
Linköping Studies in Science and Technology

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

An Integrated System-Level
Design for Testability Methodology

by

Erik Larsson

Linköping 2000

Dissertation No. 660

ISBN 91-7219-890-7
ISSN 0345-7524

To Eva and Knut

Abstract
HARDWARE TESTING is commonly used to check whether faults
exist in a digital system. Much research has been devoted to the
development of advanced hardware testing techniques and meth-
ods to support design for testability (DFT). However, most existing
DFT methods deal only with testability issues at low abstraction
levels, while new modelling and design techniques have been devel-
oped for design at high abstraction levels due to the increasing com-
plexity of digital systems.

The main objective of this thesis is to address test problems faced
by the designer at the system level. Considering the testability
issues at early design stages can reduce the test problems at lower
abstraction levels and lead to the reduction of the total test cost.
The objective is achieved by developing several new methods to
help the designers to analyze the testability and improve it as well
as to perform test scheduling and test access mechanism design.

The developed methods have been integrated into a systematic
methodology for the testing of system-on-chip. The methodology
consists of several efficient techniques to support test scheduling,
test access mechanism design, test set selection, test parallelization
and test resource placement. An optimization strategy has also
been developed which minimizes test application time and test
access mechanism cost, while considering constraints on tests,
power consumption and test resources.

Several novel approaches to analyzing the testability of a system
at behavioral level and register-transfer level have also been devel-
oped. Based on the analysis results, difficult-to-test parts of a
design are identified and modified by transformations to improve
testability of the whole system.

Extensive experiments, based on benchmark examples and
industrial designs, have been carried out to demonstrate the useful-
ness and efficiency of the proposed methodology and techniques.
The experimental results show clearly the advantages of consider-
ing testability in the early design stages at the system level.

Acknowledgements

IT HAS BEEN an amazingly good time working with this thesis.
Many people have contributed in different ways. I am grateful
for this and I would like to acknowledge the support.

I was lucky to get the opportunity to join the Embedded Sys-
tem Laboratory (ESLAB). My supervisor Professor Zebo Peng
has got a talent for creating a good working atmosphere. For my
work, he gave me valuable guidelines and hints combined with
much freedom. An important combination for me.

The present and former members of ESLAB and CADLAB
have created a creative and enjoyable environment to be part of.
It is a joy to be among such persons. Colleagues at IDA have also
given a nice atmosphere to work in and I would especially like to
mention the effort made by the department to support the grad-
uate students.

I would like to thank Dr. Xinli Gu for the early cooperation
presented in Chapter 9 and several members at the Electronics
Systems group, ISY, who helped me with the Mentor Graphics
tool set.

The research, funded by NUTEK1, has been carried out in
close cooperation with the industry, especially with Gunnar
Carlsson at CadLab Research Center, Ericsson. The cooperation
and Gunnar’s humble hints have provided me with many
insights and a platform to demonstrate the developed tech-
niques.

I am also happy to have the friends I have. And finally, I would
like to mention my parents, Knut and Eva, and my brothers, Mag-
nus and Bengt, who always have been the greatest support.

 Erik Larsson
Linköping, November 2000

1. Swedish National Board for Industrial and Technical Development.

Contents

I Preliminaries 1

1 Introduction 3
1.1 Motivation..4
1.2 Problem Formulation ..6
1.3 Contributions...7
1.4 Thesis Overview ..9

2 Background 11
2.1 Introduction ...11
2.2 Design Representations ..14
2.3 High-Level Synthesis ..17
2.4 Testing and Design for Testability18

II Test Scheduling and
Test Access Mechanism Design 27

3 Introduction and Related Work 29
3.1 Introduction ...29
3.2 Test Access Mechanism Design ..35
3.3 Test Isolation and Test Access..40
3.4 Test Scheduling ...53
3.5 Test Set Selection ..64
i

CONTENTS
4 Test Scheduling and
Test Access Mechanism Design 67
4.1 Introduction ...67
4.2 System Modelling ..69
4.3 Test Scheduling ...71
4.4 Test Floor-planning ...76
4.5 Test Set ..76
4.6 Test Access Mechanism...77
4.7 The System Test Algorithm ..84
4.8 Simulated Annealing...100
4.9 Tabu Search ...102
4.10 Conclusions ..103

5 Experimental Results 105
5.1 Introduction ...105
5.2 Test Scheduling ...106
5.3 Test Access Mechanism Design121
5.4 Test Scheduling and

Test Access Mechanism Design......................................122
5.5 Test Parallelization ...136
5.6 Test Resource Placement ..138
5.7 Summary..142

III Testability Analysis and
Enhancement Technique 143

6 Introduction and Related Work 145
6.1 Testability Analysis...146
6.2 Testability Improvement...164
6.3 Summary..170
ii

CONTENTS
7 Testability Analysis 177
7.1 Preliminaries... 178
7.2 Behavioral Testability Metrics....................................... 178
7.3 Application of the Behavioral Testability Metrics 184
7.4 Behavioral Testability Analysis Algorithm 185
7.5 Experimental Results ... 186
7.6 Conclusions.. 193

8 Testability Improvement Transformations 195
8.1 Basic Transformations.. 195
8.2 Cost Function for DFT Selection.................................... 200
8.3 Application of the Testability

Improvement Transformations 202
8.4 Experimental Results ... 208
8.5 Variable Dependency .. 214
8.6 Conclusions.. 218

9 Testability Analysis and
Enhancement of the Controller 219
9.1 Introduction... 219
9.2 Preliminaries... 220
9.3 Controller Testability Analysis 223
9.4 State Reachability Analysis Algorithm.......................... 226
9.5 Controller Testability Enhancements............................ 229
9.6 Experimental Results ... 232
9.7 Summary ... 234

IV Conclusions and Future Work 235

10 Conclusions237
10.1 Thesis Summery.. 237
10.2 Conclusions.. 240
iii

CONTENTS
11 Future Work 243
11.1 Estimation of Test Parameters243
11.2 Test Scheduling and Test Access Mechanism244
11.3 Testability Analysis and

Testability Enhancements ..245

V Appendix 249

Appendix A 251
Design Kime...251
System S...252
Design Muresan...253
ASIC Z..254
Extended ASIC Z ...256
System L ..258
Ericsson design ..258

Bibliography 267
iv

Preliminaries

PART I

Chapter 1
Introduction

THIS THESIS DEALS with the problems of hardware testing
and focuses on problems at the early stage in the design process.
Most previous work in hardware testing has mainly considered
test problems at lower abstraction levels. However, the increas-
ing complexity of digital designs has led to the development of
new modelling techniques at higher and higher abstraction lev-
els. Design tools operating at the high abstraction levels have
been developed, but test and design for testability tools have not
kept pace and testing of complex hardware structure remains a
major problem.

The main aim of hardware testing is to detect physical faults
introduced during or after production. It should be distin-
guished from hardware verification where the aim is to detect
design errors. In hardware testing a set of test vectors are
applied to the system and their responses are compared with
expected responses. Due to the increasing complexity of digital
systems, large systems are often partitioned to allow concurrent
testing of different partitions.

In this thesis an integrated framework for testing system-on-
chip (SOC) including a set of algorithms is proposed. The objec-

CHAPTER 1
tives are to minimize the total test application time and the test
access mechanism while considering several issues. Constraints
among tests and limitation on test power consumption, tester
bandwidth and tester memory are considered. Further, the
approach considers also the placement of test resources, test set
selection and test parallelization for each block in the system.

It is also important to predict and improve testability as early
as possible in the design process. In this thesis a technique to
analyze testability and a transformation technique to improve it
for a behavioral VHDL specification are defined. A technique to
analyze the testability for a controller on register-transfer level
and a technique to enhance its testability are also proposed.

The rest of this chapter is organized as follows. The motiva-
tion for the thesis is given in Section 1.1 followed by the problem
formulation in Section 1.2. The contributions of the thesis are
presented in Section 1.3 and finally an overview of the thesis is
given in Section 1.4.

1.1 Motivation
The objective of hardware testing is to ensure fault-free elec-
tronic products and it is carried out after production and/or cer-
tain period of operation. Much work in modelling techniques and
development of design tools has been performed at low abstrac-
tion levels such as the gate level. The increasing complexity of
digital designs has led to the need for and the development of
new modeling techniques and new design tools at higher
abstraction levels. The prediction and enhancement of testabil-
ity and the integration of testability at an early design stage are
therefore becoming very important.
4

INTRODUCTION
1.1.1 TEST SCHEDULING AND TEST ACCESS MECHANISM DESIGN

An effect of the increasing complexity of digital systems is
increasing test application time. In order to minimize it, it is
important to consider testability of a design at higher abstrac-
tion levels where the objective is to ensure that the final design
is testable at a low cost.

Minimization of test application time is especially important
for core-based designs. The core-based design approach is devel-
oped to handle the increasing design complexity. Cores which
are developed by different design teams or purchased from dif-
ferent vendors, known as intellectual properties (IP) cores, are
integrated usually into a single chip.

A test schedule for such a system determines the order of the
tests and in order to minimize the total test time, several tests
are to be scheduled concurrently. However, there may exist sev-
eral types of constraint which reduces the ability for simultane-
ously execution of tests. Several test scheduling techniques have
been proposed. However, most consider only a few issues. In
order to give the designer an early overall feeling for the test
problems and to allow the designer to efficiently explore the
design space, it is important to consider many issues affecting
the application time. Furthermore, an access mechanism for
transporting test data in the system has to be designed at a min-
imal cost.

1.1.2 TESTABILITY ANALYSIS AND ENHANCEMENT

In order to reduce the test generation and application complex-
ity, it is important to consider and to predict testability of a
design at higher abstraction levels in order to ensure that the
final design is testable at a low cost. At higher abstraction levels
the functional properties of the design can be explicitly captured
and it can be used to speed up testability analysis. Such infor-
mation is difficult to extract from a gate-level design.
5

CHAPTER 1
An introduction of a design-for-testability (DFT) technique in
a system improves the testability but it may also introduce some
degradation. It is therefore important to analyze the testability
and find a trade-off between testability and design degradation.
Several testability analysis approaches have been proposed.
However, most are defined for low abstraction levels and those
defined for higher abstraction levels, register-transfer level, usu-
ally only consider either the data path or the control part of the
design.

Therefore a testability analysis technique considering the
whole design at high abstraction level is needed. Furthermore,
due to the fact that the feed-back loop structure is a major prob-
lem in hardware testing, the testability analysis approach must
be capable of handling such structures. In order to make the
testability analysis technique useful for the designer, the com-
putational cost of the analysis technique must be reasonable.

1.2 Problem Formulation
The aim of our work is to reduce the testing cost, which is usu-
ally a large part of the production cost, when developing digital
systems such as core-based systems. This thesis fulfils the objec-
tives by considering:

 • Test scheduling, which is an ordering of the tests.
 • Test access mechanism design, the design of an infrastruc-

ture to transport test data in the system.
 • Testability analysis, where the hard-to-test parts of the sys-

tem are detected.
 • Testability improvement where the detected hard-to-test

parts are modified to be easier to test.

Our main goal is to develop efficient methods to improve the test
quality at an early design stage. By test quality we mean fault
coverage, test generation time and test application time. The
6

INTRODUCTION
fault coverage is defined for the single stuck-at-fault model. By
efficiency, we mean low computational time, low area overhead
and small performance degradation. Early in the design stage
refers to stages at register-transfer level and above.

The objective of reducing test application time is to be
achieved by efficient test scheduling and the objective of reduc-
ing test generation time and improving fault coverage by high-
level testability enhancement technique. Since, the introduction
of testability improvement techniques may also degrade the
design in terms of extra area and/or extra delay, the developed
testability analysis technique should be able to find a good
trade-off between testability and design degradation.

1.3 Contributions
The main contributions of this thesis are as follows:
 • A framework for the testing of system-on-chip (SOC), which

includes a set of design algorithms to deal with test schedul-
ing, test access mechanism design, test sets selection, test
parallelization, and test resource placement. The approach
minimizes the test application time and the test access
mechanism cost while considering constraints on tests,
power consumption and test resources.

 • A testability analysis technique to detect hard-to-test parts
and a set of testability enhancement transformations to
improve the testability and a selection strategy.

The rest of this section describes the contributions in more
detail.

1.3.1 A FRAMEWORK FOR THE TESTING OF SYSTEM-ON-CHIP

In this thesis, a combined test scheduling and test access mech-
anism design approach is introduced. The approach minimizes
the test application time while several factors are considered;
these factors are: conflicts among tests, power limitations, test
7

CHAPTER 1
resource placement, test parallelization and the minimization of
the test access mechanism. Conflicts among tests include, for
instance, sharing of test resources. These issues are of impor-
tance in the development of core-based system.

Experiments have been performed where the efficiency of the
test scheduling technique has been shown. Its low computa-
tional cost allows it to be used for industrial designs. The test
scheduling in combination with test access mechanism design
has been investigated and an optimization technique is pro-
posed. Furthermore, a technique for the placement of test
resources is proposed.

Experiments have been performed to show the efficiency of
the proposed approach. Regarding the test scheduling the pro-
posed technique shows better results when comparing with
other techniques in respect to test time and computational cost.
The detailed experimental results could be found in [Lar99b],
[Lar00a], [Lar00b], [Lar00c], [Lar00d] and [Lar00e].

1.3.2 TESTABILITY ANALYSIS AND ENHANCEMENT

A testability analysis technique that detects hard-to-test parts
at a high abstraction level design representation of a system has
been developed. The analysis is based on a qualitative metrics.
The advantage is that the designer gets an early feeling for the
test problems and can use this information to improve the test-
ability of the design. Another advantage of early considerations
of testability is that functional properties are easier to be found
in a high-level design representation compared to a gate-level
design.

Our testability metric is a combination of variable range,
operation testability and statement reachability. We show an
application of the testability metrics for partial scan selection
and we present an algorithm to calculate the metrics. We per-
form experiments to show correlation between our test metrics
and the fault coverage. We compare our behavioral level analy-
8

INTRODUCTION
sis with a commercial gate-level tool and show that the hard-to-
test parts can be predicted accurately at the behavioral level.

We have focused on testability analysis and enhancement for
the controller part of a digital design. The controller usually has
a large impact on the testability of the whole design and by con-
sidering it the test problems for the whole design will be
reduced. The controller metrics are based on statement reacha-
bility and the enhancement technique is based on loop termina-
tion, branch control and register initialization. We show by
experiments that our enhancement technique improves the test-
ability.

We propose a set of behavioral level testability transforma-
tions, which include write-insertion, read-insertion, boolean-
insertion and reach-insertion, and a transformation selection
strategy. The transformations are applicable directly on the
behavioral VHDL specification and they do not impose any
restrictions on the high-level synthesis process. We propose a
selection strategy and by experiments we show the efficiency of
our approach. We also present a partitioning scheme based on
dependency among variables. By partitioning the variables it is
possible to improve the testability for several hard-to-test parts
in each design iteration. The work is reported in [Gu97],
[Lar97], [Lar98a], [Lar98b], [Lar99a].

1.4 Thesis Overview
This thesis is divided into four parts:

 • Preliminaries. A general background to hardware testing
is described where the focus is on synthesis for testability as
well as the basic terminology of testability techniques.

 • Test Scheduling and Test Access Mechanism Design.
In Part II, the background to the testing of system-on-chip
(SOC) is given as well as an overview of related work. Fol-
lowed by introducing the test scheduling and test access
9

CHAPTER 1
mechanism design algorithms. An integrated framework
including a set of design algorithms for testing of system-on-
chip. The aim of the test scheduling is to order the tests in
the system to minimize the test application time while con-
sidering several important constraints. The test access
mechanism algorithm minimizes the size of the infrastruc-
ture used for transportation of test data. An integrated
approach is defined where test scheduling, test access mech-
anism design, test parallelization and test set selection are
combined. Part II concludes with several experiments on
benchmarks as well as on industrial designs.

 • Testability Analysis and Testability Improvement
Transformations. Part III opens with an overview of previ-
ous approaches to analyzing the design as well as techniques
to improve the testability. The behavioral level testability
metrics are given in Chapter 7, including an algorithm to
calculate the metrics and we show an application of it for
partial scan selection. The chapter concludes with experi-
mental results where we show that our metrics detect hard-
to-test parts and that we can predict testability on the
behavioral level. In Chapter 8 we propose a design transfor-
mation technique and a selection strategy that improves the
testability of a behavioral specification. Experimental results
are presented to show that the approach makes the design
testable. In Chapter 9 a technique to analyze the testability
of the controller and a technique to improve the testability
are proposed. The analysis is based on statement reachabil-
ity and the enhancement technique consists of loop breaking,
branch control and register initialization. Through experi-
ments we show that our approach improves testability.

 • Conclusions and Future Work. In Part IV, the thesis con-
cludes with conclusions and a discussion on future work.
10

Chapter 2
Background

TESTABILITY HAS A LARGE impact on all stages in the design
flow and much research has been devoted to it. This chapter
gives the background and an introduction to modelling tech-
niques and basic definitions and techniques used for design for
test (DFT) ability.

After the introduction in Section 2.1, design representations
are discussed in Section 2.2. In Section 2.3 high-level synthesis
is discussed and the chapter concludes with a discussion on DFT,
Section 2.4.

2.1 Introduction
The development of microelectronic technology has lead to the
implementation of system-on-chip (SOC), where a complete sys-
tem, consisting of several application specific integrated circuits
(ASIC), microprocessors, memories and other intellectual prop-
erties (IP) blocks, is implemented on a single chip.

Designing such systems usually starts with a system specifi-
cation where the system’s functionality is captured, see
Figure 2.1. The specification is partitioned and synthesised

CHAPTER 2
(implementation specific details are added) into sub-system
specifications, see Figure 2.2 for an example. The sub-systems
may be further partitioned into blocks and then a design flow as
in Figure 2.3 may be applied on each block.

In order to reduce the design time complete sub-systems or
blocks may be reused. When sub-systems or blocks are reused
some steps in the design flow in Figure 2.3 may not be needed.
For instance, assuming that the microprocessor in Figure 2.2
will be given as a structural specification due to the reuse of the
previously designed microprocessor, then the high-level synthe-
sis step is not performed.

Modelling techniques at higher abstraction levels have been
developed due to the increasing complexity of digital designs. In
the design flow illustrated in Figure 2.3 three different abstrac-
tion levels are distinguished, behavioral, structural and gate

Block specification

Figure 2.1: High-level design for digital systems.

Block synthesis

System specification

System partitioning and synthesis

Sub-system specification

Sub-system partitioning and synthesis
12

BACKGROUND
Processor RAM 1 ASIC 1

ASIC 2RAM 2ROM 1

Figure 2.2: An example of a system partitioned
into sub-systems.

Behavioral representation

High-level synthesis

Logic synthesis

Layout

Figure 2.3: The synthesis flow for basic blocks.

Production test

Production

Structural representation

Behavioral level

Structural level

Gate level
13

CHAPTER 2
level. The design work can start with a sub-system or block cap-
tured in a behavioral specification which is transformed to a
structural specification by the high-level synthesis process. The
logic synthesis process transforms the structural specification to
a layout which is sent for production.

In order to decrease the development time it is also common to
reuse previously designed parts which are incorporated as sub-
parts in the final system. These pre-designed parts, called cores,
may be incorporated at any abstraction level. For instance if a
processor is incorporated, it is usually delivered as a gate-level
specification by the core provider.

When the design is completed, the system is manufactured
and then production tests are performed to detect production
errors. Testing of the system may also be performed during the
operation and maintenance of it. Hardware testing may also be
used to detect design errors. However, a test for all possible
errors may require a large test effort. In order to minimize the
test effort and maximize the test coverage, we have to consider
the test problems during the design process.

2.2 Design Representations
During the design process, a system or a part of it can be
described at different abstraction levels. At higher abstraction
levels fewer implementation-specific properties are found, while
at lower abstraction levels more implementation-specific proper-
ties are added. Since a model at a high abstraction level contains
fewer implementation-specific details, it is less complex and eas-
ier to grasp for a designer than a model at a lower level.

In this section we will cover behavioral, structural and inter-
mediate representations. System-level modelling techniques as
proposed by Cortes et al. [Cor00] and gate-level formats are not
covered.
14

BACKGROUND
2.2.1 BEHAVIORAL REPRESENTATION

The design work starts with a behavioral representation. The
term behavioral representation is used to reflect that the repre-
sentation at this level only captures the behavior of the design.
The required resources and implementation structure timing
are not specified.

As an example, the CAMAD high-level synthesis tool, a
research system developed by our research group, accepts as
input a behavioral specification in VHDL [Ele92] or ADDL,
Algorithmic Design Description Language [Fje92], [Pen94]. The
latter was constructed especially for the CAMAD system. It is
close to a subset of Pascal, with a few extensions [Fje92]. Some
restrictions have been introduced in ADDL compared to full Pas-
cal, motivated since it is to be used for hardware synthesis.
Dynamic structures, files and recursion are not included in
ADDL.

The extensions to Pascal are the use of ports, modules and
parallel statements. A port is a connection to the external envi-
ronment and a module is syntactically close to a procedure.
However, a module is seen as a primitive operation mapped to a
supposed hardware module. Parallel statements, enclosed by
cobegin and coend, specify that the enclosed statements may
execute in parallel, and synchronised at the coend.

2.2.2 STRUCTURAL REPRESENTATION

The structural representation, which is usually generated as the
output of the high-level synthesis process, contains more imple-
mentation specific properties than the behavioral representa-
tion. From a representation at this level it is possible to derive
the number of components and at what time (clock period) a cer-
tain operation is performed.

A structural representation captured in VHDL typically
includes component instantiations, the way that the components
are connected with each other with signals and a finite state
15

CHAPTER 2
machine describing the controller. It is usually used as input to a
logic synthesis tool.

For example, the subset of VHDL accepted by Mentor Graph-
ics’ synthesis tool, Autologic, includes several processes, varia-
bles, signals, functions, component declaration, etc. [Me93a],
[Me93b]. However, only one wait-statement is accepted for each
process.

Another limitation is that the bounds for loops must be
known, i.e. no variable loop-statements, which means that all
loops can be unrolled.

2.2.3 INTERMEDIATE REPRESENTATION

In high-level synthesis, where a structural representation is
generated from a behavioral representation, it is common to first
transform the behavioral representation to an intermediate rep-
resentation to allow efficient design space exploration of differ-
ent design alternatives.

There exist several intermediate representations, such as the
control flow graph, data flow graph and control/data flow graph
[Gaj92]. We will here briefly describe a representation called
Extended Timed Petri Net, ETPN [Pen94]. The ETPN represen-
tation is based on a data flow part that captures the data path
operations and a control flow part that decides the partial order-
ing of data path operations.

The control flow part is modelled by a Petri net notation and
the data path by a directed graph where each vertex (node) has
the possibility of multiple inputs and/or outputs, see Figure 2.4.
In the figure, Petri net places (S-elements) are the circles while
the transitions (T-elements) are the bars in Figure 2.4.

Initially a token is placed at S0, which is an initial place, see
Figure 2.4. A transition is enabled if all its input places have at
least one token and it may be fired when the transition is ena-
bled and the guard condition is true. Firing an enabled transi-
tion removes a token from each of its input places and deposits a
16

BACKGROUND
token in each of its output places. If no token exists in any of the
places, the execution is terminated.

When a place holds a token, its associated arcs in the data
path will open for data to flow. For instance when place S2 holds
a token, the edges controlled by S2 in the data path activate and
data is moved.

Some of the intermediate representations are close to behavio-
ral representations, while others are closer to structural repre-
sentations. For instance, data flow graphs and control data flow
graphs can be placed in the former class, while representations
given as ETPN belong to the latter. With the ETPN it is possible
to analyze the number of modules needed for the data path and
the partial order of operations.

2.3 High-Level Synthesis
High-level synthesis is the transformation of a behavioral repre-
sentation into a structural implementation [Gaj92]. It consists
mainly of highly dependent, but usually treated as separated,
tasks, namely scheduling, allocation and binding of operations
to components to fulfill some given design constraint.

+

C1

X

S5

 S7

 S5 S3 S3

 S3

C1

 S6

 S3

C1

 S0

 S2 S7

 S3

 S6 S4

 S1 S5

C1

 P2

 >

 Y
S5

“0” “0” P1

 “0”

S2 S4

(a) Control part (b) Data path

Figure 2.4: An example of ETPN.
17

CHAPTER 2
Scheduling is basically assignment of operations to a time
slots, or control step, which corresponds to a certain clock cycle.
If several operations are assigned to the same control steps, sev-
eral functional units are needed. This results in fewer control
steps, which results in a faster design, but also leads to more
expensive circuits [Gaj92].

The allocation task is to select the number and types of hard-
ware units to be used in a design. Sharing of hardware resources
reduces the design size but it is only allowed if the units are not
used by different operations at the same time. Binding deals
with the operations mapping to a certain module library compo-
nents.

High-level synthesis has traditionally been considered as an
optimization of a two-dimensional design space defined by area
and performance. However, recently the design space has been
extended to include power consumption [Gru00] and testability,
as well as other criteria such as timing constraints [Hal98].

A popular approach to high-level synthesis is the transforma-
tion-based approach which starts with a naive initial solution.
The solution is improved by applying transformations until a
solution that is close to the optimal solution and that fulfils the
given constraints is found.

2.4 Testing and Design for Testability
In this section testing and design for testability (DFT) are intro-
duced. These are important for the testing of SOCs and, further,
for SOCs the volume of test data (test vectors and test response)
is increasing leading to high total test application time. There-
fore, it is important to consider the transportation of test data
and the scheduling of tests. The test application time depends on
the bandwidth of the test access mechanism and how efficient
the tests are ordered (scheduled).
18

BACKGROUND
A test access mechanism is used for the transportation of test
vectors and test responses. Test vectors have to be transported
from the test sources (test generators) to the blocks under test
and the test responses have to be transported from the blocks
under test to the test sink (test response evaluators). The size of
the access mechanism depends on the placement of test
resources and the bandwidth.

An efficient test schedule orders the tests in such order that
the test application time is minimized.

Faults and fault models are discussed in Section 2.4.1 followed
by a discussion of test generation in Section 2.4.2. Techniques
for improving the testability such as test point insertion, scan,
built-in self-test and test synthesis are described in Section
2.4.3.

2.4.1 FAULTS AND FAULT MODELS

The cost of testing includes costs related to issues such as test
pattern generation, fault simulation, generation of fault location
information, cost of test equipment and the test process itself,
which is the time required to detect and/or isolate a fault.

The test cost can be reduced by using some DFT technique.
However, a DFT technique may result in some performance deg-
radation and/or some area overhead. The most important con-
sideration when applying a DFT technique is the selection of
places to apply the DFT technique and the trade-off between
testability and the performance/area penalty.

The selection of hard-to-test parts includes a trade-off
between accuracy in finding the hard-to-test parts and computa-
tional complexity.

A produced VLSI chip may contain several types of physical
defects, such as a broken or missing wire, a wire which is
wrongly connected to another wire. Some of the defects are
present directly after production, while others may occur after
some operation time.
19

CHAPTER 2
Logical faults are commonly used to model physical defects
[Abr90]. The most commonly used fault model is the single
stuck-fault (SSF) model, which assumes that the design only
contains one fault. It also assumes that when a fault is present,
at a point, it is either permanently connected to 1 (stuck at 1
fault) or permanently connected to 0 (stuck at 0 fault). A test
detects a fault in a circuit if the output of the fault-free circuit is
different from the output of the faulty one.

