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Abstract—In contrast to IEEE 1149.1, IEEE P1687 allows,
through segment insertion bits, flexible scan paths for accessing
on-chip instruments, such as test, debug, monitoring, measure-
ment and configuration features. Flexible access to embedded
instruments allows test time reduction, which is important at
production test. However, the test access scheme should be
carefully selected such that resource constraints are not violated
and power constraints are met. For IEEE P1687, we detail in this
paper session-based and session-less test scheduling, and propose
resource and power-aware test scheduling algorithms for the
detailed scheduling types. Results using the implementation of our
algorithms shows on ITC’02-based benchmarks significant test
time reductions when compared to non-optimized test schedules.
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I. INTRODUCTION

IC manufacturing is advancing and in each new technol-
ogy generation, ICs are becoming increasingly complex and
integrated. A key to successful IC development, at debug,
production test, configuration, and in-field test, is access to
embedded features, so called instruments, such as phase-locked
loops (PLLs), Serializer/Deserializers (SERDESs), temperature
sensors, Logic Built-In Self-Tests (LBISTs), Memory Built-In
Self-Test (MBIST) controllers, and eFuses (for MBIST repair).
A typical PCB of today from Ericsson contains approximately
30 advanced ICs where each IC can contain hundreds of
various embedded instruments. In the future, when integration
allows the equivalent of such PCBs to be manufactured in a
single IC, the total number of instruments for an IC can easily
be in the range of several thousands. For low-cost production
test and in-field test, the complexity of processing thousands
of instruments brings challenges to the problem of test time
reduction through test scheduling which is the topic of this
paper.

IEEE P1687 (IJTAG) [1] is proposed to enable standardized
access to embedded instruments. We envision that P1687 is
used in production test to access embedded test features. In
contrast to IEEE 1149.1 (JTAG) [2], P1687 provides flexibility
to dynamically configure the scan paths through so called seg-
ment insertion bits (SIBs). The flexibility from P1687 makes
it possible to implement both session-based and session-less
schedules, whereas JTAG only allows session-based schedules.
A session is a set of tests that start at the same time and
the schedule consists of a non-overlapping sequence of such
sessions. It is known that for P1687 the fully concurrent

schedule leads to the lowest test access time [3] and becomes
a cost-saver in IC production test where test cost depends
on test application time (TAT). However, fully concurrent
scheduling may not be possible due to resource constraints and
requirements on power consumption. Hence, there is a need
for TAT-optimizing test scheduling that considers resource and
power constraints.

This paper analyzes and proposes solutions to the resource-
and power-aware test scheduling problem in a P1687 envi-
ronment. As a prerequisite, identified in the review of prior
work (Section II), we develop a test time calculation method
for general schedules (Section IV). Both session-based and
session-less schedules are considered. Based on our analysis
(Section V), we propose three test scheduling algorithms
suitable to P1687 (Section VI), categorized by the type of
schedules they produce, namely session-based (SB), optimized
session-based (OSB) and optimized session-less (OSL). On
implementations of these algorithms, experimental results on
ITC’02-based benchmarks (Section VII and Section VIII) show
significant reduction in TAT with the optimizing algorithms
OSB and OSL compared to the non-optimizing SB. This shows
that the optimizing algorithms effectively solve the considered
test scheduling problem.

II. PRIOR WORK

Significant research has been done on test scheduling [4]–
[6]. Chou et al. [4] discusses for general VLSI systems a
graph-based approach to test scheduling that takes resource
constraints and power limits into account. Zorian [5] proposes
for JTAG-based systems a session-based scheduling technique
for the application of built-in self-tests (BISTs). A session-
based schedule is illustrated in Fig. 1(a), where the rectangles
represent tests with power dissipation and test time. Sessions
are used to group tests that can be applied concurrently within
the maximum power limit. In general, sessions are used to
separate tests that would otherwise conflict due to resource
constraints. For built-in self tests, the duration of a test session
is determined by the longest test in the session, and TAT is the
sum of the session durations. The technique in [5] groups tests
into sessions such that hardware cost and power consumption
are controlled. Muresan et al. [6] proposed another technique
to addresses the same problem as Chou et al. [4] and Zo-
rian [5]. Different from the approaches by Chou et al. [4]
and Zorian [5], Muresan et al. [6] proposes a session-less
scheduling technique. The concept of a session-less schedule
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is illustrated in Fig. 1(b). The test access mechanism to
implement a session-less schedule is not detailed in [6]. A
session-less test schedule is not generally possible with JTAG
and a single JTAG test access port (TAP). This is because with
a single TAP, concurrent testing can only be implemented by
including the tested components in the same JTAG test data
register (TDR) and only one TDR can be accessed at a time.
In contrast, P1687 allows a session-less test schedule, because
P1687 offers flexibility in terms of configuring the scan path,
which is not available to JTAG.

