Paper at
IEEE European Test Symposium (ETS’05)
Tallinn, Estonia — May 2005 (PR-MS 24.626)

Test Scheduling for Modular SOCs
in an Abort-on-Fail Environment

Urban Ingelsson?

! Philips Research Labs
IC Design — Digital Design & Test
Prof. Holstlaan 4 — WAY-41
5656 AA Eindhoven, The Netherlands

{sandeepkumar.goel, erik.jan.marinissen}@philips.com

Sandeep Kumar Goel!

Erik Larsson? Erik Jan Marinissen!

2 Linkdpings Universitet
Department of Computer Science
Embedded Systems Laboratory
SE-581 83 Linkdping, Sweden

urbin545@student.liu.se, erila@ida.liu.se

Abstract

Complex SOCs are increasingly tested in a modular fashion, which enables us to record the yield-per-module. In this
paper, we consider the yield-per-module as the pass probability of the module’s manufacturing test. We use it to exploit
the abort-on-fail feature of ATEs, in order to reduce the expected test application time. We present a model for expected
test application time, which obtains increasing accuracy due to decreasing granularity of the abortable test unit. For a
given SOC, with a modular test architecture consisting of wrappers and disjunct TAMSs, and for given pass probabilities
per module test, we schedule the tests on each TAM such that the expected test application time is minimized. We describe
two heuristic scheduling approaches, one without and one with preemption. Experimental results for the ITC’02 SOC
Test Benchmarks demonstrate the effectiveness of our approach, as we achieve up to 97% reduction in the expected test

application time, without any modification to the SOC or ATE.

1 Introduction

Rapid improvements in semiconductor design and manufactur-
ing technologies enable the creation of increasingly complex in-
tegrated circuits, often referred to as system chips or SOCs. The
manufacturing test costs of these ‘monster chips’ threaten to in-
crease beyond what is acceptable, if no proper countermeasures
are taken. The test costs are dictated by the price of the automatic
test equipment (ATE) and the time (in seconds) each SOC spends
on the ATE. A reduction in the test application time directly trans-
lates into savings in the test cost.

SOCs are increasingly designed and tested in a modular fashion.
A modular test is required for non-logic embedded blocks (such
as embedded memories, analog modules, embedded FPGASs, etc.)
and black-boxed third-party IP cores. But also for the remain-
der of the SOC, modular testing has attractive benefits, in terms
of ‘divide-n-conquer’ test generation and test re-use over multiple
SOC designs [1]. A modular test requires an on-chip test infras-
tructure [2, 3] in the form of a wrapper per module (such as the
one standardized as IEEE Std. 1500 [4, 5]) and test access mech-
anisms (TAMs).

A modular test makes it possible to record the yield-per-module.
This information is valuable to core providers, who can improve
their product with this information, but who often had no access to
statistically relevant yield numbers, as they typically do not manu-
facture their own products in high volumes. The yield-per-module
is also relevant for SOC integrators, who will be able to better pre-

dict the yields of their next SOC product, based on historic yield
data of the constituting modules.

In this paper, we consider the yield-per-module as the pass prob-
ability of a module’s manufacturing test. We use it to exploit the
abort-on-fail capability of ATEs, in order to reduce the expected
test application time. For a given SOC, with a modular test archi-
tecture consisting of wrappers and disjunct TAMSs, and for given
pass probabilities per module test, we schedule the tests on each
TAM such that the overall expected test application time is mini-
mized.

The remainder of this paper is organized as follows. Section 2 re-
views the prior work in this field. Section 3 presents our formal
problem definition. In Section 4, we present a model for expected
test application time, which obtains increasing accuracy due to
decreasing granularity of the abortable test unit. Subsequently,
Section 5 describes our heuristic scheduling algorithms without
and with preemption. In Section 6, experimental results are given
for SOC p22810 of the ITC’02 SOC Test Benchmarks [6]. They
demonstrate the effectiveness of our approach, as we achieve up to
97% reduction in the expected test application time, without any
modification to SOC nor ATE. Section 7 concludes this paper.