The main advantage of the SSF model is that it represents
many different physical defects, and it is technology-independ-
ent. Experience has also shown that SSF detects many physical
defects. Further, using the SSF model the number of faults is
low compared with other models [Abr90]. A design with n lines
results in 2*n faults.

The fault coverage or test coverage is used to indicate the qual-
ity of tests with a given fault model [Tsu88]. The fault coverage,
f, is defined as:

where n is the number of faults detected by the given test set
[Abr90]. N is the total number of faults defined by the given
fault model.

2.4.2 TEST GENERATION

A system is tested by applying a set of test pattern (vectors/stim-
uli) on its primary inputs and then compare the test response on
its primary outputs with know good vectors. An illustration in
Figure 2.5 shows a test control unit which controls the test pat-
tern generator and the test response evaluator.

Traditionally the test patterns are supplied from an external
tester. However, due to the increasing capacity of the integrated
circuit technology, a complete system consisting of several com-
plex blocks can be integrated on a single chip. One of the advan-
tages of this integration is that the performance can increase

f
n
N
----= (2.1)
20

BACKGROUND
mainly because there is no chip-to-chip connection which used to
be a major performance bottle-neck. Due to the increasing per-
formance of systems and the limitation of bandwidth when
using external testers, there is a trend in moving the main func-
tions of the external tester onto the chip. This would mean that
all blocks in Figure 2.5 are placed on chip.

Furthermore, for large systems, it is not feasible to have only
one test pattern generator and one test response evaluator as in
Figure 2.5. An example of a system with several test pattern
generators and test response evaluator is given in Figure 2.6.

The test generators are often of different types with their own
advantages and disadvantages. For instance, TPG1 and TPG2
can be of different types in order to fit respectively circuit-under-
test. One approach to minimizing test application time while
keeping test quality high (fault coverage) is to allow a flexibility
where each circuit under test is to be tested by several test sets
from different test generators.

2.4.3 TESTABILITY IMPROVEMENT TECHNIQUES

Several techniques are used to improve the testability of a dig-
ital circuit. In this section we will present several of them,
including test point insertion, scan technique, built-in self-test
(BIST), and high-level test synthesis.

Figure 2.5: General view of a circuit under test.

Circuit under test

Test Pattern Generation

Test Response Evaluator

Test Control Unit
21

CHAPTER 2
Test Point Insertion

Test point insertion is a simple and straightforward approach to
increasing the controllability and/or observability of a design. In
Figure 2.7(a) a line (wire) between two components is shown.
The ability to set the value of the line (wire) to 0 is enhanced by
adding a 0-controllability test point. That is, an extra primary
input and an AND-gate are added, see Figure 2.7(b). The 1-con-
trollability, the ability to set a line to 1, is enhanced by adding an
extra primary input and an OR-gate, Figure 2.7(c). To increase
the observability of the line an extra primary output is added,
Figure 2.7(d).

The main advantage of test point insertion is that the tech-
nique can be applied to any line in the design. However, the
drawback is the large demand for extra primary inputs and out-
puts. The technique also requires extra gates and extra lines
which introduce additional delay.

Scan Technique

The main problem for test pattern generation is usually due to
the sequential parts of the design. The scan technique is a
widely used technique that turns a sequential circuit into a

Cut2

TRE2

Test Control Unit

Cutn

TPGn

TREn

Cut1

TPG1

TRE1

Figure 2.6: General view of a circuit under test.

TPG2
22

BACKGROUND
purely combinational one for which it is easier to generate test
patterns. The scan technique enhances controllability and
observability by only introducing two extra primary inputs (one
for test data input and one for test enable), and one extra pri-
mary output used for test data output. In the test mode the flip-
flops in the design are connected to form a shift register. When
the design is in the test mode, data is shifted into the design by
one of the extra inputs. The circuit then runs for one clock cycle
and the data captured at the flip-flops are shifted out on the
added primary output.

The basic idea behind the scan technique is illustrated in
Figure 2.8. Using the signal scan selection the register can be
controlled in two modes, the normal mode or the test mode. In
the test mode the scan-in is active and the contents of the flip-
flops are easily set. The value stored in the flip-flop is also easily
observed on the scan-out line. When all flip-flops are connected
to form one or more scan chains it is called full scan. In such
cases all flip-flops are scan controllable and scan observable,
which turns them into pseudo-primary inputs and pseudo-pri-
mary outputs, respectively [Ste00]. The advantage is that combi-
national logic and the register cells in the scan chain can be
completely tested. Full scan converts the problem of testing a
sequential circuit into that of testing a combinational circuit.

A B

(a)

A B

(b)

A B

(c)

A B

(d)

Figure 2.7: Test points for control and observation
enhancement.
23

CHAPTER 2
The testing of a combinational circuit is easier than the testing
of a sequential one mainly since in the latter case test patterns
must be applied at different states and changing from one state
may require several intermediate steps. Furthermore, if a global
reset is not available, an initialization sequence or state identi-
fication process is required making the problem even harder.

The overhead introduced by using the scan technique includes
routing of new lines, more complex flip-flops, and three addi-
tional I/O pins. The overall clock speed may have to be reduced
due to the additional logic in the flip-flops [Abr93]. The test
application time may increase since a long scan chain requires
many clock cycles to scan in the test vectors and scan out the test
response. This can be solved by a faster scan clock or by dividing
the scan chain into several shorter chains, which is called paral-
lelization. However, these two solutions entail certain penalties.
The fast scan clock needs extra area and the division of the scan
chain leads to extra primary inputs and primary outputs.

The overhead introduced by using the full scan technique may
be too high. Partial scan is a technique where only a subset of

Figure 2.8: The basic idea for scan technique.

x1

y1

clock

scan selection

scan-out

mux

flip-flop

x2

y2

clock

mux

flip-flop

xn

yn

clock

scan-in

mux

flip-flop
24

BACKGROUND
the flip-flops in the design are connected in the scan chain. This
is done in order to have a good trade-off between the testability
of the circuit and the overhead induced by scan design.

Built-In Self-Test

When the scan technique is used, the test vectors are typically
applied from the outside of the chip under test by a tester, see
Figure 2.9. However, the Built-In Self-Test (BIST) technique
does not require any external test equipment. Instead the test
pattern generator, response analyser and test controller are
integrated into the design. This may be achieved as shown in
Figure 2.9 by integrating the test resources into the system
which allow tests to be performed at any time since the test
resources are built into the system. Another advantage of BIST
is that the technique does not suffer from the bandwidth limita-
tions which exist for external testers.

In order to further minimize test application time, the scan
chains may be replaced and all registers are turned into test
generations and/or test analysers. In such an approach, a new
test may be applied in each clock cycle, test-per-clock. Compare
with the scan approach where each test vector has to be scanned
in, test-per-scan. The test pattern generator can be implemented
as a linear feed-back shift register (LFSR) and the response ana-
lyser as a multiple input signature register (MISR). A built-in
logic block observer (BILBO) is a register which can operate
both as a test pattern generator and a signature analyser. How-
ever, the disadvantage of using BILBOs is the large area and
delay penalty [Wag96].

An advantage of using the BIST technique is that tests are
performed at speed. The technique also has a lower test applica-
tion time compared to the scan technique.

Since the BIST technique does not require any special test
equipment, it can be used not only for production test, but also
for field test, to diagnose faults in field-replaceable units.
25

CHAPTER 2
In order to minimize overhead, the BIST technique usually
uses compaction of test response. This also leads to a loss of
information. A disadvantage is that the ability to evaluate the
test efficiency is rather limited. Usually BIST using Pseudo-ran-
dom generated test vectors only produces a signal indicating
error or no error [Tsu88].

Test Synthesis

The above DFT approaches mean usually that additional test-
related hardware is added to an existing design. In test synthe-
sis the primary goal is to perform the synthesis task in such way
that the produced output achieves good testability while keeping
area and performance overhead under a given constraint. The
high-level synthesis tasks, scheduling, allocation and binding,
are performed to achieve a testable design. However, due to the
increasing complexity of digital designs, the size of the design
space increases. Therefore, it is important to define efficient
testability analysis algorithms which are used to guide the test
synthesis. Based on the results from testability analysis the
high-level synthesis can be guided to generate testable designs.

Figure 2.9: Testers for Scan Paths.

Circuit under test

Test Response Evaluation

P
ri

m
ar

y
in

pu
t

P
ri

m
ar

y
ou

tp
u

t

S
ca

n
 p

at
h

S
ca

n
 p

at
h

S
ca

n
 p

at
h

Test Pattern Generator
26

Test Scheduling and
Test Access Mechanism Design

PART II

Chapter 3
Introduction and

Related Work

THE SYSTEM-ON-CHIP TECHNIQUE makes it possible to inte-
grate a complex system on a single chip. The technique intro-
duces new possibilities but also challenges, where one major
challenge is the testing of such complex system. This chapter
gives an overview of research and techniques for system-on-chip
testing.

3.1 Introduction
The development of microelectronic technology has lead to the
implementation of system-on-chip (SOC), where a complete sys-
tem is integrated on a single chip. Such a system is usually
made more testable by the introduction of some design for testa-
bility (DFT) mechanisms.

Several DFT techniques such as test point insertion, scan and
different types of built-in self-test (BIST) have been used for
SOC testing. For complex SOC design several test techniques
may have to be used at the same time since they all have their

CHAPTER 3
respective advantages and disadvantages. Furthermore, when
IP-blocks are used, they may already contain a test mechanism
which is different from the rest of the design and it has to be
incorporated in the overall test strategy of the whole system.

There are many similarities in testing PCBs (printed circuit
board) and SOCs. The major difference is however twofold. For
PCB, testing of each individual component can often be carried
out before mounting on the board and the components can be
accessed for test via probing. Neither of these is possible when
testing SOCs. This means that testing the completed system, in
the context of SOC, becomes even more crucial and difficult.

One main problem of testing SOCs is the long test application
time due to the complex design and the need for large amount of
test patterns. In order to keep test application time to a mini-
mum, it is desirable to apply as many tests as possible concur-
rently. However, there are a number of factors that constrain
concurrent application of several tests, which include:

 • Power consumption,
 • Test set selection,
 • Test resource limitations,
 • Test resource floor-planning,
 • Test access mechanism, and
 • Conflicts among tests.

In the rest of this chapter, we will analyze the implication of
these factors.

3.1.1 POWER CONSUMPTION

The power consumption during test is usually higher than dur-
ing the normal operation mode of a circuit due to the increased
number of switches per node which is desirable in order to detect
as many faults as possible in the minimum of time [Her98].
However, the high power consumption may damage the system,
because it generates extensive heat.
30

INTRODUCTION AND RELATED WORK
The power dissipation in a CMOS circuit consists of a static
and a dynamic part. The static power dissipation is derived from
leakage current or other current drawn continuously from the
power supply, and the dynamic power dissipation is due to
switching transient current and charging and discharging of
load capacitances [Wes92].

The static power dissipation and the dissipation due to switch-
ing transient current are negligible compared to the dissipation
due to loading and unloading of capacitances, which is given by
[Wes92]:

where V is the voltage, C is the capacitance, f is the clock fre-
quency and a is the switching activity.

All parameters but the switching activity in formula (3.1) can
be estimated using a design library. The switching activity
depends on the input data and there are two main approaches to
estimating it, based on simulation or probability. During testing
the input to the design consists of the test vectors and it is pos-
sible to make use of the test vectors generated by an ATPG tool
to estimate the switch activity for a circuit under test. An
approach where the test vectors are ordered based on Hamming
distance has been proposed by Girard et al. [Gir98].

Zorian and Chou et al. use an additive model for estimating
the power consumption [Zor93] [Cho97]. The power dissipation
for a test session sj is defined as:

where ti is a test scheduled in test session sj.
The power dissipation is usually considered to originate from

gates. However, power may dissipate not only from blocks but
also from large buses. For instance, for a wire of length 10 mm
the capacitance will be about 7 pF [Eri00]. In calculation of
power consumption, the average capacitance should be used,

Pdyn
1
2
--- V

2× C× f a××= (3.1)

P sj() P ti()
ti sj∈
∑= (3.2)
31

CHAPTER 3
which is close to half of the worst-case capacitance [Eri00].
Assume a system running at 100 Mhz where the average switch
activity (frequency) is 25 MHz for random input data. At 2 volts
the power consumption is calculated by using formula 3.1:

In a realistic example the width of the data bus from the mem-
ory is 512 bits which results in a power dissipation of 90 mW
(512 × 0.175=89.6).

3.1.2 TEST RESOURCES

The test control unit controls the test resources which are either
generators (sources) or analysers (sinks). The test stimuli (vec-
tors/patterns) is created or stored at a test source and the test
response is evaluated at a test sink. The test stimuli set is basi-
cally generated using the following four approaches namely:

 • exhaustive,
 • random,
 • pseudo-random, and
 • deterministic.

The basic ideas behind them and their advantages and disad-
vantages are outlined below.

Exhaustive-based test generation

An exhaustive test set includes all possible patterns. This is eas-
ily implemented using a counter. The area-overhead and design
complexity is low and it is feasible to place such a generator on-
chip. However, the approach is often not feasible since the
number of possible patterns is too high: for a n-bit input design
2n patterns are generated which results in extremely long test
application time.

P
1
2
--- C× V

2
f α××× 1

2
--- 3.5 10

12–×× 2
2× 25 10

6×× 0.175mW= = =
32

INTRODUCTION AND RELATED WORK
Random-based test generation

Another approach is to use the random-based techniques. The
draw-back with randomly generated test patterns is that some
patterns are hard to achieve. For instance, generating a test pat-
tern that creates a one on the output of an AND gate is only
achieved when all inputs are one; the probability is 1/2n. For a 4-
bit AND-gate the probability is only 0.0625 (1/24), Figure 3.1.
This means that a large set of test vectors has to be generated in
order to achieve high fault coverage, which leads to long test
application time.

Pseudo-random-based test generation

A pseudo-random test pattern set can be achieved using a linear
feedback shift register (LFSR). An advantage is their reasonable
design complexity and low area overhead which allow on-chip
implementation. An example of an LFSR is shown in Figure 3.2
where one module-2 adder and three flip-flops are used. The
sequence can be tuned by defining the feedback function to suit
the block under test.

Deterministic test generation

A deterministic test vector set is created using an automatic test
pattern generator (ATPG) tool where the structure of the circuit
under test is analysed and based on this analysis, test vectors
are created. The size of the test vector set is relatively small
compared to other techniques, which reduces test application
time. However, the generated test vector set has to be applied to

Figure 3.1: A 4-input AND-gate.

1
2
3
4

33

CHAPTER 3
the circuit using an external tester since it is inefficient to store
the test vector set in a memory on the chip. The external testers
have the following limitations [Het99]:

 • Scan usually operates at a maximum frequency of 50 MHz,
 • Tester memory is usually very limited, and
 • It can support a maximum of 8 scan chains, resulting in long

test application time for large designs.

A graph with the fault coverage as a function of the number of
test patterns is shown in Figure 3.3. Initially the fault coverage
increases rapidly due to that faults easy to detect are detected.
However, in the end few faults are detected due to the fact that
the remaining faults, the random-resistant faults, are hard for
an LSFT to detect. This curve applies in general to all test gen-
eration techniques. However, the faults that are hard to detect
may be different for different techniques. Therefore, approaches
where several test sets are generated for a block with different

Figure 3.2: Example of 3-stage linear feedback shift
register based on x3+x+1 and generated sequence

where S0 is the initial state.

Q1 Q2 Q3

+

S0 0 1 1
S1 0 0 1
S2 1 0 0
S3 0 1 0
S4 1 0 1
S5 1 1 0
S6 1 1 1
S7 0 1 1

D3D2D1
34

INTRODUCTION AND RELATED WORK
test resources (different techniques) in order to detect all faults
in a minimum of test application time have been developed. For
example, Jervan et al. propose a Hybrid BIST [Jer00].

3.1.3 TEST CONFLICTS

Tests may not be scheduled concurrently due to several types of
conflicts. For instance, assume that the core in a wrapper is
tested by two tests where one uses the external test source and
test sink while the other uses the on-chip test source and test
sink. These two test can not be scheduled concurrently since
they both target the same logic.

3.2 Test Access Mechanism Design
A test infrastructure consists of two parts. One part for the
transportation of test data and another part which controls the
transportation.

In a fully BISTed system where each block in the system has
its own dedicated test resources, no test data is needed to be
transported. Only an infrastructure controlling the tests is
required. Zorian proposes a technique for such systems [Zor93].
Håkegård’s approach can also be used to synthesize a test con-
troller for this purpose [Håk98].

Figure 3.3: Fault coverage function of test patterns.

Fault coverage

Number of test patterns

100%
35

CHAPTER 3
The test data transportation mechanism transports test data
to and from the cores in the system (Figure 3.4). Due to the
increasing complexity of systems, the amount of test data to be
transported is becoming substantial. Research has focused on
test infrastructure optimization in order to minimize the total
test application time.

The test application time for multiplexed, daisychain and dis-
tributed scan chain architectures are investigated by Aertes et
al. [Aer98].

In a multiplexed architecture, see Figure 3.5, all cores are
assigned to all available scan bandwidth, i.e. all cores are con-
nected to all scan inputs and all scan outputs of the system. At
any moment, only one core can use the outputs due to multiplex-
ing. The result is that the cores have to be tested in sequence.

For the discussion on multiplexed, daisychain and distributed
architecture the following is assumed to be given for each core i
in the system:

fi: the number of scannable flip-flops,
pi: the number of test patterns, and
N: the scan bandwidth for the system, maximal number of

scan-chains.

wrapper

Figure 3.4: Test sources and sinks.

sink

source

sink

test access
mechanism

core

source test access
mechanism

SOC
36

INTRODUCTION AND RELATED WORK
In scan-based systems it is common to use a pipelined
approach where the test response from one pattern is scanned
out, the next pattern is scanned in simultaneously. The test
application time ti for a core i is given by:

In the muliplexed architecture ni=N. The term +1 in Equation
(3.3) is added due to the fact that the pipelining can not be used
for scanning out the last pattern.

The pipelining approach can be used when several cores are
tested in a sequence. While the first pattern is scanned in for a
core, the test response from last pattern can be scanned out for
the previous core under test. The test application time using the
multiplexed architecture is given by:

where the maximum results from filling the largest core.
In the daisychain architecture, Figure 3.6, a bypass structure

is added to shorten the access path for individual cores. The

Figure 3.5: Example of the multiplexer architecture.

system

m
u

lt
ip

le
xe

r

core bN N

core a

core c

N

N

N

N

N

N

ti
f i

ni
---- pi 1+()⋅ pi+= (3.3)

T pi
f i

N
----⋅ pi+

 maxi C∈
f i

N
----+

i C∈
∑= (3.4)
37

CHAPTER 3
bypass register and 2-to-1 multiplexer allow flexible access to
individual cores which can be accessed using the internal scan
chain of the cores and/or by using the bypass structure.

The bypass offers an optional way to access cores and a bypass
selection strategy is proposed by Aertes et al. [Aer98], where all
cores are tested simultaneously by rearranging the test vectors.
The approach starts by not using any of the bypass structures
and all cores are tested simultaneously. At the time when the
test of a core is completed, its bypass is used for the rest of the
tests. Due to the delay of the bypass registers, this approach is
more efficient compared to testing all cores in sequence.

Assume the system in Figure 3.6 where pa=10, pb=20, pc=30
and fa=fb=fc=10. When the cores are tested in a sequence the
test time of the system is 720 (10⋅(10+1+1)+(20⋅(10+1+1)+
(30⋅(10+1+1)). Note that the terms +1+1 are due to the bypass
registers. However, using the approach proposed by Aertes et al.,
the test time for the system is reduced to 630 (10⋅30+10⋅(20+1)+
10⋅(10+1+1)).

The test application using this scheme is given by:

where p0=-1.

Figure 3.6: Example of the daisychain architecture.

core bcore a core c

m
u

x

m
u

x

m
u

x

system

N

by
pa

ss

by
pa

ss

by
pa

ss

T pi pi 1––() i 1–
f j

N

j i=

C

∑+

⋅

p C+
i 1=

C

∑= (3.5)
38

INTRODUCTION AND RELATED WORK
Note that the indices in Equation (3.5) are rearranged into a
non-decreasing number of patterns.

In the distributed architecture each core is given a number of
scan chains, Figure 3.7. The problem is to assign scan chains to
each core i in order to minimize the test time, i.e. assign values
to ni where 0<ni≤N.

The test application time for a core i in the distribution archi-
tect is given by Equation (3.3) and the total test time for the sys-
tem is given by:

An algorithm is proposed to assign the bandwidth ni for each
core i, Figure 3.8., where the goal is to find a distribution of scan
chains such that the test time of the system is minimized while
all cores are accessed, expressed as:

The algorithm presented in Figure 3.8 works as follows. Each
core is assigned to one scan-chain which is required to test the
system. In each iteration of the loop, the core with the highest
test time is selected and another scan chain is distributed to the

Figure 3.7: Example of the distribution architecture.

system

core a

core b

core c

na

nb

nc nc

nb

na

T maxi C∈ ti()= (3.6)

min
n N

C∈
maxi C∈ ti()() ni N≤

i C∈
∑ i C ni 0>{ }∈∀∧, (3.7)
39

CHAPTER 3
core which reduces its test time. The iterations are terminated
when no more scan chains can be distributed.

Given an SOC and the maximum total test bus width, the dis-
tribution of test bus width to the cores in the system is investi-
gated by Chakrabarty [Ch00a].

3.3 Test Isolation and Test Access
For SOC testing, a test access mechanism or a test infrastruc-
ture is usually added to the chip in order to facilitate test access
and test isolation. Its purpose is to feed the SOC with test data.
Furthermore, its design is important due to the fact that it may
influence the possibility of executing test concurrently in order
to minimize test application time. A test access mechanism is
also needed for testing printed circuit boards (PCB).

For PCB designs the Boundary-scan test (IEEE 1149.1) stand-
ard has been defined and for SOC designs Boundary-scan (IEEE
1149.1), TestShell and P1500 may be applicable. In this section
the Boundary-scan is described briefly and an overview of the
TestShell approach and the P1500 proposal is given.

Figure 3.8: Algorithm for scan chain distribution.

forall i ∈C
ni =1
t i =f i /n i ⋅ (pi +1) +pi

sort elements of C according to test time
L=N- |C|
while L≠0

determine i * for which t i* =maxi ∈C(t i)
let n i* =ni* +1 and update t i* accordingly
let L =L-1

ni gives the number of scan chains for core i
maxi ∈C(t i) gives the test time
40

INTRODUCTION AND RELATED WORK
3.3.1 THE BOUNDARY-SCAN STANDARDS

The main objective of PCB testing is to ensure a proper mount-
ing of components and correct interconnections between compo-
nents. One way to achieve this objective is to add shift registers
next to each input/output (I/O) pin of the component to ease test
access.

The IEEE 1149.1 standard for the Standard Test Access Port
and Boundary-scan Architecture deals primarily with the use of
an on-board test bus and the protocol associated with it. It
includes elements for controlling the bus, I/O ports for connect-
ing the chip with the bus and some on-chip control logic to inter-
face the test bus with the DFT hardware of the chip [Abr90]. In
addition, the IEEE 1149.1 standard requires Boundary-scan
registers on the chip.

A general form of a chip with support for 1149.1 is shown in
Figure 3.9 with the basic hardware elements: test access port
(TAP), TAP controller, instruction register (IR), and a group of
test data registers (TDRs) [Ble93].

The TAP provides access to many of the test support functions
built into a component and it consists of four inputs of which one
is optional and a single output: the test clock input (TCK) which
allows the Boundary-scan part of the component to operate syn-
chronously and independently of the built-in system clock; the
test mode select input (TMS) is interpreted by the TAP Control-
ler to control the test operations; the test data input (TDI) feeds
the instruction register or the test data registers serially with
data depending on the TAP controller; the test reset input
(TRST) is an optional input which is used to force the controller
logic to the reset state independently of TCK and TMS signals;
and the test data output (TDO). Depending on the state of the
TAP controller, the contents of either the instruction register or
a data register is serially shifted out on TDO.
41

CHAPTER 3
The TAP controller, named tapc in Figure 3.9, is a synchro-
nous finite-state machine which generates clock and control sig-
nals for the instruction register and the test data registers.

The test instructions can be shifted into the instruction regis-
ter and a set of mandatory and optional instructions are defined
by the IEEE 1149.1 standard. Furthermore design-specific
instructions may be added when the component is designed.

The Boundary-scan Architecture contains at a minimum two
test data registers: the Bypass Register and the Boundary-scan
Register. The advantage of the mandatory bypass register,
implemented as a single stage shift-register, is to shorten the
serial path for shifting test data from the component’s TDI to its
TDO [Ble93]. The Boundary-scan register of a component con-
sists of series of Boundary-scan cells arranged to form a scan
path around the core, see Figure 3.9. [Ble93].

Figure 3.9: An example of chip architecture for
IEEE 1149.1.

Boundary-scan cell Boundary-scan pathI/O pad

tms
tdi

tck
tdo

tapc miscellaneous
registers

instruction
register

bypass
register

mux

logic
sin

sout
42

INTRODUCTION AND RELATED WORK
3.3.2 THE TESTSHELL AND P1500 APPROACH

The TestShell is an approach to reducing the test access and test
isolation problem for system-on-chip designs proposed by Mari-
nissen et al. [Mar98]. Since a component to be used in a PCB is
tested before mounting, while in SOC a core is to be tested after
the complete chip is manufactured, a test access and test isola-
tion method for SOC, in addition to support the test applicable
by Boundary-scan, must efficiently solve the problem of testing
the core themselves. It would be possible to perform component
testing using Boundary-scan and the technique can be trans-
ferred to SOC. However, due to the serial access used in Bound-
ary-scan it would lead to an excessively long test time for
systems with numerous cores.

The TestShell approach consists of three layers of hierarchy,
see Figure 3.10, namely:

 • the core or the IP module,
 • the TestShell, and
 • the host.

The core or the IP module is the object to be tested and it is
designed to include some DFT mechanism. No particular DFT
technique is assumed by the TestShell. The host is the environ-
ment where the core is embedded. It can be a complete IC, or a

Figure 3.10: Three hierachy layers: core, Test-
Shell and host.

host

TestShell

core A

TestShell

core B
43

CHAPTER 3
design module which will be an IP module itself. Finally, the
TestShell is the interface between the core and the host and it
contains three types of input/output terminals, see Figure 3.11:

 • Function input/output corresponds one-to-one to the normal
inputs and outputs of the core.

 • TestRail input/outputs are the test access mechanism for the
TestShell with variable width and an optional bypass.

 • Direct test input/outputs are used for signals which can not
be provided through the TestRail due to their non-synchro-
nous or non-digital nature.

The conceptual view of a TestCell is illustrated in Figure 3.12
and it has four mandatory modes:

 • Function mode, where the TestShell is transparent and the
core is in normal mode, i.e. not tested. It is achieved by set-
ting the multiplexers m1=0 and m2=0.

 • IP Test mode, where the core within a TestShell is tested. In
this case the multiplexers should be set as: m1=1 and m2=0

Figure 3.11: Host-TestShell interface.

function input

direct test input

TestRail input

function output

direct test output

TestRail output

by
pa

ss

core
n1

n2

n4

n5

n6n3
44

INTRODUCTION AND RELATED WORK
where test stimulus comes from s1 and test response is cap-
tured in r1.

