
An Efficient Approach to SoC Wrapper Design, TAM Configuration
and Test Scheduling

Julien Pouget, Erik Larsson, Zebo Peng

Embedded Systems Laboratory
Linköping University, Sweden

Marie-Lise Flottes, Bruno Rouzeyre

LIRMM
Montpellier 2 University, France

Abstract

Test application time and core accessibility are two major
issues in System-On-Chip (SOC) testing. The test application
time must be minimised, and a test access mechanism (TAM)
must be developed to transport test data to and from the cores.
In this paper we present an approach to design a test interface
(wrapper) at core level taking into account the P1500
restrictions, and to design a TAM architecture and its associated
test schedule using a fast and efficient heuristic. A useful and
new feature of our approach is that it supports also the testing of
interconnections while considering power dissipation, test
conflicts and precedence constraints. Another feature of our
approach is that the TAM is designed with a central bus
architecture, which is a generalisation of the TestBus
architecture. The advantages and drawbacks of our approach
are discussed, and the proposed architecture and heuristic are
validated with experiments.

1. Introduction

Recent advances in IC design methods and
manufacturing technologies have led to the integration of a
complete system onto a single IC, called system on chip
(SOC). These system chips offer advantages such as higher
performances, lower power consumption, and decreased
size and weight, when compared to their traditional
multichip equivalents. Many system chips are designed by
embedding large reusable building blocks, commonly
called cores. Such a design reuse approach speeds up the
design process, and allows import of external design
expertise. However, the increased system complexity leads
to high test data volumes, which means long testing times
[Harr99]. Furthermore, traditionally, the chips are tested
before they are integrated into a system. The
interconnections are tested separately in system test when
fault-free chips are already integrated. For system chips, on
the other hand, testing of cores and interconnections is
performed in a single system test step. Test access becomes
also a problem for system chips since the cores are not
directly accessible via chip inputs/outputs.

Power consumption, interconnection tests, test
conflicts and precedence relations are important issues
that must be addressed during the design of the test
schedule. The power dissipation during the test mode is
often higher than that in system mode because of higher
number of signal switches. Thus, it is necessary to
organize the tests in such a way that power dissipation
does not exceed a given threshold. It is also important to

test interconnections between cores. One problem here is
test resource sharing since interconnections usually do not
have a direct interface to the test data transportation
mechanism. Therefore an important conflict that must be
considered for interconnection test is the sharing of test
resources. On the other hand, each core (e.g. hard core)
may come with its dedicated BIST (Built-In Self Test)
resource. The BIST resources can in some cases be
shared between several cores, but this is not always the
case. If they are shared, it is usually not possible to test
more than one core at a time for a given resource.
Furthermore, depending on the design, some tests may
have to be applied before others. The order in which the
tests are applied is therefore important, and precedence
constraints must be considered.

In [MaGo00], the authors present two heuristics aiming
at designing a wrapper for cores. The presented technique
minimizes the longest wrapper chain for a given number of
wrapper chains (i.e. the number of connections to the
TAM). Iyengar and Chakrabarty [IyCh01], on the other
hand, present a heuristic similar to the one we describe in
this paper, which tries to minimize also the number of
wrapper chains.

Once the wrapper is designed, a TAM must be built, and
several approaches can be used. In [NoPa01], the authors
use existing resources to implement the TAM. The
approach searches, in an exhaustive way, all the
controllable components connecting two points in the SoC
(muxes, tristates, bypass, etc.). It deals with test scheduling
and TAM architecture design simultaneously. In [CoCa02],
the presented method uses different kinds of TAMs during
the scheduling phase. The authors define a connection
model of cores to neighbor cores with a cost for each of
them. The aim of the approach is then to minimize this cost.

