL both describe on-chip features 
(accessed through the JTAG TAP). However, ICL is 
used in conjunction with BSDL (when using a P1687 
network through a JTAG TAP) and does not replace 
it. PDL, STAPL and SVF all describe how to use on-
chip features. We make the comparison with SVF 
rather than with STAPL because SVF is currently a 
de facto standard at the board level to operate the 
JTAG TAP and interchange test data between EDA 
tools. 

For this comparison, we start by describing a very 
simple scenario in which a temperature sensor is 
accessed through the JTAG TAP, using firstly 
BSDL/SVF and secondly ICL/PDL. Subsequently, 
we extend to multiple sensors, serially connected on 
the JTAG scan-path and make the scan path 
configurable (flexible) through the use of P1687-
specific components. 

A SMALL EXAMPLE: ACCESSING 

A SIMPLE INSTRUMENT 
In this section, we illustrate how to access an 
embedded instrument using BSDL/SVF and 

ICL/PDL. We make use of a temperature sensor (see 
Figure 1) which, when enabled, makes the 
temperature available at its terminals as a 4-bit 
number, after 10 system clocks.  

 

 

FIGURE 1 SHOWS THE TEMPERATURE SENSOR  

Assume that we need to access our temperature 
sensor through the JTAG TAP as shown in Figure 2. 
One option is using BSDL to describe the JTAG 
circuitry, and SVF to describe how to access the 
sensor. P1687 provides another option which is using 
ICL in conjunction with BSDL to describe the 
network, and PDL to describe the access procedure 
for the sensor. We will compare the two alternatives 
in the following subsections. 

 

 

FIGURE 2 SHOWS THE CONNECTION OF THE 
TEMPERATURE SENSOR TO THE JTAG TAP THROUGH 

A SHIFT AND UPDATE REGISTER. 

 

HOW IT IS DONE BY USING BSDL/SVF 

Figure 2 shows a partial view of the JTAG circuitry 
that we have considered for this example. To keep the 
illustration easy to read, the rest of the mandatory 
components such as instruction register, instruction 
register decoder, etc. are not shown (see the Appendix 
for a more detailed view of a JTAG circuitry). Clock 
and control signals (e.g. shift enable) are not shown in 
Figure 2. Listing 1 shows the partial BSDL 
description of the JTAG circuitry shown in Figure 2. 
In Listing 1, we have replaced some lengthy parts of 
the code which are irrelevant to this discussion with 

(...). 

Temperature 
Sensor

EnTemp[3:0]

TA
P

TCK

TMS

TDI

TDO

Temperature 
Sensor

EnTemp[3:0]

Shift Register



 

3 

 

LISTING 1 THE PARTIAL BSDL DESCRIPTION FOR THE 
DESIGN IN FIGURE 2 

01 entity SingleInstrumentChip is 
02 generic (PHYSICAL_PIN_MAP : string := "DIP22_PACKAGE"); 
03 
04 port (...); 
05 
06 use STD_1149_1_1990.all;  
07 
08 attribute PIN_MAP of SingleInstrumentChip : entity is PHYSICAL_PIN_MAP; 
09 constant DIP22_PACKAGE : PIN_MAP_STRING :=  "..."; 
10 
11 attribute TAP_SCAN_IN    of TDI : signal is true; 
12 attribute TAP_SCAN_MODE  of TMS : signal is true; 
13 attribute TAP_SCAN_OUT   of TDO : signal is true; 
14 attribute TAP_SCAN_CLOCK of TCK : signal is (20.0e6, BOTH); 
15 
16 attribute INSTRUCTION_LENGTH of SingleInstrumentChip : entity is 4; 
17 attribute INSTRUCTION_OPCODE of SingleInstrumentChip : entity is 
18    "BYPASS  (1111, 0000) , " & 
19    "EXTEST  (0001, 1001) , " & 
20    "SAMPLE  (0010, 1010) , " & 
21    "INTEST  (0011, 1011) , " & 
22    "HIGHZ   (0100, 1100) , " &   
23    "CLAMP   (0101) , " &   
24    "READINSTR (0111, 1000)   "; 
25 
26 attribute INSTRUCTION_CAPTURE of SingleInstrumentChip : entity is "0001"; 
27 attribute INSTRUCTION_DISABLE of SingleInstrumentChip : entity is "HIGHZ"; 
28 attribute INSTRUCTION_GUARD   of SingleInstrumentChip : entity is "CLAMP"; 
29 
30 attribute REGISTER_ACCESS of SingleInstrumentChip : entity is 
31    "BOUNDARY (EXTEST, INTEST, SAMPLE),"  & 
32    "BYPASS   (BYPASS, HIGHZ, CLAMP)," & 
33    "INSTR[4]   (READINSTR)" ; 
34       . 