 • Interconnect Test mode, where the interconnections between
cores are tested. The multiplexers are set to m1=0 and m2=1
where r2 captures the response from a function input and s2
holds the test stimulus for a function output.

 • Bypass mode, where test data is transported through the
core regardless if the core has transparent modes. It may be
used when several cores are connected serially into one
TestRail, to shorten an access path to the core-under-test,
see Bypass using Boundary-scan in Section 3.3.1. It is not
shown in Figure 3.12. The bypass is implemented as a
clocked register.

Figure 3.13 illustrates the TestShell approach where a Test Cell
is attached to each functional core terminal (primary input and
primary output).

TestRail

Every TestShell has a TestRail which is the test data transport
mechanism used to transport test patterns and responses for
synchronous digital tests.

Figure 3.12: Conceptual view of the Test Cell.

function

IP test

r1s2

0

1

shell

output

interconnect
stimulus response

function

interconnect

r2

s1

input

IP test
stimulus

response

0

1

corem1 m2
45

CHAPTER 3
The width n (n≥0) of the TestRail is a trade-off between the fol-
lowing parameters:

 • Host pins available for test form an important limiting factor
with respect to the maximal TestRail width.

 • Test time is dependent on the test data bandwidth.
 • Silicon area required for wiring the TestRail increases with

the width of the TestRail.

Figure 3.13: The TestShell approach.

Core

a[0:4]

TestShell

a[0:4]

T
estR

aili[0:2]

T
estR

ailo[0:2]

z[0:2]

TC-in TC-out

tc[0:4]

sc

z[0:2]

bypass

scan-chain 0

scan-chain 1

m
u

x 1
m

u
x 2

bypass

bypass

m
u

x 3

Test Control Block
46

INTRODUCTION AND RELATED WORK
The TestRail is designed to allow flexibility; see Figure 3.14,
where an example is shown to illustrate some possible connec-
tions. Within the TestShell the connections may vary. The three
basic forms of connection are as follows, see Figure 3.15:

 • Parallel connection means that the TestRail is a one-to-one
connected to the terminal of the core.

 • Serial connection means that a single TestRail wire is con-
nected to multiple IP terminals forming a shift register, sim-
ilar to Boundary-scan (Section 3.3.1).

 • Compressed connection refers to decompression hardware at
core inputs or compression hardware at core outputs.

It is also possible to use a combination of the above types of con-
nections. The type of connection selected for a particular core
depends mainly on the width of the available TestRail.

Figure 3.14: Example of possible host-level
TestRail connections.

core A
host

core A

core A

core A

core A

core A

m
u

x

10 8

16

16 16

16

16
16

16

2 2

10
47

CHAPTER 3
A standardized Test Control Mechanism to control the opera-
tion of the TestShell means that instructions are loaded in the
Test Control Block, see Figure 3.13.

A similar approach to the TestShell is the P1500 proposal (see
Figure 3.16) [P1500]. The P1500 consists of a Core Test Wrapper
and a Core Test Language. The wrapper uses Wrapper Bound-
ary Cells with functionality similar to the Test Cell in TestShell
and the Boundary-scan Cell in the Boundary-scan approach.
Instructions are loaded to the Wrapper Instruction Register
(WIR) which is similar to the Test Control Mechanism in Test-
Shell and the instruction register in Boundary-scan.

The differences between the TestShell wrapper and the P1500
approach is that the former allow a bypass of the test access
mechanism (TAM) width while the P1500 only has a single-bit
bypass, the single-bit TAM plug (STP). The P1500 wrapper con-
nects to one mandatory one-bit wide TAM and zero or more scal-
able-width TAM, multi-bit TAM plug (MTP). The P1500 allows
different widths of the multi-bit TAM plugs (MTP) input and
output.

Figure 3.15: The core-level TestRail connections.

(a) parallel (b) compressed(b) serial

d
ec

om
pr

es
si

on

co
m

pr
es

si
on

core

shellshell shell

corecore
48

INTRODUCTION AND RELATED WORK
Another wrapper approach, called TestCollar, is proposed by
Varma and Bhatia [Var98]. The approach is similar to the Test-
Shell; however, the approach does not have the bypass feature
which reduces flexibility allowing only one core to be served at a
time which will affect the total test application time.

Recently an approach combining P1500 and the TestShell
approach has been proposed by Marinissen et al. [Mar00]. A

Figure 3.16: The P1500 approach.

Core

a[0:4]

Wrapper

a[0:4]

M
T

P
i[

0:
2]

M
T

P
o[

0:
2]

z[0:2]

STPi STPo

wc[0:5]

sc clk

z[0:2]

m
u

x 3
m

u
x 2

mux4

mux1
m

u
x 5

Bypass

m
u

x 6

Wrapper Instruction Register

scan-chain 0

scan-chain 1
49

CHAPTER 3
major advantage is the flexible bypass introduced, see
Figure 3.17. Two types of bypass styles are defined, wrapper
bypass and scan-chain bypass. The wrapper bypass is the same
as used in the TestShell while the scan-chain bypass is a flexible
structure which can be inserted at any place between a terminal
input and a terminal output. The advantage is that it allows a
non-clocked bypass structure which can be used to bypass the
complete core.

The design of the core test wrapper and the test data infra-
structure may affect the test application time. For instance, con-
sider an example of a design as illustrated in Figure 3.18 where
two blocks with one scan chain are to be tested. In Figure 3.18(a)
a wire is added from the test generator to the scan-in of the scan-
chain at core 1 and from the scan-out to the scan in of the scan-

Figure 3.17: Proposed bypass structures where
optional items are dashed [Mar00].

wrapper input cells

wrapper output cells

scan-chains

o2

i1 i2

omo1

ik

wrapper bypass

scan chain bypass

bypass register

scan-chain nscan-chain 1
50

INTRODUCTION AND RELATED WORK
chain at core 2. Finally, the scan output of the scan-chain at core
2 is connected to the test response evaluator.

The test time for a scan-based block is linear to fi×pi, where fi
is the number of flip-flops and pi is the number of test patterns
in scan-chain i.

Assume the following: f1=50, p1=100 and f2=25, p2=50 for the
example in Figure 3.18. By testing the blocks in sequence,
block1 followed by block2, the total test time is:

Ta=(f1+f2)×p+(f1+f2) × p2+1=11251;
where +1 refers to the fact that the last test pattern is shifted
out while no new pattern is shifted in.

The approach is very inefficient and by arranging the test pat-
terns in such way that both scan-chains 1 and 2 are seen as a
single scan-chain the test application time can be reduced to:

Tb=(f1+f2)×max(p1,p2)+1=7501.
A bypass structure such as the TestShell can be introduced to
further minimize the test application time. By testing the blocks
in sequence, block 1 followed by block 2, using the bypass struc-
ture the total test time is:

Ta=(f1+1)×p1+(f2+1)×p2+1=6401;
where the +1 refers to the clocked structure used in TestShell.

Aertes et al. defined formulas for the bypass in the TestShell
approach, see Section 3.2. Using their approach the test applica-
tion time in the example in Figure 3.18 would be:

Td=(f1+f2)×p2+(f1+1)×(p1-p2)+1=6301;
as given in Equation (3.5). The approach by Aertes et al. has
thus the lowest test application time. The approach is based on a
bypass structure implemented as a clocked register which
affects the total test time.

However, assuming a non-clocked bypass structure or not con-
sidering the effect of a clocked bypass results in a test applica-
tion time as:

Te=f1×p1+f2×p2+1=6251.
51

CHAPTER 3
Figure 3.18: Test bus usage example.

test response evaluator, tre:

test generator, tg:

block j at core i, bij:

bypass:

(a)
time

wire

test1

(b)
time

wire

test1+test2

(c) time

wire

test1 test2

(d)
time

wire

test2

11251

7501

6401

6301

System

core1

wrapper

block1,1

scan-chain 1
Test Test Response

core2

wrapper

block2,1

scan-chain 2 EvaluatorGenerator

test1+test2
52

INTRODUCTION AND RELATED WORK
The example above shows the importance of considering the
test bus and the effect of using a clocked bypass structure.

The above approaches effectively reduce the test isolation and
test access problems in printed-circuit-boards and system-on-
chip. However, due to the complexity in such systems the
amount of test data to be transported increases and efficient
methods are required. A serial access mechanism is no longer
sufficient due to the test application time it requires.

Boundary-scan was developed assuming that chips are tested
to be good before mounting. By this assumption, the amount of
test data to be transported is basically for interconnection test.
However, for SOC where the cores are to be tested after mount-
ing this assumption is no longer valid.

In general the number of host pins available determines the
maximal bandwidth for external testers only. However, for test
sources placed on-chip the number of connections are more or
less unlimited [Mar98].

3.4 Test Scheduling
The test application time can be minimized by ordering tests in
an efficient manner. Three basic scheduling strategies can be
distinguished, namely [Cra88]:

 • Nonpartitioned testing,
 • Partitioned testing with run to completion, and
 • Partitioned testing.

The three scheduling strategies are illustrated in Figure 3.19. In
nonpartitioned testing no new tests are allowed to start until all
tests in a session are completed. In partitioned testing with run
to completion a test may be scheduled to start as soon as possi-
ble. For instance, test3 is started before test1 is completed.
Finally, in partitioned testing the tests may be interrupted at
53

CHAPTER 3
any time. The requirement is that all tests must be completed by
the end of testing. In Figure 3.19(c) test1 is interrupted and runs
as two segments with indexes a and b.

A test scheduling approach is proposed by Garg et al., where
the test time is minimized while the constraints among the tests
are considered [Gar91]. A system and its tests can be modelled
using a resource graph, see Figure 3.20, where the tests in the
system are on the top level and the resources are on the bottom
level. An edge between nodes at different levels indicates that a
test ti tests a resource rj or a resource rj is needed to perform test
ti. This means that the resource graph captures information on
resource conflicts. For instance, in Figure 3.20 both test t1 and
test t3 use resource r1 which means that test t1 and test t3 can
not be scheduled simultaneously.

Figure 3.19: Scheduling approaches.

test1

test2 test4

test3 test5

session 2session 1 session 3

(a) Nonpartitioned testing

(b) Partitioned testing with run to completion

(c) Partitioned testing

test1

test2

test4

test3

test5

test1a

test2

test4

test3

test5

test1b
54

INTRODUCTION AND RELATED WORK
Given a resource graph, a test compatibility graph (TCG)
(Figure 3.22) can be obtained, where the nodes define the differ-
ent test plans and the edges specify that two tests are compati-
ble. From the test compatibility graph in Figure 3.22 it can be
determined that test t1 and t2, for example, can be executed con-
currently.

The problem of finding the minimal number of test groups
such that tests within a group can be executed concurrently can
be formulated as a clique partitioning problem [Gar91]. Finding
the minimal clique cover on a TCG is an non-deterministic poly-
nomial (NP) complete problem, which justifies the use of heuris-
tics [Gar91].

Given a TCG, Garg et al. construct a binary tree called time
zone tree (TZT) [Gar91]. Each node in the TZT represents a time
zone and its constraints, i.e. tests associated with the zone. An
illustrative example of the approach proposed by Garg et al. is
presented in Figure 3.21. The example is based on the test com-
patibility graph shown in Figure 3.22 which is obtained from the
resource graph illustrated in Figure 3.20.

Initially the root R = < ∅, Σ l(ti)> is unconstrained (∅) and of
length 7T (Σ l(ti)=4T+2T+T). When a test tk is assigned to R, two
branches are created with two nodes, the first with the con-
straint tk and length l(tk), and the second with no constraint (∅)
and length Σ l(ti) - l(tk).

For the first test, the test with the maximum length is
selected. If several such tests exist, favour is given to the test
with the highest compatibility. For all other tests, the selection

Figure 3.20: A resource graph.

t3t1 t2

r1 r2
55

CHAPTER 3
Figure 3.21: The test scheduling approach proposed by
Garg et al. [Gar91].

2T 2T 2T T

t1

t2 t3
∅

Z3 Z4 Z5 Z6

2T 2T 3T

t1

t2
∅

Z3 Z4 Z2

4T 3T

t1 ∅

Z1 Z2

(a)

(d)

(f)

constraint

length

zones
1

R

2

<∅,7T>

<∅,3T><{t1} 4T>

1

R

2

<∅,7T>

<∅,T>

<{t1} 4T>

<{t3} 2T>

<∅,3T>

<{t1, t2} 2T>

<{t1} 2T> 5

4

3

6

1

R

2

<∅,7T>

<{t1} 4T> <∅,3T>

<{t1, t2} 2T> <{t1} 2T>
43

(b)

(c)

(e)
56

INTRODUCTION AND RELATED WORK
is based on the cost function CF(ti), where the selected test ti has
the least value according to the cost function:

where:

In the example, given in Figure 3.21, t1 is selected first and
when appended to the tree, two branches (or zones) Z1 and Z2
are created, see Figure 3.21(a), (b). Next when t2 is assigned to
zone Z1, node 3 is appended to the tree with constraints and
length as shown in Figure 3.21 (c). Node 4 is also created at this
time, denoting that Z4 is of length 2T and constrained by t1 only.
Finally, test t3 is assigned, resulting in the TZT shown in
Figure 3.21(e) and the corresponding diagram is in
Figure 3.21(f). The scheduling diagram is directly derived by an
inspection of the leafs of the TZT from left to right. And the
worst case computational cost of the approach is of the order
O(n3) [Gar91].

Chakrabarty proposes a test scheduling algorithm where test
time is minimized while test constraints are considered. First
Chakrabarty shows that the test scheduling problem is equiva-
lent to open-shop scheduling [Gon76]. Then a test scheduling
algorithm is proposed, see Figure 3.23 [Ch00b]. In the approach
tests are scheduled as soon as possible. If a conflict among two
tests occurs, the test with the shortest test time is scheduled

CF ti() l t j() Opp tj t⁄
i

()–()
j 1=

T

∑= (3.8)

Opp tj ti⁄()

=
l(Zk), if tj is compatible with ti
l(Zk), if tj is not compatible with ti and l(Zk) > l(Zk)
0, otherwise.

Figure 3.22: A test compatibility graph.

t2

t1

t3

4T

T2T
57

CHAPTER 3
first. The algorithm in Figure 3.23 has a worst case execution
time of O(n3) for n tests.

Other test scheduling approaches where test time is mini-
mized while considering test conflicts are proposed by Kime and
Saluja [Kim82], Craig et al. [Cra88] and Jone et al. [Jon89].

An approach where the test application time is minimized
while constraints on power consumption are considered is pro-
posed by Zorian [Zor93]. The tests in the system are partitioned
in such a way that the tests in a partition can be executed con-
currently and the power dissipation within each partition is
below the maximal allowed power dissipation. The partitioning
is guided by the placement of the blocks in the system. Tests at
blocks which are physically close to each others are placed in the
same partition. This approach to partitioning minimizes the

Figure 3.23: The shortest-task-first procedure [Ch00b].

Procedure SHORTEST_TASK_FIRST({ t i })
begin
for i := 1 to m do /* there are m tasks */

start_time i := 0;
while flag = 1 do begin

flag = 0;
for i := 1 to m do

for j := i + 1 to m do
if x ij =1 then

/* x ij =1 if i and j are conflicting */
if OVERLAP(i,j) then begin

if start_time i +l i >start_time j +l j then
start_time i +l i := start_time j +l j

else
start_time i +l i := start_time j +l j ;

flag := 1;
end;

end;
end;
58

INTRODUCTION AND RELATED WORK
amount of control lines added for controlling the tests of the sys-
tem since the same control line is used for a complete partition.

The system ASIC Z is used to illustrate the approach by
Zorian, see Figure 3.24, where the design is partitioned into four
partitions, marked with numbers 1 to 4. Table 3.1 gives the
design data for this example and the test schedule for ASIC Z is
shown in Figure 3.25.

Another approach to test scheduling, where test application
time is minimized while constraints among tests and test power
consumption are considered, is proposed by Chou et al. [Cho97].
This approach works on a TCG with added power constraints
and test length information constructed from a resource graph
(Figure 3.26).

In order to minimize the complexity of the test controller, the
tests are assigned to test sessions and no new tests are started
until all tests in a session are completed.

The power dissipation for a test session sj is given by:

Figure 3.24: ASIC Z floor-plan and test partitioning.

RAM 2 RAM 3 RL 1

RL 2

ROM 1 ROM 2 RAM 4 RFRAM 1

1 2

3 4

P sj() P ti()
ti sj∈
∑= (3.9)
59

CHAPTER 3
The power constraint is defined as:

From the TCG a power compatible set (PCS) is derived where
the tests in each set (clique) are time compatible with each other
and satisfy the power constraints. For instance PCS={t4,t3,t1} in
such a set, as illustrated in Figure 3.26.

Block Test Time Idle Power Test Power

RL1 134 0 295

RL2 160 0 352

RF 10 19 95

RAM1 69 20 282

RAM2 61 17 241

RAM3 38 11 213

RAM4 23 7 96

ROM1 102 23 279

ROM2 102 23 279

Table 3.1: ASIC Z characteristics.

P sj() Pmax≤ j∀ (3.10)

Ram1

Figure 3.25: ASIC Z test schedule using the
approach proposed by Zorian [Zor93].

time

power
a = RF
b = Ram4

RL1

Ram2
RL2

c = Ram3

Rom1

Rom2

a

b c

100 200 300

600

900

300

power limit

392
60

INTRODUCTION AND RELATED WORK
A power compatible list (PCL) H is a PCS such that the ele-
ments in H are arranged in descending order of length. For
instance, the PCL for PCS={t4, t3, t1} is H={t1, t3, t4} since
l(t1)≥l(t1)≥l(t1).

A derived PCL (DPCL) is an ordered subset of a PCL or DPCL
such that the test length of the first element is strictly less than
the test length of the first element in the original PCL. For
instance the DPCLs of the PCL H={t1, t3, t4} are H’={t3, t4} and
H’’={t4}.

A reduced DPCL (RDPCL) set is the set of all DPCLs deriva-
ble from all possible PCLs such that each DPCL appears only
once. Furthermore, if DPCL h1=(t1, t2,...,tm) and DPCL h2=(ti1,
ti2,..., tik) such that tij ∈ h1, j=1, 2,..., k and l(h1)=l(h2), then h2 is
removed from the TDPCL set.

Given a TCG, as shown in Figure 3.26, the steps in the
approach by Chou et al. are as follows.

1. All possible cliques are identified: G1={t1, t3, t5},
G2={t1, t3, t4}, G3={t1, t6}, G4={t2, t5}, G5={t2, t6}.

2. All possible PCLs are: (t1, t3), (t1, t5), (t3, t5) obtained from
G1, (t1, t3, t4) from G2, (t1, t6) from G3, (t2, t5) from G4 and fi-
nally (t2, t6) from G5.

Figure 3.26: TCG with added power constraint and
test length for each test.

t2

pmax=4

ti
(P(ti), l(ti))

(1,10)

t3
(1,10)

t1
(2,100)

t6
(1,100)

t5
(2,10)

t4
(1,5)

Node notation
61

CHAPTER 3
3. The reduced DPCLs are: (t1, t5), (t5), (t3, t5), (t1, t3, t4),
(t3, t4), (t4), (t1, t6), (t2, t5), (t2, t6).

4. Using a minimum cover table, see Table 3.2, to find an opti-
mum schedule over the compatible tests, the test schedule is:
(t3, t4), (t2, t5), (t1, t6) with a total test time of 120.

The test schedule achieved on the ASIC Z system by the
approach proposed by Chou et al. is shown in Figure 3.27. The
total test application time is 331; the approach proposed by
Zorian needs 392 time units, see Figure 3.25.

The identification of all cliques in the TCG graph is an NP-
complete problem and therefore a greedy approach such as pro-
posed by Muresan et al. is justified where test time is minimized
while test constraints and power consumption are considered
[Mur00].

A basic assumption in the approaches by Chou et al. [Cho97]
and by Zorian [Zor93] is that no new tests are started until all
tests in a test session are all completed. Due to this assumption
the test controller is minimized. However, this assumption is not
valid in the approach proposed by Muresan et al. [Mur00].

Figure 3.27: ASIC Z schedule using the
approach proposed by Chou et al. [Cho97].

time

power
a = RF
b = Ram4

Ram1

c = Ram3

a
b

c

100 200 300

600

900

300

power limit

331

RL1

RL2

Ram2

Rom1

Rom2
62

INTRODUCTION AND RELATED WORK
Muresan et al. define an extension called the expanded com-
patibility tree (ECT) of the compatibility tree introduced by Jone
et al., where the number of children are generalized. For
instance, assume tests t1, t2, t3 and t4, where t2, t3 and t4 are
compatible with t1, see Figure 3.28. However, t2, t3 and t4 are not
compatible with each other. Assume that the test length
l(t2)+l(t3)<l(t1) and t4 is to be scheduled. If l(t4)≤l(t1)-(l(t2)+l(t3)
then t4 can be inserted in the ECT.

Neither the approach by Chou et al. [Cho97] nor that by Mure-
san et al. [Mur00] consider the routing of control lines which was
considered by Zorian [Zor93] by partitioning the tests due to
their physical placement in the system.

RDPCL t1 t2 t3 t4 t5 t6 Cost

(t1, t3, t4) x x x 100

(t1, t5) x x 100

(t1, t6) x x 100

(t2, t6) x x 100

(t3, t5) x x 10

(t2, t5) x x 10

(t3, t4) x x 10

(t5) x 10

(t4) x 5

Table 3.2: Covering table.

Figure 3.28: Merging example by Muresan et al. [Mur00].

t2

t1

t3 t4

l(t1)

l(t2) l(t3)

t1

t2 t3

l(t1) - (l(t2) + l(t3))
63

CHAPTER 3
An approach to handling the test complexity is proposed by
Håkegård where a hierarchical approach for synthesising test
controllers is defined [Håk98].

3.5 Test Set Selection
A test set is used to test a system or a part of it. A complex sys-
tem may be tested by several test sets in order to achieve a suf-
ficient fault coverage and the selection of the test sets for the
cores in the system affects the total test application time. For
instance, assume a system consisting of 4 cores as in
Figure 3.29, where each core is tested by a BIST and an external
tester and the external tester can only test one core a the time.
For each core it is possible to determine several test sets with
sufficient fault coverage where the test sets differ in test time
ratio between BIST test time and external test time. In
Figure 3.29 two solutions for testing the cores are shown where
in Figure 3.29(a) the total test time is much higher than that in
Figure 3.29(b) due to the use of different of test sets.

Sugihara et al. propose a technique for test set selection,
where each core is tested by a test set consisting of two parts,
one based on BIST and another based on external testing
[Sug98].

For each core i a set of test sets is defined, vi∈Vi. Each test set
vi consists of a BIST part and a part using an external tester.
BC(vi) is the number of BIST clock cycles for test set vi, and
ETC(vi) is the number of clock cycles using the external tester.

The total time used for external testing TET is given by:

where FT is the frequency of the external tester.

TET

ETC vi()
FT

i 0=

n 1–

∑=
(3.11)
64

INTRODUCTION AND RELATED WORK
The total time used for external testing TET is given by:

where F is the system frequency used at BIST.
The total test application time, T, for the system is given by:

The main problem is to determine the test set vi for each core i.
Chakrabarty proposes a mixed-integer linear programming
model for the test set selection problem where the BIST struc-
ture may be shared among cores [Cha99].

Figure 3.29: Example of test time.

core1

core2

core3

External test BIST

core4

core1

core2

core3

core4

(a)

(b) Test time

Test time

Tvi

BC vi()
F

ETC vi()

FT
---------------------+= (3.12)

T max TET max
n 1–

i 0=
Tvi

{ },

= (3.13)
65

CHAPTER 3
66

Chapter 4
Test Scheduling and Test

Access Mechanism Design

A test schedule determines the order of the tests for a system
under test while a test infrastructure transports and controls
test data in the system. In this chapter, an approach is proposed
to integrate test scheduling, test access mechanism design, test
set selection, test resource floor-planning and test paralleliza-
tion. The approach considers test conflicts and limitations on
test power, tester bandwidth and tester memory.

4.1 Introduction
A traditional DFT flow starts with a system specification, see
Figure 4.1. An architecture is created based on the characteris-
tics of the system specification. It is made testable by the intro-
duction of DFT mechanism into the design. Test sets are then
selected and the test resources are placed in the system. Finally,
the tests are scheduled and a test access mechanism is designed
for the transportation of test data.

CHAPTER 4
If the system being designed, at any step in the DFT flow,
shows unacceptable results, some design steps have to be
repeated, which is illustrated with arrows going backwards in
Figure 4.1. These design iterations could be repeated numerous
times and it is therefore important that the algorithms used in
the design space exploration process in the different design
steps have a low computational cost.

On the other hand, before the final design is generated, a more
extensive optimization can be allowed to take longer time, i.e. to
have a higher computational cost.

Test Floor-planning

Test Access Mechanism Design

Figure 4.1: System test design flow.

System Specification

Architecture Selection

Test Strategy Selection

Test Scheduling

Test Set Selection
68

TEST SCHEDULING AND TEST ACCESS MECHANISM DESIGN
The rest of this chapter describes techniques for test set selec-
tion, test scheduling, test floor-planning, test parallelization and
test bus design. These design steps are traditionally considered
as four separate distinct steps. However, they are highly inter-
dependent on each other and it is important to consider them in
a combined manner in order to produce an efficient solution.

4.2 System Modelling
A SOC example is illustrated in Figure 4.2, where each core is
placed in a wrapper in order to achieve efficient test isolation.
Each core consists of at least one block with an added DFT tech-
nique and in this example, all blocks are tested using the scan
technique. The test access port (tap) is the connection to an exter-
nal tester and the on-chip test resources, test generator 1, test
generator 2, response evaluator 1 and response evaluator 2 are
integrated into the system to support BIST.

The system in Figure 4.2 can be viewed as in Figure 4.3 and
modelled as a system with test, ST=(C, Rsource, Rsink, pmax, T,
source, sink, core, block, constraint, memory, bandwidth) where:
C={c1, c2,..., cn} is a finite set of cores where each core consists of
a finite set of blocks, ci={bi,1, bi,2,..., bi,m}. Each core consists of at
least one block and each block bi,j ∈B is given by:

pidle(bi,j): idle power,
parmin(bi,j): minimal parallelization degree, and
parmax(bi,j): maximal parallelization degree;

Rsource={r1, r2,..., rp} is a finite set of test sources;
Rsink={r1, r2,..., rq} is a finite set of test sinks;
pmax: maximal allowed power at any time;
T={BT1,1,1, BT1,1,2,..., BTn,m,k} is a finite set of block tests (BT)
where BTi,j,k={t1, t2, ..., tl} be the k:th set of test sets, where each
of the k sets are sufficient for efficient test of block bi,j at core ci.
Efficient in respect to the test set is determined by the designer.
Each test tl is a set of test vectors for test of a block produced by
69

CHAPTER 4
one test generator and analyzed by one response evaluator. The
test resources are defined as pairs, a source with its correspond-
ing sink.
Each test ti ∈T is given by:

ttest(ti): test time at parallelization degree 1, par(ti) = 1,
ptest(ti): test power parallelization degree 1, par(ti) = 1,
tmemory(ti): memory required for test pattern storage.

source: T → Rsource defines the test source for a test;
sink: T → Rsink defines the test sink for a test;
core: B → C gives the core where a block is placed;
block: T→ B gives the block where a test is placed;
constraint: T→ B defines the set of blocks required for a test;
memory(ri): memory available at test source ri ∈Rsource;
bandwidth(ri): bandwidth capability at test source ri ∈Rsource.

scan-chain 1

core 3

wrapper

block 1

System

Figure 4.2: An illustrative example.