2 Prior Work

The idea to use pass probabilities, yield, or fault coverage of tests
of (parts of) an IC to construct a schedule such that the expected
test application time is minimized is not new. Lee and Krishna
[7, 8] partitioned a single test in multiple abortable units of equal

pass probability. As tests are typically more likely to fail in their
early patterns, their test units are ordered from small in the be-
ginning of the test to large at the end. Huss and Gyurcsik [9]
presented a scheduling approach for a series of analog tests with
partly overlapping test coverage. Jiang and Vinnakota [10, 11] de-
scribed an efficient heuristic algorithm for the same problem. In
[9, 10, 11], analog tests can only be evaluated upon completion.
In the sequel of this paper, we argue that that is not necessary for
digital tests. Evaluating (and, in case of failure, aborting) tests at
a smaller grain size can help to significantly reduce the expected
test application time.

All papers mentioned above did not consider modularly-tested
(core-based) SOCs, in which multiple TAMs can operate indepen-
dently and in parallel; in fact, only few other papers do. Koranne
[12] proposed a technique for test architecture (wrapper and TAM)
design, in combination with test scheduling. He used average time
instead of completion time of the test schedule as a heuristic to re-
duce an originally A/P-hard and hence intractable problem [13]
to a problem that can be solved optimally in polynomial time. Un-
fortunately, the paper lacks the concept of pass probability alto-
gether. The only paper, to the best of our knowledge, that comes
relatively close to our work is a paper by Larsson et al. [14]. For
a modularly-tested SOC with given pass probabilities per module
test, it optimizes the test architecture, such that the corresponding
expected test time is minimized. Differences between [14] and
our paper are the following. We assume a given test architecture
with disjunct TAMs, whereas Larsson et al. design test architec-
tures in which TAMs are allowed to ‘fork-n-merge’. For simplic-
ity, Larsson et al. consider only entire module tests as abortable
units, whereas we also allow for smaller granularities, in order to
improve the accuracy of the expected test application time calcu-
lation. The two papers present different scheduling algorithms,
while we also consider the case in which preemption of tests is
allowed.

3 Problem Definition

In this paper, a test architecture [3] is defined as a non-empty set
of modules M, a non-empty set of TAMs R, and an assigned-
modules function m : R — P (M), in which m(r) denotes the
subset of modules assigned to TAM r, such that

L U,er (m(r)) =M,
i.e., all modules are assigned to a TAM, and

2. Voimeer (11 # 12 = m(r1) Nm(r:) = 0),
i.e., each module is assigned to at most one TAM.

For a given test architecture, a feasible schedule is a schedule in
which tests of modules assigned to the same TAM are executed
in series, whereas the sets of modules assigned to disjunct TAMs
are tested in parallel. While in a test architecture the modules as-
signed to the same TAM r form an (unordered) set m(r), in a cor-
responding feasible schedule these modules form an (ordered) list.
For this we introduce a function o, specified by o : RxIN — M,
o(r,i) = m denotes that the test of module m is ordered as item
number i on TAM r.

Ingelsson, Goel, Larsson, and Marinissen

A test architecture has [T, . , (Jm(r)|!) corresponding non-delay*
feasible schedules. In our problem at hand, we try to identify a
corresponding non-delay feasible schedule which gives the mini-
mal expected test application time. This problem can be formal-
ized as follows.

Problem [Scheduling for Minimal Expected Test Time (SMETT)]
For an SOC is given a set of modules M, and, for the test of each
module m € M, anumber of test patterns n(m) and a pass proba-
bility p(m). Also given is a test architecture with a set of TAMs R,
and for each TAM r € R its width w(r) and a modules-assigned
function m(r). Finally, also given are the scan-in length sin (m)
and scan-out length sout () for each module m € M in this test
architecture. Determine a corresponding feasible schedule, i.e.,
determine an ordered list corresponding to m(r) for each TAM
r € R, such that the overall expected test time E of the SOC is
minimized. m|

For simplicity, we assume in this paper that every module has only
one test. However, our theory and results can easily be extended
to cover the case in which modules have multiple tests.

The scan-in and scan-out lengths sin(m) and sout (m) in the above
problem definition follow from (1) the test-related parameters of
module m [6], (2) the width w(r) of the TAM r to which m is
assigned, and (3) the wrapper design algorithm used. For the lat-
ter, we have used the CoMBINE algorithm [16]. Note that the
problem discussed in this paper is also applicable to non-scan-
testable modules; in those cases, the contribution of the internal
scan chains to the scan-in and scan-out lengths is simply zero.