35       . 

36       . 
37 end SingleInstrumentChip; 

 

For our discussion, the interesting points in Listing 1 

are how a JTAG instruction called READINSTR is 
defined (Line 24) and how the 4-bit TDR that this 

instruction accesses is specified as INSTR[4] (Line 
33). This 4-bit TDR represents the shift and update 
register in Figure 2. 

Listing 2 shows a sample SVF script that reads our 
sensor according to the procedure stated above. We 
developed this SVF script assuming (as in Figure 2) 
that there are no other JTAG devices on the scan path, 
i.e. the TDI and TDO terminals of the TAP are 
directly connected to the external tester. Please note 

how the READINSTR instruction is loaded in Line 1 
of Listing 2. 

 

HOW IT IS DONE BY USING ICL/PDL 

Although ICL has some overlap with BSDL, it is not 
supposed to replace it. In fact, the JTAG TAP and 
boundary scan related circuitry will still be in the 
scope of JTAG. Therefore, for our small temperature 
sensor, we still need to use the BSDL in Listing 1 to 
describe the instruction opcode used for placing the 

TDR (shift register in Figure 2) between the TDI and 
TDO terminals. Listing 3 shows the ICL code that 
describes a P1687 network consisting of the sensor 
and a shift register, as well as how this network is 
interfaced to the JTAG TAP.  For the sake of brevity, 
we have not shown and port-mapped the clock and 
control signals—i.e. ShiftEn, CaptureEn, and 
UpdateEn—which are required for the operation of 
the TDR_Sensor module. 

LISTING 3 SHOWS ICL DESCRIPTION OF THE P1687 
NETWORK IN FIGURE 2 

01 Module Sensor { 
02  DataInPort  en; 
03  DataOutPort  temp[3:0]; 
04  } 

05 

06 Module TDR_Sensor { 
07  ScanInPort  si; 
08  ScanOutPort  so { Source SR[0]; 
09      LaunchEdge Falling; } 
10  DataInPort  pi[3:0]; 
11  DataOutPort  po { Source SR[0]; } 
12         

13  SelectPort  en; 
14   

15  ScanRegister SR[3:0]{ ScanInSource si; 
16         CaptureSource pi; } 

       
17  } 

18   

19 Module SingleInstrumentChip_ICL { 
20  Instance TDR_Sensor_1 Of TDR_Sensor { 
21   InputPort en = Tap1.en_TDR_Sensor; 
22   InputPort pi = Sensor1.temp; 
23   } 

24  Instance Sensor1 Of Sensor { 
25   InputPort en = TDR_Sensor_1.SR[0]; 
26   } 

27  AccessLink Tap1 Of STD_1149_1 { 
28   BSDL_Entity SingleInstrumentChip_ICL; 
29   READINSTR {  

30    ScanPath { TDR_Sensor_1; } 
31    ActiveSignals { en_TDR_Sensor ;} 
32    }     

33   } 

34  } 

 

Listing 3 contains three modules, one describing the 
interface of the sensor (Lines 1-4), one describing the 
shift register that connects the sensor’s terminals to 
the scan path (Lines 6-17), and the chip level module 
(Lines 19-34). The description of the sensor’s 
interface contains the I/O ports shown in Figure 2, i.e. 
the en input terminal and the temp output terminal. 
The description of the shift register is more detailed 
since it contains both connection to the scan path 
(Lines 7-9) and connection to the sensor (Lines 10-
12). The main component inside the TDR_Sensor 
module is ScanRegister (Lines 15-16) which is 
among the primitive building blocks specified by ICL. 