Test response evaluator 2

Test generator 2

core 1

wrapper

block 1

scan-chain 1

block 2

scan-chain 2

scan-chain 3

core 2

wrapper

block 1

tap

core 4

wrapper

block 1

scan-chain 1

block 2

scan-chain 2

scan-chain 3

Test generator 1

Test response evaluator 1

scan-chain 1

scan-chain 2
70

TEST SCHEDULING AND TEST ACCESS MECHANISM DESIGN
The system is tested by applying a set of tests where each test
set get its test vectors from a test source determined by the func-
tion source and the test response is evaluated at a test sink
given by the function sink.

The test time, ttest, test power consumption, ptest, and memory
requirement, tmemory, are given for each of the tests in the sys-
tem. The maximal and minimal degree of parallelization for a
block is given by parmax and parmin. For instance, assume that
parmax(b3,1)=2 and parmin(b3,1)=1 for block 1 at core 3 in
Figure 4.2. Selecting parallelization degree to be 1 means that
all scannable flip-flops are connected in a single scan-chain. On
the other hand if it is selected to be 2, there will be two scan-
chains at the block which reduces the test time.

4.3 Test Scheduling
In the approach proposed by Zorian [Zor93], see Section 3.4, a
test schedule is created where test application time is minimized
under power consumption constraint. Furthermore, new tests
are only allowed to start when all tests in a session are com-
pleted and tests are grouped based on their physical placement.

tap

Figure 4.3: A graph representation of the system
illustrated in Figure 4.2.

b1,1

b1,2

b2,1 b4,1

b4,2

tre1 tre2

tg1 tg2

b3,1
test response evaluator, trel:

test generator, tgk:

test access port, tap:

block j at core i, bi,j:
71

CHAPTER 4
In the approach by Chou et al. [Cho97] and by Muresan et al.
[Mur00] focus is on test time minimization and the routing of
test control lines are not considered. Therefore grouping based
on physical placement, which minimizes the routing of test con-
trol lines, is not considered. Furthermore, regarding the
approach proposed by Muresan et al. [Mur00] the minimization
of the test controller is not considered and tests are allowed to
start even if all tests in a session are not completed which mini-
mizes test application time further.

For the approach described in this thesis it is optional if tests
should be allowed to start even if not all tests at the moment are
completed. A reason for not allowing tests to start when other
tests are running is that it minimizes the complexity of the test
controller. However, the test application time increases in such
an approach. Furthermore, the approach described in this thesis
does not consider grouping of tests based on the physical place-
ment of corresponding blocks. Such grouping is motivated since
it reduces the amount of extra control lines. All tests within a
group placed physically close can be controlled by the same con-
trol line. However, the routing of the test data transportation
mechanism is considered in this thesis.

The basic difference between the test scheduling technique
proposed in this thesis and the approaches introduced by Zorian
[Zor93], Chou et al. [Cho97] and Muresan et al. [Mur00] is illus-
trated for a small system with four tests, see Figure 4.4. In the
approach proposed by Zorian [Zor93] and Chou et al. [Cho97]
test3 and test4 would not be allowed to be scheduled as in
Figure 4.4 due to the fact that new tests are only allowed to start
when all tests in a session are completed. In the approach pro-
posed by Muresan et al. [Mur00] test3 can be scheduled as in
Figure 4.4 if it is completed no later than test1 is completed. This
means that test4 can not be scheduled as in Figure 4.4. For the
approach proposed in this thesis, if tests are allowed to start
even if all tests are not completed, it is possible to schedule test4
as in Figure 4.4. In this way, more flexibility is achieved and it is
72

TEST SCHEDULING AND TEST ACCESS MECHANISM DESIGN
possible to explore the trade-off between test application time
and test controller complexity

The tests for an SOC have to be scheduled where the start
time, end time and bus for each test has to be determined.

Let a schedule S be an ordered set of tests such that:

where S(ti) gives the position of test ti in S and S(ti)<S(tj) means
that S(ti) is placed before S(tj).

For each test, ti, the start time and the bus (if the test access
mechanism is to be considered) have to be determined before
inserted in the schedule, S. The function tstart(ti) gives the time
when test ti is scheduled to start and the function tend(ti) gives
the time when test ti ends:

The Boolean function scheduled(ti, t1, t2) is true if a test ti ∈S
and is scheduled between t1 and t2; that is:

The Boolean function scheduled(ri, t1, t2) is true if a source ri is
used by a test scheduled between t1 and t2; that is:

Figure 4.4: Example of test scheduling.
time

power

test1

test2 test4test3

S ti() S tj()< tstart ti() tstart t j()≤ i j< ti∀ S∈ t j∀ S∈, , ,{ } (4.1)

tend ti() tstart ti() ttest ti()+= (4.2)

ti S∈ tend ti() t1< tstart ti() t2>∨()¬∧{ } (4.3)

r i source tj()= t∀∧
j

{ S∈ ∧

tend t j() t1< tstart t j() t2>∨()¬ } (4.4)
73

CHAPTER 4
The Boolean function scheduled(ri, t1, t2) is true if a sink ri is
used by a test scheduled between t1 and t2; that is:

Similarly, the Boolean function scheduled(constraint(ti), t1, t2)
is true if all blocks in the set of constraints are not scheduled
between t1 and t2; that is:

The brief example in Figure 4.5 is used to illustrate the sched-
uled function. Six tests are scheduled and for each of them a
computation is performed to determine whether it is scheduled
between t1 and t2 or not.

4.3.1 TEST CONFLICTS

Tests may not be scheduled concurrently due to test conflicts.
For SOC designs several different types of conflicts may occur.
However, it is important to define a general approach to capture
these conflicts and allowing flexible design of the system.

r i sink tj()= t∀∧
j

S∈ tend t j() t1< tstart t j() t2>∨()¬∧{ }
(4.5)

block tj() constraint ti() tend t j() t1< tstart t j() t2>∨() }¬∧∈{

(4.6)

Figure 4.5: The function scheduled.

t1 t2

test3

test1

test2

test4

test5

time

¬(tend(testi)<t1 ∨ tstart(testi)>t2)

i=1: ¬(True∨False)→False

i=2: ¬(False∨False)→True

i=3: ¬(False∨False)→True

i=4: ¬(False∨False)→True

i=5: ¬(False∨True)→False

i=6: ¬(False∨False)→Truetest6
74

TEST SCHEDULING AND TEST ACCESS MECHANISM DESIGN
In this thesis we define conflicts as the set of blocks required
for a test to be scheduled. A test of a block may only be scheduled
if all its required blocks are available.

In this way we are able to capture many different types of test
conflicts. For instance, if a set of blocks share a dedicated clock.
Such constraints are easily captured with the proposed
approach if these blocks can not be tested concurrently.

Test resource conflicts are handled separately.

4.3.2 POWER DISSIPATION

The power consumed at the test mode can be much higher than
during normal mode due to the increased switching activity
[Her98]. An additive model used by Zorian [Zor93], Chou et al.
[Cho97] and Muresan et al. [Mur00] for power consumption is
used in our approach. The function psch(t1, t2) denotes the peak
scheduled power between t1 and t2:

where scheduled(ti,t) is true if a test ti is scheduled at time t.
We assume that only one test may be applied on each block

concurrently. For instance, applying the function psch(t1, t2) on
the schedule in Figure 4.6, with t1 and t2 as indicated in the fig-
ure, returns ptest(test2) + pidle(block(test1)) + pidle(block(test3)) +

pidle(block(test4)).

max ptest ti() pidle block ti()()– pidle bi j,() t1 t t2≤ ≤
bi j, B∈∀
∑

+
ti scheduled ti t,()∀

∑

(4.7)

Figure 4.6: Scheduled power.
time

power

t1 t2

test1

test2

test3

test4
75

CHAPTER 4
4.4 Test Floor-planning
An efficient placement of test resources in the system minimizes
the routing of the test access mechanism. Zorian proposes a test
scheduling technique where the routing of test control lines is
minimized [Zor93], see Section 3.4. In the approach, the cores
are assumed to be tested with one dedicated BIST structure per
core which means that no access mechanism is required for
transporting test data. However, in the general case it is not fea-
sible to assume that all cores can always be tested with only one
dedicated BIST structure. Furthermore, a block may be tested
by several test sets produced and analyzed using different test
resources. Test resources may also be shared among several
blocks at different cores. Therefore is it important to consider
the placement of test resource since it affects the routing of the
test access mechanism.

4.5 Test Set
In our approach, each test set is associated with a test source
and a test sink. Furthermore, the test power consumption, test
memory requirement and test application time are assumed to
be given.

A strategy for test set selection is proposed by Sugihara et al.
[Sug98], described in Section 3.5, where each core is tested by
two test sets: one set using an external tester and one set pro-
duced at a BIST structure. In this thesis an approach is pro-
posed where the number of test sets needed for a block is
generalized to be arbitrary.

In order to evaluate the most efficient test schedule, it is desir-
able to try different test sets for the system where the test sets
show different characteristics. We assume that a block test is a
set of tests that completely tests the block.

For instance, assume that the block tests BTi,j,1={t1, t2, t3},
BTi,j,2={t4, t5, t6}, and BTi,j,3={t7, t8} are given for a block bi,j at
76

TEST SCHEDULING AND TEST ACCESS MECHANISM DESIGN
core ci. Each of the block tests is sufficient to test block bi,j.
Therefore only one of these sets must be selected. However, all
the tests within the selected block test must be scheduled. Note
that it is not useful to select tests from different block tests for
the testing of a particular block. For instance, applying only
tests t1, t4 and t7 is sufficient.

4.6 Test Access Mechanism
The test access mechanism is the infrastructure used to trans-
port test stimuli and test response in the system. Test vectors
are transported from test sources to the core under test and test
response is transported from the core under test to the test sink.

4.6.1 TEST ACCESS MECHANISM DESIGN

For a given system with test ST, defined above, the problem of
test access mechanism design is twofold:

 • A test access mechanism has to be added for transportation
of test vectors from the test sources to the cores and for
transportation of test response from the cores to the test
sinks.

 • A test schedule on the access mechanism, which in principle
is to determine for all tests which wire to be used.

A system can be modelled as a directed graph, G=(V,A), where a
vertex vi in V corresponds to a member of the set of cores, C, the
set of test sources, Rsource, and the set of test sinks, Rsink, i.e.
vi∈C∨Rsource∨Rsink.

An arc, ak∈A, between two vertices vi and vj indicates the
existence of a test access mechanism (a wire) where it is possible
to transport test data from vi to vj.

Initially no test access mechanism exists in the system, i.e.
A=∅. However, if the functional infrastructure or part of it may
be used for test purpose, it is specified in A.
77

CHAPTER 4
The problem of connecting vertices at a minimal cost in length
is similar to the travelling salesperson problem (TSP) which is
known to be an NP-complete problem and justifies the use of
heuristics [Ree93].

When adding a test access mechanism between test generator
tg1 and core c2 and test response evaluator tre1, as illustrated in
Figure 4.7, and the test data must pass through a core several
routing options are possible:

1. through the logic of the core c1, see Figure 4.7(a), using the
transparent mode of the core, for instance,

2. through an optional bypass structure of core c1, see
Figure 4.7(a), and

3. around the core c1, see Figure 4.7(b), where the access mech-
anism is not connected to the core.

core 1

wrapper

block 1

Figure 4.7: Design of the test access mechanism.

test response evaluator, trek:
test generator, tgj:
core i, ci: tre1tg1

c1 c2

(a)

core 2

wrapper

block 1

scan-chain 1

Test generator 1 Test response
evaluator 1

tre1tg1
c1 c2

(b)

tre1tg1
c1 c2

scan-chain 1
78

TEST SCHEDULING AND TEST ACCESS MECHANISM DESIGN
The advantage of alternatives 1 and 2 above is that the test
access mechanism can be reused when testing a block at core c1.
However, there might be an additional delay due to such a struc-
ture which does not occur at alternative 3. In this thesis it is
assumed that either a non-clocked bypass is used, see
Figure 4.8, or that the effect of a clocked bypass is ignored. A
non-clocked by-pass can be achieved using a wrapper approach
as proposed by Marinissen et al. [Mar00].

4.6.2 TEST PARALLELIZATION

By test parallelization we mean the division of a scan-chain into
several scan-chains of shorter length, which will lead to a
shorter test application time. The test application time for a
scan-based design is mainly determined by the number of test
vectors, the length of the scan-chain and the clock frequencies.

We assume that the degree of parallelization is linear with
respect to test time and test power consumption. The test time
t’test(ti) for a test ti is given by:

where ttest(ti) is the test time for a test ti at no parallelization
degree, i.e. par=1, par(block(ti)) is the degree of parallelization.

wrapper

Figure 4.8: Bypass with no delay.

core

N

N

NN

t'test ti() ttest ti()
par block ti()()
-------------------------------------= (4.8)
79

CHAPTER 4
It should be noted that the parallelization at a block can not be
different for different test sets. For instance, the original scan-
chain can not be divided into n chains at one moment and to m
chains at another moment where m≠n.

Let parallelization(bi,j) be the parallelization degree for tests
at block bi,j. The parallelization degree can be defined by the
designer or determined by an algorithm. In our approach, the
integrated test algorithm will determine the parallelization(bi,j)
for all blocks, bi,j∈B.

Aertes et al. assume, as in this thesis, that the test time may
be divided into equal portions [Aer98]. A division of the scan-
chain into several sub-chains reduces the test application time
since all sub-chains may be loaded with different test vectors
concurrently. Furthermore, due to the shorter length of the scan-
chains, less shift in and out is required for each test vector. How-
ever, the switching activity may increase resulting in higher test
power consumption. In this thesis it is assumed that the term
ttest×ptest is constant and that the test power p’test(ti) for a test ti
is given by:

where ptest (ti) is the test power for a test ti at no parallelization
degree, par=1.

Definition 4.10: A test bus wi is a path of edges {(v0,v1),
(v1,v2),...,(vn-1,vn)} where v0∈Rsource and vn∈Rsink.

The physical placement of all blocks, bi,j∈B, all test sources
vk∈Rsource and all test sinks vl∈Rsink is given by x and y coordi-
nates, the x-placement and the y-placement respectively.

Definition 4.11: ∆yi,j is defined as: and
∆xi,j is defined as: where x(vi) and y(vi) are
the physical placements defined by x-placement and the y-place-
ment respectively for a vertex vi.

p'test ti() ptest ti() par block ti()()×= (4.9)

y vi() y vj()– vi vj V∈,{ }
x vi() x vj()– vi vj V∈,{ }
80

TEST SCHEDULING AND TEST ACCESS MECHANISM DESIGN
The distance between vertex vi and vertex vj is given by:

Since the problem of finding the shortest path in a graph is an
NP-complete problem [Gar79], it is practical to develop efficient
heuristics for solving this problem. In our approach a heuristic
makes use of the information of the neighbourhood of the cores
and test resources. The information on the nearest core in four
direction, north, east, south and west, are stored for each vertex.
For instance vj is the west core of vi in Figure 4.9 which means
that it is the vertex where ∆yi,j/∆xi,j<1 or ∆yi,j/∆xi,j>-1 and
x(vj)>x(vi) with the minimal distance between vi and vj,
dist(vi,vj) for all vi, vj∈V where i≠j.

dist vi vj,() yi j,∆()2
xi j,∆()2

+ vi V∈ vj V∈, ,()= (4.12)

Figure 4.9: North, east, south and west orientation.

west

north

east

south
∆y/∆

x=
1 ∆y/∆x=-1

∆y/∆x<-1

∆y/∆x<-1∆y/∆x>1

∆y/∆x>1

∆y/∆x>-1

∆y/∆x<1

∆y/∆x<1

∆y/∆x>-1

y

x

∆y/∆
x=

1∆y/∆x=-1

vj vi vk vl
81

CHAPTER 4
The function south(vi) of vertex vi gives the closest vertex
south of vi and it is defined as:

The function north(vi) of vertex vi is the closest vertex north of
vi and it is defined as:

The function west(ci) of vertex vi is the closest vertex west of vi
and it is defined as:

The function east(ci) of vertex vi is the closest vertex east of vi
and it is defined as:

The operation insert(vi, vj) inserts a directed arc from vertex vi
to vertex vj if and only if:

The function closest(vi, vj) gives the closest vertex in of vj

Among the four candidate vertex given by east(vi), south(vi),
west(vi) and north(vi) the one closest to vj is selected in Equation
4.18.

vj

yi j,∆
xi j,∆

------------ 1
yi j,∆
xi j,∆

------------∨ 1–<>
 y vj() y vi()< i j≠ vi vjmin dist vi vj,(){ }∀∀, , ,

(4.13)

vj

yi j,∆
xi j,∆

------------ 1
yi j,∆
xi j,∆

------------∨ 1–<>
 y vj() y vi()> i j≠ vi vjmin dist vi vj,(){ }∀∀, , ,

(4.14)

vj 1–
yi j,∆
xi j,∆

------------ 1< <
 x vj() x vi()< i j≠ vi vjmin dist vi vj,(){ }∀∀, , ,

(4.15)

vj 1–
yi j,∆
xi j,∆

------------ 1< <
 x vj() x vi()> i j≠ vi vjmin dist vi vj,(){ }∀∀, , ,

(4.16)

south vi vj,() north vi vj,() west vi vj,() east vi vj,()∨ ∨ ∨{ } (4.17)

vk{ min dist vk vj,(){ },

vk east vi() vk∨ south vi() vk∨ west vi() vk∨ north vi() }= = = =

(4.18)
82

TEST SCHEDULING AND TEST ACCESS MECHANISM DESIGN
The operation add(vi, vj) recursivly adds arcs from vi to vj, fol-
lowing the closest neighbourhood nodes:

The Boolean function scheduled(wi, t1, t2) is true when a path
wi is used by tests scheduled between t1 and t2:

where bus(tj) is the set of buses allocated for test tj.

4.6.3 TEST SOURCE LIMITATIONS

A test generator may use a memory for storing the test patterns.
In particular, external test generators use such a memory with a
limited size which introduces constraints on test scheduling
[Het99].

The function memoryalloc(ri, t1, t2) provides the peak allocated
memory between t1 to t2:

A test source has usually a limited bandwidth. For instance,
an external tester may only support a limited number of scan
chains at a time or there could be a limit in the available pins for
test. This information is captured in the attribute bandwidth for
each test source.

The function bandwidthalloc(ri, t1, t2) gives the maximal
number of buses allocated between t1 and t2:

where bus(tj) is the set of buses allocated for test tj.

if i j≠() v̇ j{ closest vi vj,();=

insert vi v̇ j,();

add v̇j vj,() } (4.19)

wi bus tj()∈ t∀∧
j

S∈ tend t j() t1< tstart t j() t2>∨()¬∧{ }

(4.20)

max tmemory t j()
t j S∈
∑ scheduled tj t,() r i source tj() t1 t t2≤ ≤=∧

(4.21)

max bus tj()
t j S∈
∑ scheduled tj t,() r i source tj() t1 t t2≤ ≤=∧

(4.22)
83

CHAPTER 4
The functions memory and bandwidth provide the maximal
memory respectively bandwidth used by the scheduled tests
during a time interval, compare with scheduled power in
Figure 4.6.

4.7 The System Test Algorithm
The system test algorithm described in this section integrates
the issues discussed above. It selects test sets for the blocks in
the design, schedule the tests, floor-plan the test resources
needed and designs a test access mechanism while considering
test conflicts, power consumption and test resource limitations.

The tests are initially sorted according to a key k, which can
be based on power(p), test time(t) or power×test time(pt).

If k=p;
if k=t;
if k=pt;
Let P be the ordered set where the tests are ordered based on

the key k, that is:

where P(ti) < P(tj)indicates that test ti is sorted before test tj.
If new tests are allowed to be scheduled even if all tests in a

session are completed, see point 2 in Section 4.3, the function
nexttime(told) provides the next time where it is possible to
schedule:

If new tests are not allowed to be scheduled until all tests in a
session are all completed, see point 2 in Section 4.3, the function
nexttime(told) provides the next point when it is possible to
schedule a new test:

f p ti() ptest ti()= (4.23)

f t ti() ttest ti()= (4.24)

f pt ti() ttest ti() ptest ti()×= (4.25)

P ti() P t j()< f k ti() f k t j() ti T∈ t j T∈, ,≤() (4.26)

ti min tend ti()() told tend ti() ti S∈∀,<,{ } (4.27)

ti max tend ti()() told tend ti() ti S∈∀,<,{ } (4.28)
84

TEST SCHEDULING AND TEST ACCESS MECHANISM DESIGN
4.7.1 THE ALGORITHM

In this section the issues discussed above are combined in an
algorithm. The input to the algorithm is a system with tests and
the output of the algorithm is a test schedule and a test access
mechanism. The algorithm is divided into three parts namely:

 • the system test algorithm,
 • the test resource floor-planning algorithm, and
 • the test access mechanism design algorithm.

We will explain the steps in the algorithm in details. In the fol-
lowing text, the line starting with a number corresponds to the
step in the algorithm with the same number.

The System Test Algorithm

The system test algorithm is illustrated in Figure 4.10. First all
tests in the system are sorted based on a key k and placed in a
list P. Initially no tests are scheduled and the time is set to zero,
i.e.:
1: Sort all tests in P based on time, power or time×power;
2: S=∅;
3: t=0;

The algorithm then iterates until for all blocks in the system
there exists a block test where all tests within the particular
block test are scheduled:
4: until ∀bp,q∃BTp,q,r∀ts∈BTp,q,r ∧ ts∈S do begin

A second iteration is performed over all tests in the system
where in each iteration a test cur is checked and its characteris-
tics are computed, such as test source, core and test sink:
5: for all cur in P do begin
6: bi,j = block(cur);
7: va=source(cur);
8: vb=ci;
9: vc=sink(cur);
85

CHAPTER 4
Figure 4.10: The system test algorithm.

1: Sort all tests in P based on time, power or time×power;
2: S=∅;
3: t=0;
4: until ∀bp,q∃BTp,q,r∀ts ∈BTp,q,r ∧ ts∈S do begin
5: for all cur in P do begin
6: bi,j = block(cur);
7: va=source(cur);
8: vb=ci;
9: vc=sink(cur);
10: if (parallelization(bi,j)=∞) then begin
11: par=min{ parmax(bi,j),

(pmax-psch(t, tend)) /ptest(cur),
bandwidth(va, t, tend)-bandwidthalloc(va, t, tend)};

12: end else
13: par=parallelization(bi,j);
14: tend=t+ttest(cur)/par;
15: ptest’(cur)=ptest(cur)×par;
16: if (¬∃tf (tf ∈BTi,j,k ∧ tf ∈S∧ cur ∉ BTi,j,k)∧

(par ≥ parmin(bi,j))∧
¬scheduled(cur, t, tend)∧
¬scheduled(va, t, tend)∧
¬scheduled(vc, t, tend)∧
¬scheduled(constraint(cur), t, tend)∧
memory(va)>tmemory(cur)+memoryalloc(va, t, tend))

then begin
17: if (parallelization(bi,j=∞) then
18: parallelization(bi,j=par;
19: call floor-planning procedure;
20: call test access mechanism procedure;
21: tstart(cur)=t;
22: tend(cur)=tend;
23: S=S∪{ cur};
24: P=P-{ cur};
25: end;
26: end;
27: t=nexttime(t);
28:end;
86

TEST SCHEDULING AND TEST ACCESS MECHANISM DESIGN
The parallelization affects the test time and the test power con-
sumption of the test and it depends on:

 • parallelization at the block,
 • available power, and
 • available bandwidth of test resources.

It must be the same for all tests at a specific block. For instance
at a scan-based block the scan chain can not be divided in n
chains at one moment and m chains at another moment (n≠m),
see Section 4.6.2.

It is desirable to maximize the parallelization at a block since
it minimizes the test time at the block and also because it uses
the resources at a minimum of time which allow other tests to
use these resources. If the parallelization for a block is not deter-
mined it is computed as the minimum among the maximal par-
allelization at a block, the available power and the available
bandwidth during t to tend:
10: if (parallelization(bi,j)=∞) then begin
11: par=min{ parmax(bi,j),

(pmax-psch(t, tend)) /ptest(cur),
(bandwidth(va, t, tend)-bandwidthalloc(va, t, tend))};

12: end else
13: par=parallelization(bi,j);

When the degree of parallelization is given, the test time and the
test power consumption is computed for the test cur:
14: tend=t+ttest(cur)/par;
15: ptest’(cur)=ptest(cur)×par;

A check of test cur is performed to determine whether it is pos-
sible to schedule it at time t which include:

 • ¬∃tf (tf∈BTi,j,k∧tf ∈S∧cur∉BTi,j,k) checks that there does not
exist any scheduled test where the test belong to BTi,j,k and
the test cur does not belong to BTi,j,k. It is not allowed to
schedule a test at a block when a test belonging to another
block test is scheduled on this block.
87

CHAPTER 4
 • par ≥ parmin(bi,j) checks whether the computed parallelization
is higher than the minimal allowed parallelization at the
block.

 • ¬scheduled(cur, t, tend) checks whether test cur is not scheduled
during t to tend,

 • ¬scheduled(va, t, tend) checks whether the test source used by
test cur is not scheduled during t to tend,

 • ¬scheduled(vc, t, tend) checks whether the test sink used by test
cur is not scheduled during t to tend,

 • ¬scheduled(constraint(cur), t, tend) checks whether the blocks
required by test cur are not scheduled during t to tend, and

 • memory(va)>tmemory(cur)+memoryalloc(va, t, tend) checks the availa-
ble memory at the test source needed by testcur during t to tend.

16: if (¬∃tf (tf∈BTi,j,k∧ tf ∈S∧cur∉BTi,j,k)∧
(par ≥ parmin(bi,j))∧
¬scheduled(cur, t, tend)∧
¬scheduled(va, t, tend)∧
¬scheduled(vc, t, tend)∧
¬scheduled(constraint(cur), t, tend)∧
memory(va)>tmemory(cur)+memoryalloc(va, t, tend))

then begin

If the parallelization is not stored for the block, it is set to par:
17: if (parallelization(bi,j)=∞) then
18: parallelization(bi,j)=par;

The test resource floor-planning procedure, see Figure 4.11, and
the test access mechanism procedure are called, see Figure 4.14.
19: call floor-planning procedure;
20: call test access mechanism procedure;

The attributes for the test is set, the test is inserted in S and
removed from P:
21: tstart(cur)=t;
22: tend(cur)=tend;
23: S=S∪{ cur};
24: P=P-{ cur};
25: end;
26: end;
88

TEST SCHEDULING AND TEST ACCESS MECHANISM DESIGN
After each iteration over the tests in P a new time is calculated:
27: t=nexttime(t);
28: end;

The Test Resource Floor-planning Algorithm

The system test algorithm makes use of another algorithm
which performs the test resource floor-planning, illustrated in
Figure 4.11. The algorithm floor-plan test resources and it deter-
mines whereas a test resource should be moved. If a test
resource is selected to be moved, the new placement is deter-
mined by the algorithm. The input to the algorithm is a system
with test, ST, where test resources may be placed or not.