The pass probability of a test equals the yield of the correspond-
ing module. To obtain these pass probabilities, one possible sce-
nario is to first test a sufficient number of SOCs without abort-
on-fail, just to record the yield-per-module. This could, for ex-
ample, be done with a schedule that minimizes the overall test
completion time [13, 2, 3, 12]. Once statistically relevant yields-
per-module have been recorded, a new schedule is created that
exploits the pass probabilities per test to minimize the expected
test time (Problem sSMETT) and applied with the ATE’s abort-on-
fail feature ‘on’ [10, 11]. An alternative scenario is to start testing
right-away with the abort-on-fail feature, while initially using as
pass probabilities estimates based on module type and size and
experience obtained with previous SOCs. In both scenarios, it is
possible to collect further yield-per-module data, even when the
abort-on-fail feature is turned ‘on’. In this way, we can record
changes in pass probabilities (e.g., due to changing manufacturing
conditions) and adjust the test schedule accordingly.

4 Model for Expected Test Time

To solve Problem sMETT, calculation of the expected test time is
required. In this section, we discuss the basics of expected test
time calculation for a schedule of a test architecture with multiple
disjunct TAMs, improvements in accuracy obtained by reducing
the size of the abortable units, and the related distribution of given
pass probabilities.

4.1 Basic Expected Test Time Calculation

The test of module m € M has pass probability p(m); further-
more, we assume that the test time of this test is ¢(m).

1A feasible schedule is called non-delay if no TAM is kept idle while there is a test available for execution on that TAM [15].

Test Scheduling for Modular SOCs in an Abort-on-Fail Environment 3

First consider the case of only one TAM r. The set of modules to
be tested is m(r). Under the assumption that test execution can
only be aborted once an individual module test has completed,
Huss and Gyurcsik [9] showed that the expected test time E can
be expressed by

[m(r)| fi—1
E= 3 (HP(O(TJ))> -t(o(r, 1)), (4.1)

i=1 \j=0
where p(o(r,0)) := 1.

Figure 1 shows an illustrative example consisting of one TAM r
with three modules. Figure 1(a) shows the original schedule:
< mg,m1,mo >. Based on this order, order function o is de-
fined: o(r,1) = 3, o(r,2) = 1, and o(r,3) = 2. The same
schedule, now with o, is depicted in Figure 1(b). Figure 1(c)
shows the cumulative pass probability as a function of time. The
test of mg is executed with probability 1, as it is the first test in
the schedule. Only if mg passes its test, the test of m; will be
executed. Hence, the expected test time after the second test is
t(o(r,1)) + (p(o(r, 1)) x t(o(r,2))) = (3) + (p(3) x t(1)).
Similarly, the test of m4 will only be executed if the first two tests
both pass, i.e., with probability p(3) x p(1). Consequently, the to-
tal expected test time is ¢(3) + (p(3) x (1)) +(p(3) xp(1) x t(2)).
Note that the expected test time equals the shaded area under the
cumulative pass probability curve in Figure 1(c).

13) o) 12)
I
my m, m, .
time ES
9 N T R ! A
> Q}\X\ Q\x\ g p(3)
K & g
@) <] ©®
M) _o(r2) 1(0(3)) ¢ ()
ZPEXP)F == === == q=mm =
m m m g
B o3 ine 3 PEXPLX2)
B B 3
& &
S S 0 RS 0
& & & N
Q) time &
(b) (c) .

Figure 1: A schedule for three modules on one TAM with (a) original
and (b) ordered module names, and (c) the corresponding cumulative
pass-probability curve.

Next, we consider the case of a full-fledged test architecture, con-
sisting of multiple disjunct TAMs. Larsson et al. [14] described
how to extend the expected test time expression of Equation (4.1)
to cover multiple TAMs. Every completion of an individual test
provides an opportunity to abort the test. The completion times of
the tests on the individual TAMs in a given test schedule determine
a complete global ordering of all tests. This ordering is expressed
by a function o’ : IN — M; o (i) = m denotes that the test of
module m is the 4th test to complete in the global schedule. Now,
the total expected test time E for the entire test schedule can be
expressed by

| M|

E=Y" (ﬁ Pl () () — ¢/t - 1))) L @)