In Chou et al. [4], Zorian [5], and Muresan et al. [6], it
is assumed that the duration of a given test is constant. This
assumption does not hold in a P1687 environment in which
a test duration depends on the other tests that are scheduled
concurrently. Therefore, neither the test scheduling methods
described in [4]–[6], nor the TAT calculation schemes used
there, directly apply to a P1687 environment. The lack of a test
time calculation scheme for P1687 was addressed by Zadegan
et al. [3]. However, only fully sequential schedules or fully
concurrent schedules are addressed; and to evaluate a general
schedule, a method for calculating TAT for general schedules
is needed. Further, no work has addressed test scheduling with
resource and power constraints for P1687, which is the topic
of this paper. We minimize TAT, given a P1687 network, a
set of instruments I , and power and resource constraints. Each
instrument i ∈ I has a number of test patterns tpi, a scan-chain
length li, and a peak power dissipation value pi that must be
taken into account whenever instrument i is active.

To perform power-constrained scheduling, a test power ap-
proximation model is required as discussed in [6]. In this paper,
we consider the peak power value for each instrument. The sum
of peak power values for simultaneously active instruments
should never exceed the maximum power limit. Compared to
the power dissipation of the instruments, we consider the power
dissipation of P1687 circuitry to be negligible.

III. BACKGROUND

P1687 proposes a standard for access to on-chip instruments
through the JTAG TAP with an additional instruction called
GateWay ENable (GWEN), which activates a test data register
called Gateway. Fig. 2(a) shows the JTAG circuitry with the
Gateway register. When activated, the Gateway opens up to a
P1687 network onto which instruments are connected, such as
in the example in Fig. 2(c). To build the network, P1687 details
a component called Segment Insertion Bit (SIB), see Fig. 2(b),
which acts as a 1-bit register on the scan path during shifting.
During the JTAG Update-DR operation, the bit currently inside
the SIB sets the state of the SIB. Either the SIB is closed and
data is shifted straight through, or the SIB is open and data is
shifted to the P1687 network segment that is connected on the
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SIB’s Hierarchical Interface Port. A P1687 network example
is presented in Fig. 2(c). In this example, the SIBs form the
Gateway register as can be seen by comparing Fig. 2(c) with
Fig. 2(a).

By using the example of Fig. 2(c), it will be described
in the following how tests can be applied sequentially and
concurrently in a P1687 environment. Fig. 3 shows in detail the
required steps. For P1687, TAT consists of time transporting
test data (blocks numbered according to the instruments that
are given the test data) and two types of overhead [3], namely
SIB programming overhead (s blocks) and JTAG protocol
overhead (blocks in the middle row). The SIB programming
overhead is the time spent transporting SIB control bits. JTAG
protocol overhead is the progression of five states in the TAP
controller state machine during apply-and-capture. These five
states are Exit1-DR, Update-DR, Select-DR-Scan, Capture-
DR, and Shift-DR (e,u,se,c, and sh blocks, respectively).
We use CUC (Cycle of Update and Capture) as short for
JTAG protocol overhead. As can be seen in Fig. 3(a), each
CUC marks the end of a scan sequence. Each scan sequence
involves two operations. Firstly, shifting test data for all active
instruments and SIB control bits, and secondly, applying test
stimuli and capturing the corresponding responses.

Assume that instrument i1 (l1 = 3 and tp1 = 2) and
instrument i5 (l5 = 1 and tp5 = 2) are to be tested sequentially.
Initially all SIBs are closed. To test instrument i1, SIB1 should
be programmed to be open and the other SIBs to remain closed.
This initial SIB programming is represented in Fig. 3(a) by five
leftmost s blocks followed by a CUC. After opening SIB1, the
first test stimuli vector for i1 can be shifted in along with SIB
reprogramming data. After a CUC, the captured test responses
can be shifted out which are marked by gray boxes in the
figure. The shift-out of the test responses can overlap in time
with the next test stimuli. After shifting out the responses for
the second test stimuli, testing of i1 is complete. Testing i5
follows the same procedure as testing i1.