Assume a test cur to be scheduled. If the test resources have
not been floor-planned in the system, they are placed at the core
which contain the block tested by test cur:
1: if ¬scheduled(va, 0, tend) then begin
2: y(va)=y(cur);
3: x(va)=x(cur);
4: end;
5: if ¬scheduled(vc, 0, tend) then begin
6: y(vc)=y(cur);
7: x(vc)=x(cur);
8: end;

Then the algorithm determines whether the test resources
should be moved or not. A loop over the required test resources
starts. In this thesis we assume up to two resources, one test
source and one test sink, to be used per test. In the loop, the
length of connecting the test source va with the block where test
cur is to be performed vb and the test sink vc is computed.
9: for all required test resources begin
10: new=dist(va, vb)+dist(vb, vc);

The notation ∃!u is used by Barwise and Etchemendy [Bar93] to
denote that there exist exactly u objects. In the approach by Bar-
wise and Etchemendy u is known in advance. However, here it is
assumed to be returned which means that u is the number of
89

CHAPTER 4
Figure 4.11: The test resource floor-planning algorithm.

1: if ¬scheduled(va, 0, tend) then begin
2: y(va)=y(cur);
3: x(va)=x(cur);
4: end;
5: if ¬scheduled(vc, 0, tend) then begin
6: y(vc)=y(cur);
7: x(vc)=x(cur);
8: end;
9: for all required test resources begin
10: new=dist(va, vb)+dist(vb, vc);
11: ∃!uwu ¬scheduled(wu, t, tend) ∧va∈wu ∧vb∈wu ∧vc∈wu ∧ wu∈A
12: ∃!v’ va∈wv ∧ vc∈wv ∧ wv∈A
13: v=v’-u;
14: extend=0;
15: for all min (par, v) wl such¬scheduled(wl, t, tend) ∧ vm∈wl ∧

vn∈wl ∧vo∈wl ∧ wl∈A do begin
16: extend=extend+min{ new, dist(vm, va)+dist(va, vm)+

dist(vn, vb)+dist(vb, vn)+dist(vo, vc)+dist(vc, vo)}
17: end;
18: if (par>v) then
19: extend=extend+new×(par-u);
20: if dist(va,vb)>0 ∧ dist(vb,vc)>0 then
21: move=v×min{ dist(va, vb), dist(vb, vc)}
22: else
23: move=v×max{ dist(va, vb), dist(vb, vc)}
24: if (move<min{ extend, new×par}) then begin
25: ∆x,y=min{ dist(va,vb),dist(vc,vb)|dist(va,vb)>0 dist(vc,vb)>0}
26: for g=1 to v+u
27: add(vx, vb);
28: y(vx)=y(vb);
29: x(vx)=x(vb);
30: end;
31:end;
90

TEST SCHEDULING AND TEST ACCESS MECHANISM DESIGN
connections not scheduled from t to tend and connecting va, vb
and vc. Further, v’ is the number of wires connecting the test
source and the test sink and v is the number of not scheduled
wires connecting the test source and the test sink.
11: ∃!uwu ¬scheduled(wu, t, tend) ∧ va∈wu ∧vb∈wu ∧vc∈wu ∧wu∈A
12: ∃!v’ va∈wv ∧vc∈wv ∧wv∈A
13: v=v’-u;

The variable extend is initialized to zero and an iteration over
the minimum between par and v is performed where par is the
parallelization. The total length of extending the existing wires
is calculated.
14: extend= 0;
15: for all min(par, v) wl such¬scheduled(wl, t, tend), vm∈wl,

vn∈wl, vo∈wl, wl∈A do begin
16: extend=extend+min{ new, dist(vm, va)+dist(va, vm)+

dist(vn, vb)+dist(vb, vn)+dist(vo, vc)+dist(vc, vo)}
17: end;

If par is greater than v, the available wires are not sufficient, i.e.
new wires have to be added with a length of new.
18: if (par>v) then
19: extend=extend+new×(par-u);

The cost of moving a test resource is given as v multiplied by the
shortest distance between the core, vb and va and vc respectively:
20: if dist(va,vb)>0 ∧ dist(vb,vc)>0 then
21: move=v×min{ dist(va, vb), dist(vb, vc)}
22: else
23: move=v×max{ dist(va, vb), dist(vb, vc)}

If move is less than the minimum between extend, cost of extend-
ing existing wires, and new×par, cost of adding completely new
wires, a test resource is moved. If a test resource is to be moved,
the shortest distance between vb to va and between vb to vc is
selected and v+u wires are added. Finally the test resource is
moved to the core where test cur is to be applied.
91

CHAPTER 4
24: if (move<min{ extend, new×par}) then begin
25: ∆x,y=min{ dist(va,vb),dist(vc,vb)|dist(va,vb)>0 dist(vc,vb)>0}
26: for g= 1 to v+u
27: add(vx, vb);
28: y(vx)=y(vb);
29: x(vx)=x(vb);
30: end;
31: end;

The test floor-plan algorithm is illustrated using the part of a
system shown in Figure 4.12. A test at vertex vb is to be sched-
uled using the test generator at vertex va and the test response
evaluator at vertex vc. For simplicity, we assume that the dis-
tance between all vertices is 1 unit length. Three wires exist in
this part of the system, w1, w2 and w3. At the moment wire w2 is
occupied by test data transportation and can not be used.
Assume that par = 3, i.e. this test requires three wires connect-
ing va,vb and vc for test data transportation.

The algorithm first checks whether the test resources are
placed in the system. In this example they are placed. A loop
over the required number of test resources starts and the length
of a new wire connecting va with vb and vb with vc (connecting va,
v3, v7, vb, v8, v9, v6, vc) is computed to 7 length units and it is
stored in variable new.

In this example there is one wire, w2, connecting va, vb and vc
which can be used at this moment, i.e. u=1 and there are 3 wires
connecting va and vc, i.e. v’=3, and v=2.

An iteration over min(par, v), in this example min(3,2)=2,
wires where a wire is checked as to whether it can be used in
each iteration. First, wire w3 is found since its cost is lowest (=0)
since it connects va, vb and vc, i.e. variable extend=0. In the sec-
ond iteration, extend becomes 4. The algorithm does not find any
wire connecting va, vb and vc (note w2 is not available and w3
was selected in the previous iteration). The selected cost is the
minimum of adding a new wire at a cost of 7 length units and the
cost of extending wire w1 at 4 length units (connecting v2 to v6 to
92

TEST SCHEDULING AND TEST ACCESS MECHANISM DESIGN
vb and from vb to v6 and to v3). Such extension is required in
order to concurrently transport test stimuli and test response on
a wire. This is further explained in Figure 4.16.

The loop terminates and the cost of selecting two wires has
been computed. However, a third wire is required and since no
wire is available, the cost of adding a new wire with cost 7 has to
be added, i.e. extend=11 (4+7).

The cost of moving a test resource is given by the number of
wires connecting the test source and the test sink multiplied by
the distance to the core under test. For instance, if va is to be
moved to vb the wires at va has to be routed to vb. In this exam-
ple there are three wires (v+u) connecting va and vc. The cost of
moving the test resource closest to vb is evaluated. In this exam-
ple move=(v+u)×min{dist(va,vb),dist(vc,vb)}=(2+1)×min{3,4}=9.

Since move is less than extend, the test resource closest to vb is
moved. In this example it is va and all wires at va are extended
to vb (where va will be placed), see Figure 4.13 for the placement

Figure 4.12: Example to illustrate the test resource
floor-planning algorithm.

test generator: va
test response evaluator: vc
core under test: vb

occupied wire:
available wire:

1

v5

vb v8
w2

w3

w1
va v1 v2 vc

v6v4v3

v7 v9

1

93

CHAPTER 4
and routing. The first of the two iterations over the test
resources are completed. A second iteration follows which is per-
formed in similar way.

The Test Access Mechanism Design Algorithm

The system test algorithm makes use of an algorithm for the test
access mechanism design, illustrated in Figure 4.14. The basic
idea of the algorithm is to minimize the routing of connecting a
block with required test resources. The algorithm iterates over
the required number of wires and in each iteration it checks for
the minimal wire connection. The most efficient is to use an
existing wire which connects the test resource and the core
under test. If no such wire exists, the minimum between adding
a new wire and extending an existing wire is explored.

In detail the algorithm works as follows. An iteration is per-
formed over the number of required wires determined by par.
1: for g= 1 to par begin
2: extend=∞;

Figure 4.13: Example used to illustrate the test
resource floor-planning algorithm.

1

v5

v8
w2

w3

w1
v1 v2 vc

v6v4

v9

1

v3

v7
va
vb
94

TEST SCHEDULING AND TEST ACCESS MECHANISM DESIGN
Figure 4.14: Test access mechanism design algorithm.

1: for g=1 to par begin
2: extend=∞;
3: if ∃wl{ va∈wl∧vb∈wl∧vc∈wl ∧

¬scheduled(wl, t, tend)}
4: else
5: begin
6: new=dist(va, vb)+dist(vb, vc);
7: if ∃wl∀vm∀vn∀vomin{ dist(vm, va)+

dist(va, vm)+dist(vn, vb)+dist(vb, vn)+
dist(vo,vc)+ dist(vc, vo)} ∧
¬scheduled(wl, t, tend) ∧
vm∈wl ∧ vn∈wl ∧vo∈wl ∧wl ∈A

then
8: extend=dist(vm, va)+dist(va, vm)+

dist(vn, vb)+ dist(vb, vn)+
dist(vo, vc)+dist(vc, vo);

9: if (new<extend)
10: wl=add(va, vb)+add(vb, vc);
11: else begin
12: ∆a,b=0; ∆c,d=0; ∆e,f=0;
13: while∆a,b≠ ∞ ∧ ∆c,d≠ ∞ ∧ ∆e,f≠ ∞ begin
14: if ∆a,b≠ ∞ then
15: ∆a,b= min{ dist(vm, va)| vm∈wl }
16: if ∆c,d≠ ∞ then
17: ∆c,d= min{ dist(vn, vb)| vn∈wl}
18: if ∆e,f≠ ∞ then
19: ∆e,f= min{ dist(vo, vc)| vo∈wl}
20: ∆x,y=min(∆ab, ∆cd, ∆ef);
21: wl=wl ∪ add(vx, vy)+add(vx, vy);
22: ∆x,y=∞;
23: end;
24: end;
25: end;
26: tbus(cur)=tbus(cur)∪wl;
27: end;
95

CHAPTER 4
If there is a wire not being used by any test during t to tend and
connecting the test source, the core under test and the test sink,
it is selected, step 3. Otherwise, the distance of adding a new
wire is calculated, step 6. Note, that the test resource floor-plan-
ning also calculates this distance but since the test resources
could be moved a new calculation has to be performed.

Then a check is made to find a wire not being used by a test
during t to tend which is as short as possible. Its length is com-
puted and stored in extend.
3: if ∃wl{ va∈wl∧vb∈wl∧vc∈wl ∧

¬scheduled(wl, t, tend)}
4: else
5: begin
6: new=dist(va, vb)+dist(vb, vc);
7: if ∃wl∀vm∀vn∀vomin{ dist(vm, va)+

dist(va, vm)+dist(vn, vb)+dist(vb, vn)+
dist(vo,vc)+ dist(vc, vo)} ∧
¬scheduled(wl, t, tend),
vm∈wl, vn∈wl, vo∈wl, wl ∈A

then
8: extend=dist(vm, va)+dist(va, vm)+

dist(vn, vb)+ dist(vb, vn)+
dist(vo, vc)+dist(vc, vo);

If new is less than extend, the cost of adding a new wire is lower
than extending a wire, a new wire is added; otherwise an exist-
ing wire is extended.
9: if (new<extend)
10: wl=add(va, vb)+add(vb, vc);
11: else begin

For the wire extension an iteration is performed while ∆a,b≠ ∞ ∧
∆c,d≠ ∞ ∧ ∆e,f≠ ∞. In each iteration the ∆a,b, ∆c,dand∆e,fis re-calcu-
lated if they are not set to ∞ and the minimum among them is
selected and the wire is extended.
96

TEST SCHEDULING AND TEST ACCESS MECHANISM DESIGN
12: ∆a,b=0; ∆c,d=0; ∆e,f=0;
13: while∆a,b≠ ∞ ∧ ∆c,d≠ ∞ ∧ ∆e,f≠ ∞ begin
14: if ∆a,b≠ ∞ then
15: ∆a,b= min{ dist(vm, va)| vm∈wl}
16: if ∆c,d≠ ∞ then
17: ∆c,d= min{ dist(vn, vb)| vn∈wl}
18: if ∆e,f≠ ∞ then
19: ∆e,f= min{ dist(vo, vc)| vo∈wl}
20: ∆x,y=min(∆ab, ∆cd, ∆ef);
21: wl=wl ∪ add(vx, vy)+add(vx, vy);
22: ∆x,y=∞;
23: end;
24: end;
25: end;

Finally, the wire is added to be used by the test cur:
26: tbus(cur)=tbus(cur)∪wl;
27: end;

A part of a system is illustrated in Figure 4.15 which will be
used to explain the test access mechanism design algorithm. In
this part of the system there are nine vertices (cores or test
resources) and three wires, w1, w2 and w3. The distance between
two neighbouring vertices is 1 length unit. A test at a block at
core vb is to be scheduled and it requires test source va and test
sink vc. Assume that par=2 for this test which means that two
connections (wires) are required for test data transportation.
Wire w1 and wire w2 are connecting va, vb and vc. However, w1 is
being used at the moment and can therefore not be used.

In the first of the two iterations (par=2), the algorithm detects
that wire w2 connects va, vb and vc and it is available for test
data transportation at the moment. Wire w2 is selected. In the
second iteration, the algorithm detects that there is no available
wire connecting va, vb and vc. Therefore the algorithm deter-
mines whether a new wire should be added connecting va, vb and
vc or whether an existing wire should be extended to include va,
vb and vc. The length of adding a new wire is calculated as being
3 length units. For the extension of a wire, the wire requiring the
97

CHAPTER 4
minimal extension is selected. In this case it is wire w3 and
extending it requires 4 length units for connecting va to v1, 4
length units for connecting v2 to vb and 2 length units for con-
necting v8 to vc. In total 10 length units are required. The brief
example in Figure 4.16 motivates the calculation of extending a
wire. If wire w1 is to be extended to include the scan-chain at
block2,1 at core2 a wire has to be added from core1 to core2 and a
wire from core2 to core1 in order to make it possible to concur-
rently transport test stimuli to core2 and test response from
core2.

In the example in Figure 4.15, a new wire is added since add-
ing a new wire is less expensive compared to extending wire w3.

4.7.2 COMPUTATIONAL COMPLEXITY

The main iterations for the algorithms are given in Figure 4.17
where the test resource placement and the test access mecha-
nism design parts are excluded. This makes it possible to com-
pare the technique with other approaches.

Figure 4.15: Test access mechanism design.

test generator: va
test response evaluator: vc
core under test: vb

occupied wire:
available wire:

1

1

vc

v6v5

va

v4v3

v7

vb v9

v8

w1

w2

w3

v2v1
98

TEST SCHEDULING AND TEST ACCESS MECHANISM DESIGN
Sorting can be performed at using a sorting algorithm at
O(|P|×log |P|) [Aho87] and the worst case is occur when only
one test is scheduled in the loop at point 3 in Figure 4.17 and it
is given by:

The total complexity is |P|×log(P) + |P|2/2 + |P|/2 which is
of O(n2). For instance, the approach proposed by Garg et al.
[Gar91] and Chakrabarty et al. have a worst case complexity of
O(n3) [Cha99].

Figure 4.16: Extending a wire.

scan-chain

core1

block1,1

scan-chain

core2

block2,1

wire w1

required extension

P i–()
i 0=

P 1–

∑ P P 1–() P 2–()+ … P P 2–()–() P P 1–()–()+ + + += =

P
2

2
--------- P

2
------+=

(4.29)

Figure 4.17: Computational complexity analysis of
the test scheduling technique.

1:sort tests according to a key and put them in a list P.
2:while P is not empty
3: for i = 1 to |P|
4: if itemi = ok then remove itemi from P
99

CHAPTER 4
4.8 Simulated Annealing
Simulated annealing is an optimization technique proposed by
Kirkpatrick et al. [Kir83] where a hill-climbing mechanism is
used to avoid getting stuck in a local optimum.

4.8.1 THE SIMULATED ANNEALING ALGORITHM

The basic idea behind Simulated annealing is that a combinato-
rial optimization procedure corresponds to the annealing proc-
ess in physics where a material is heated up to its melting point
and then its minimal energy state is found by slowly lowering
the temperature [Kir83].

The Simulated annealing algorithm is outlined in Figure 4.18.
An initial solution is first created. A minor modification of it cre-
ates a neighbouring solution and the cost of the new solution is
evaluated. If the new solution is better than the previous, the
new solution is kept. A worse solution can be accepted at a cer-
tain probability, which is controlled by a parameter referred to
as temperature.

The temperature is decreased during the optimization proc-
ess, and the probability of accepting a worse solution decreases
with the reduction of the temperature value. When the temper-
ature value is approximately zero, the optimization terminates.

The initial temperature TI, the temperature length TL and
alpha α (0 < α < 1) have to be determined.

The advantages with Simulated annealing is the relative ease
in implementing it. However, it suffers from long computational
time and it requires complicated tuning of the annealing param-
eters TI, TL and α [Gaj92]. Furthermore, there is no clear rules
for parameter selection. In this thesis, the parameter selection is
based on experimental results.

We use the Simulated annealing algorithm for test scheduling
and for combined test scheduling and test access mechanism. In
100

TEST SCHEDULING AND TEST ACCESS MECHANISM DESIGN
this thesis we use our heuristic to create the initial solution in
both cases. For the test scheduling case we create a neighbour-
ing solution by randomly selecting a test from an existing sched-
ule and schedule it as soon as possible but not at the same place
as it was in the original schedule.

For the test scheduling and test infrastructure design a modi-
fication is defined as a random insertion or deletion of a test bus
wire connecting a test source and the cores on the path to a test
sink. It is obvious that if the functional bus is allowed to be used,
it may not be deleted.

4.8.2 COST FUNCTION

The cost function of a test schedule, S, and the added test access
mechanism, A, is given by:

where:
T(S) is the test application time for a sequence of tests, S,
L(A) is the total length of the test access mechanism,

Figure 4.18: Simulated annealing.

1: Construct initial solution, xnow;
2: Initial Temperature: T:=TI;
3: while stop criteria not met do begin
4: for i = 1 to TL do begin
5: Generate randomly a neighboring solution x’∈Ν(xnow);
6: Compute change of cost function∆C:=C(x’)-C(xnow);
7: if ∆C≤0 then xnow=x’
8: else begin
9: Generate q:= random(0, 1);
10: if q<e-∆C/T then xnow=x’
11: end;
12: end;
13: Set new temperature T:=α×T;
14: end;
15: Return solution that corresponds to the minimum cost function;

C S A,() α1 T S()× α2 L A()×+= (4.30)
101

CHAPTER 4
α1, α2 are two designer-specified constants used to determine
the importance of the test application time versus the test bus
area.

The test application time, T(S), for a schedule, S, is defined by:

The length, L(A), of the test access mechanism, A, is given by:

4.9 Tabu Search
Tabu search is an artificial intelligence inspired technique
where the intelligence is kept in a memory. An initial solution is
transformed, by successive moves, to an optimal solution
[Glo86].

A short term memory with a predefined length is used to
remember the given number of recent moves. These moves are
not allowed to be repeated, i.e., they are tabus. An aspiration cri-
terion, when a tabu may be overridden, is defined to indicate
when a tabu-status move can be performed. One example of
such aspiration criteria is that the move will lead to a solution
which has the best so far. In our algorithm this aspiration crite-
ria is used. A long term memory is also used to keep track of cer-
tain characteristics of the successful moves. It capture
information about which parts of the solution space that has
been investigated. This information can be used to guide the
search to a diversification, encouraging jumping out of local opti-
mum, or a intensification coveraging towards a certain area to
reach the optimum (either local or global).

In each iteration a neighbourhood is examined where the best
move is selected to form the next solution. For each core and test
resource in the system it is specified weather it may be moved or

T S() tend ti() ti max tend ti(){ }()∀ ti S∈,{ }= (4.31)

di
j 0=

wi 1–

∑
wj A∈
∑ st vj vj 1+,() vj vj 1+, wi∈, (4.32)
102

TEST SCHEDULING AND TEST ACCESS MECHANISM DESIGN
not and a set of pre-defined places where a core or a test resource
may be placed.

The Tabu search algorithm is illustrated in Figure 4.19 and
the cost function is the same as described in Section 4.8.

The initial solution is created by our heuristic and a move is
performed by changing placement between two test resources.

The Tabu search and the Simulated annealing implementa-
tions are also combined where the Tabu search optimizes the
floor planning while the Simulated annealing minimizes the test
application time and the test access mechanism design for each
given floor-plan.

4.10 Conclusions
In this chapter an integrated test framework for SOC has been
defined. Several issues which are important for the designer
when developing an efficient test solution are described, gener-
alized and combined into the framework. Algorithms combining
these issues have been defined where test application time and
test access mechanism are minimized while performing:

Figure 4.19: Tabu search algorithm.

1: Construct initial solution, xnow;
2: for each iteration
3: for each solution xk∈N(xnow) do begin
4: Compute change of cost function∆C:=C(xk)-C(xnow);
5: for all ∆C<0, in increasing order of∆C do begin
6: if not tabu(tk) or tabu_aspirant(tk) then
7: xnow= xk;
8: update tabu and history list;
9: goto 2;
10: end;
11: end;
12: Return solution that corresponds to the minimum cost function;
103

CHAPTER 4
 • test sets selection for each block,
 • test parallelization,
 • test resource floor-planning,
 • test access mechanism design, and
 • test scheduling

under the following constraints:

 • general test conflicts,
 • power consumption,
 • test source memory, and
 • test source bandwidth.

For further optimization of the test scheduling and/or test access
mechanism Simulated annealing is used and for further optimi-
zation of the test resource floor-planning Tabu search is used.
The heuristics are used for creating the initial solutions and
during the design space exploration process.
104

Chapter 5
Experimental Results

IN THIS CHAPTER the experimental results are presented.
After the introduction in Section 5.1, the results from the exper-
iments on test scheduling are reported in Section 5.2 and the
experimental results on test access mechanism design are pre-
sented in Section 5.3. The results from the experiments on test
scheduling and test access mechanism design are presented in
Section 5.4 and in Section 5.5 the results from the experiments
on test parallelization are presented. Finally, in Section 5.6 the
experiments on test resource placement are presented and the
chapter is summarized in Section 5.7.

5.1 Introduction
We have made several experiments using benchmarks and
industrial designs. We have compared our approach to other pro-
posed approaches and we compared our approach with the opti-
mal solution. In cases where no optimal solution is known, we
use extensive optimization using our Simulated annealing (SA)
implementation, see Section 4.8, and/or our Tabu search (TS)
implementation, see Section 4.9.

CHAPTER 5
All experiments, where a computational cost is stated, are
performed on a Sun Ultra Sparc 10 with a 450 MHz processor
and 256 Mbyte RAM.

5.2 Test Scheduling
The test scheduling approach proposed in this thesis is com-
pared to several previously proposed approaches. In Section
5.2.1 and Section 5.2.2 we perform experiments where the test
application time is minimized considering test conflicts. In Sec-
tions 5.2.3 to 5.2.9 we report the results from experiments where
test application time is minimized while considering test con-
flicts and test power consumption.

5.2.1 EXPERIMENT ON DESIGN KIME

The design Kime, described in Appendix A.1, has been used by
Kime and Saluja [Kim82], Craig et al. [Cra88], Jone et al.
[Jon89] and Garg et al. [Gar91]. The design contains test con-
flicts and the test application time for the optimal solution is 318
time units. Since no power consumption is given for the tests, we
only performed the experiment using our approach with an ini-
tial sorting of the tests based on time. The solution from our
approach is shown in Figure 5.1 and it was produced within one
second. All approaches but the one proposed by Kime and Saluja
find the optimal solution, see Table 5.1.

Figure 5.1: Test schedule using our heuristic on design
Kime.

time100 200

t1 t2

t6

300

t3
t5 t4
106

EXPERIMENTAL RESULTS
5.2.2 EXPERIMENT ON SYSTEM S

The System S defined by Chakrabarty [Ch00a] consists of six
ISCAS 85 benchmarks where each of them is assumed to be a
core, see Appendix A.2. Each core is tested by two test sets and
the test sets can not be applied to the same core concurrently.
Furthermore, the external tester can only be used by one test at
a time. A BIST pattern takes one clock cycle to apply and an
external test pattern is applied at a speed ten times slower and
all cores have their own BIST resource [Ch00a].

No power consumption is given for the tests and therefore we
only use our scheduling approach with an initial sorting of the
tests based on time. The test schedule achieved by our approach
is shown in Figure 5.2.

All results are presented in Table 5.2 where the test applica-
tion time of the optimal solution is 1152810. The test application
time of the solution produced by the approach proposed by
Chakrabarty is 1204630 which is 4.5% worse than the optimal
solution. Our approach finds the optimal solution within a sec-
ond.

Approach Test time Difference
to optimum

Optimal 318 -

Kime and Saluja 349 8.9%

Craig et al. 318 0%

Jone et al. 318 0%

Garg et al. 318 0%

Our heuristic (time sort) 318 0%

Table 5.1: Experimental results on design Kime.
107

CHAPTER 5
5.2.3 EXPERIMENT ON DESIGN MURESAN

The design by Muresan et al. contains test conflicts and power
constraints, see Appendix A.3 [Mur00]. The total test applica-
tion time using the approach by Muresan et al. is 29 time units,
see the test schedule in Figure 5.3. The results from our SA opti-
mization is shown in Figure 5.4 and it was running with an ini-
tial temperature (TI) of 400, a temperature length (TL) of 400
and α=0.97. The experimental results using our approach with
initial sorting of tests based on power, time and power×time are
shown in Figure 5.5.

All experimental results are presented in Table 5.3. Our heu-
ristics show better results in all cases compared to the solution
by Muresan et al. Further, our approach with initial sorting
based on power×time results in a solution only 4% from the solu-
tion produced by SA. All solutions using our approach were pro-
duced within a second while the SA optimization required 90
seconds.

Approach Test time Difference to optimum

Optimal 1152810 -

Chakrabarty 1204630 4.5%

Our heuristic (time sort) 1152810 0%

Table 5.2: Experimental results on System S.

Figure 5.2: Test schedule using our heuristic on System S.
time1152180

s5378e

s953b

a: s1196b

a
b

b: c7552b
c

c: s2670b
d

d: c880b

s5378b

s953e c2670e e

e: c7552e
f: s1196e

f

g: c880e

g

108

EXPERIMENTAL RESULTS
Approach Test
time

Difference
to SA

Cpu time
(sec.)

Our Simulated annealing 25 - 90

Muresan et al. 29 16% -

Our heuristic, (power sort) 28 12% 1

Our heuristic, (time sort) 28 12% 1

Our heuristic, (power×time sort) 26 4% 1

Table 5.3: Experimental results on design Muresan.