The more standardized approaches [IyCh01] [IyCh02]
use specific test buses. The TestRail used by [IyCh01]
[IyCh02a] mixes the Daisy Chained and the distributed
architectures. Cores on the same TestRail are tested
simultaneously. Another approach, called TestBus, is based
on the mixture of the multiplexed and the distributed
architectures. The cores connected to the same TestBus are
tested sequentially, each core being connected to the whole
TestBus bandwidth. The bus-based approaches are easy to
implement and are more flexible than the other ones. They
provide a direct compatibility with P1500 requirements.

In this paper we propose a technique for the design of
the wrappers, the selection of the TAM configurations and
the scheduling of the tests. The main advantages of our
approach are that we design a test schedule to minimize the
test application time while considering power consumption

and test conflicts. The conflicts we consider include test
resource sharing and precedence relations. Furthermore, we
consider also the testing of interconnections.

The rest of this paper is organised as follows. Section 2
presents our wrapper design algorithm, which generates a
set of design alternatives. Section 3 describes the
implementation of the TAM architecture and the heuristic
we use in parallel to minimise the total test time. Section 4
summarises the experimental results and discusses the
features of our approach. Finally, section 5 presents the
conclusions and limitations of the proposed algorithms.

2. Wrapper Design
Before designing an overall test architecture for a given

SOC, each core has to be wrapped considering the P1500
restrictions [MaIy02] for signals and functionalities. This
interface allows us to isolate the cores during testing and to
apply test vectors in an optimal way in terms of test time.

The purpose of our wrapper design algorithm is to
develop a set of wrapper chains at each core. A wrapper
chain includes a set of the scanned elements (scan-chains,
wrapper input cells and wrapper output cells). The main
objective of the algorithm is, for a given bandwidth, to
organize the wrapper chains in such a way that the test time
is minimized. The test time is related to the length of the
wrapper chains, which means that we should minimise the
longest wrapper chain (internal or external or both), i.e.
max{si, so}, where si (so) denotes the number of scan
cycles required to load (unload) a test vector (test
response). The test time at a core is given by:

Tcore = p × [1+max{si,so}] + min{si,so}

where p is the number of test vectors to apply to the core
[IyCh02].

In our approach, a TestBus model for the TAM is used.
The consequence of this is that we need connections to the
TAM for the inputs and the outputs of the wrapper (Fig. 1).
Our heuristic can be divided in two main parts; the first one
for combinational cores and the second one for sequential
cores. For combinational cores, there are two possibilities.
If the TAM bandwidth limit, W, is above or equal to I+O
(where I is the number of functional inputs and O the
number of functional outputs), then nothing is done and the
number of connections to the TAM is I+O. If W is below
I+O, then some of the cells on the I/Os are chained.

For sequential cores (one example is given in Fig.1), if
W is above or equal to {#SC×2 + 2} (#SC is the number of
scan chains), then a pre-process ‘Internal Chaining’ will
chain the internal scan chains. The value given by {#SC×2
+ 2} defines the minimal number of bits needed to connect
a core with scan chains using our approach (2 per scan
chain, one to link the functional inputs and one to link the
functional outputs). Then a ‘fill’ process will connect
wrapper cells to internal scan chains until the total number
of FFs (flip-flops) reaches the number of FFs of the longest
scan chain. In Fig. 1, the scan chain of length 6 and that of
length 2 are chained together. Two wrapper input cells are
then connected to it, so that the total number of FFs is 10,
which equals the number of FFs of the longest scan chain.

10

6

2

(4)

Wrapper
Input
cells Wrapper

Output
cells

TAM
Width

10

6

2

Bypass line

10

6

2

(4)

Wrapper
Input
cells Wrapper

Output
cells

TAM
Width

10

6

2

Bypass line

Fig. 1. Wrapper example.

If W is below {#SC×2 + 2}, the internal scan chains are
chained together in order to reduce the number of needed
connections to the TAM. Then the ‘fill’ process is applied.
The simplified algorithm is presented in Fig. 2. The
algorithm defines the whole curve T = f(W) which has the
form of a staircase (several architectures lead to the same
test time). It returns as results the Pareto-optimal points that
are the ones on the left most edges at each staircase level.