The concurrent testing of i1 and i5 is illustrated in Fig. 3(b).
In concurrent testing of i1 and i5, the initial SIB programming
is such that both SIB1 and SIB5 are opened. Opening SIB1 and
SIB5 includes the scan-chains of i1 and i5 in the scan path,
which allows the test stimuli vectors for both instruments to be
shifted in, and the test responses to be shifted out, at the same
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time. By comparing Fig. 3(a) and Fig. 3(b), it can be seen that
the time from starting a test to its end, depends on the network
(the number of SIBs) and on the other tests that are performed
concurrently. Furthermore, in concurrent testing the number of
scan sequences is reduced resulting in less SIB programming
overhead and less CUC overhead, and consequently lower TAT.

As can be seen from the above example, the test schedule
affects the overhead of SIB programming and CUC. In other
words, for each scan sequence that brings overhead we want
to transport as much test data as possible. Therefore, in this
paper, to generate a resource- and power-constrained schedule
with minimized TAT, the key idea is to schedule tests such that
concurrency is maximized and the number of scan sequences is
minimized, and thereby minimize SIB programming overhead
and CUC. To measure TAT for the generated schedule, we
develop a TAT calculation method.

IV. TEST TIME CALCULATION FOR A GIVEN SCHEDULE

The test time for a schedule in a P1687 environment is not
given explicitly due to SIB programming overhead and CUC
overhead. Therefore, there is a need of a test time calculation
method. In this section, we explain how TAT is calculated for
general session-based and session-less schedules.

Zadegan et al. [3] proposed algorithms for automated cal-
culation of TAT for fully concurrent schedules and for fully
sequential schedules. Here, in a concurrent schedule all tests
are started as soon as possible considering the P1687 network,
and as soon as a test is finished, the instrument employed
in that test is excluded from the scan path. This is done to
shorten the scan path for the tests that are still being applied.
It is possible to employ the TAT calculation algorithm for
fully concurrent schedules proposed in [3], to obtain TAT
for a general session-based schedule, as is explained in the
following. A general session-based schedule can be seen as a
succession of sessions, and TAT is the sum of the TATs for
each of the sessions. Since in each session tests are performed
concurrently, it is possible to use the algorithm for concurrent
schedule proposed in [3], to calculate TAT for each of the
sessions separately, and obtain the TAT for the whole schedule
by summing up these values. To calculate the test time for
each individual session, using the algorithm in [3], the required
input is the number of test patterns for each instrument. For
the session’s active instruments, we use the given number of
test patterns (tpi), and for all other (inactive) instruments we
use -1 (for reasons detailed in [3]).

To explain how TAT for a general session-less schedule can
be calculated, the following example is provided. Consider the
five instruments in the network shown in Fig. 2(c). Table I
lists the properties for the instruments. Assume that these
instruments are to be tested according to a given session-

Virtual session S1: i1, i5 : 2 test patterns
Virtual session S2: i5, i3 : 1 test pattern
Virtual session S3: i4, i3 : 1 test pattern
Virtual session S4: i4 : 1 test pattern
Virtual session S5: i2 : 1 test pattern

Fig. 4. Representation of a session-less schedule, using a succession of virtual
sessions
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less schedule which is shown in Fig. 8(b). We represent a
session-less schedule as a succession of virtual sessions and
a set of rules for how to practically apply the schedule in a
P1687 environment. The succession of virtual sessions of the
schedule in Fig. 8(b) is presented in Fig. 4. Each virtual session
describes (1) a set of instruments that are tested concurrently
and (2) a number of test patterns to apply to that set of
instruments. A virtual session is a step of the schedule in which
the set of active instruments is constant. It should be noted that
if a test for an instrument is started but not completed in one
virtual session, it will continue in the next virtual session.

The succession of virtual sessions in Fig. 4 abstracted away
from the P1687-specific steps required (1) to configure the
P1687 network before accessing any of the instruments and
(2) to shift out the responses for the last test pattern from an
instrument, before closing the SIB for that instrument. These
steps, however, should be considered in precise calculation of
TAT. Therefore, a P1687 network-specific representation of
a given schedule is required before TAT can be calculated.
Fig. 5 shows one such P1687-specific schedule based on the
network given in Fig. 2(c). The vertical axis shows the power
dissipation of the tests and the horizontal axis marks the scan
sequences required to implement the schedule. In Fig. 5, the
tests are represented with grayed rectangles marked by ID
of the instrument each test belongs to, the shift-out of the
last test responses for each test is represented with rectangles
with inverted colors, and the required network configuration
for each instrument is represented with an empty slot marked
as “Setup”. In Fig. 5, the “Virt. Session” denotes the virtual
session to which the corresponding scan sequence belongs.