J

which r and ¢ are defined such that o’ (i) € » A o(r, £)

where p(o'(0)) :=1,'(0) := 0,and #' (i) := S5 _, t(o

=
O\??,
=
=
=

Figure 2 shows an illustrative example consisting of two TAMs
with resp. three and two modules. Figure 2(a) shows the origi-
nal schedule. The overall order of completion of the various tests
has the following sequence: < mi, ma, m2, ms, ms >. (Actu-
ally, the tests of modules m; and m4 complete simultaneously,
and hence m; and m4 could just as well have been swapped
in this sequence.) Based on this order, function o is defined:
o' (1) = 1,0'(2) = 4,0'(3) = 2,0'(4) = 5, and o' (5) = 3.
This renaming is depicted in Figure 2(b). Figure 2(c) shows the
corresponding cumulative pass probability as a function of time.

t(1) 1(2) t(3) H(o'(1) (0'(3)) (0'(5))
m; m, m, mﬂ.(l) mo.@l m..
1(4) 1(5) 1(0'(2)) 1(0'4)
m4 m5 mo,(z) mm)
time time
0 D S S &
0 //@ @ x@ x@ @\ \9® \@\ x‘@
i\
& N & 5%
>
(@) (b) *
T
=
=
=]
I
S
S p@xp@fmmmm e .-
2
&
s
e e __________lo_____ 1 ..
= xp(2)|
=5
3 [S1G R =TCCD N Syt)
xp(2)xp(5)
time
° AR D B)
X X =)
& g <P NG
(© &

Figure 2: A schedule for two TAMs with resp. three and two modules
with (a) original and (b) ordered module names, and (c) the correspond-
ing cumulative pass-probability curve.

4.2 Reducing the Abortable Unit Size

The expected test time is reduced if we reduce the size of the
abortable units. Three natural abortable units are (1) module tests,
(2) test patterns, and (3) clock cycles. Figure 3 illustrates this by
showing the cumulative pass probability as a function of time for
the three mentioned abortable unit sizes; increasing darker colors
represent decreasing unit sizes. In this small example, the entire
test suite consists of two module tests, each consisting of five test
patterns, which in turn consist of multiple clock cycles. As dis-
cussed in Section 4.1, the expected test time equals the shaded
area under the curve. As the darker curves lie strictly below the
lighter curves, the corresponding expected test time is smaller.

-

Module tests

o
©

M Test patterns
B Clock cycles

=
=
o
Qo
[=
S 0.8
1]
@
Q 0.7
[}
=
S 0.6
=
§ 05
o

0.4

0 10 20 30 40 50 60 70 80 90
clock cycle

Figure 3: Cumulative pass probability as a function of time for three
abortable unit sizes: module tests, test patterns, and clock cycles.

Most ATEs can abort a digital test almost immediately; only re-
ally fast ATEs have a (negligible) small number of clock cycles
pipeline delay between the occurrence of the failing response bit
at the SOC pins and the actual stop of the test execution. Hence, it
is fair to state that reducing the abortable unit size not only de-
creases the calculated expected test time E, but also makes E
more accurate. The smallest and most accurate expected test time
is calculated in a model which assumes the abortable unit to be a
single clock cycle.

From Figure 3 we can also learn that the relative improvement in
size and accuracy of the expected test time calculated decreases
for increasingly small unit sizes. In other words: the biggest gain
is obtained in going from tests to patterns, while the additional
gain from going from patterns to cycles is relatively small.

4.3 Pass Probability Distribution

Using more and smaller abortable units to calculate the expected
test time requires pass probabilities for these units. In the defi-
nition of Problem SMETT, only one pass probability per module
test is given. As we do not want to burden the user by providing
us with more pass probabilities, we calculate those ourselves, by
means of ‘distributing’ the pass probability of the module test over
the smaller units.