We have applied the proposed algorithm to the
benchmarks from ITC'02 [Benc02]. Fig. 3 shows the results
for core 5 from the d695 system, which contains 32 scan
chains, 38 inputs and 304 outputs with 110 vectors. We
obtain the different stages on the curve corresponding to an
identical test time for several W values (i.e. several
architectures). For example, the Pareto-optimal point
{t=10100, W=35} is optimal with respect to all points that
have the same test time (t=10100) but different numbers of
TAM connections, such as {t=10100, W=51}. The
algorithm computes the curve for each core on a system in
a very short computation time (typically a few seconds).

W=1000000; //limit for the number of used bits
Internal Chaining
While (W!=1)
 If (#SC == 0) // combinational core
 If ((I+O)<=W)
 Connect one bit on every I/O wrapper cell
 Else
 Chain wrapper cells
 Else // sequential core
 If ((#SC×2 + 2)<=W)
 Fill procedure
 If (maxFF<I)or(maxFF<O)
 CutWrapper procedure
 Else
 Internal chaining until ((#SC×2 + 2)<=W)
 Fill procedure
 If (maxFF<I)or(maxFF<O)
 CutWrapper procedure
 Return Wneeded
W=Wneeded
W=W--;
End

Fig. 2. The wrapper design algorithm.

0

50000

100000

150000

200000

250000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69

Number of TAM
connections

Test time

Fig. 3. Total test times of different wrapper

designs for core 5 in d695.

Depending on the system test requirements, the designer
can then choose among the different widths and test times
for each core. We have applied this algorithm to the whole
ITC'02 benchmarks [MaIy02][Benc02], and obtained these
curves for every core [Poug02].

3. TAM Architecture and Test Scheduling
Once the wrapper design is completed or a set of

wrapper design alternatives is available, as provided by the
wrapper design algorithm, the designer has to deal with two
issues, namely test scheduling of the cores, and the design
of test access architecture. The test access architecture is
responsible for the transportation of the test data from the
system inputs to the core inputs and from the core outputs
to the system outputs. For this purpose, we make use of a
generalization of the TestBus architecture.

3.1 Test Schedule

The test scheduling problem consists of two interleaved
NP-complete problems (bin-packing and minimal graph-
coloring) [FlPo01]. The graph-coloring and bin-packing
problems cannot be approximated in bounded limits when
the graph has no special structure [GaJo79]. One way to
simplify the test scheduling problem is to organize tests for
the target modules into so-called test sessions
[Mur00][RaVe99] [ChSa97]. An alternative is to use a no
session scheme, which allows minimizing the test time at
the expense of area overhead and scheduling complexity.
To reduce the scheduling time, a very fast heuristic based
on the work by [FlPo01] has been used in the proposed
approach (Fig. 4).

The complexity of this algorithm is O(n3). It can handle,
for example, a schedule for more than 100 cores within one
second. The algorithm works in the following way.

L1 = list of cores sorted by decreasing Di values (Di = test time of core i)
L2 = Ø
Tmax=0
While L1 ≠ Ø
 Place (first core in L1)
 Update Tmax
 For all others cores i in L1
 For all intervals
 If (Power, precedence, incompatibility constraints satisfied)
 If Ti+Di <= Tmax
 Ti=Place(i)
 Else
 remove i from the placed cores
 L2 = L2 ∪ {i}
 L1 = L2

Fig. 4. The proposed scheduling algorithm.

First, the core tests are sorted in decreasing order of test
time in a list, L1. While all the tests are not fully scheduled,
it checks the characteristics for each core test in order, and
places them as soon as possible making sure that all the
constraints are satisfied. If a core cannot be scheduled due
to the violation of certain constraints, it is moved to an
auxiliary list L2 to be scheduled later. When the L1 list is
empty, L2 moves to L1 and the process is re-iterated.