10 20 30

10

Figure 5.3: Test scheduling solution produced by
Muresan et al. on design Muresan.

time

power dissipation

t1 b
t2

t8

t4

t5

t6

c

d

power limit = 12

a

d: t10

b: t7

a: t3

c: t9

10 20 30

10

Figure 5.4: Test scheduling solution produced by our Sim-
ulated annealing implementation on design Muresan.

time

power

t1b
t8

t4

t5
t6

c

d

power limit = 12

a

d: t10

b: t7

a: t3

c: t9

t2
109

CHAPTER 5
10

10

10 20 30

t1 t4

Figure 5.5: Test schedule using our heuristic with initial
sorting based on power (a), time (b) and power×time (c) on

design Muresan.

(a, power)

(b, time)

(c, power × time)

time

power

10 20

t1

10

b

t8 t5
t6

d

30

power limit=12

a

time

power

t1
t2t8

t4

t5
t6 c

power limit=12

a

time

power

10 20

b

t2

t8

t5t6 c

d

30

power limit=12

a

d

t2
t4

c

d: t10

b: t7

a: t3

c: t9

d: t10

b: t7

a: t3

c: t9

d: t10

b: t7

a: t3

c: t9

b

110

EXPERIMENTAL RESULTS
5.2.4 EXPERIMENT ONE ON ASIC Z

We have compared our test scheduling technique with the
approaches proposed by Zorian [Zor93] and Chou et al. [Cho97]
using the ASIC Z design, see Appendix A.4. The assumptions for
the experiment are the same as Chou et al. [Cho97], namely:

 • maximal power dissipation is limited to 900 mW,
 • all tests can be applied concurrently,
 • the power consumption for idle blocks are excluded, and
 • no new tests are allowed to start until all tests in the previ-

ous session are completed.

The test schedules achieved by the approach proposed by Zorian
and Chou et al. are presented in Figure 3.25 and in Figure 3.27
respectively. The test schedules achieved by our approach, with
an initial sorting based on power, time and power×time, are the
same and shown in Figure 5.6.

All experimental results are presented in Table 5.4. Using our
approach the total test application time is 300 in all cases of ini-
tial sorting. The approach proposed by Zorian results in a solu-
tion with four test sessions and a test application time of 392.
The approach proposed by Chou et al. results in a solution with
three test sessions and a test time of 331. The optimal solution
has a test application time of 300, see Table 5.5. The approach
proposed by Zorian is 30.7% from the optimal solution and the
approach proposed by Chou et al. is 10.3% from optimum. Our
approach finds the optimal solution within a second.
111

CHAPTER 5
Test
session

Zorian Chou et al.
Our heuristic
(power, time,
power×time)

Time Blocks Time Blocks Time Blocks

1 69
Ram1,
Ram4,
RF

69

Ram1,
Ram3,
Ram4,
RF

160
RL2,
RL1,
Ram2

2 160
RL1,
RL2

160
RL1,
RL2

102
Ram1,
Rom1,
Rom2

3 61
Ram2,
Ram3

102
Rom1,
Rom2,
Ram2

38
Ram3,
Ram4,
RF

4 102
Rom1,
Rom2

Total time: 392 331 300

Table 5.4: A comparison of different test scheduling
approaches on ASIC Z.

c

Ram2

RL1

Figure 5.6: Test schedule achieved using our heu-
ristic on ASIC Z.

time

power

a = RF
b = Ram4

RL2

Ram1
c = Ram3

Rom1

Rom2

100 200 300

600

900

300

power limit = 900

a
b

112

EXPERIMENTAL RESULTS
5.2.5 EXPERIMENT TWO ON ASIC Z

We have performed experiments on the ASIC Z design, see
Appendix A.4, with the following assumptions:

 • maximal power dissipation is limited to 900 mW,
 • all tests can be applied concurrently,
 • idle power is not considered, and
 • new tests are allowed to start even if all tests are not com-

pleted.

The difference compared to the experiments in Section 5.2.4 is
that tests are allowed to start even if all tests at the moment are
not completed. The test schedules using our approach with the
initial sorting of tests based on power, time and power×time are
shown in Figure 5.7. The experimental results are presented in
Table 5.6 and all cases result in a test application time of 262.
The SA was running with initial temperature (TI) of 400, tem-
perature length (TL) of 400 and α=0.97 and it found a solution at
a cost of 262, see Table 5.6. Our test scheduling technique finds a
solution at the same cost as the SA within a second while the SA
optimization required 74 seconds to complete.

Approach Test time Difference to
optimum

Optimum 300 -

Zorian 392 30.7%

Chou et al. 331 10.3%

Our heuristic
(time sort)

300 0%

Our heuristic
(power sort)

300 0%

Our heuristic
(power×time sort)

300 0%

Table 5.5: Experimental results on ASIC Z.
113

CHAPTER 5
cRam2

RL1

Figure 5.7: Test schedule achieved using our heuristic
on ASIC Z using initial sorting based on power(a), time(b)

and power×time(c).

time

power

a = RF
b = Ram4Ram1
c = Ram3

Rom1

100 200 300

600

900

300

power limit = 900

a

b

(a, power)

Ram2

RL1

time

power

a = RF
b = Ram4

RL2
Ram1

c = Ram3
Rom1

Rom2

100 200 300

600

900

300

power limit = 900

a
b

(b, time)

cRam2

RL1

time

power

a = RF
b = Ram4

RL2
Ram1

c = Ram3
Rom1

Rom2

100 200 300

600

900

300

power limit = 900

a
b

(c, power×time)

RL2
Rom2

c

114

EXPERIMENTAL RESULTS
5.2.6 EXPERIMENT THREE ON ASIC Z

We have also performed experiments on ASIC Z, see Appendix
A.4, with the following assumptions:

 • maximal power dissipation limited to 900 mW,
 • all tests can be applied concurrently,
 • idle power is considered,
 • new tests are allowed to start even if all tests are not com-

pleted.

The test schedules achieved using our approach with the initial
sorting of the tests based on power, time and power×time are
shown in Figure 5.8. The SA was running with initial tempera-
ture (TI) of 400, temperature length (TL) of 400 and α=0.99
resulting in a test schedule shown in Figure 5.9.

The experimental results are presented in Table 5.7. Our
approach with an initial sorting based on power results in a
solution of 300 time units which is 9.5% from the solution pro-
duced by the SA optimization. Our approach using an initial
sorting of the tests based on time and power×time results in a
test time of 290 which is 5.8% from the SA solution. All solutions
using our approach were produced within a second while the SA
required 223 seconds.

Approach Idle power
considered

Test
time

Difference
to Simulated

annealing

Cpu time
(sec.)

Our Simulated
annealing

no 262 - 74

Our heuristic
(power sort)

no 262 0% 1

Our heuristic
(time sort)

no 262 0% 1

Our heuristic
(power×time sort)

no 262 0% 1

Table 5.6: Experimental results on ASIC Z.
115

CHAPTER 5
Ram2
RL2

ab

Ram2
RL2

cRam2

RL1

Figure 5.8: Test schedule achieved using our heuristic on
ASIC Z using initial sorting based on power (a), time (b)

and power×time (c).

time

power

a = RF
b = Ram4

RL2

Ram1
c = Ram3

Rom1

Rom2

100 200 300

600

900

300

power limit = 900

ab

(a, power)

c

RL1

time

power

a = RF
b = Ram4Ram1
c = Ram3

Rom1

Rom2

100 200 300

600

900

300

power limit = 900

ab

(b, time)

RL1

time

power

a = RF
b = Ram4Ram1
c = Ram3

Rom2

100 200 300

600

900

300

power limit = 900

(c, power×time)

Rom1

c

116

EXPERIMENTAL RESULTS
5.2.7 EXPERIMENT ON EXTENDED ASIC Z

Extended ASIC Z, see Appendix A.5, is an extension of ASIC Z,
see Appendix A.4, where each block is tested by three tests.
There are two test sets for the block testing and one test set for
interconnection test.

We allow tests to start even if all tests at the moment are not
completed and idle power is not considered.

Approach Idle power
considered

Test
time

Difference
to SA

Cpu time
(sec.)

Our Simulated
annealing

yes 274 - 223

Our heuristic

(power sort)
yes 300 9.5% 1

Our heuristic

(time sort)
yes 290 5.8% 1

Our heuristic

(power×time sort)
yes 290 5.8% 1

Table 5.7: Results on ASIC Z.

Rom1

Rom2
RL2

RL1

Figure 5.9: Test schedule achieved using our
Simulated annealing implementation on ASIC Z.

time

power

a = RF
b = Ram4
c = Ram3

100 200 300

600

900

300

power limit = 900

ab

c

Ram2 Ram1
117

CHAPTER 5
The results from the experiments are presented in Table 5.8.
Our approach with an initial sorting of the tests based on power
achieve a solution at 313. Our approach with an initial solution
based on time and power×time results in solutions with a test
application time of 287. The SA optimization with initial tem-
perature on 400, temperature length of 400 and α=0.97 finds a
solution at a cost of 264. The SA was running for 132 seconds
while all solutions using our approach required less than 1 sec-
ond to complete.

5.2.8 EXPERIMENTS ON SYSTEM L

The System L is an industrial design, see Appendix A.6, where
no data is available for test D, G and F. They are therefore
excluded from the experiments.

The 15 tests are scheduled by a designer as shown in
Figure 5.10 with a test application time of 1592 time units. Our
approach with an initial sorting based on power is shown in
Figure 5.11 and the test application time is 1077.

All experimental results are presented in Table 5.9. Our
approach finds the optimal solution in all cases of initial sorting,
which is 32% better than the solution produced by the designer.
The time required to produce the solutions using our approach
was for each case less than one second.

Approach Test time Difference to SA Cpu time
(sec.)

Our Simulated
annealing

264 - 132

Our heuristic
(power sort)

313 18.5% 1

Our heuristic
(time sort)

287 8.7% 1

Our heuristic
(power×time sort)

287 8.7% 1

Table 5.8: . Results on Extended ASIC Z.
118

EXPERIMENTAL RESULTS
Figure 5.10: Designer’s test schedule on System L.

time

power
power limit = 1200

A
B

C
EF

I
J
K
L

M

N P

Q

1592

O

Figure 5.11: Test schedule achieved using our heuristic
with sorting based on power on System L.

time

power
power limit = 1200

A

B
C

EF
I

J

KL

M

O

N P

Q

1077
119

CHAPTER 5
5.2.9 EXPERIMENTS ON ERICSSON DESIGN

The results from the experiments on the Ericsson design, an
industrial design described in Appendix A.7, are presented in
Table 5.10. Extensive optimization using SA finds a solution
with a test application time of 30899 where we used an initial
temperature (TI) of 200, temperature length (TL) of 200 and
α=0.95.

Our approach with an initial sorting based on power finds a
solution at a test time of 37336 which is 20% from the solution
produced by our SA implementation. Our approaches with ini-
tial sorting based on time and power×time find a solution at
34762 which is 12.5% from the solution found by SA. The SA
optimization was running for 3260 seconds. The best SA solution
was found after 465 seconds as illustrated in Figure 5.12. Our
approaches find their solutions at 3 seconds.

Approach Test time Difference
to optimum

Optimal 1077 -

Designer 1592 32.3%

Our heuristic (power sort) 1077 0%

Our heuristic (time sort) 1077 0%

Our heuristic (power×time sort) 1077 0%

Table 5.9: Experimental results on System L.

Approach Test
time

Difference
to SA

Cpu time
(sec.)

Our Simulated annealing 30899 - 3260

Our heuristic (power sort) 37336 20.1% 1

Our heuristic (time sort) 34762 12.5% 1

Our heuristic (power×time sort) 34762 12.5% 1

Table 5.10: Experimental results on design Ericsson.
120

EXPERIMENTAL RESULTS
5.3 Test Access Mechanism Design
The experimental results on the test access mechanism design
algorithm are presented in this section. For all cores and test
resources in the design we assume a single point placement
given by its x-coordinates and y-coordinates.

5.3.1 EXPERIMENT ON SYSTEM S

The System S consists of six ISCAS 85 benchmarks where each
of them is assumed to be a core, see Appendix A.2. Using our test
access mechanism design algorithm with the test access port
TAPin placed at (0,20) and TAPout at (40,20) the length of the
test access mechanism is 120 length units and the routing is
shown in Figure 5.13. This is the optimal solution and it was
produced within a second.

Figure 5.12: Simulated annealing optimization on
Ericsson.

cost
37336

30899

465188108
121

CHAPTER 5
5.4 Test Scheduling and Test Access Mechanism
Design

In this section we report the results on the experiments where
we minimize the test application time and the test access mech-
anism. In Section 5.4.1 the results from the experiments where
test time and test access mechanism are minimized while test
conflicts are considered on System S are presented. In Sections
5.4.2, 5.4.3, 5.4.4 and 5.4.5 the test application time and test
access mechanism are minimized while considering test con-
flicts and test power consumption.

For all cores and test resources in the design we assume a sin-
gle point placement given by its x-coordinates and y-coordinates.

5.4.1 EXPERIMENT ON SYSTEM S

In System S, see Appendix A.2, only one test may use the exter-
nal tester at a time. However, in this experiment we assume that
several tests can use the external tester concurrently. In the
experiment, we minimize test application time and test access
mechanism while considering test conflicts.

Core 2
(20,10)

Core 6
(30,10)

Core 5
(30,30)Core 4

(20,30)

Core 3
(10,30)

Figure 5.13: Test access design using our heuristic
on System S.

Core 1
(10,10)

BIST BIST BIST

BISTBISTBIST

TAPin
TAPout
122

EXPERIMENTAL RESULTS
Since no power limitations are given for the tests in the sys-
tem, we only performed experiments using our approach with an
initial sorting of the tests based on time. The test schedule and
test bus assignment is shown in Figure 5.14 and the routing of
the test access mechanism is shown in Figure 5.15. Our solution
requires 5 test buses for the transportation of test data from the
external tester to the cores and from the cores to the external
tester. The BIST tests do not require any test access mechanism
since each core has its dedicated test resources. The test applica-
tion time for the solution is 996194 and the length of the test
access mechanism is 320 and it was computed within a second.

The test schedule and the test bus assignment after optimiza-
tion using SA are shown in Figure 5.16 and the routing of the
test access mechanism is shown in Figure 5.17. The experimen-
tal results are also presented in Table 5.11 where the test appli-
cation time is the same using our approach and SA. However,
the SA improves the test access mechanism from 320 to 160
which is an improvement of 100%. The SA required 1004 sec-
onds (TI=TL=100, α=0.99).

Figure 5.14: Our test schedule on System S.

time
996194

s5378e

s953b

a: s1196b

a

b

b: c7552b

c

c: s2670b

d

d: c880b

s5378b

s953e

c2670e

e

e: c7552e
f: s1196e

g: c880e

g f

test bus

--
 B

IS
T

--

5

4

3

2

1

123

CHAPTER 5
c2670 s1196

s5378s953c7552

Figure 5.15: Test access mechanism design using our
heuristic on System S.

c880
T

A
P

4
1

2

3

5

Figure 5.16: Test bus schedule using Simulated
annealing on System S.

time

996194

s5378e

s953b

a: s1196b

a

b

b: c7552b

c

c: s2670b

d

d: c880b

s5378b

s953e

c2670e

e

e: c7552e
f: s1196e

g: c880e

gf

test bus

--
--

--
-

B
IS

T
--

--
--

-

2

1

124

EXPERIMENTAL RESULTS
5.4.2 EXPERIMENT ONE ON ASIC Z

In the ASIC Z design each block has its own dedicated BIST
structure, see Appendix A.4, which means that each block has
its own test source and test sink. Therefore, there is no need for
any mechanism for test data transportation. However, in this
experiment we assume that no BIST structure exists in the
design and all tests are applied using an external tester. Fur-
ther, we assume that the external tester can support several
tests concurrently.

We assume the maximal allowed power dissipation is 900 mW.
In this experiment we do not consider idle power and we allow
new tests to start even if all tests are not completed.

The solutions using our approach with an initial sorting of the
tests based on power is shown in Figure 5.18 and in Figure 5.19.

Approach Test time Test access
mechanism

Cpu time
(sec.)

Our Simulated annealing 996194 160 1004

Our heuristic (time) 996194 320 1

Difference to SA 0% 100% -

Table 5.11: Results on System S.

c2670 s1196

s5378s953c7552

Figure 5.17: Test access mechanism design using
Simulated annealing on System S.

c880
T

A
P

1

2

125

CHAPTER 5
Four test buses are required for the solution and the tests are
scheduled on the test buses as shown in Figure 5.18. The test
access mechanism is routed as shown in Figure 5.19. The test
application time is 262 and the length of the test access mecha-
nism is 360.

Our approach using an initial sorting of the tests based on
time and power×time results in the same solution and it was
produced within one second. The test bus schedule is shown in

cRam2

RL1

Figure 5.18: Test bus schedule achieved using our heu-
ristic on ASIC Z using initial sorting based on power.

time

test bus

a = RF
b = Ram4

Ram1 c = Ram3

Rom1

100 200 300

2

3

1

a

b

RL2 Rom2

4

Figure 5.19: Test access mechanism design using our
heuristic with initial sorting based on power.

RAM 2

RL 1

RL 2

RF

RAM 1

RAM 4
ROM 2ROM 1

RAM 3

1 4

2

tap

3

126

EXPERIMENTAL RESULTS
Figure 5.20 and the routing of the test buses are shown in
Figure 5.21. The test application time for the solution is 262 and
the length of the test buses is 300.

For the SA we used initial temperature(TI)=500, temperature
length(TL)=500 and α=0.99. The SA was running for 865 sec-

Figure 5.20: Test bus schedule achieved using our heu-
ristic on ASIC Z using initial sorting based on time and

power×time.

cRam2

RL1

time

test bus

a = RF
b = Ram4

Ram1

c = Ram3

Rom1

100 200 300

2

3

1

a

b

RL2

Rom2

4

Figure 5.21: Test access mechanism design using our
heuristic with initial sorting based on time and

power×time sort.

RAM 2

RL 1

RL 2

RFRAM 1
RAM 4

ROM 2

ROM 1

RAM 3

1
4

2

tap3
127

CHAPTER 5
onds and the solution was produced with a test application time
of 326 and a test access mechanism at a cost of 180. The test bus
schedule is shown in Figure 5.22 and the design of the test
access mechanism is shown in Figure 5.23.

All experimental results are presented in Table 5.12. All the
initial solutions provided a test application time of 262 which is
better than the solution produced by SA. However, the bus solu-
tion produced by SA is better than the solution produced by our
approach with initial sorting of the tests based on time and
power×time.

This experiment shows the problem and the importance of
combining the two costs for test time and test access mechanism
to a single value. In the experiment above we have used one (1)
as the balancing factor which means that the cost is computed
as: test time + 1×test bus length.

We have compared the effect of different cost balancing factors
between test application time and test access mechanism and
we run the SA with an initial temperatur(TI)=400, temperature
length(TL)=200 and α=0.95. The optimal test application time is
262 and the optimal test access bus is 120. However, these are
not possible to achieve at the same time. The test application
time with an optimal bus (120) would require all tests to be
scheduled in sequence resulting in a test time of 699.

Figure 5.22: Test bus schedule achieved using Simu-
lated annealing.

cRam2

RL1

time

test bus

a = RF
b = Ram4

Ram1

c = Ram3Rom1

100 200 300

2

3

1

a

b

RL2

Rom2
128

EXPERIMENTAL RESULTS
The results from the experiments are collected in Table 5.13.
The cost improvement increases with the cost balancing factor.
For instance, with a cost factor of one (1) the improvement using
SA is 11% but when the cost factor is four (4) the improvement is
52%. However, it should be noted that the test application time
increases. For instance, the solution produced by SA with a cost
factor of 4 has a test application time 35% higher than the initial
solution.

Approach Test
time

Test
bus

Total
cost

Difference to
SA

Cpu time
(sec.)

Our Simulated
annealing

326 180 506 - 865

Our heuristic
(power)

262 360 622 22.9% 1

Our heuristic
(time)

262 300 562 11.1% 1

Our heuristic
(power×time)

262 300 562 11.1% 1

Table 5.12: Results on ASIC Z.

Figure 5.23: Test access mechanism design using
Simulated annealing.

RAM 2

RL 1

RL 2

RFRAM 1
RAM 4

ROM 2ROM 1

RAM 3

2

1

tap
3

129

CHAPTER 5
5.4.3 EXPERIMENT TWO ON ASIC Z

The experiment performed in this section use the ASIC Z, see
Appendix A.4, and use the same assumptions as in Section 5.4.2.
The difference is that idle power is considered in this experi-
ment.

The solutions using our approach with an initial sorting of the
tests based on power are shown in Figure 5.24 and in
Figure 5.25. Four test buses are required for the solution and
the tests are scheduled on them as shown in Figure 5.24. The
test access mechanism is routed as shown in Figure 5.25. The
solution results in a test application time of 300 and a length of
the test access mechanism is 360 and the solution was computed
within one second.

Approach Test time Test bus Factor Total cost

Our heuristic
(power×time)

262 300 1 562

Our SA 326 180 1 506

Difference to SA -20% 67% 11%

Our heuristic
(power×time)

262 300 2 862

Our SA 326 180 2 686

Difference to SA -20% 67% 26%

Our heuristic
(power×time)

262 300 3 1162

Our SA 405 160 3 885

Difference to SA -35% 88% 31%

Our heuristic
(power×time)

262 300 4 1462

Our SA 405 140 4 965

Difference to SA -35% 114% 52%

Table 5.13: Comparing the balance factor between test time
and test access mechanism cost.
130

EXPERIMENTAL RESULTS
For our approach with an initial sorting of the tests based on
time and power×time, the solutions are the same, see
Figure 5.26 and Figure 5.27. Four test buses are required for the
solution and the tests are scheduled on them as in Figure 5.26.
The test access mechanism is routed as in Figure 5.27. The total
test application time is 290 and the length of the test access
mechanism is 360.

The SA produces a solution with a test bus schedule as shown
in Figure 5.28 where the test access mechanism is routed as
shown in Figure 5.29. The test application time for the solution

cRam2

RL1

Figure 5.24: Test bus schedule achieved using our heu-
ristic on ASIC Z using initial sorting based on power.

time

test bus

a = RF
b = Ram4

Ram1 c = Ram3

Rom1

100 200 300

2

3

1

a

b

RL2 Rom2

4

Figure 5.25: Test access mechanism design using our
heuristic with initial sorting based on power.

RAM 2

RL 1

RL 2

RF

RAM 1

RAM 4
ROM 2ROM 1

RAM 3

1 4

2

tap

3

131

CHAPTER 5
is 334 and the cost of the test access mechanism is 180. SA was
running for 855 seconds with an initial temperature of 300, a
temperature length of 300 and α=0.97.

All results from this experiment are collected and presented
in Table 5.14. For instance, our approach with sorting based on
power is 23.6% from the solution produced by SA. The test
access mechanism in the solution produced by SA is 80% better
than our solution. However, the test application time in the SA
solution is 10% worse.

c

Ram2RL1

Figure 5.26: Test bus schedule using our heuristic on
ASIC Z using sorting based on time and on power×time.

time

test bus a = RF
b = Ram4Ram1
c = Ram3

Rom1

100 200 300

2

3

1

a

b

RL2

Rom2

4

Figure 5.27: Test access mechanism design using our
heuristic with sorting based on time and on power×time.

RAM 2

RL 1

RL 2

RF

RAM 1

RAM 4
ROM 2ROM 1

RAM 3

1 4

2

tap

3

132

EXPERIMENTAL RESULTS
Approach Test
time

Diff.
to SA

Test
bus

Diff.
to SA

Total
cost

Diff.
to SA

Cpu
(s)

Our SA 334 - 180 - 514 - 855

Our heuristic
(power)

300 -10.2% 360 100% 660 28.4% 1

Our heuristic
(time)

290 -13.2% 360 100% 650 20.9% 1

Our heuristic
(power×time)

290 -13.2% 360 100% 650 20.9% 1

Table 5.14: Experimental results on ASIC Z.

cRam2

RL1

Figure 5.28: Test bus schedule achieved from SA.

time

test bus
a = RF
b = Ram4

Ram1

c = Ram3
Rom1

100 200 300

2

3

1 a

b

RL2

Rom2

Figure 5.29: Test access mechanism design pro-
duced by Simulated annealing.

RAM 2

RL 1

RL 2

RF

RAM 1

RAM 4
ROM 2

ROM 1

RAM 3

1

2

tap

3

133

CHAPTER 5
5.4.4 EXPERIMENTS ON EXTENDED ASIC Z

The Extended ASIC Z, see Section A.5, is an extension of ASIC
Z, see Section A.4. The design consists of 9 cores which all are
tested by three tests, where two tests are for the logic at each
core and one test checks the interconnections.

The experimental results are presented in Table 5.15. Our
approach with an initial sorting of the tests based on power pro-
duces a solution with a test application time of 313 and a cost of
the test access mechanism of 720. The total cost is 1033. The
solutions with the tests initially sorted based on time and
power×time give solutions with test application time of 287 and
a cost of the test access mechanism of 660. The solution pro-
duced by SA optimization has a test application time of 270 and
a cost of the test access mechanism of 560 where TI=TL=200 and
α=0.97.

The difference in total cost using our approach compared to
SA is 14.1% for the approach with time and power×time sorting.
In more detail, the test access mechanism is minimized from 660
to 560. However, the test application time is higher for the solu-
tion produced with SA.

The SA optimization was running for one hour and the opti-
mal solution was found after 4549 seconds while the computa-
tional cost using our approach was less than a second.

Approach Test
time

Diff.
to SA

Test
bus

Diff.
to SA

Total
cost

Diff.
to SA

Cpu
(s)

Our SA 270 - 560 - 830 - 4549

Our heuristic
(power)

313 15.9% 720 28.6% 1033 24.5% 1

Our heuristic
(time)

287 6.3% 660 17.9% 947 14.1% 1

Our heuristic
(power×time)

287 6.3% 660 17.9% 947 14.1% 1

Table 5.15: Results on Extended ASIC Z.
134

EXPERIMENTAL RESULTS
5.4.5 EXPERIMENTS ON ERICSSON

The Ericsson design, described in Appendix A.7, consists of 170
tests. We use the design as it is described and tests are allowed
to start even if all tests in a session are not completed.

Our approach with an initial sorting of the tests based on
power results in a solution with a test application time of 37336
and a test access mechanism cost of 8245. This solution took 81
seconds to produce. Using our approach with tests sorted accord-
ing to time gives a solution with a test application time of 34762
and a test access mechanism cost of 9350 and 79 seconds was
required to produce the solution. Our approach with tests ini-
tially sorted based on power×time gives a solution with a test
application time of 34762 and a test access mechanism cost of
8520 and the solution was produced after 62 seconds. The SA
optimization produced a solution with a test application time of
33082 and a bus cost of 6910. The optimization was aborted after
15 hours.

All experimental results are presented in Table 5.16 and the
computational costs are in Table 5.17. The total cost (test time
and size of test access mechanism) are in all cases reduced when
our approach is compared to the solution produced by SA. For
instance, our approach with sorting based on power×time is in
respect to test application time reduced from 34762 to 33082,
which is an improvement of 5.1%. Furthermore, the test access
mechanism is reduced from 8520 to 6910, which is a reduction of
23.3%. However, the time required for the SA was 15 hours,
while our approach produced solutions within two minutes.
135

CHAPTER 5
5.5 Test Parallelization
The System L is an industrial design, see Appendix A.6, where
no data is available for test D, G and F. They are therefore
excluded from the experiments.