We first consider the distribution of the pass probability p(m) of
the test of module m over the pass probabilities p(m,) of the
n(m) individual test patterns of m. This distribution has to be
such thatp(m) = HZL:(”I” p(m,i). One way to do this is to assume
a flat distribution, in which ¥V, <;c;<nmyp(m,t) = p(m,j).
Such a flat distribution is achieved by p(m,i) = p(m)/™(™.
However, a more realistic distribution of pass probabilities is one
in which the early patterns are much more likely to fail than late
test patterns. We refer to such a distribution as curved, and it is
characterized by

1
n(m) 1

p(m, i) = p(m) (5 1), 4.3)

Figure 4 shows for an example module m with n(m) = 20 and
p(m) = 0.5 both the pass probability p(m,) and the cumulative
pass probability H;zlp(m,j) per pattern 4, based on a curved
distribution. The figure illustrates that by using Equation (4.3),
the pass probability is at first a steeply increasing function, which
soon flattens out to almost horizontal, but still increasing. This
curve follows the shape of the familiar (cumulative incremental)
fault coverage curves.

pass probability

cumulative pass probability

OS 05 T
123 45 6 7 8 910111213 14 15 16 17 18 19 20 0123456 78 91011121314151617 18 19 20 21
pattern pattern

(@) (b)
Figure 4: Example of (a) pass probability and (b) cumulative pass prob-
ability per pattern.
Secondly, we consider the distribution of the pass probability
p(m, i) of an individual test pattern over the pass probabilities

Ingelsson, Goel, Larsson, and Marinissen

p(m, 1, k) of its constituting clock cycles k. During ‘scan-in-only”
clock cycles, no test responses are evaluated and thus the test can-
not fail; hence, we set the corresponding pass probability to 1.
Scan-in-only cycles occur (1) during scan-in of the very first test
pattern, and, for other patterns, (2) only if scan-in is longer than
scan-out. In the latter case, assuming that scan-out of a pattern
takes place concurrently with scan-in of the next pattern, there are
max(0, sin(m) — sout(m)) scan-in-only cycles per pattern. Dur-
ing the remaining 1 + sous(m) clock cycles per test pattern, test
responses are evaluated and consequently the test can fail; hence,
we distribute the pass probability p(m,) of the test pattern over
these cycles only. We assume that within one test pattern, all non-
‘scan-in-only” clock cycles have an equal pass probability. Then,
the pass probability for a non-‘scan-in-only’ clock cycle & of pat-
tern ¢ of module m is given by

p(m,i, k) _ p(m, z) /(L+sout(m))

(4.4)
Figure 5 illustrates the above for an example module m, with
p(m) = 0.7, n(m) = b, sin(m) = 8 and sout(m) = 5. Note
that this example is chosen such that sin > sout, and hence ‘scan-
in-only” cycles occur in every pattern. Figure 5(a) shows the pass
probability per clock cycle. This pass probability is 1 for all ‘scan-
in-only” cycles. In all other clock cycles, the pass probabilities
p(m, 1, k) are such that (1) the curve between patterns is increas-
ing (per Equation (4.3)), (2) the curve within one pattern is flat
(per Equation (4.4)), and (3) the products of all pass probabilities
per individual unit amount to p(m), i.e.,

T n(m)

Hp(m,i, k) = H p(myi) =p(m),where

k=1

(4.5)

T = (max((sin(m), Sout(m)) + 1) - n(m))+min((sin(m), Sout (m)).
Figure 5(b) shows the corresponding cumulative pass probability
per clock cycle.

0.9

)

08

pass probability
°

cumulative pass probability

e i i
5 10 15 20 25 30 35 40 45 50
clock cycle

I I I I I
11 16 21 26 31 36 41 46 0
clock cycle

|
16

(@) (b)
Figure 5: Example with (a) pass probability and (b) cumulative pass
probability per clock cycle.

5 Scheduling Algorithm

5.1 Non-Preemptive Scheduling

As mentioned in Section 3, a given test architecture has
[I,cr (Im(r)]') corresponding non-delay feasible schedules.
Real-life test architectures typically have at least one TAM con-
taining a large number of modules, and for these architectures, an
exhaustive search over all schedules is impractical. We have im-
plemented an efficient heuristic scheduling algorithm to address
this problem.

Test Scheduling for Modular SOCs in an Abort-on-Fail Environment 5

Our overall approach is to optimize the schedule per TAM, as it is
computationally straight forward, and yet results in good overall
schedules. The scheduling per TAM is done such that tests that are
likely to fail as well as short tests are candidates to be scheduled
early.

In non-preemptive scheduling, the module tests are considered
as atomic scheduling units. We assign each module m a weight
w(m), and sort the modules in increasing weight. Weight w(m)
is defined by

w(m) = E(m)

T 0w oY

In the case of module test grain sizes, this scheduling algorithm
gives optimal results (proof omitted due to lack of space). For
the other cases, we have counter-examples that prove that results
are not guaranteed to be optimal, although the algorithm turns out
to be an effective heuristic approach. The compute time for our
scheduling algorithm is dominated by the time spent on sorting,
viz. O(lm(r)| - log |m(r)|) per TAM r.