LISTING 2 SHOWS THE SVF FILE  

01 SIR 4 TDI (7);     ! 4-bit IR scan => Loading READINSTR (“0111”) 
02 SDR 4 TDI (1);    ! 4-bit DR scan => Activating the sensor (“0001”) 
03 STATE DRPAUSE;     ! Going to state DRPAUSE 
04 RUNTEST 10 SCK ENDSTATE DRPAUSE;  ! Waiting for 10 system clocks 
05 SDR 4 TDI (0);    ! Shifting out the temperature  
06 STATE IDLE     ! Going to state Run-Test/Idle  



 

4 

 

For ScanRegister, the scan-in source and the parallel 
capture ports are described to connect it to the serial 
(scan) and parallel terminals of the TDR_Sensor 
module. 

The chip level module, i.e. 
SingleInstrumentChip_ICL, puts it all together by 
instantiating the other modules (Lines 20-26) and 
connecting them appropriately to the BSDL 
description of the JTAG circuitry (Lines 27-33). 

Listing 4 shows the PDL code that accesses the 
sensor as we had specified above. The PDL 
commands are categorized either as setup commands 
or as action commands. Setup commands configure 
the environment for the action commands, and action 
commands perform actual operations that make the 
setup commands take effect. For example, commands 
such as iTarget, iWrite, iRunLoop, and iRead are 
setup commands, whereas iPDLLevel and iApply are 
action commands which are immediately performed.  

LISTING 4 SHOWS THE PDL CODE FOR READING THE 
TEMPERATURE SENSOR 

01 iPDLLevel 0; 
02 iTarget Sensor; 
03 

04 iProc Read_Temperature() { 
05  iWrite  en 1; 
06  iApply; 
07   

08  iRunLoop  10 -sck; 
09  iApply; 
10   

11  iRead  temp; 
12  iWrite en 0; 
13  iApply; 
14 } 

15 

16 iTarget SingleInstrumentChip_ICL; 

17 iCall SingleInstrumentChip_ICL.Sensor1.Read_Temperature(); 

 

We will now examine the code in Listing 4 in detail. 
The iPDLLevel command (Line 1) chooses the Level-
0 flavor of PDL which can be seen as a sequential set 
of actions without any flow control, which is 
sufficient for our simple example. The iTarget 
command (Line 2) specifies the ICL module (see 
Listing 3) for which the following commands are 
specified. The iProc command is used to specify a 
series of PDL commands for a given instrument as a 
group, which simplifies multiple repetitions of those 
commands and makes it possible to call them at 
higher levels. In our example, we only specify one 
procedure for reading the temperature from the sensor 
(Lines 4-14). To use the sensor, we enable the sensor 
(Lines 5-6), wait for 10 system clocks (Lines 8-9), 
and read the temperature while returning the en signal 
back to zero to make the sensor ready for the next 
read (Lines 11-13). It can be seen that multiple setup 
commands can be queued and applied concurrently 
with a single iApply command. The iTarget 
command in Line 16 tells the PDL interpreter that the 

next command is for the SingleInstrumentChip_ICL 
module, and the following iCall command (Line 17) 
retargets the access procedures for the temperature 
sensor, from its terminals (parallel access) to the 
boundary of the chip, i.e. the JTAG TAP (sequential 
access).  

EXPANDING THE SMALL 

EXAMPLE 
So far, for our small design, ICL and PDL required 
more lines of code compared to BSDL/SVF. 
However, for slightly larger designs, ICL/PDL show 
better maintainability and ease of use, which will be 
detailed in this section. 