3.2 TAM Design – Pseudo Exhaustive Approach

We have first developed an approach based on a
generalization of the TestBus architecture to build the
TAM. The wrapper design algorithm presented in section 2
allows us to obtain different possible costs for each core.
We use a hyper-graph representation for the incompatibility
of the tests we have to schedule. Our approach generates all
the possible incompatibility configurations (i.e. all the
hyper-graphs) in order to calculate their minimal cost using
a mapping heuristic (‘mapping’ denotes the assignment of
cores to busses), and the associated schedule. Each hyper-
graph corresponds to a different mapping and schedule.
The algorithm memorizes and finally returns the best
solution in terms of test time under a given TAM
constraint. It chooses the Pareto-optimal points for each
core (from the wrapper design algorithm), and then
generates in an exhaustive way all the possible hyper-
graphs (configurations) for the TAM.

The vertices of the hyper-graph correspond to the tests
and are weighted by the number of connections they need
on the TAM. In a similar approach in [ChSa97], the authors
consider the test resources on the system and build the
incompatibility based on them. Thus, their graph is just an
expression of the existing resources. In our scheme,
incompatibilities, represented by the hyper-edges, can be
used to capture different test conflicts and constraints. An
example of hyper-graph is given in Fig. 6, where a vertex is
labeled by a unique number and its weight in a parenthesis.
If cores 1, 2, 3 and 4 cannot be tested pair-wisely at the
same time, this information is captured by a hyper-edge
connecting vertices 1, 2, 3 and 4.

We generate in theory the whole set of possible hyper-
graphs for a system, and therefore all the possible
architectures for the test bus. In practice, a strategy based
on space pruning is used to cut the branch-and-bound
search to reduce the computation time.

Wc = maximal width for the bus;
Ttotal = ∞;
EdgeSize=1, Depth=1;
Process (Depth, EdgeSize)
 While EdgeSize <= Number of Tests
 Generate the next edge
 Update EdgeSize
 If Pruning constraints not satisfied
 Add edge to current solution
 If Complete solution // i.e. containing all tests
 Generation of incompatibility constraints;
 T = scheduling ()
 W = mapping ()
 If W ≤ Wc and T ≤ Ttotal
 Keep solution;
 Else Process (Depth + 1, EdgeSize)
 Else Cut branch (from edge)
 End while
End

Fig. 5. Recursive Pseudo-Exhaustive Algorithm.

1(30)

2(33)

3(19)

5(11)

7(9)

6(29)

8(7)

5(7)

4(11)

1(30)

2(33)

3(19)

5(11)

7(9)

6(29)

8(7)

5(7)

4(11)

Fig. 6. Illustrative Example.

33 22 11

6655

44

8877

62 3 2 2

62 2

6
on 1
on 2

6

on 3 6

6

2

10

10

on 4

1010

10

on 5 3

3 3 3

15on 7
on 6 7
on 8 3

177 7

8

10

10

10

33 22 11

6655

44

8877

62 3 2 2

62 2

6
on 1
on 2

6

on 3 6

6

2

10

10

on 4

1010

10

on 5 3

3 3 3

15on 7
on 6 7
on 8 3

177 7

8

10

10

10

Fig. 7. Final architecture from the example in Fig. 6.

For each solution, we generate the mapping and
consider the new incompatibility set to schedule the tests.
The simplified algorithm is given on Fig. 5. Fig. 6 and Fig.
7 illustrate a hyper-graph example and its corresponding
TAM architecture. We can also add incompatibilities
(hyper-edges) to capture the conflicts due to the test of the
glue logic between cores. For example, we can add a hyper-
edge between cores 5 and 9, and another between core 6
and 9, with the new core 9 representing the glue logic
between cores 5 and 6.Once the mapping is ready, the
algorithm uses a fast heuristic to schedule the tests. The
scheduling heuristic takes into account all the
incompatibilities, including the added ones.