5.2 Preemptive Scheduling

It is well known that for logic tests, most faults are detected al-
ready in the first few test patterns. The remaining test patterns
have a decreasing incremental fault coverage and are typically tar-
geted towards the small fraction of ‘hard-to-detect’ faults. Exactly
this property we tried to model in the pass probability distribution
from tests to patterns in Section 4.3. Given this behavior, allowing
preemption of tests is attractive. A first part of a test can be short
and still have a low pass probability, and hence, when scheduled
early, reduces the expected test time. The remaining part(s) of the
test will have a higher pass probability and can be scheduled later.

Preemption typically reduces the expected test time drastically.
However, in some cases preemption also increases the test com-
pletion time slightly. In our approach, we assumed overlapped
scan-out of one pattern with scan-in of the next pattern for pat-
terns of the same test, but not for test patterns of different tests.
Hence, for each preemptive cut of the test of a module m, the
test completion time of TAM r (with m € m(r)) increases with
min(sin(m), sous(m)). If r happens to be the TAM with domi-
nant test time, the overall test completion time is increased due to
the preemption. A (slightly) larger test completion time implies
that we need a (slightly) increased ATE vector memory to store

the test patterns.

In this paper, we consider a straight-forward preemption strategy,
consisting of two steps. In Step 1, we divide every module test
into two parts. The first part consists of 10% of the total number
of test patterns for the module, while the other part consists of the
remaining 90% of the test patterns. We assign them pass prob-
abilities according to the approach of Equation (4.3). In Step 2,
both parts are treated as two separate tests and scheduled with our
non-preemptive scheduling algorithm, described in Section 5.1.

6 Experimental Results

\We obtained experimental results for the ITC’02 Test Benchmarks
[6]. As the original benchmark data does not contain pass proba-
bilities, we have added these ourselves. We have used two differ-
ent sets of pass probabilities. The first set is taken from [14]; we
refer to it as the L set. The second set we have constructed our-
selves; this so-called T set takes into account the type of the mod-
ule (logic or memory) and its relative size. The pass probabilities
vary, for the L set from 90% to 99%, and for the I set from 23%
to 99%; the full details can be found at [17]. Test architectures,
which form the starting point of our problem definition, were gen-
erated by TR-ARCHITECT[3] for a given SOC and given maximal
TAM width wmax. We assumed that all modules are at the same
level of design hierarchy, just below the SOC itself (despite what
is specified in [6]), and we only considered the module-internal
tests. Due to lack of space, this paper only presents results for
SOC p22810, but similar results were obtained for other bench-
mark SOCs and published in [17].

Table 1(a) presents the expected test time results for the three dif-
ferent abortable units: E,, for module tests, E, for test patterns,
and E. for clock cycles. For this table, no particular schedul-
ing algorithm was used; the schedule that was analyzed is the
lexicographically-sorted non-preemptive test schedule delivered
by TR-ARCHITECT. Furthermore, we considered a curved pass
probability distribution between patterns, and a flat pass probabil-
ity distribution between clock cycles within a pattern. Column 1
lists the pass probability set used (L or I) and Column 2 lists
the maximal TAM width specified (wmax). Column 3 presents
the completion time C obtained by TR-ARCHITECT, i.e., without
abort-on-fail. Columns 4, 6, and 8 list the expected test times E,,,,
E,, and E. for the various abortable units. Columns 5, 7, and 9
show the relative differences between the expected test times and
the completion time C'.