USING MULTIPLE INSTANCES OF OUR 

TEMPERATURE SENSOR 

The first extension to consider is to use two instances 
of our sensor, as would be the case when there is a 
need to read temperatures of different areas of a chip. 
The impact of this on the BSDL code (for both 
BSDL/SVF and ICL/PDL scenarios) is that the length 

of the custom TDR INSTR which is described in 
Line 33 of Listing 1 as four, should be doubled since 
now there are two shift registers of length four on the 

scan path (that is, when the READINSTR JTAG 
command is loaded).  

 

FIGURE 3: USING TWO INSTANCES OF THE SENSOR 

Listing 5 shows the updated SVF code for reading the 
temperature from Sensor1. Since the length of scan 

path for the INSTR TDR has changed, any SDR 

command corresponding to INSTR operations should 
be updated, as can be seen in Line 2 and Line 5 of 
Listing 5. For reading both sensors, the length of the 
scan path, specified after each SDR command, does 
not change but the data bits that are to be scanned will 
change from 10 (i.e. “00010000”) to 11 (i.e. 
“00010001”) to enable both sensors. It can be seen 
from this example that changes in the hardware or the 
access procedure can be tricky to be applied 
correspondingly to the SVF code, mainly because 
there is no link between the hardware description 
(BSDL) and the access procedure description (SVF). 

TA
P

TCK

TMS

TDI

TDO

Temperature 
Sensor

EnTemp[3:0]

Shift Register

Temperature 
Sensor

EnTemp[3:0]

Shift Register



 

5 

 

 

We will now examine the changes required for the 
P1687 alternative. Listing 6 shows the updates that 
are required in the ICL description. Since the same 
sensor and shift register components are used twice, 
the only part of code that should be modified is the 
chip level module that should instantiate two 
instances of the sensor and shift register modules 
(Lines 20-33), and add both shift registers to scan 
path (Lines 37-38).  

LISTING 6 SHOWS THE UPDATED PDL CODE FOR 
FIGURE 3 

 . 

 . 

 . 

 

19 Module SingleInstrumentChip_ICL { 
20  Instance TDR_Sensor_1 Of TDR_Sensor { 
21   InputPort en = Tap1.en_TDR_Sensor; 
22   InputPort pi = Sensor1.temp; 
23   } 

24  Instance Sensor1 Of Sensor { 
25   InputPort en = TDR_Sensor_1.SR[0]; 
26   } 

27  Instance TDR_Sensor_2 Of TDR_Sensor { 
28   InputPort en = Tap1.en_TDR_Sensor; 
29   InputPort pi = Sensor2.temp; 
30   } 

31  Instance Sensor2 Of Sensor { 
32   InputPort en = TDR_Sensor_2.SR[0]; 
33   } 

34   AccessLink Tap1 Of STD_1149_1 { 
35   BSDL_Entity SingleInstrumentChip_ICL; 
36   READINSTR {  

37    ScanPath { TDR_Sensor_1;  
38      TDR_Sensor_2; } 

39    ActiveSignals { en_TDR_Sensor ;} 
40    }     

41   } 

42  } 

 

As for the PDL code, no changes are required if we 
are only interested in reading Sensor1, otherwise, 
another iCall command, similar to the one in Line 17 
in Listing 4, should be added for Sensor2.  

It seems to us that from a developer’s point of view, 
the PDL code is easier to read and to maintain as the 
complexity of the access procedures grows. 
Compared to SVF, PDL features aliases and 
enumerations which make the PDL code human 
readable. Moreover, PDL is a good means for 
documenting how to use an instrument. 