In this work, to obtain one such P1687-specific schedule
from a given representation (Fig. 4), the following two rules
are applied:

1) If any instrument, from the set of the instruments for
a virtual session, has not been activated in the previous



TABLE I
PROPERTIES FOR THE INSTRUMENTS IN FIG. 2(C)

Instrument i1 i2 i3 i4 i5
Number of test patterns (tp) 2 1 2 2 3
Scan-chain length (l) 3 7 3 3 1
Peak power dissipation (p) 8 6 8 7 8
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Fig. 6. Scan path configurations for the network shown in Fig. 2(c)

virtual sessions (i.e. its corresponding SIB is still closed),
the required configuration scan sequences are added to
the schedule. An example is “Setup 1,5” before applying
tests to i1 and i5 in Fig. 5.

2) If in the beginning of a virtual session, the remaining
number of patterns for an instrument mentioned for
that virtual session, is equal to the number of patterns
specified for the virtual session, i.e. its test is completed
by the end of this virtual session, one sequence is added
to the schedule to complete the test for that instrument by
performing the last shift-out. An example is the inverted
rectangle marked by 1, which is added to represent the
last shift-out for i1.

Table II will be used to describe the steps, i.e. scan
sequences, required to apply the test patterns according to
the P1687-specific schedule. Each row of Table II represents
one scan sequence or a number of subsequent identical scan
sequences, as marked by “# of scan sequences”. “Seq. ID” in
Table II indicates the order of the required scan sequences.
“Scan-path” refers to the part of Fig. 6 which shows the
scan-path configuration corresponding to the scan sequence.
“Virtual Session” enumerates virtual sessions. “SIBs” presents
the number of SIBs on the scan-path for each scan sequence.
“Instruments” presents the number of bits scanned for the
active instruments in the scan sequence. “

∑
” shows the total

number of bits scanned per sequence. “CUC” shows the
number of test clock cycles (TCKs) spent on performing an
apply-and-capture for each scan sequence. Finally, “Sum for
scan-path” presents the total number of clock cycles that are
required for each scan-path configuration. The last row of
Table II, presents TAT which is the sum of the values in the
last column.

From the above, it can be seen that a representation of a
session-less schedule and two rules can be used to derive a
P1687-specific schedule. From such a P1687-specific sched-
ule, TAT is calculated by automating the process detailed in
Table II. In the remainder of this paper, we use this TAT
calculation method to analyze and evaluate test scheduling
approaches.

V. SCHEDULING ANALYSIS

To see how existing test scheduling approaches perform
in a P1687 environment, consider the following. The typical
approach in [4]–[6] is to view the tests as rectangles described
by the test’s power dissipation (rectangle’s height) and the
test’s duration in time units (rectangle’s width). The test

TABLE II
TEST TIME CALCULATION STEPS FOR THE SCHEDULE GIVEN IN FIG. 4

Seq. Virtual Scanned bits # of scan Sum for
ID Scan-path Session SIBs Instruments

∑
CUC sequences scan-path

1 Fig. 6(a) S1 5 0 5 5 1 (5 + 5) · 1
2 Fig. 6(b) S1 5 4 (l1 + l5) 9 5 3 (9 + 5) · 3
3 Fig. 6(c) S2 5 1 (l5) 6 5 1 (6 + 5) · 1
4 Fig. 6(d) S2 5 3 (l3) 8 5 1 (8 + 5) · 1
5 Fig. 6(d) S3 5 3 (l3) 8 5 1 (8 + 5) · 1
6 Fig. 6(e) S3 5 6 (l3 + l4) 11 5 1 (11 + 5) · 1
7 Fig. 6(f) S4 5 3 (l4) 8 5 2 (8 + 5) · 2
8 Fig. 6(a) S5 5 0 5 5 1 (5 + 5) · 1
9 Fig. 6(g) S5 5 7 (l2) 12 5 2 (12 + 5) · 2
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scheduling problem is to fit the rectangles in a strip limited
on one side by the maximum power limit, and minimize TAT.
Such an approach, when employed in a P1687 environment,
could result in an unnecessarily long schedule as is shown
in the following example. Consider the five instruments in
Fig. 2(c) which are described in Table I. By considering each
individual instrument i, the test duration τi can be calculated
as:

τi = tpi · (li + CUC) + li (1)