We have applied the pseudo-exhaustive algorithm to the
ITC'02 benchmarks. The used width wi and test time ti for
each core are chosen manually on one of the Pareto-optimal
points of the curves of each core. In Fig. 8, we show the
results for the system h953 from [Benc02]. In this example,
power dissipation of cores during test is taken into account
and a width limit (32 bits) is fixed for the system test bus.
Our scheduling algorithm takes also into the system power
limit, even though the power data are not shown in the
figure. Note that the test time in this example is determined
by the largest core. Nevertheless, it is possible to choose
other Pareto-optimal points for each core, which may be
carried out manually. Checking all the possibilities for a
system with ten cores with ten Pareto-optimal points for
each core means checking 1010 possibilities.

7

1

2 3

t

W

10

20

30

1.105 5.105 10.105

456

8

Wlimit = 3277

11

22 33

t

W

10

20

30

1.105 5.105 10.105

445566

88

Wlimit = 327

1

2 3

t

W

10

20

30

1.105 5.105 10.105

456

8

Wlimit = 3277

11

22 33

t

W

10

20

30

1.105 5.105 10.105

445566

88

Wlimit = 32

Fig. 8. Results for the h953 system.

Automatic checking for all these possibilities is
therefore only efficient for systems involving a small
number of cores. For larger systems, the computation time
becomes too prohibitive.

3.3 TAM Design – Efficient Heuristic

We have implemented a fast heuristic in order to reduce
the computation complexity. The heuristic first sorts the
design alternatives obtained with the wrapper design
algorithm using the cost function Ci = ti×wi. Then, it uses
the scheduling approach presented in section 3.1 taking into
account now also constraints on W. The algorithm,
illustrated in Fig. 9 (named ScheduleW) selects appropriate
wrapper designs to schedule the tests. In this algorithm, “i”
is the wrapper design index. If the constraint on W is not
respected, the algorithm searches the next value for (wi ti)
with the lowest possible cost Ci. It schedules the test as
soon as possible with respect to the whole set of
constraints, and maximizes the TAM use (i.e. the number
of TAM bits used).
….
For all intervals
 For all designs (Wi,ti)
 If (Power, precedence, incompatibility and W constraints satisfied)
 If (Ti+Di <= Tmax)
 Ti=Place(i)
 Else
 i=i+1 // try next wrapper design
 If core not scheduled
 Remove i from the placed cores
 L2 = L2 ∪ {i}
….

Fig. 9. Algorithm ScheduleW.

4. Experimental Results and Discussions
We have applied our wrapper design, TAM design and

test scheduling algorithms to the ITC’02 benchmarks. The
results for systems q12710, d695, p22810, and p34392 are
given in Tables 2-5, respectively. For each system, results
for a set of design alternatives, corresponding to different
TAM widths, are reported. A row in the tables corresponds
to a given TAM width. For each TAM width, the first
group of columns gives the results of the pseudo-exhaustive
approach, in terms of the test time indicating the quality of
the test schedule, and the CPU time used to generate the
solution. The last group of columns gives the
corresponding results of our efficient heuristic, as well as
how they compare to the other approaches.

For comparison, we have implemented another fast way
to solve the TAM design and test scheduling problems by
adding multiplexors to the test bus. The schedule is
generated in a straightforward way: the tests are performed
sequentially using the maximum TAM width available.
Therefore, the Pareto-optimal points are chosen as close as
possible to the TAM width limit. The results of this
multiplexed approach are given in the middle column of
Tables 2-5. The experimental results show clearly that our
approach outperforms the multiplexed approach in terms of
test scheduling lengths (on average, the test time of our
approach is 31,1% smaller than that of the multiplexed
approach). When compared with the pseudo-exhaustive
approach, our algorithm consumes only a tiny fraction of
CPU time needed, while producing relatively comparable

test scheduling results. Note also that the pseudo-
exhaustive approach does not work for larger systems, such
as p22810 and p34392. Therefore there are not pseudo-
exhaustive results in Tables 4 and 5, nor are there any in
Table 3 for TAM widths between 12 and 48 bits.