 

USING A VARIABLE LENGTH SCAN-
PATH 

In the previous example shown in Figure 3, the shift-
registers for the instruments were always on the scan-
path which is not desirable in chips that have 
hundreds or more instruments, in particular if an 
access is made only to one or a subset of those 
instruments in a given access schedule. In such cases 
having all the instruments on the scan-path might 
unnecessarily incur a large access time overhead. 
Furthermore, in certain scenarios such as when 
instruments are located in different power islands, a 
single scan-path containing all the instruments will be 
broken when an island goes to a low-power mode [5]. 
Therefore, another interesting extension to our design 
will be to use the P1687-specified SIB module (see 
the Appendix on P1687 for basic information on 
SIBs) to add flexibility to the scan-path. Figure 4 
shows how SIB components are added to the scan-
path for our example. 

 

FIGURE 4: ACCESSING THE SENSORS INDIVIDUALLY 

Again, Line 33 of the BSDL code (Listing 1) should 

be modified such that the length of INSTR is set to 
two, since now the initial scan path for INSTR 
consists of two SIBs. As for the SVF code for reading 
Sensor1, this example requires an additional step 
before accessing the shift registers. In the additional 
step, we need to open the SIBs on the scan path. 
Opening the SIBs requires a separate scan sequence 
(i.e. SDR command) in the SVF code, as can be seen 
in Listing 7, which opens the appropriate SIB to 
access Sensor1. 

 

Regarding the ICL code modifications, we need to 
describe the SIB module and apply modifications to 

TA
P

TCK

TMS

TDI

TDO

Temperature 
Sensor

EnTemp[3:0]

Shift Register

Temperature 
Sensor

EnTemp[3:0]

Shift Register

SIB SIB

LISTING 5 SHOWS THE UPDATED SVF CODE FOR FIGURE 3 

01 SIR 4 TDI (7);     ! 4-bit IR scan => Loading READINSTR (“0111”) 
02 SDR 8 TDI (10);    ! 8-bit DR scan => Activating Sensor1 (“00010000”) 
03 STATE DRPAUSE;     ! Going to state DRPAUSE 
04 RUNTEST 10 SCK ENDSTATE DRPAUSE;  ! Waiting for 10 system clocks 
05 SDR 8 TDI (0);    ! Shifting out the temperature  
06 STATE IDLE     ! Going to state Run-Test/Idle  



 

6 

 

the chip level module to instantiate the SIB 
components and describe the scan path 
correspondingly. Listing 8 shows the partial ICL code 
for the design in Figure 4. The Sensor and 
TDR_Sensor modules are not modified and therefore 
are not shown in Listing 8. Here again, we have not 
shown and port-mapped the clock and control signals 
for the SIB module. The PortGroup command used in 
the SIB module, guides the PDL interpreter in 
retargeting the access procedures. Besides 
instantiating and port-mapping the components 
required for the design in Figure 4, ScanPath (Line 
59) is also updated to reflect that the scan-path is now 
through the SIBs. 

 

LISTING 8 SHOWS THE UPDATED ICL CODE FOR 
FIGURE 4 

     . 

     . 

     . 

19 Module SIB { 
20  ScanInPort  si; 
21  ScanInPort  fso; 
22  ScanOutPort  so { Source SIB; 
23      LaunchEdge Falling; } 
24  SelectPort  en; 
25  ToSelectPort to_en; 
26   

27  ScanRegister sr { ScanInSource mux1; 
28      CaptureSource 1'b0; 
29      ResetValue  1’b0; } 
30  ScanMux   mux1 sr { 
31       1'b0 : si; 

32       1'b1 : fso; 

33      } 

34  PortGroup  tap_side {si, so, en}  
35  PortGroup  instrument_side {fso, to_en} 
36  } 

37 

38 Module SingleInstrumentChip_ICL { 
39  Instance sib1 Of SIB { 
40   InputPort en = Tap1.en_TDR_Sensor; 
41   InputPort fso = TDR_Sensor_1.so; 
42   } 

43  Instance TDR_Sensor_1 Of TDR_Sensor { 
44   InputPort en = sib1.to_en; 
45   InputPort si = sib1.so; 
46   InputPort pi = Sensor1.temp; 
47   } 