In this example, all five instruments have a test duration of
19 time units. Therefore, given the maximum power limit of
16 units, the schedule shown in Fig. 7(a) is a good schedule
according to [4]–[6]. We would interpret Fig. 7(a) as follows.
Test 1 and test 2 are performed concurrently, succeeded by
concurrent application of tests 3 and 4, succeeded by test
5. The schedule in Fig. 7(a) is also shown in Fig. 7(b) but
here the horizontal axis shows the number of test patterns.
TAT is 175 time units calculated as in Section IV. A better
schedule can be seen in Fig. 8(c) which results in TAT
of 155 time units. This example shows that the approaches
from [4]–[6] lead to suboptimal schedules when applied in a
P1687 environment. It can be explained by considering that
performing tests concurrently in a P1687 environment impacts
the duration of individual tests, see Section III. Consequently,
the tests cannot be viewed as rectangles where the width is
specified by test duration.

To find a better view of tests, the following should be
considered. In Section III, it is noted that performing tests
concurrently reduces TAT, compared to when the same tests are
performed sequentially. The benefit of concurrency in P1687
is not depending on how long time tests are running together,
but rather on the fact that test patterns are applied together
sharing the same SIB programming and CUC overhead. In the
following we view tests as rectangles with widths specified
in number of test patterns (tp). Using this view of tests,
the problem of power-constrained test scheduling with the
objective of minimizing TAT, can be described as the classic
strip packing problem which is NP-hard. Since in general, we
do not make any assumptions about resource constraints, the
problem complexity remains the same, when considering both



power and resource constraints. To solve the problem with both
power and resource constraints, in the following, heuristics will
be proposed.

The basic session-based test scheduling approach for re-
solving power and resource constraints starts with an empty
schedule. From a given list, tests are moved into the schedule
at start time zero such that only those tests that can be
run concurrently are moved, considering power and resource
constraints. Subsequently, the end of the scheduled test with
the most patterns is considered the new start time, and the
process is repeated for the remaining list of tests. The process
continues until the list of tests is empty. It should be noted that
in a P1687 environment, two approaches might be assumed for
applying tests according to a session-based schedule. In the
first approach, no change in the P1687 network configuration
is made within a session, and therefore, instruments employed
in the test remain on the scan-path until the end of session. In
the second approach, instruments are excluded from the scan-
path as soon as their testing is finished.

To get a session-less test schedule, a similar approach can
be employed. The difference is that when updating the start
time, it is set to the earliest time when any of the tests
finishes. Fig. 8(a) shows an example of a session-less schedule
generated by this approach. The example is based on the
instruments in the P1687 network shown in Fig. 2(c), detailed
in Table I, with a power limit of 16 units and resource conflicts
between tests 4 and 5, and between tests 2 and 4. The TAT
for this schedule is 185 time units. In Fig. 8(a) the scheduling
process starts by adding test 1 to the empty schedule. After
adding also test 2, no more tests can fit within the maximum
power limit. Therefore, test 3 is scheduled after test 2 which
was the earliest test to finish. Similarly, test 4 is scheduled
after test 1, but test 5 cannot be scheduled after test 3 because
that would cause a resource conflict with test 4.

To avoid the situation in Fig. 8(a) where the longest test is
performed last without any concurrency, we sort the tests in a
descending order based on the number of patterns. Based on
this sorting we apply the same approach as above. The result is
shown in Fig. 8(b). Here, TAT is 175 time units. From Fig. 8(b)
it can be seen that considering the conflicting tests (here 2
and 4) late in the scheduling process limits the possibility for
concurrency. Therefore, the next example (Fig. 8(c)) analyzes
the impact of considering the conflicting tests earlier than the
non-conflicting tests in the scheduling. We consider the test list
5 4 2 1 3. Here, test 5 is added first because it has the most
test patterns and it has a conflict with test 4. The next test is
not test 4 because of the resource conflict with test 5. Instead,
test 2 is added to the schedule. Similarly, test 1 follows after
test 2, because test 4 can still not be applied. Finally tests 4
and 3 are added. The schedule in Fig. 8(c) results in TAT of
155 time units.