Let us look closely at one example, the system d695,
which is illustrated in Fig. 10. The TAM width limit is 32
for this example and the power limitation is 1300mW. The
characteristics of the cores are given in Table 1. In the
ITC’02 benchmark specification, no power data are given
for this system. Therefore, we add power values for each
core. We have also added two precedence constraints for
this system: cores 7 and 5 have to be tested before core 10,
and core 6 can only be tested after cores 7 and 8 have been
tested. These constraints are given in the last column of
Table 1. One possible motivation for the constraints is that
core 5 has to be tested first because it is a core containing
potentially more faults than other cores. The generated
schedule, given in Fig. 10, respects the TAM width
constraint (32 bits) on the system test bus, as well as the
specified precedence constraints. The dashed line in Fig. 10
represents the instantaneous dissipated power during test.

In [IyCh02] and [IyCh02a], a similar approach is
presented for wrapper/TAM co-optimisation assuming that
all tests are compatible. Therefore, that approach cannot
deal with the cases when some tests cannot be carried out
simultaneously, due to, for example, design hierarchy
constraints.

Our algorithms deal, on the other hand, with the
incompatible properties explicitly. Additional features of
our approach are that it addresses the issues of power
dissipation, precedence constraints, incompatibilities from
test resource sharing, and interconnection test in a
systematic manner. The issue of interconnection test is in
particular important considering the increasing importance
of interconnection in SoC designs. Using the wrappers, it is

possible to test interconnections between two cores (which
is included as a part of the wrapper design algorithm) and
to add this test as a new item into the schedule (no extra
wires are necessary for this test), with our approach.

For example, on the resulting schedule of the system
d695 in Fig. 10, 164 cycles are necessary to test
interconnections between cores 5 and 6 and 19 wires are
used (these data are extracted from the wrapper design
algorithm).

5. Conclusions
We have presented several techniques developed to help

the system designers to implement and optimise a test
structure for the whole system on silicon. Firstly, the
wrapper design is built by a fast algorithm, optimising the
test time of a core for a given number of connections to the
TAM. This algorithm gives all the possible
implementations of the wrapper for a given core. We can
then select one of the three approaches for TAM design and
test scheduling. The first one uses a pseudo-exhaustive
search, which entails prohibitive computation times for
large systems. The other two are fast heuristics, one is
based on an implementation of a multiplexed approach, and
the other is a heuristic developed by us. We have
demonstrated, with experiments on the ITC’02
benchmarks, the efficiency of our approach, and compared
it with other approaches. Additionally, our algorithms have
several interesting features, such as that it addresses
precedence and power constraints and interconnection test,
which are not all implemented on other approaches. In
particular, the interconnection test issue is becoming more
and more important for the next generation SoCs.

References

[Benc02]
http://www.extra.research.philips.com/itc02socbenchm/format.html

[Chak99] K. Chakrabarty: “ Test Scheduling For Core Based
Systems”,ICCAD’99, pp. 391-394, 1999.

[ChIy01] K. Chakrabarty, V. Iyengar, E. J. Marinissen: “Test wrapper and
Test Access Mechanism Co-Optimization for System-on-Chip”,
ITC’01, pp. 1023-1032, 2001.

[ChSa97] R. Chou, K. Saluja, V. Agrawal: “Scheduling Tests for VLSI
Systems under Power Constraints”, IEEE Trans. On VLSI Systems,
Vol. 5, No. 2, pp. 175-185, 1997.

[CoCa02] E. Cota, L. Caro, A. Orailoglu, M. Lubaszewski: “Test Planning
and Design Space Exploration in a Core Base Environment”,
DATE’02, pp. 478-485, 2002.

[FlPo01] M.L. Flottes, J. Pouget, B. Rouzeyre: “Sessionless Test Scheme:
Power-constrained Test Scheduling for System-on-a-Chip”, VLSI-
SoC’01, pp. 105-110, 2001.

[GaJo79] M.R. Garey, D. Jonhson: “Computers and Intractability: guide to
the theory of NP-completeness”, W.H. Freeman and Company, San
Francisco, 1979.