Pass Abortable Unit Scheduling
Prob. | wmax C Module Test Test Pattern Clock Cycle Non-Preemptive Preemptive
Em—C Ep—C Ec.—C np EgP —Ec cP_cC EFP_ECP
Set [3] E,, Em=€ |\ E, =25 E. Eez€ EpP Eep=Fe || CP i~ E? Py
16 458068 254969 -44% 230552 -50% 230487 -50% 135542 -41% 459860 +0.4% | 123823 -9%
24 299718 170201 -43% 139366 -54% 139281 -54% 85983 -38% 301485 +0.6% 80582 -6%
32 222471 119506 -46% 89357 -60% 89247 -60% 66110 -26% 223605 +0.5% 61985 -6%
L 40 190995 87013 -54% 66517 -65% 66459 -65% 55980 -16% 190995 0.0% 52339 -1%
48 160221 84561 -47% 61623 -62% 61553 -62% 45891 -26% 160221 0.0% 43805 -5%
56 145417 83019 -43% 59538 -59% 59465 -59% 41345 -31% 145417 0.0% 39442 -5%
64 133405 78705 -41% 57131 -57% 57074 -57% 37694 -34% 133405 0.0% 35981 -5%
16 458068 160126 -65% 66983 -85% 66892 -85% 18636 -72% 459860 +0.4% 10361 -44%
24 299718 140031 -53% 14917 -95% 14808 -95% 11443 -23% 301485 +0.6% 6843 -40%
32 222471 103964 -53% 8364 -96% 8234 -96% 6422 -23% 223605 +0.5% 4860 -24%
1 40 190995 107216 -44% 8624 -95% 8543 -96% 5110 -41% 190995 0.0% 4072 -20%
48 160221 103763 -35% 6588 -96% 6506 -96% 4409 -33% 160221 0.0% 3479 -21%
56 145417 94565 -35% 4950 -97% 4851 -97% 3779 -24% 145417 0.0% 3101 -18%
64 133405 79514 -40% 4563 -97% 4475 -97% 3548 -22% 133405 0.0% 2813 -21%
(a) (b)

Table 1: For SOC p22810, test time results for (a) three different abortable unit sizes, and (b) non-preemptive and preemptive test scheduling.

In Table 1(a), we see that for decreasing abortable units, the ex-
pected test time E decreases. For some TAM widths, the savings
in test time are up to 97%. The savings obtained for set I are
larger than the savings for set L, due to the fact that set I has
lower pass probabilities then set L. The cycle-based calculations
are the most accurate ones, but also require more compute time (up
to five times more for SOC p22810) than the test- or pattern-based
calculations. As the differences in expected test time for pattern-
and cycle-based units are insignificantly small, we recommend to
use patterns as the abortable unit.

Table 1(b) shows test time results obtained using the test schedul-
ing algorithms presented in Section 5. Here, we used clock cy-
cles as the abortable unit, in order to obtain the most accurate
results. Column 2 lists the relative difference in expected test
time between our non-preemptive scheduling algorithm E”? and
the lexicographical schedule delivered by TR-ARCHITECT E..
Columns 4 and 6 represent the relative differences in completion
time C and expected test time E between our preemptive and non-
preemptive scheduling algorithms. In Table 1(b), we see that our
non-preemptive scheduling algorithm obtains savings in expected
test time up to 41% for set L and 72% for set I. Our preemp-
tive scheduling algorithm brings additional savings up to 44% in
expected test time, at the (marginal) expense of <1% increase in
completion time. The latter is due to the fact that at pre-emption
boundaries in the schedule, we do not allow overlapped scan (see
Section 5.2).

7 Conclusion

Modular testing, increasingly applied on complex SOCs, enables
the recording of yield-per-module. In this paper, we used the
yield-per-module to exploit the abort-on-fail feature of ATEs, in
order to reduce the expected test application time. Working with
module tests, patterns, and individual clock cycles as abortable
units, we have presented a model to compute the total expected
test application time. The expected test application time decreases
and becomes more accurate with decreasing abortable unit sizes.
Subsequently, we addressed the problem of test scheduling for a
given modular test architecture consisting of wrappers and dis-
junct TAMs, such that the total expected test time is minimized.
For this problem, we presented two heuristic scheduling algo-
rithms, one without and one with preemption. Experimental re-
sults for the ITC’02 SOC Test Benchmarks demonstrate the ef-
fectiveness of our approach. We show that by just decreasing the
abortable unit size, up to 97% reduction in the expected test time
can be achieved. The use of our non-preemptive heuristic schedul-
ing algorithm results in additional savings in expected test time up
to 72%. Our preemptive scheduling algorithm brings even further
additional savings in the total expected time, up to 44%, at an ex-
pense of <1% in overall completion time. All results only require
rescheduling of tests, and no modifications to SOC or ATE.

Acknowledgements

We thank Jan Korst, Wil Michiels, André Nieuwland, Bart Vermeulen,
and Harald Vranken of Philips Research and Julien Pouget of LIRMM for
fruitful discussions during the project.