In this section we have seen that the important parameters
are power dissipation and the number of test patterns for
each test. Furthermore, we analyzed an approach for test
scheduling that resolves power- and resource-constraints, and
observed in the examples of Fig. 8 that TAT, can be reduced by
prioritizing tests with conflicts and tests with many patterns. It
is interesting to see from Fig. 8 that the length of the schedules
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Algorithm 1: Optimized session-based (OSB) scheduling
Input: Instruments as {(i1, tpi1, pi1, rci1), . . .}
Input: ResourceConflicts as {(im, in), (im, io), . . .}
Input: PowerLimit

Output: Sessions as {(tpS1, {in, io, . . .}), (tpS2, {im, . . .}), . . .}
1 Sort Instruments on rc then on tp, both in descending order;
2 Sessions := {};
3 while Size(Instruments) > 0 do
4 s := {} ; // Current session
5 ps := 0 ; // Power consumption for s
6 tps := 0 ; // Number of test patterns for s
7 foreach (i, tpi, pi, rci) ∈ Instruments do
8 if i has no constraints with any instrument in s then
9 if ps + pi ≤ PowerLimit then

10 s := s ∪ {i};
11 tps := max(tps, tpi);
12 ps := ps + pi ;
13 Remove (i, tpi, pi, rci) from Instruments;
14 end
15 end
16 end
17 Sessions := Sessions ∪ {(tps, s)}
18 end

in number of patterns is correlated to the length of schedules
in time units.

VI. METHOD

In this section, based on the analysis presented in Section V,
three scheduling algorithms will be presented, namely session-
based (SB), optimized session-based (OSB), and optimized
session-less (OSL). The SB and OSB algorithms are very sim-
ilar and therefore, will be described together in Section VI-A.
The OSL algorithm will be described in Section VI-B.

A. Session-based and Optimized Session-based Scheduling
The SB and OSB algorithms are very similar, with the

difference being an initial ordering of instruments in case
of the OSB algorithm. Therefore, only the OSB algorithm is
presented as Algorithm 1, and as for the SB algorithm only
the differences are highlighted.

Algorithm 1 describes the steps to generate an optimized
session-based (OSB) schedule, given (1) a list of instruments
to be tested, (2) a list of resource conflicts, and (3) a power
constraint. The list of instruments is a set, where each element
is an instrument specified by a tuple as (i, tp, p, rc). In tuple
(i, tp, p, rc), i is a unique instrument ID, tp is the number
of patterns for the instrument, p is the peak power dissipation
when the instrument is active, and rc will be 1 if the instrument
has any resource conflicts with any other instrument, and 0 oth-
erwise. The resource constraints are given as a set of (im, in)
tuples where im and in are the IDs for two instruments that
have a resource conflict.



Algorithm 2: Optimized session-less (OSL) scheduling
Input: Instruments as {(i1, tpi1, pi1, rci1), . . .}
Input: ResourceConflicts as {(im, in), (im, io), . . .}
Input: PowerLimit

Output: V irtualSessions as
{(tps1, {in, io, . . .}), (tps2, {im, . . .}), . . .}

1 Sort Instruments on rc then on tp, both in descending order;
2 V irtualSessions := {};
3 while Size(Instruments) > 0 do
4 vs := {} ; // Current virtual session
5 pvs := 0 ; // Power consumption for vs
6 tpvs := ∞ ; // Number of patterns for vs
7 foreach (i, tpi, pi, rci) ∈ Instruments do
8 if i has no constraints with any instrument in s then
9 if pvs + pi ≤ PowerLimit then

10 vs := vs ∪ {i};
11 pvs := pvs + pi;
12 tpvs := min(tpvs, tpi);
13 end
14 end
15 end
16 V irtualSessions := V irtualSessions ∪ {(tpvs, vs)};
17 foreach (i, tpi, pi, rci) ∈ Instruments where i ∈ vs do
18 tpi := tpi - tpvs;
19 end
20 Remove all elements having tp = 0 from Instruments;
21 end

The output of the algorithm is a set of sessions where each
session is specified as a tuple in the form of (tp, {in, io, . . .}).
In this tuple, tp specifies the number of test patterns that are
applied in the session and {in, io, . . .} specifies the instruments
that are active in the session.

The algorithm starts by sorting in descending order the list of
instruments, i.e. Instruments, on rc then on tp (Line 1). This
initial ordering is based on the analysis in Section V and is the
key to the optimized TAT, i.e. it is only performed in case of
the OSB—and not the SB—scheduling. Sorting on rc separates
those instruments having any resource constraints from those
having no constraint, and prioritizes the former group over
the latter in the scheduling. Inside each group, sorting on tp
prioritizes those instruments with larger number of test patterns
over those having fewer test patterns.