[Harr99] P. Harrod: “Testing reusable IP – A Case Study”, ITC’99, pp.
493-498, 1999.

[HuRe02] Y. Huang, S.M. Reddy, W.T. Cheng, P. Reuter, N. Mukherjee,
C.C. Tsai, O. Samman, Y. Zaidan: “Optimal Core Wrapper Width
Selection and SOC Test Scheduling Based on Bin Packing
Algorithm”, ITC’02, pp. 74-82, 2002.

[IyCh01] V.Iyengar, K. Chakrabarty: “Precedence-Based, Preemptive and
Power-Constrained Test Scheduling for System-on-a-Chip”, VLSI-
SoC’01, pp. 368-374, 2001.

[IyCh02] V. Iyengar, K. Chakrabarty, E. J. Marinissen: “Efficient
Wrapper/TAM Co-Optimization for Large SOCs”, DATE’02, pp. 491-
498, 2002.

[IyCh02a] V. Iyengar, K. Chakrabarty, E. J. Marinissen: “On Using
Rectangle Packing for SoC Wrapper/TAM co-optimization”, VTS’02,
pp. 253-258, 2002.

Cores Ci ti wi Pi Prec.i

1 416 2 30mW -
2 7992 3 150mW -
3 5167 2 250mW -
4 11129 6 100mW -
5 10100 19 400mW -
6 9869 19 950mW 7, 8
7 12959 10 700mW -
8 4605 11 450mW -
9 2820 19 350mW -
10 7106 17 550mW 7, 5

Table 1. d695 characteristics.

1000

500

6

10000 20000 30000 40000 50000

10

20

30

5 10

7

2

4

3

9

8

1

56834

W

t

Interconnection test between cores 3-4

Interconnection test between cores 7-8

Interconnection test between cores 5-6

P

1500

1000

500

6

10000 20000 30000 40000 50000

10

20

30

5 10

7

2

4

3

9

8

1

56834

W

t

Interconnection test between cores 3-4

Interconnection test between cores 7-8

Interconnection test between cores 5-6

P

1500

Fig. 10. The d695 schedule generated by our heuristic.

[MaGo00] E. J. Marinissen, S. K. Goel and M. Lousberg: “Wrapper Design
for Embedded Core Test”, ITC’00, pp. 911-920, 2000.

[MaIy02] E. J. Marinissen, V. Iyengar, K. Chakrabarty: “A set of
Benchmarks for Modular Testing of SoCs”, ITC’02, pp. 519-528,
2002.

[Mur00] V. Muresan, X. Wang, M. Vladutiu, V. Muresan: “ A comparison
of classical Scheduling Approaches in Power-Constrained Block-Test
Scheduling ”, ITC’00, pp. 882-891, 2000.

[NiAl99] Nicola Nicolici, B.M. Al-Hashimi: “Power Conscious Test
Synthesis and Scheduling for BIST RTL Data Paths”, ATS’99, pp.
107-112.

[NoPa01] M. Nourani and C. Papachristou: “An ILP Formulation to
optimize Test Access Mechanism in System-on-Chip Testing”,
ITC’00, pp. 902-910, 2000.

[Poug02] Julien Pouget: “Embedded Test for System-On-Chips: Test
Scheduling and Architectural Solutions”, PhD Thesis, 2002.
www.ida.liu.se/~g-julpo/

[RaVe99] C.P. Ravikumar, A. Verma, G. Chandra: “A Polynomial-Time
Algorithm for Power Constrained Testing of Core Based Systems”,
ATS’99, pp. 107-112.