48  Instance Sensor1 Of Sensor { 
49   InputPort en = TDR_Sensor_1.SR[0]; 
50   } 

51  /* sib2, TDR_Sensor_2, and Sensor2 are 
52     instantiated and port-mapped as above  
53       . 
54       . 
55       .  */  
56  AccessLink Tap1 Of STD_1149_1 { 
57   BSDL_Entity SingleInstrumentChip_ICL; 
58   READINSTR {  

59    ScanPath { sib1; sib2; } 
60    ActiveSignals { en_TDR_Sensor ;} 
61    }     

62   } 

63  } 

 

Regarding the PDL code, again no change is required. 
It is expected in P1687 that the PDL interpreter will 
take care of opening the SIBs on the scan path and 
performing the scan operations required to access 
Sensor1, and therefore, retargeting of the access 
procedure of the sensors (from the sensor’s terminals, 
through the P1687 network, and to the JTAG TAP) is 
automatically performed. 

From the above examples, it is becoming evident that 
without the help of a procedural description language 
such as P1687’s PDL, developing access procedures 
for on-chip instruments from the JTAG TAP (i.e. 
from an outside point of view) by using SVF is 
becoming difficult to maintain as the complexity and 
size of the on-chip instrument network increases. 

In the above simple examples, we only used a small 
subset of ICL commands. However, ICL goes well 
beyond BSDL’s ability to describe the interface to a 
variety of instruments from simple ones to complex 
instruments such as MBIST engines, memories, and 
SERDESs, as well as scenarios such as multiple 
TAPs on a chip and direct (parallel) interfaces 
between instruments. 

To summarize, by using P1687, the modular design 
approach can be utilized for test, monitoring, and etc. 
purposes as well by (1) reusing the access procedures 
for a given instrument (which can be among the 
deliverables for an IP block), and (2) retargeting those 
access procedures to any higher level of design and to 
any test access mechanism. 

CHALLENGES IN ADOPTING 

P1687 
In our discussion of accessing an embedded 
instrument from the JTAG TAP, we mentioned that 
ICL and PDL facilitate reuse and retargeting of 
instrument access procedures. In addition to EDA 
tools required for interpreting the ICL and PDL 
codes, we expect two additional tools, (1) a network 
construction tool for automatic generation of 
optimized ICL code which will address potential 
overheads, and (2) a SIB handling tool [5] for 
optimized operation of SIBs used in a variable length 
scan path.  

As for the P1687 network construction tool, it should 
be noted that one should take into account the 

LISTING 7 SHOWS THE UPDATED SVF CODE FOR FIGURE 4 

01 SIR 4 TDI (7);     ! 4-bit IR scan => Loading READINSTR (“0111”) 
02 SDR 2 TDI (2);    ! 2-bit DR scan => Opening SIB1 by shifting "10" 
03 SDR 6 TDI (34);    ! 6-bit DR scan => Activating Sensor1 by shifting "100010" 
04 STATE DRPAUSE;     ! Going to state DRPAUSE 
05 RUNTEST 10 SCK ENDSTATE DRPAUSE;  ! Waiting for 10 system clocks 
06 SDR 6 TDI (0);    ! Shifting out the temperature 
07 STATE IDLE     ! Going to state Run-Test/Idle 

 



 

7 

 

instrument access time overhead, which might be 
considerable for large designs. In [6] the access time 
overhead is discussed for the scenario where the 
JTAG TAP is used to access the on-chip instruments. 
For example, chaining all instrument shift registers 
into a long scan-path, is not the best P1687 network 
design practice due to the prohibitively high access 
time overhead [6]. Moreover, such a long scan path is 
vulnerable to manufacturing defects such as stuck at 
faults in the chain that could potentially render the 
whole chain useless. P1687 specifies the SIB module 
to be used to form a variable length scan path so that 
it becomes possible to include/exclude instruments as 
needed. However, a long flat [6] scan-path might also 
prove inefficient when some instruments are to be 

accessed more frequently than the others—a situation 
that can be handled, again by using SIBs to add 
hierarchical levels to the P1687 network [7]. 
Hierarchical network design may also solve the issue 
with the instruments being in different power islands 
[5]. Such a network construction tool is not yet 
available from the industry. 