Ingelsson, Goel, Larsson, and Marinissen

References

[1] Yervant Zorian, Erik Jan Marinissen, and Sujit Dey. Testing
Embedded-Core Based System Chips. In Proceedings IEEE Inter-
national Test Conference (ITC), pages 130-143, Washington, DC,
USA, October 1998.

[2] Sandeep Kumar Goel and Erik Jan Marinissen. Effective and Effi-
cient Test Architecture Design for SOCs. In Proceedings IEEE In-
ternational Test Conference (ITC), pages 529-538, Baltimore, MD,
USA, October 2002.

[3] Sandeep Kumar Goel and Erik Jan Marinissen. SOC Test Architec-
ture Design for Efficient Utilization of Test Bandwidth. ACM Trans-
actions on Design Automation of Electronic Systems (TODAES),
8(4):399-429, October 2003.

[4] Erik Jan Marinissen et al. On IEEE P1500’s Standard for Embedded
Core Test. Journal of Electronic Testing: Theory and Applications
(JETTA), 18(4/5):365-383, August 2002.

[5] Francisco DaSilva, Yervant Zorian, Lee Whetsel, Karim Arabi, and
Rohit Kapur. Overview of the IEEE P1500 Standard. In Proceedings
IEEE International Test Conference (ITC), pages 988-997, Char-
lotte, NC, USA, September 2003.

[6] Erik Jan Marinissen, Vikram lyengar, and Krishnendu Chakrabarty.
A Set of Benchmarks for Modular Testing of SOCs. In Proceed-
ings IEEE International Test Conference (ITC), pages 519-528, Bal-
timore, MD, USA, October 2002.

[7] Y.-H.Lee and C.M. Krishna. Optimal Scheduling of Signature Anal-
ysis for VLSI Testing. In Proceedings IEEE International Test Con-
ference (ITC), pages 443-451, September 1988.

[8] Y.-H.Lee and C.M. Krishna. Optimal Scheduling of Signature Anal-
ysis for VLSI Testing. IEEE Transactions on Computers, 40(3):336—
341, March 1991.

[9] Scott D. Huss and Ronald S. Gyurcsik. Optimal Ordering of Ana-
log Integrated Circuit Tests to Minimize Test Time. In Proceedings
ACM/IEEE Design Automation Conference (DAC), pages 494-499,
San Francisco, CA, USA, June 1991.

[10] Wanli Jiang and Bapiraju Vinnakota. Defect-Oriented Test Schedul-
ing. In Proceedings IEEE VLSI Test Symposium (VTS), pages 433-
438, Dana Point, CA, USA, April 1999.

[11] Wanli Jiang and Bapiraju Vinnakota. Defect-Oriented Test Schedul-
ing. IEEE Transactions on VLSI Systems, 9(3):427-438, June 2001.

[12] Sandeep Koranne. On Test Scheduling for Core-Based SOCs. In
Proceedings International Conference on VLSI Design, pages 505—
510, Bangelore, India, January 2002.

[13] Vikram lyengar, Krishnendu Chakrabarty, and Erik Jan Marinissen.
Co-Optimization of Test Wrapper and Test Access Architecture for
Embedded Cores. Journal of Electronic Testing: Theory and Appli-
cations (JETTA), 18(2):213-230, April 2002.

[14] Erik Larsson, Julien Pouget, and Zebo Peng. Defect-Aware SOC
Test Scheduling. In Proceedings IEEE VLSI Test Symposium (VTS),
pages 359-364, Napa Valley, CA, USA, April 2004.

[15] Michael Pinedo. Scheduling — Theory, Algorithms and Systems.
Prentice Hall, New Jersey, NJ, USA, 1995.

[16] Erik Jan Marinissen, Sandeep Kumar Goel, and Maurice Lousberg.
Wrapper Design for Embedded Core Test. In Proceedings IEEE In-
ternational Test Conference (ITC), pages 911-920, Atlantic City, NJ,
USA, October 2000.

[17] Urban Ingelsson, Sandeep Kumar Goel, Erik Larsson, and Erik Jan
Marinissen. Test Scheduling for Modular SOCs in an Abort-on-Fail
Environment — Web Site. http://www.ida.liu.se/ eslab/soctest/urban/.