[Zori98] Y. Zorian: “System-On-Chip Test Strategies”, DAC’98, pp. 752-
756.

q12710 Exhaustive TAM
approach(1)

Multiplexed
approach(2) Our Heuristic(3)

Test Time Cpu time TAM
Width Test time Cpu time Test time Cpu time

Test time (1)vs(3) (2)vs(3) Cpu time (1)vs(3) (2)vs(3)
32 2 644 464 0,01s 6 228 966 0,001s 2 644464 0 % - 57,5 % 0,001s - 90 % 0 %

24 3 096 765 0,01s 6 228 966 0,001s 3 177502 + 2,6 % - 49 % 0,001s - 90 % 0 %

20 3 177 502 0,5s 6 228 966 0,001s 3 177502 0 % - 49 % 0,001s - 99,8 % 0 %

16 4 368 020 0,9s 6 228 966 0,001s 5 146524 + 17,8 % - 17,4 % 0,001s - 99,9 % 0 %

12 5 146 524 0,7s 6 651 981 0,001s 5 146524 0 % - 22,6 % 0,001s - 99,8 % 0 %

10 6 377 663 0,8s 6 651 981 0,001s 6 377663 0 % - 4,1 % 0,001s - 99,9 % 0 %

Table 2. Results on q12710 benchmark.

d695 Exhaustive TAM
approach(1)

Multiplexed
approach(2) Our Heuristic(3)

Test Time Cpu time TAM
Width Test time Cpu time Test time Cpu time

Test time (1)vs(3) (2)vs(3) Cpu time (1)vs(3) (2)vs(3)
80 20090 6min 36 232 0,015s 20 932 + 4,2 % - 42,2 % 0,0156s - 100 % + 4 %

64 28369 >180min 45 798 0,015s 28 857 + 1,7 % - 37,0 % 0,0156s - 100 % + 4 %

48 - - 45 972 0,015s 33 031 - - 28,1 % 0,0156s - + 4 %

32 - - 78 077 0,015s 56 834 - - 27,2 % 0,0156s - + 4 %

24 - - 78 386 0,015s 71 274 - - 9,1 % 0,0156s - + 4 %

20 - - 78 547 0,015s 76 040 - - 3,2 % 0,0156s - + 4 %

16 - - 142 683 0,015s 105143 - - 26,3 % 0,0156s - + 4 %

12 - - 143 153 0,015s 143153 - - 0 % 0,0156s - + 4 %

Table 3. Results on d695 benchmark.

p22810 Multiplexed approach(2) Our Heuristic(3)
Test time Cpu time TAM

Width Test time Cpu time
Test time (2)vs(3) Cpu time (2)vs(3)

80 503 635 0,08s 223 463 - 55,6 % 0,172s + 115 %

64 531 631 0,069s 294 046 - 44,7 % 0,078s + 13 %

48 619 537 0,063s 416 325 - 32,8 % 0,068s + 7,9 %

32 664 665 0,063s 510 765 - 23,2 % 0,069s + 9,5 %

24 848 601 0,062s 746 776 - 12,0 % 0,07s + 12,9 %

20 1 013 766 0,062s 973 632 - 4,0 % 0,069s + 11,3 %

16 1 094 717 0,061s 1 030 552 - 5,9 % 0,069s + 13,1 %

12 1 588 681 0,061s 1 207 599 - 24,0 % 0,069s + 13,1 %

Table 4. Results on p22810 benchmark.

p34392 Multiplexed approach(2) Our Heuristic(3)
Test time Cpu time TAM

Width Test time Cpu time
Test time (2)vs(3) Cpu time (2)vs(3)

80 1 389 219 0,55s 578 621 - 58,8 % 0,56s + 1,8 %

64 1 389 677 0,55s 652 118 - 57,5 % 0,59s + 7,2 %

48 1 422 148 0,53s 983 795 - 58,3 % 0,56s + 5,6 %

32 1 749 945 0,53s 1 276 703 - 53,1 % 0,44s - 17 %

24 1 805 535 0,55s 1 579 539 - 30,8 % 0,48s - 12,7 %

20 1 917 813 0,53s 1 810 082 - 27,0 % 0,47s - 11,3 %

16 3 288 694 0,53s 2 159 530 - 12,5 % 0,45s - 15,1 %

12 3 390 156 0,53s 2 958 260 - 5,6 % 0,42s - 17 %

Table 5. Results on p34392 benchmark.