The 15 tests are scheduled by a designer as shown in
Figure 5.10 with a test application time of 1592 time units. Our
approach with an initial sorting based on power is in Figure 5.11
and the test application time is 1077.

Our approach with initial sorting based on power allowing
test parallelization is shown in Figure 5.30. The test application

Approach Test
time

Diff.
to SA

Test
bus

Diff.
to SA

Total
cost

Diff.
to SA

Our SA 33082 - 6910 - 46902 -

Our heuristic
(power)

37336 11.4% 8245 19.3% 53826 14.8%

Our heuristic
(time)

34762 5.1% 9350 35.3% 53462 14.0%

Our heuristic
(power×time)

34762 5.1% 8520 23.3% 51802 10.4%

Table 5.16: Results on Ericsson.

Approach Computational cost

Our heuristic
(power)

81 seconds

Our heuristic
(time)

79 seconds

Our heuristic
(power×time)

62 seconds

Our Simulated
annealing

15 hours

Table 5.17: Computational cost for the experiments on
Ericsson.
136

EXPERIMENTAL RESULTS
time for it is 316. Our approach with initial sorting based on
time and power×time also results in a test application time of
316. The solution was computed within a second. The SA pro-
duced a solution of 316 with initial temperature (TI)=200, tem-
perature length(TL)= 200 and α=0.95. The SA optimization was
running for 38 seconds.

All results from the experiments are presented in Table 5.18.
The designer’s solution from the test schedule, see Section 5.2.8,
was 1592. In Section 5.2.8 we reported a test schedule achieved
with our approach at 1077. These results did not allow test par-
allelization. When test parallelization is allowed the test appli-
cation time can be reduced to 316 which is more than 400%
better than the designer’s solution.

Figure 5.30: Test schedule using our heuristic with
initial sorting based on power and allowing test par-

allelization on System L.

time

power
power limit = 1200

B

C

316

FEI J

KL

M

N

O

P

Q

A

137

CHAPTER 5
5.6 Test Resource Placement
We have made experiments where the placement of test
resources are optimized in order to minimize test time and the
cost of the test access mechanism.

5.6.1 EXPERIMENT ON ASIC Z

In this experiment we try to find the optimal placement for the
test access port. We use the ASIC Z design where each block has
its own dedicated BIST structure, see Appendix A.4. However, in
this experiment we assume that all tests are applied using an
external tester. We assume that several tests may use the tester
at the same time and idle power was not considered.

In the experiment, we let our TS optimization implementation
search for the best placement and the result is point m. We then
made experiments on all of the points, a to t, in Figure 5.31 and
the results are in Table 5.19 where point m is the one with low-
est cost. This verifies that TS finds the best solution.

Approach Test time Difference
to SA

Cpu time
(sec.)

Our SA 316 - 38

Designer 1592 403.8% -

Our heuristic (power sort) 1077 240.8% 1

Our heuristic (time sort) 1077 240.8% 1

Our heuristic (power×time sort) 1077 240.8% 1

Our heuristic with parallelization
(power sort)

316 0% 1

Our heuristic with parallelization
(time sort)

316 0% 1

Our heuristic with parallelization
(power×time sort)

316 0% 1

Table 5.18: Experimental results on System L.
138

EXPERIMENTAL RESULTS
5.6.2 EXPERIMENT ON EXTENDED ASIC Z

In this experiment we try to find the best placement of on-chip
test resources which minimizes test application time and the
cost of the test access mechanism. We have used our test
resource placement algorithm on Extended ASIC Z, see Appen-
dix A.5, and we do not consider idle power and we allow tests to
start as soon as possible.

In Extended ASIC Z the RAM memories share one BIST struc-
ture and the ROM memories share one. The other blocks have
their own dedicated BIST structure. The solution using our test
resource placement algorithm results in a test schedule at a test
application time of 313 and a cost of the test access mechanism
of 720. The total cost is 1033, see Table 5.20.

We use a TS optimization to search for a better placement of
the on-chip test resources and TS finds a placement where the
test application time is 313 and the cost of the test access mech-
anism is 620 resulting in a total cost of 933. The difference com-
pared to our algorithm is 10.7% and the TS optimization took
220 seconds.

We also performed experiments with TS where each individ-
ual move is further optimized using SA. This optimization

Figure 5.31: TAP placement in ASIC Z.

RAM 2

(10,20)

(30,10)

(40,10) (50,10)

(40,30)

RL 2
(40,20)

RL 1

RFRAM 1RAM 4ROM 2

(20,10)

ROM 1

(10,10)

RAM 3

(20,20)

q p o n m l k

j

i

g

h

fedcba

t

s

r

139

CHAPTER 5
results in a solution where the test application time is 293 and
the cost of the test access mechanism is 420. The total cost is
713. Our initial solution is 44.9% from this solution and the TS
without SA is 30.9% from it. This solution was found after 5606
seconds or 91779 iterations and the optimization took almost 3
hours. For the SA we used initial temperature of 5, temperature
length of 10 and α=0.70.

Point
Placement

Test time Test bus Total cost
x y

a 0 40 262 540 802

b 10 40 262 460 722

c 20 40 262 400 662

d 30 40 262 400 662

e 40 40 262 420 682

f 50 40 262 480 742

g 60 40 262 560 822

h 60 30 262 480 742

i 60 20 262 440 702

j 60 10 262 440 702

k 60 0 262 460 722

l 50 0 262 340 602

m 40 0 262 300 562

n 30 0 262 320 582

o 20 0 262 340 602

p 10 0 262 420 682

q 0 0 262 500 762

r 0 10 262 420 682

s 0 20 262 400 662

t 0 30 262 440 702

Table 5.19: Experimental results on ASIC Z.
140

EXPERIMENTAL RESULTS
For each of the placements above we evaluated the test appli-
cation time and the cost of test access mechanism using more
extensive SA optimization. We used an initial temperature of
200, a temperature length of 200 and α=0.97 running for 75 min-
utes. The experimental results are presented in Table 5.21. Our
initial solution is 24.5% from the solution by SA. The TS place-
ment is 10.2% from the SA solution and finally the TS and the
SA placement is 2.9% from SA solution.

Approach Test
time

Test
bus

Total
cost

Difference
to TS + SA

Cpu time
(sec.)

Our placement
approach(power sort)

313 720 1033 44.9% 1

Our TS+
our heuristic(power)

313 620 933 30.9% 220

TS+SA (power) 293 420 713 - 5606

Table 5.20: Experimental results on Extended ASIC Z.

Approach Test
time

Test
bus

Total
cost

Difference
to SA

Our placement heuristic
(power sort)

313 720 1033 24.5%

Our Simulated
annealing

270 560 830 -

Our Tabu search+
our heuristic (power)

313 620 933 10.2%

Our Simulated
annealing

278 560 838 -

Our TS+our SA+
our heuristic(power)

293 420 713 2.9%

Our Simulated
annealing

313 380 693 -

Table 5.21: Experimental results on Extended ASIC Z.
141

CHAPTER 5
5.7 Summary
We have in this chapter by experiment demonstrated the useful-
ness of our approaches. The experiments have been performed
using several benchmark examples and industrial designs.

We have compared our approach with other techniques on test
scheduling on design Kime and System S and for both examples
our approach finds the optimal solution. We have, on design
Muresan, ASIC Z, Extended ASIC Z, System L and Ericsson,
performed experiments where test application time is mini-
mized while test conflicts and test power consumption are con-
sidered. Our approach finds optimal or near optimal solutions at
a very low computational cost.

We performed experiments using our approach to design the
test access mechanism. In this experiment we used System S
and our approach finds the optimal solution. We have also per-
formed experiments on test scheduling and test access mecha-
nism on System S, ASIC Z, Extended ASIC Z and Ericsson.

We have performed experiments on System L where we com-
bine test scheduling and test parallelization. The results show
that by combining test scheduling and test parallelization the
test application time can be minimized compared to considering
these tasks separately.

Finally, we performed experiments where test resource place-
ment is considered in order to achieve minimal test time and
cost for the test access mechanism.
142

Testability Analysis and
Enhancement Technique

PART III

Chapter 6
Introduction and

Related Work

The aim of applying a design-for-testability technique on a
design is to improve its testability. However, a DFT technique
may lead to some design degradation in terms of additional
delay and increased silicon area. In order to maximize the testa-
bility and to minimize design degradation, the testability of a
design must be carefully analyzed and, based on the analysis
result, hard-to-test parts are selected for testability improve-
ment.

Several testability metrics have been developed and reported
in the literature, as well as techniques to improve testability.
Due to the increase in design complexity, testability analysis
and enhancement approaches have been proposed for different
abstraction levels. We provide an overview of metrics for testa-
bility analysis in section 6.1. We describe different techniques to
improve testability in section 6.2. In section 6.3 we summarize
the discussion.

CHAPTER 6
6.1 Testability Analysis
In this section we present an overview of previously proposed
approaches to measuring the testability of a design. The
approaches are grouped according to the abstraction level at
which they are used.

6.1.1 GATE LEVEL TESTABILITY ANALYSIS

The early work in testability analysis is usually carried out at
the gate level [Gol79], [Gol80], [Gup90], [Par93], [Par95],
[Abr91]. Several testability metrics at this level are based on the
concepts of controllability and observability. An example of such
a metric is to attach a testability value to each line (wire) of a
design in such a way that a line close to a primary input is easily
controlled and a line close to a primary output is easily observa-
ble. Even though such a distance-based metric is unsophisti-
cated, it provides fairly good guidance in detecting hard-to-test
parts in the circuit. The disadvantage of this approach is that it
does not consider the logic.

Rutman developed an analysis method based on three meas-
ures, 1-controllability, 0-controllability and observability where
the logic is considered [Rut72]. The 1(0)-controllability meas-
ures the relative difficulty of setting a line l in a circuit C to the
logic value 1(0). The observability metrics measure the relative
difficulty of propagating an error on a line l to any primary out-
put.

Let C0(Z) be the 0-controllability for line Z shown in
Figure 6.1. To set the output of the AND gate, i.e. line Z, to 0
requires that either X or Y is set to 0. The 0-controllability

Z
X

Y

Figure 6.1: A 2-input AND-gate.
146

INTRODUCTION AND RELATED WORK
depends on the controllability of the inputs of the AND-gate.
Rutman gives a formula for this:

where the “+1” is used to account for circuit depth.
For 1-controllability of line Z both X and Y must be 1 and the

formula becomes:

To propagate an error signal on X to the output Z we require
that Y=1 and the formula for observability is:

where C2(X) indicates the observability at line X.
Using the basic ideas in the formulas above, it is possible to

develop formulas suitable for other types of gates, such as OR,
NAND, NOR gates and flip-flops.

The total 0-controllability, 1-controllability and observability
values for a circuit is given by S0, S1 and S2. S0, S1, and S2 are
calculated using the following formula:

where i=0,1,2; L is the set of lines in the given circuit.
The total testability of a circuit is then defined as:

where ki are weights assigned to the controllability and observ-
ability terms.

A drawback with the formulas for 0-controllability, 1-control-
lability and observability is that they may lead to problems
when the circuit contains reconvergent fanout. For instance, in
Figure 6.2, the signals B and C can never be set to the same

C0 Z() min C0 X() C0 Y(),{ } 1+= (6.1)

C1 Z() C1 X() C1 Y() 1+ += (6.2)

C2 X() C2 Z() C1 Y() 1+ += (6.3)

Si Ci l()
l L∈
∑= (6.4)

S ki Si×
i 0=

2

∑= (6.5)
147

CHAPTER 6
value, so the correct value of C1(X) should show that setting X=1
is impossible.

Based on Rutman’s controllability and observability measures
Chen and Breuer introduced the concept of sensitivity analysis
[Che85]. The basic idea is that an introduction of a DFT tech-
nique should affect the global testability and not only the place
where the DFT improvement has been applied.

They first measure the total testability of a design using Rut-
mans’ approach, and then calculate the relative improvement
for selected points, which is the difference between the testabil-
ity for the circuit with no DFT compared with applying DFT:

where Si(Sj(w)=0) is the testability with no DFT and Si(Sj(w)=1)
the testability for the circuit with DFT.

Parikh and Abramovici [Par93][Par95] present a method for
selecting flip-flops based on sensitivity analysis presented by
Chen and Breuer. The sensitivity measure ranks the flip-flops
relative to each other based on detectability, which is a measure
composed of controllability, sequential depth and enabling cost.

The controllability cost, Cv(l), measures the minimum number
of clock cycles required to set line l to the value v. As an example,
the 1-controllability of the output of the NAND-gate in
Figure 6.3 is the minimum of the 0-controllability values on the
inputs.

The observability cost O(l) is the number of clock cycles
required to propagate the value of line l to a primary output, and

C

A
B

X

Figure 6.2: Problems in controlling line X.

Si∂
Sj w()∂

----------------- Si Sj w() 0=() Si Sj w() 1=()–= (6.6)
148

INTRODUCTION AND RELATED WORK
it consists of two measures, sequential distance and enabling
cost. The sequential cost measure, D(l), indicates the number of
flip-flops along the most observable path from l to a primary out-
put. The enabling cost, E(l), is the minimum controllability cost
required to enable propagation of a fault effect along a path from
the primary input to l. The observability cost is then

The detectability cost for a fault f stuck-at-v at line l is defined
as:

The total testability cost for a circuit, i.e. the total cost func-
tion (TCF), is calculated as:

where F is the set of target faults.
The TCF value is used as a reference value in the sensitivity

analysis, where a change in TCF is due to some DFT being used.
An approach similar to sensitivity analysis, Testability Differ-

ence, was proposed by Kim and Kime, who relate the scan flip-
flop insertion to an overall improvement of testability [Kim90].
The testability difference is composed of sequential controllabil-
ity difference, SCD, and sequential observability difference, SOD.

The flip-flops, FF, are numbered from 1 to n and the faults,
FLT, are numbered from 1 to m.

First the SC and SO for the whole design are calculated when
no DFT is applied, i.e. no flip-flops are scanned. After this the

C0=5
C0=4
C0=3

C1=3

Figure 6.3: Calculating the 1-controllability of
a NAND-gate.

O l() D l() E l()+= (6.7)

DET f() max Cv l() E l(),{ } D l()+= (6.8)

TCF DET f()
f F∈
∑= (6.9)
149

CHAPTER 6
SCD and SOD are calculated for each flip-flop that is scanned.
The formulas used are the following:

The two measures, SCD and SOD, are then combined to define
the testability difference:

where TD(FFi) is the testability difference when flip-flop FFi is
scanned.

The major drawback with such approaches as sensitivity anal-
ysis is computational complexity. The algorithm must be used
several times, first when no DFT is applied and then for each
time a DFT is applied. If the designer wants to try n different
points to apply DFT, the algorithm is used n+1 times. Actually
the computational complexity is so high that there is no practi-
cal use for the approach [Abr90].

6.1.2 REGISTER-TRANSFER LEVEL TESTABILITY ANALYSIS

On the register-transfer level a common approach to testability
analysis has been based on the probabilities of data. Each logic
operation in a design usually reduces the probability of control-
ling/observing a line embedded in the design.

Chen and Menon presented a testability analysis technique
based on combinational controllability (CC), sequential control-
lability (SC), combinational observability (CO) and sequential
observability (SO) [Che89]. The controllability metrics are fur-
ther divided into two components, 1 and 0 controllability. Thus,
there are six parameters associated with each line in the circuit.

SCD FFi() SC FLTj() SCi FLT j()–{ }
j 1=

m

∑= (6.10)

SOD FFi() SO FLTj() SOi FLT j()–{ }
j 1=

m

∑= (6.11)

TD FFi() SCD FFi() SOD FFi()+= (6.12)
150

INTRODUCTION AND RELATED WORK
The combinational controllability measures the probability
that a signal has the value 0 or 1. Hence they use two metrics,
one for 0, CC0, and one for 1, CC1. Using a binary decision dia-
gram the probability of traversing any branch is equal to the
combinational controllability of the variable represented by the
node from which the branch starts.

The sequential controllability is an estimate of the length of a
sequence for setting a signal in a circuit to a specific value. Two
values exist and therefore they use two metrics, SC0 for 0-con-
trollability and SC1 for 1-controllability. The probability that a
change in the input will result in a change in the output is
defined as combinational observability, CO. Finally, the sequen-
tial observability, SO, is defined as an estimate of the number of
time frames required to propagate the effects of a signal change
on a line to the primary output.

A similar approach which is also based on probabilities is pro-
posed by Gu et al. [Kuc90], [Gu91], [Gu92], [Gu94], [Gu95b]. For
each line in the circuit four metrics exist, combinational control-
lability (CC), sequential controllability (SC), combinational
observability (CO) and sequential observability (SO).

The relationship between the controllability at the output of a
functional unit and the controllability at its input is defined by
the controllability transfer factor (CTF). For observability there
is a relationship between the observability at the inputs of a
functional unit and the observability at its output which
depends on the observability transfer factor (OTF). CTF reflects
the probability of setting a value at a unit’s output by randomly
exercising its inputs and OTF reflects the probability of observ-
ing a unit’s input by randomly exciting its other inputs and
observing its output.

Both the CTF and the OTF factors are in the range of 0 to 1,
where 1 represents the best controllability and observability
transfer of a unit.
151

CHAPTER 6
Another approach based on probabilities is proposed by
Flottes et al. [Flo97]. The focus there is on reconvergence and a
transparency metrics for controllability and observability.

The transparency for controllability, Tc, is the ratio of differ-
ent values that can be set on a functional unit and it is calcu-
lated as:

where n is the bit width of the input ports. p is the number of
common bits between the input ports. C1 and C2 are the propor-
tion of values that can be obtained on the functional unit’s out-
put, given that its input ports are not connected to each other:
p=0 (otherwise: p=n). In Figure 6.4 we show an example of z=x+y
and z=x+x. In the former case, p=0 since none of the inputs is
connected to another, while p=n when z=x+x since all inputs are
connected to each other.

The transparency factor for observability, To, is the proportion
of pairs of input values that can be distinguished on a functional
unit. For instance, for a left-side shift register where n is the
number of input bits and with the least significant bit set to 0,
the transparency factor is: Tc = (2n - 2) / (2n - 1).

The main drawback of the above approach is that no loops are
accepted in the data path and that the controller is assumed to
be testable. However, a separately testable controller and sepa-

Tc

C2 C1–() p×
n

---------------------------------- C1+= (6.13)

addadd

x y

z

x

z

Figure 6.4: Example where p=0 and p=n using
the metric proposed by Flottes et al.
152

INTRODUCTION AND RELATED WORK
rately testable data path do not imply that the combination is
testable [Dey95].

Lai et al. propose also a testability analysis method based on
probabilities [Lai97]. The behavioral VHDL is transformed into
a Control Data Flow Graph on which scheduling is performed.
After scheduling the testability is measured and the testability
is enhanced. The analysis is based on controllability and observ-
ability of registers. The controllability metrics are based on
entropy, a standard notation from information theory, known as
randomness [Lai97]. The observability measures the probability
that an arbitrary change in the signal’s value can be observed at
the primary output and is defined as transparency [Lai97].

The randomness, Rc, of a variable c at the output of a compo-
nent with two inputs a and b is defined as:

where Ra and Rb are the randomness of variables a and b, and
Ma and Mb are the probability distribution of variable a and b
assuming a pseudo-random set of input patterns. The coeffi-
cients C1, C2 and C3 depend on the bit-length.

The transparency metric for variable c above is:

The test generation process is a process of justification and
propagating values from a primary input to a primary output. In
Figure 6.5 a multiplication of the two variables y and z is shown.
The propagation of a value from input y to output x depends on
the ability to justify a value on z. For instance, if z is always set
to 0, no other value than 0 can be propagated on x.

The observability metrics proposed by Rutman depend on the
controllability metrics [Rut72]. However, the observability met-

Rc C1

Ra Rb+

2
-------------------× C2

Ma Mb+

2
----------------------× C3+ +≈ (6.14)

Tc

Ta Tb+

2
-------------------= (6.15)
153

CHAPTER 6
rics proposed by Gu et al. do not consider the justification proc-
ess when the observability is calculated [Gu95b].

6.1.3 BEHAVIORAL-LEVEL TESTABILITY ANALYSIS

The size of digital systems and their complexity are pushing the
trend towards design at higher abstraction levels. A design
grows significantly in complexity when it is synthesized into the
logic level because more implementation information is added to
the design. This can make it harder to extract vital information
from it when, for instance, we want to find hard-to-test parts.

Until recently, most testability analysis methods have focused
on the RT level or lower levels. The advantage of working on the
RT level and lower levels is that the structure of the design is
well-defined. Therefore, more accurate information about its
testability can be extracted provided that the complexity is not
too high.

The major advantages of using high-level testability analysis
is the reduction of complexity [Lai97]. However, performing test-
ability analysis before high-level synthesis means that we do not
have a structural design where the physical components are
allocated.

Chickermane and Patel made a comparative study where
high-level test generation was compared with gate-level test
generation [Chi92]. Their results show that a high-level DFT
tool can accurately predict hard-to-test areas. Furthermore, the
high-level DFT can make a more efficient and effective selection
of partial scan flip-flops by using high-level design information.

*

x

y z

Figure 6.5: Propagation of values from inputs to outputs.
154

INTRODUCTION AND RELATED WORK
On the behavioral level Chen et al. introduced a path analysis
method to classify, based on controllabilities, the variables into
two classes, completely controllable (CC) and non-completely
controllable (NCC) ones [Che92] [Che94]. The classification is
based on the ability to control the bits in the variables. If all bits
are controllable, the variable is classified as CC otherwise as
NCC.

The selection process is based on the same assumption as
approaches such as the sensitivity analysis [Che93]. An effec-
tiveness value, EFF(N), associated with each NCC variable N, is
defined as the relative improvement for applying test point
insertion for N:

where

 • N is an NCC variable,
 • NCCt is the set of original NCC variables,
 • NCCm(N) is the set of NCC variables after variable N has

been selected as a test point, and
 • BitSize(N) is the number of bits for variable N.

It is not clearly stated, but understood, that the BitSize is the
number of controllable bits in a variable. However, the variables
that are considered in the Effectiveness measure are the varia-
bles that are classified as NCC. An observability measure and
classification scheme for the variables are also proposed. How-
ever, it is not considered in the selection process.

The few classes and the strict rules for a variable to be classi-
fied as a CC variable result in most variables being classified as
NNC variables [Le93a]. Another drawback is that no internal
loops are allowed in the CDF graph because it might generate
an infinite number of paths in the path analysis.

EFF N()

BitSize nt()
nt NCCt∈

∑ BitSize nm()
nm NCCm N()∈

∑–

BitSize N()
---= (6.16)
155

CHAPTER 6
An approach where a value range propagation technique is
used for testability analysis is proposed by Seshadri and Hsiao
[Ses00]. A static single assignment (SSA) representation is used
to calculate controllability and observability metrics from a
behavioral VHDL specification. An example of a behavioral
VHDL specification is shown in Figure 6.6. and its SSA in
Figure 6.7.

The SSA rules are:

1. Each definition of a variable, which occurs at places where
the variable receives a new value, is assigned a unique
name.

2. A Φ−function is used to combine results at points in a pro-
gram. For instance, x=Φ(p,q,...) where x gets the value p if
the control flows into the basic block is via the first path, q if
the second path is selected, and so on.

3. Each use of a variable makes use of exactly one name gener-
ated from the rules above. Use of a variable occurs when it is
needed in the definition of itself or another variable.

For instance the variables in Figure 6.7 are x, y and l where x
has 5 defines, 5 uses, and 2 joins, which result in seven SSA com-
ponents, x0 to x6.

The notation to describe an m weighted value:

where Wi is the probability of the corresponding range; Li and Ui
gives the lower and the upper bounds of the given range; Si is
the size of steps taken when going from the lower to the upper
bound; and i = 1,2,3...m. For instance, x0 is 1.0[0:0:0] at initiali-
zation, see Figure 6.7 at block b0. To extract information at the
join, block b1 in Figure 6.7, at the for-loop controlled by x, x1 is
allocated. The SSA for x1 is calculated by merging values from x0
and x6. However, x6 is not computed yet and it may require sev-

Wi Li Ui Si;;[] …,{ } (6.17)
156

INTRODUCTION AND RELATED WORK
Figure 6.6: A behavioral VHDL description.

library ieee;
use ieee.std_logic_1164.all;
package my_data_types is

subtype data is integer range 15 downto -15;
end my_data_types;

use work.my_data_types.all;
entity example is

port(clk: in bit;
z: out data);

end example;

architecture simple of example is
begin

process
variable x: integer range 0 to 15;
variable y: data;
variable l: boolean;
begin

y := 0; z <= 0; l := false;
for x in 0 to 9 loop

wait until (clk’event) and (clk=’1’);
l := true;
if (x <= 1) then

y := x - 1;
else

y := x + 1;
end if;
z <= y;

end loop;
l := false;

end process;
end simple;
157

CHAPTER 6
l2 = false

Figure 6.7: The SSA representation of the example in
Figure 6.6.

x0 = 0
y0 = 0
z0 = 0

clk1 = assert(clk0 = 1)

x2 <= 1

x3 = assert(x2 <= 1)
y1 = x3-1;

clk0 = Φ(0, 1)

l1 = true

x1 = Φ(x0, x6)
x1 <= 9

l0 = false

clk0 = 1

clk2 = assert(clk0 = 0)

x2 = assert(x1 <= 9)

x4 = assert(x2 > 1)
y2 = x4+1;

exit

y3 = Φ(y1, y2)

z1 = y3
x6 = x5+ 1

x5 = Φ(y3, y4)

T F

T F

TF

b1

b0

b6

b2

b3 b4

b5
158

INTRODUCTION AND RELATED WORK
eral iterations through the SSA flow graph to determine the
value for x1. The SSA variables and weighted value ranges for
the given example are presented in Table 6.1.

In the approach by Seshadri and Hsiao testability is the com-
bination of controllability and observability for the variables in
the behavioral specification.

Controllability

Given a value range W[L:U:S] of vj and a value a in the range,
the controllability value Ca of vj is the difficulty in assigning a to
vj, Ca is computed as:

where Pa is the probability of vj assuming value a.
For instance, assume a 5-bit natural variable, each of the 32

values may occur at the same probability, i.e. C0=C1=...=C31=
1/(1/32)=32.

X Y Z

SSA
var WVR SSA

var WVR SSA
var WVR

x0 1.0[0:0:0] y0 1.0[0:0:0] z0 1.0[F:F0]

x1 1.0[0:10:1] y1 1.0[-1:0:1] z1 1.0[T:T:0]

x2 1.0[0:9:1] y2 1.0[3:10:1] z2 1.0[F:F:0]

x3 1.0[0:1:1]
y3

{0.2[-1:0:1],

0.8[3:10:1]}x4 1.0[2:9:1]

x5 1.0[0:9:1]

x6 1.0[0:10:1]

Table 6.1: SSA variables and weighted vaule ranges.