Regarding the SIB handling tool, given a well 
designed P1687 network with a variable length scan 
path, it is still required that based on the power 
constraints, resource conflicts, etc., SIBs are operated 
(i.e. opened and closed) in a way that the constraints 
are satisfied and the access time overhead is 
minimized. This smart handling [5] of SIBs is another 
area which requires support from the EDA industry. 

 

BIBLIOGRAPHY 
[1] IEEE Std 1149.1-2001, IEEE Standard Test Access Port and Boundary-Scan Architecture, 2001. 

[2] (1999) Serial Vector Format Specification. [Online]. http://www.asset-intertech.com/support/svf.pdf 

[3] (1999, Aug) STANDARD TEST AND PROGRAMMING LANGUAGE (STAPL). [Online]. 
http://www.jedec.org/standards-documents/results/STAPL 

[4] IJTAG. [Online]. http://grouper.ieee.org/groups/1687/ 

[5] Al Crouch. (2011) IEEE P1687 Internal JTAG (IJTAG) taps into embedded instrumentation. [Online]. 
http://www.asset-intertech.com/pressroom/whitePapers/IEEE_P1687_IJTAG_Whitepaper.pdf 

[6] F. Ghani Zadegan, U. Ingelsson, G. Carlsson, and E. Larsson, Access Time Analysis for IEEE P1687, doi: 
10.1109/TC.2011.155, URL: 
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5999657&isnumber=4358213. 

[7] F.G. Zadegan, U. Ingelsson, G. Carlsson, and E. Larsson, "Design automation for IEEE P1687," in proc. Design, 
Automation & Test in Europe Conference & Exhibition (DATE) 2011, Grenoble, 14-18 March 2011. 

 

http://www.asset-intertech.com/support/svf.pdf
http://www.jedec.org/standards-documents/results/STAPL
http://grouper.ieee.org/groups/1687/
http://www.asset-intertech.com/pressroom/whitePapers/IEEE_P1687_IJTAG_Whitepaper.pdf


 

8 

 

APPENDIX 
The on-chip P1687 network is interfaced to the JTAG TAP by using a special TDR called (Level-0) Gateway 
module. One interesting feature in the P1687 specification is the concept of a variable length scan-path which can be 
achieved by using a module called Segment Insertion Bit or SIB for short. A SIB is a 1-bit shift and update register 
on the scan-path which can be programmed to insert another segment of P1687 scan-path into the current (active) 
scan-path—hence the name Segment Insertion Bit. It is possible to build a multitude of different hierarchical P1687 
networks by using SIBs. The Gateway itself can be composed of one or more SIBs. Figure 5 shows a small P1687 
network and its connection to the JTAG TAP. The shown network also illustrates the concept of a variable length 
scan-path achieved by using the SIB modules. 

 

FIGURE 5 SHOWS A SAMPLE JTAG CIRCUITRY, A SAMPLE P1687 NETWORK, AND HOW THEY ARE INTERFACED 

 

SIB

Test Data Registers

TA
P

 C
o

n
tro

ller

P1687 Gateway

Instruction Register

IR Decoder

TA
P

TCK

TMS

TDI

TDO Boundary Scan Reg.

clock & control 
signals

Bypass Reg.

...

In
stru

m
en

t

SIB
TDI TDO

SIB SIB SIB

In
stru

m
en

t

In
stru

m
en

t

P1687 Gateway

SIB SIB

In
stru

m
en

t

In
stru

m
en

t

so

si

fso

D Q

S

D Q

U

0

1