In Algorithm 1, in each iteration of the main loop (Lines 3-
18), a new session s is created (Line 4) and instruments
are assigned to it (Line 10). Any instrument added to a
session is removed from the Instruments set (Line 13). The
newly created session s is finally added to the Sessions set
(Line 17) before starting a new iteration. Before assigning an
instrument to a session, power and resource constraints should
be checked (Lines 8-9). The total power dissipation of a session
is calculated and stored in the ps variable (Line 12). The
maximum number of test patterns found among the instruments
in session s is recorded in tps (Line 11).

B. Optimized Session-less Scheduling

Compared to session-based scheduling where all tests in a
session are started at the same time, in session-less scheduling
tests can start independent from each other. Algorithm 2 is
similar to Algorithm 1, except for the fact that instead of ses-
sions there are virtual sessions that are introduced to represent
a session-less schedule (see Section IV). The corresponding
differences are in Lines 12, 18, and 20 of Algorithm 2.

The main difference is that—unlike Algorithm 1—once an
instrument is assigned to a virtual session, it is not removed
from Instruments. Instead, depending on the number of test
patterns of the current virtual session (tpvs), the number of test
patterns for that instrument is modified (Line 18) and the rest of
the test patterns, if any, will be kept for the next virtual session.
If, however, all the (remaining) test patterns for an instrument
are assigned to the current virtual session, that instrument will
be removed from Instruments (Line 20). Another difference
is that in determining the number of test patterns of the current
virtual session, the lowest number of test patterns for the
instruments inside that partition is used (Line 12) which is
in contrast to Algorithm 1 where the largest number of test
patterns for the instruments assigned to a session determines
the length of that session, i.e. tps.

VII. EXPERIMENTAL SETUP

We have performed experiments to evaluate the capability
of the proposed SB, OSB, and OSL algorithms in reducing
TAT. To perform the experiments, we have selected instruments
based on the ITC’02 benchmark set [7]. Each SOC from the
ITC’02 set contains a number of cores, where each core has a
number of I/O pins as well as some internal scan-chains. For
our experiments, we regarded the set of I/O pins for each core,
and each of the scan-chains inside that core, as instruments.
As discussed above, test scheduling for P1687 is significantly
different from test scheduling for core-based SOCs.

From the ITC’02 benchmarks, the d695, p22810, p34392,
and p93791 SOCs are considered and the sets of instruments
extracted from these SOCs are called A, B, C, and D, respec-
tively. In Section VIII experimental results are presented for
these sets. In extracting the above-mentioned sets, the power
consumption for each of the cores inside d695, p22810 and
p93791 are taken from [8], and it is assumed that all the in-
struments inside each core consume the same amount of power.
As for instruments inside p34392, the power consumption for
each instrument is assumed as a number proportional to the
length of the shift-register for that instrument.

The algorithms proposed in Section VI are implemented and
employed in experiments on A, B, C and D sets, thereby
generating SB, OSB and OSL schedules for each of these
sets. Four maximum power limits and two sets of resource
constraints are considered. The number of conflicts in each set
of constraints is reported in Table III in parentheses for each
of the “Resource constraint sets”.

The TAT for each of the generated schedules is calculated
and reported by assuming a P1687 network similar to the one
in Fig. 2(c). The results of the experiments are presented and
discussed in Section VIII.

VIII. EXPERIMENTAL RESULTS

Table III lists the generated instrument sets (leftmost col-
umn) and the number of instruments in each set. “Algo-
rithm” lists the generated schedules, correspondingly named
after the algorithm used to generate them, for each of the
considered instrument sets. “Test application time” presents
the TAT calculated for the corresponding schedule, under
different power constraints (Column “PC”), and under either no



TABLE III
EXPERIMENTAL RESULTS

Test application time (in million TCKs)
Set of Algorithm No resource constraint Resource constraints set 1 (∼50∗) Resource constraints set 2 (∼190∗)

Instruments† PC=∞ PC=1000 PC=850 PC=680 PC=∞ PC=1000 PC=850 PC=680 PC=∞ PC=1000 PC=850 PC=680
SB ‡ 1.97 1.15 1.36 1.37 2.01 1.31 1.38 1.38 2.03 1.30 1.50 1.44

A (147) SB 0.74 0.83 0.86 0.90 0.78 0.86 0.87 0.91 0.82 0.85 0.88 0.92
based on d695 OSB 0.74 0.81 0.82 0.84 0.77 0.84 0.84 0.89 0.83 0.88 0.89 0.92

OSL 0.74 0.80 0.81 0.84 0.76 0.81 0.82 0.85 0.81 0.82 0.82 0.84

No resource constraint Resource constraints set 1 (∼30∗) Resource constraints set 2 (∼50∗)
PC=∞ PC=650 PC=450 PC=250 PC=∞ PC=650 PC=450 PC=250 PC=∞ PC=650 PC=450 PC=250

SB ‡ 383 28 29 24 343 28 29 24 308 28 29 24
B (224) SB 11 15 15 17 11 15 15 17 11 15 15 17

based on P22810 OSB 11 13 13 16 11 14 13 17 11 14 14 17
OSL 11 11 11 14 11 11 12 14 11 12 12 15

No resource constraint Resource constraints set 1 (∼40∗) Resource constraints set 2 (∼80∗)
PC=∞ PC=1500 PC=1150 PC=850 PC=∞ PC=1500 PC=1150 PC=850 PC=∞ PC=1500 PC=1150 PC=850

SB ‡ 290 53 55 51 275 51 46 51 248 74 53 58
C (82) SB 18 20 21 22 19 20 20 22 19 21 21 23

based on P34392 OSB 18 19 19 19 18 20 22 21 18 20 20 20
OSL 18 18 18 19 18 18 18 19 18 18 18 19

No resource constraint Resource constraints set 1 (∼50∗) Resource constraints set 2 (∼380∗)
PC=∞ PC=1500 PC=1000 PC=550 PC=∞ PC=1500 PC=1000 PC=550 PC=∞ PC=1500 PC=1000 PC=550

SB ‡ 622 113 71 76 591 89 71 76 618 133 91 91
D (554) SB 35 47 50 62 37 45 50 62 48 59 62 74

based on P93971 OSB 35 41 44 54 35 43 48 58 48 49 52 60
OSL 35 39 43 54 35 39 43 54 45 45 45 54

∗Size of the resource constraint set, i.e. number of resource conflicts.
†The numbers inside parentheses, denote the number of instruments in the corresponding set.
‡TAT is calculated assuming that network configuration is not changed within a session.

resource constraint or one of the sets of constraints described
in Section VII.

For the SB schedule, TAT is reported for both when the
network configuration is not changed within a session (“SB‡”),
and when network is reconfigured within a session (“SB”) to
exclude instruments from the scan-path as soon as their test
is finished. Comparing “SB‡” and “SB”, reveals that in all
cases, “SB‡” shows a higher TAT than “SB”. The reason is
that for SB‡ the P1687 network configuration is not changed
within a session, which requires scanning in dummy bits for
instruments whose tests are finished earlier than the other tests
in the same session. Therefore, it can be seen that employing
the flexible P1687 scan path helps achieve lower TAT.

For PC=∞ and no resource constraints, the generated
schedules are fully concurrent independent of the algorithm.
Consequently, SB, OSB and OSL have the same TAT. In this
case, an observation regarding “SB‡” is that all the instruments
remain on the scan path while the instrument having the largest
number of patterns is being tested—thus requiring a large
number of dummy bits.

By using OSB rather than SB, TAT can be reduced by up
to 18% for instrument set D, resource constraint set 2, and
PC=550, and reduced on average by 5%. However, we have
seen three cases, i.e. instrument set A, resource constraint set 2,
and for PC=∞, PC=1000, and PC=850, for which SB performs
better than OSB.

The general observations regarding TAT for the SB, OSB,
and OSL schedules are that (1) reduced power constraint
(“PC”) increases TAT since it limits the number of tests that
can be performed concurrently, and (2) in all of the cases,
OSL results in the lowest TAT. The best result with OSL is
27% reduction in TAT compared to SB, for instrument set D,
resource constraint set 2, and PC=550.

IX. CONCLUSION

We envision that in the future, production test will in-
volve accessing thousands of embedded test features using the
upcoming standard IEEE P1687, which unlike IEEE 1149.1
provides the flexibility to implement both session-based and
session-less schedules. In this context we have addressed the
test scheduling problem with resource and power constraints
to minimize TAT. Based on thorough analysis of the impact
of P1687 on test scheduling, our contributions are (1) a TAT
calculation method for general schedules in a P1687 environ-
ment, and (2) development and implementation of three power-
and resource-aware test scheduling algorithms, i.e. session-
based (SB), optimized session-based (OSB), and optimized
session-less (OSL). With SB as a baseline, experimental results
demonstrate the capability of OSB and OSL to reduce TAT by
up to 18% and 27%, respectively. Furthermore, OSL always
performed better than OSB in terms of TAT reduction.
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