Ca 1 Pa⁄= (6.18)
159

CHAPTER 6
1. Assignment inside a loop structure

For branch structures with f paths and the probability from path
k being Pk the resulting value ranges can be computed as:

where k = 1, 2, 3,..., f and i=1,2,3...n.
The controllability value for each vj at the kth fanout is:

The density of vj, denoted D for the kth path, corresponds to a
value range as the number of unique values vj can take in the
given range to the total number of values it can take.

where STi=((Ui - Li)/Si) and T is the total number of values a
variable can take. For example if V is an 5-bit natural, T=32.

The controllability for the component SSA variable over its
complete set of value ranges at path k is given as:

The controllability for the entire component for all f paths is
computed by:

For simple assignments inside a loop, i.e. no Φ-function, let
k=1 and Pk=1 since only one path exists. For instance consider

Pk W
k

i
L

k

i
U

k

i
S

k

i
;;

 (6.19)

C
k

i

1 P
k

Wi×() 1 P
k

Wi×() Ploop()
Ui Li–() Si⁄()

×()⁄+⁄
2

---= (6.20)

D
k

vj

STi 1+

T

i 0=

n

∑= (6.21)

C
k

vj

C
k

i
Ui Li–() Si⁄ 1+() T⁄×

D
k

vj

i 0=

n

∑= (6.22)

Cvj

C
k

vj
D

k

vj
×

D
k

vjk 1=

f

∑

k 0=

f

∑= (6.23)
160

INTRODUCTION AND RELATED WORK
y2 = x4 + 1 in b4 in Figure 6.7 where Ploop = 0.91, T=31 (-15 to 15)
and y2={1.0[3:10:1} the density D and the controllability C is
given by:

2. Assignment Outside a Loop Structure

If an assignment occurs before the exit of a loop structure, set
ST=0 and use formulas 6.20. Otherwise the controllability value
for each vj at the kth fanout is:

and the density is calculated using formula 6.21 with ST=0.
For simple assignments where only one path exists, k=1 and

Pk=1. And the controllability and density for variables are calcu-
lated using formulas 6.21, 6.22, and 6.23.
3. Loop Structure

The controllability and the density for a variable at a loop are
computed using Equation 6.20 and 6.21 where STi=STx1, k=1
and Pk=1.

Observability metrics

The observability O of a variable V measures the ease of propa-
gating a value to a primary output.

Initially, the observability values for all non-output variables
are set to infinity and to zero for all primary outputs. The follow-
ing rules are then applied to calculate the observability:

D
ST 1+

T

U L–
S

-------------- 1+

T

10 3–
1

--------------- 1+

31
------------------------ 0.258== = =

C
1 W⁄ 1 1 Ploop()ST×()⁄+

2
-- 1 1.0⁄ 1 1 0.91

7×()⁄+
2

--- 1.468= = =

C
k

i
1

P
k

Wi× 1 P– loop()i ter×
--= (6.24)
161

CHAPTER 6
1. Fan-outs of a branch structure with f fan-outs:

where k=1, 2,..., f.
2. Inside a loop structure with a probability Ploop of staying in

the loop:

3. In a basic block with q in-edges each with the probability Pq:

If one in-edge to a block is from a loop structure of iter iterations,
then the value Pq corresponding to this in-edge is (1-Ploop)iter.
The observability values for each of its n component SSA varia-
bles are calculated and the final observability is:

where i=1, 2,..., n.

Testability

The testability metrics TV of a variable V is

where vi (0≤i≤j) and vk (0≤k≤j) are both SSS component variables
not used in a Φ-function assignment. For vk the set should also
contribute to at least one unique value to DV.

The controllability Cy is computed as:

where y1 and y2 used in the Φ-function of y3 and therefore
excluded.

OV
1

max Pk()
---------------------= (6.25)

OV
1

Ploop
-------------= (6.26)

OV
1

max Pq()
----------------------= (6.27)

OV min O
i

V
 = (6.28)

TV 0.8

Cvi

i 0=

j

∑

Dvk

k 0=

j

∑
-------------------× 0.2 Ov×+= (6.29)

Cy Cy0
Cy3

+ 1.0 2.521+ 3.521= = =
162

INTRODUCTION AND RELATED WORK
The density Dy is given as below since the value range of y0 is
a subset of the value range for y3:

Then the testability Ty is computed as:

(The testability Ty is computed as 8.72 in the paper which is
achieved when the observability is excluded [Ses00]).

The variables are ranked in decreasing order of their control-
lability to density ratio with the hardest to control variable first.
For the variables shown in Figure 6.6 the ranking is l, y, x
(2.8710, 10.90, 4.05). The testability metrics l, y, x (∞, 8.72, ∞).

For testability improvement partial scan is assumed except
when a variable is difficult to control but easy to observe.

If a variable is difficult to control but easy to observe, it is a
candidate for overloading or test point insertion. For all other
variables (hard to observe, or hard to control and observe) par-
tial scan is used.

The major drawback of the approach is that the number of
loops has to be known in advance, i.e. loops must be able to be
unrolled to a sequence of statements, which limits the usability
of the approach.

Furthermore, the control state register does not correspond to
any variable in a behavioral VHDL specification and there is no
testability metric for it.

Another drawback is that for testability differences between
different operations are not covered. For instance, for adders
and multipliers it is usually assumed that a multiplier is harder
to test compared to an adder. However, in the approach by Ses-
hadri and Hsiao [Ses00] this is not the case if simple assign-
ments (ST=0) are assumed with the same input value range.
The testability for both is given by:

Dy Dy3
0.323= =

Ty 0.8
Cy

Dy
------ 0.2 Oy×+× 0.8

3.521
0.323
-------------× 0.2 1.099×+ 8.94= = =

T 0.8
1 W⁄
1 T⁄
------------× 1+= (6.30)
163

CHAPTER 6
6.2 Testability Improvement
Several techniques have been developed to improve the testabil-
ity of a digital circuits. We divide the techniques into three
groups: post-synthesis, synthesis and pre-synthesis transforma-
tions. Post-synthesis transformations are applicable after the
high-level synthesis step, synthesis transformations are applied
during the high-level synthesis step, and finally pre-synthesis
transformations are applied before the high-level synthesis step.

6.2.1 POST-SYNTHESIS TRANSFORMATIONS

Most DFT techniques have traditionally been post-synthesis
techniques. The simplest and most straightforward technique is
test point insertion.

As discussed in section 2.4.1, the controllability and/or the
observability of a gate-level design can be improved by adding
extra I/O pins. The main drawback with test point insertion is
the large demand for I/O pins. This problem can be solved in sev-
eral ways. One is to add a multiplexer to reduce the number of
primary outputs. In Figure 6.8 a multiplexer is added and the
need for Tn primary outputs for the Tn test points is reduced to
one primary output and one primary input for selection. How-
ever, the drawback with the multiplexer is that only one obser-

T1 T2 Tn

.......

MultiplexerSelection

Output

Figure 6.8: Example using a multiplexer to reduce
the number of primary outputs.
164

INTRODUCTION AND RELATED WORK
vation point can be observed at a time; hence test time increases
[Abr90]. Another approach to reduce the I/O overhead is to use a
shift register together with a multiplexer and a demultiplexer
[Abr90].

The scan technique discussed earlier uses scan registers with
both shift and parallel-load capability. The drawback with the
scan technique is that scan flip-flops are larger in terms of sili-
con area and that additional I/O pins are required. Furthermore,
a slower clock may be required because of the extra delay in the
scan-path and the test time per pattern increases since each test
pattern has to be shifted in [Abr90]. Several techniques have
been proposed to reduce the costs introduced when using scan
designs. For example, Norwood and McCluskey propose a tech-
nique, called beneficial scan, that combines circuit synthesis and
scan chain insertion into one step. Functionality is extracted
and used to order the scan chain elements [Nor96].

Initialization is the process of bringing a sequential circuit
into a known state at a certain time [Abr90]. This can be
achieved by adding a reset line to all flip-flops. Adding a reset to
a flip-flop requires less area overhead and delay penalty than
scanning the flip-flop [Abr93]. Abramovici et al. propose a tech-
nique to select which flip-flops should be initialized and at what
value.

Ghosh et al. propose a technique to multiplex variables which
are uncontrollable [Gho95]. The approach is to add multiplexers
to the synthesized RTL design to ensure that all modules
become testable. Assume we have to propagate the output from
an adder through a multiplier as shown in Figure 6.9. If the sig-
nal x is uncontrollable, we can add a test multiplexer as shown
in shadow and multiplex x with a test input. In this way, we can
easily control the contents of register x.
165

CHAPTER 6
6.2.2 SYNTHESIS TRANSFORMATIONS

The high-level synthesis tasks include scheduling, allocation
and binding of operations to components and to certain time
slots. The tasks must be performed taking testability into
account in order to make sure that the synthesized design is
testable.

Lee et al. proposed a data path scheduling and allocation for
testability method based on two heuristics [Lee92], [Le93c]:

 • whenever possible, allocate a register to at least one primary
input or primary output variable, and

 • reduce the sequential depth from a controllable register to
an observable register.

y

x w

1 0

multiplier

adder
Test MUX
select

Test input

PI port

PO port

Figure 6.9: Multiplexing with a constant.
166

INTRODUCTION AND RELATED WORK
The scheduling/allocation tasks are performed in separate steps
in the approach by Lee et al. First scheduling and then alloca-
tion are performed. In this way the possibility of testability
enhancement is not fully exploited.

An approach where the scheduling and allocation are per-
formed in an integrated way is proposed by Yang and Peng
[Yan98]. The data path allocation approach proposed by Yang
and Peng is based on allocation of data path operations using a
controllability/observability balance technique. The basic idea is
that data path operations with bad controllability and good
observability are merged with operations with good controllabil-
ity but bad observability. The main goal is to generate a data
path with good controllability and observability for all nodes and
with as few loops as possible [Yan98].

Yang and Peng use the testability metrics proposed by Gu et
al. [Gu95b] and for the test synthesis a cost function is proposed:

∆C=α×∆E+β×∆H (6.31)
where α and β are two coefficients defined by the designer. ∆E is
the incremental execution time and ∆H is the incremental hard-
ware cost, which compares the difference between execution
time and cost of the design after transformation and before
transformation. The hardware cost for the data path is com-
puted as:

H=∑i Area(Vi)+∑i Len(Aj)×Wid(Aj) (6.32)
where:

 • Area(Vi) is the area cost of the module corresponding to data
path node Vi,

 • Len(Aj) is the length of the connection represented as data
path connection Aj.

 • Wid(Aj) is the width of the connection represented as Aj,
which is the bit width of the connection multiplied by a given
weight factor.
167

CHAPTER 6
The execution time is equal to the length of the critical path
which is detected by analysing the reachability tree of the Petri
net model used to represent the control flow of the given design.

Lee et al. and Yang and Peng considered the scheduling and
allocation part of high-level synthesis while Mujumda et al. pro-
pose a technique that operates in the binding phase [Muj92].
The technique by Mujumda et al. eliminates as many self-loops
as possible during module and register binding. It is done by
modifying the costs associated with the arcs in the network
model [Muj92]. If a particular binding tends to increase the
number of self-loops, the corresponding arc is given a high cost
in order to penalize such binding.

6.2.3 PRE-SYNTHESIS TRANSFORMATIONS

Transformations performed directly in the behavioral specifica-
tion are classified as pre-synthesis transformations since they
are applied before the high-level synthesis process.

A way to reduce the test complexity of a large design is to
decompose it to smaller partitions, which are easier to test. A
partitioning technique is proposed by Gu et al. [Gu95a] where an
analysis method is used to select boundary components. These
components act as normal registers and/or lines in the normal
mode, while they serve as partitioning boundaries in the test
mode.

The work is extended by Yang et al. [Yan98] where the testa-
bility analysis considers the data path as well as the controller.
Further, a quantitative measure is proposed to determine in
which cluster to place the boundary components.

Another approach is to use test statement insertion which
modifies the behavioral specification to improve its testability
[Che94]. The basic idea is to bypass the original statement dur-
ing test mode. Figure 6.10 illustrates a part of a Control Flow
Graph where test statement insertion is applied on the original
statement. An extra primary input called test is inserted to dis-
168

INTRODUCTION AND RELATED WORK
tinguish between the test mode and the normal mode. In the test
mode nj is assigned the value of nin, while in the normal mode, nj
is assigned the value of norg.

The problem here is to select variable nin. One criterion is that
it should be physically close to nj in order to reduce extra rout-
ing. However, such implementation-specific details are not avail-
able from the Control Flow Graph.

Varma et al. propose a technique that considers the testability
of a synthesized design by using knowledge extracted from the
behavioral specification [Var93]. A similar technique is proposed
by Carletta and Papachristou which makes the behavioral spec-
ification testable by modifying it [Car97]. A behavioral-for-test
transformation can produce a variety of test behaviors. The test
behavior, after it is synthesized, may target the testing of all
operations of the circuit in parallel. The approach by Carletta
and Papachristou uses a transformation which generates a test
behavior similar to the design behavior. Such test behavior is
easily generated and easily synthesized with the design behav-
ior in a unified way by a synthesis system and the test controller
is easily embedded in the system controller [Car97].

nj=norg

original after test statement insertion

nj=norg nj=nin

test? truefalse

Figure 6.10: An example of test statement insertion.
169

CHAPTER 6
An example of adding test behavior proposed by Carletta and
Papachristou on a specification is shown in Figure 6.11, where
the marked parts are added for the test. In Figure 6.12 the
scheduled data flow graph is shown for the design in
Figure 6.11, and in Figure 6.13 the testable data path for the
behavior is found where the inserted elements are in bold. The
controller with the embedded test controller is shown in
Figure 6.14.

The test input is used to control an extra state in the control-
ler. Due to this the overhead in the controller was high [Car97].

Hsu et al. present a testability insertion technique where
hard-to-control loops are identified and control points are added
at the exit of the hard-to-control loops [Hsu96a]. An example is
given in Figure 6.15 where the transformations, T1, T2, T3 and
T4 are found on the right-hand side.

6.3 Summary
Most research in hardware testing has been focused on lower
abstraction levels and several approaches to analyze and
improve testability have been proposed. However, due to the
increasing complexity of digital designs, modeling techniques at
higher abstraction levels have been developed and many design
and verification activities take place at these levels. At the
behavioral level the functional properties of the design are
explicitly captured and can be used to speed up testability anal-
ysis. This information is difficult to extract from a gate-level
design.

A common weakness of the existing testability analysis tech-
niques is the way feed-back loops in the design are handled.
Loops are often the cause of problems in test generation and
must be considered. However, loops also cause problems for most
testability analysis approaches. Flottes et al. [Flo97] and Chen
et al. [Che92] [Che94] assume therefore that no loops exist, and
170

INTRODUCTION AND RELATED WORK
ENTITY example IS
PORT (

a, b, c, d : IN BIT_VECTOR(3 downto0);
x : IN BIT_VECTOR(3 downto0);
newx : IN BIT_VECTOR(3 downto0);
test : IN BIT;
out : OUT BIT_VECTOR(3 downto0)
newout : OUT BIT_VECTOR(3 downto0)

);
END example;
ARCHITECTURE behav OF ex IS

BEGIN
PROCESS (a,b,c,d,x)

VARIABLE
M1, M2, M3, M4 : INTEGER;
S1, S2, S3 : INTEGER;

BEGIN
M1 := a * x;
S1 := M1 + b;
newout <= S1;
IF (test=’0’) THEN

M2 := x * x;
ELSE

M2 := x * newx;
END IF;
M3 := S1 * M2;
M4 := c * x;
S2 := M4 + d;
S3 := s2 + M3;
out <= S3;

END PROCESS;
END;

Figure 6.11: An example of design-and-test behavior.
171

CHAPTER 6
control step 0 b a x test newx c d

1 m1 =0?

2 s1 m2.T m2.F

3 m4

4 m3 s2

5 s3

6 newout out

Figure 6.12: Scheduled data flow graph for the design-
and-test behavior of Figure 6.11.

multiplier adder

Figure 6.13: The data path for the testable behavior,
with inserted elements in bold.

newx x a c b d

m1, m2 m3, m4

s1,s2,s3

out newout

muxmuxmuxmux

register

test

status
172

INTRODUCTION AND RELATED WORK
reset state

control step 0

control step 1

control step 2

control step 3

control step 4

control step 5

control step 6

hold output state

Figure 6.14: Controller with the embedded
test controller.

test F test T

start TRUE

start FALSE

start FALSE

st
a

rt
 T

R
U

E

x=0

b>0

x:=PI
c:=0

b:=x

b:=b/2
c:=c+1

out<=c

Type T1: Force False
x=0 --> x=0 AND C1

Type T2: Force True
x=0 --> x=0 OR C2

Type T3: Complement
x=0 --> x=0 XOR C3

Type T4: Load
IF C4 THEN

C:= PI
ELSE

C:=C+1;

no

yes

no

Figure 6.15: Four types of controllability insertion
in the high-level description.

yes
173

CHAPTER 6
Gu [Gu95b] has only a simple heuristic for loop estimation. Ses-
hadri and Hsiao allow bounded loops where the number of iter-
ations is known in advance [Ses00].

Another problem is that many approaches to RTL only con-
sider the data path. It has been shown that the controller has a
large impact on the testability and that a separately testable
controller and data path do not mean that the combination is
testable.

Most analysis methods are based on analyzing the ability to
control and observe values on certain lines in the design and
these methods aim to guide the designer to find hard-to-control
and/or har-to-observe parts. There is usually a trade-off between
accuracy in finding the hard-to-test parts and computational
complexity. Several approaches such as sensitivity analysis have
such a computational complexity that they are not applicable in
practice for industrial designs [Abr90].

Even if all testability analysis method approaches provide
guidance in detecting hard-to-test parts, no analysis approach
has a good termination condition. When a hard-to-test part is
detected, a DFT-method is applied and the testability is
improved. Analysis algorithms based on sensitivity analysis re-
compute the testability when a DFT is applied and provide a rel-
ative measure of the improvement but the main question
remain; namely, when to terminate the improvement process to
guarantee a given fault coverage.

Each testability analysis provides guidance in detecting hard-
to-test parts, but few analysis methods provide guidance in the
selection of DFT method. In experiments it has been shown that
the existing testability analysis methods detect hard-to-test
parts. This has been done mostly by performing experiments but
in each approach only one DFT technique has been used. For
instance Chen and Breuer use test point insertion [Che93],
while Parikh and Abramovici [Par93][Par95] use partial scan.
One exception here is the work by Seshadri and Hsiao which
174

INTRODUCTION AND RELATED WORK
proposes a technique for the selection of test points or scan for a
register based on the testability of the variable [Ses00].

Another common drawback of the existing testability analysis
techniques is that the heuristics for selecting hard-to-test parts
only select one basic unit in each design iteration. Therefore
after each analysis, only one hard-to-test part is improved and
then the design is re-analyzed and its testability is improved
again if necessary. This approach is usually justified in that it
keeps the overhead introduced by DFT techniques at a mini-
mum, since the introduction of a DFT technique usually
improves not only the place where it is applied but also the glo-
bal testability especially the testability of units in the neigh-
bourhood of the target part. However, for large designs the
number of iterations will also be very large, resulting in a long
design time.

In this chapter we have also provided an overview of strate-
gies to improve the testability, classified as post-synthesis, syn-
thesis and pre-synthesis techniques. Some of the traditionally
testability techniques, such as test point insertion, BIST and the
scan technique, are only mentioned in this chapter. However,
they are described in Chapter 2.

The high-level synthesis process can be performed to achieve a
testable design. However, one of the problems with synthesis for
testability is that the number of loops may be increased due to
hardware sharing and the loops in a design are known to cause
test problems.

Considerable amount of work has been done at low abstrac-
tion levels defining testability analysis techniques and enhance-
ment methods. However, due to increasing design complexity,
new modelling techniques have been developed for higher
abstraction levels. It is important, for these new abstraction lev-
els, to develop techniques for analyzing testability and enhanc-
ing it. Furthermore, it is also important to develop techniques
which can be integrated in the test synthesis process.
175

CHAPTER 6
176

Chapter 7
Testability Analysis

In this chapter a behavioral testability analysis technique is
proposed for early prediction of testability by analyzing behavio-
ral VHDL specifications. The technique extracts testability
properties by an analysis of variable range, operation testability
and statement reachability at a low computational cost. Experi-
mental results show that the behavioral testability analysis
technique predicts the hard-to-test parts accurately and effi-
ciently, and can be used to guide the selection of partial scan reg-
isters.

After the preliminaries given in section 7.1, the testability
metrics are presented in section 7.2. An application of the met-
rics for partial scan selection is described in section 7.3, and the
analysis algorithm is presented in section 7.4. Finally, we
present experimental results in section 7.5, and conclusions in
section 7.6.

CHAPTER 7
7.1 Preliminaries
VHDL is a hardware description language which can be used to
model a design at various abstraction levels. At the behavioral
level a subset of the VHDL language can be used as input to a
high-level synthesis tool. We assume that the behavioral specifi-
cation is a synthesizable subset of behavioral VHDL [Ele92].

The synthesizable subset that is accepted by our approach
includes entity declarations, architecture bodies, package decla-
rations and package bodies with the following properties: an
architecture body may contain any number of concurrent state-
ments, scalar and composite types, with the exception of access
and file types; signals can only be of scalar or bit-string type; no
recursive calls are allowed and all sequential statements are
accepted, with the exception of assertion statements and struc-
tural aspects (such as component instantiation or generate
statements) which are excluded.

For our testability definitions we assume that Automatic Test
Pattern Generation (ATPG) is used and it is random-based and/
or deterministic-based and oriented towards the commonly used
stuck-at fault model. Our assumption is based on the fact that
many ATPG tools use randomly generated test vectors for find-
ing many easily detected faults and then deterministically gen-
erated vectors for harder faults.

7.2 Behavioral Testability Metrics
Our behavioral testability metrics are a combination of Variable
Range, Operation Testability and Statement Reachability.

7.2.1 VARIABLE RANGE

If the value range of a variable is limited at a line in the behav-
ioral specification, it reduces the test vector set and makes it
harder to test the related hardware.
178

TESTABILITY ANALYSIS
Definition 7.1: VR(l, v) denotes the value range of variable v at
line l in the behavioral specification, where l∈L. L is the set of
lines in the behavioral specification.

For example, if a variable v can have values in the range
[-10:10] and [15:20] at line l then VR(l, v) = [-10:10, 15:20].

Definition 7.2: defVR(v) is the defined value range for a vari-
able v.

Typically defVR(v) equals the full range of values defined for a
variable v. For example, defVR(v) for a 16-bit register declared
as a positive integer is [0:216-1].

The notation |S| represents the number of elements for a set
S. For instance if S={a,b,c} then |S|=3. For a variable v at a line
l, the value range VR(l, v) = [-10:10, 15:20] and we let |VR(l,v)|=
21+5=26, i.e. the number of different possible values in the
range.

Definition 7.3: Let the relative value range, RVR, for a vari-
able v at line l, where l∈L, be:

The relative value range of a behavioral VHDL example is
shown in Figure 7.1, where A_IN is an input port, A_OUT is an
output port and A is defined as: variable A: integer range

0 to 31 .

RVR l v,() VR l v,()
defVR v()
-------------------------- ⋅=

Figure 7.1: An example of Variable Range and
Relative Value Range.

Statements VR(l,A) RVR(l,A)

A:=A_IN; 0..31 1

IF A<10 THEN 0..9 0.31

A:=A+5; 5..14 0.31

END IF - -

A_OUT<=A; 0..31 1
179

CHAPTER 7
7.2.2 OPERATION TESTABILITY

Test vectors applied on the input of a hardware module are used
to test the module. If the complete test vector set is available,
the module is controllable. On the other hand, if some of the test
vectors can not be generated, the module is harder to test. The
test vector set for a module connected directly to a primary input
is complete and uniformly distributed, provided that each bit
has a 0.5 probability of being ‘0’ and a 0.5 probability of being ‘1’.
However, the output vector set from the module might not be
complete or uniformly distributed, that is, the vectors may occur
at different probabilities. The output test vector set which is
modified by the first module will be used as an input to the next
module. Since the test vector set is no longer complete and uni-
formly distributed the latter module is harder to test.

We introduce Operation Testability, OpT, as a metric that cap-
tures the change in distribution of test vectors in the output of
an operation assuming all possible test vectors on its input. The
optimum case is when the test vectors on an input of an opera-
tion are complete and uniformly distributed, the output vectors
are also complete and uniformly distributed. This case cannot be
satisfied by most operations when they are implemented on
hardware.

As an example, in Figure 7.2, the output distribution for a 2-
input 3-output adder is shown.

Figure 7.2: Output value (3-bit) distribution for a 2-bit
addition.

0

1

2

3

4

1 2 3 4 5 6 value

occurrence

7

180

TESTABILITY ANALYSIS
The difference between a distribution on the output of an
operation and an uniform distribution is measured by the fol-
lowing formula:

where xi is the number of occurrences of value i, n is the total
number of outputs, pi is the expected probability for value i
when each i is assumed to occur with the same frequency, and r
is the number of possible values in the output.

In the 2-bit input 3-bit output adder case n=16, pi=1/8 and
r=8, we have:

We are interested in the relative difference in testing different
modules. Our metrics aim at showing the relative difference in
disturbance of the output due to different operations performed
by the modules.

Definition 7.4: The Operation Testability, OpT, of an operation
is defined as:

where b is the word-length, i.e. number of bits of the input oper-
ands.

Table 7.1 shows the Q and the OpT values for the arithmetic
operations at different word-length where a lower value for OpT
corresponds to an operation which causes a design to be harder
to test.

Q op()
xi n pi×–()2

n pi×

i 1=

r

∑= (7.1)

Q add2 3⁄() 1 2–()2

2
-------------------- 2 2–()2

2
----------------- 3 2–()2

2
----------------- 4 2–()2

2
--------------------+ + + +=

3 2–()2

2
-------------------- 2 2–()2

2
-------------------- 1 2–()2

2
-------------------- 0 2–()2

2
--------------------+ + + 6=

OpT op() 1

Q op() 1 b⁄()
------------------------------=
181

CHAPTER 7
We would also like to use the operation testability metrics to
characterize the testability of a line as a whole. We achieve this
by the introduction of the following two definitions.

Definition 7.5: The Test Hardness, TH(l), at a line l is:

where Opl is the set of operations at line l.

Definition 7.6: The Line Operation Testability, LOT(l), at line
l in the behavioral specification is:

where THmax is the maximal test hardness at a line in the be-
havioral specification.

7.2.3 STATEMENT REACHABILITY

Some statements in a behavioral specification are more difficult
to reach then others due to the control flow. For instance, a state-
ment inside an IF-statement may be hard to reach since the con-
dition has to be fulfilled in order to reach it. Statements that are
hard to reach tend to cause test problems.

Operation Add Sub Mult Div

2-bit Q 6 6 48 13.5

OpT 0.41 0.41 0.14 0.27

4-bit Q 86 86 1408 1196

OpT 0.33 0.33 0.16 0.17

8-bit Q 21846 21846 603456 5333181

OpT 0.29 0.29 0.19 0.14

Table 7.1: Q and OpT values for arithmetic operations.

TH l() 1 OpT op()–()
op Opl∈

∑=

LOT l() 1 TH l()
THmax
-------------------–=
182

TESTABILITY ANALYSIS
Definition 7.7: The true (false) condition scope, cst(ci) (csf(ci)),
of a condition, ci, is the set of lines in the behavioral specification
which will be executed if the condition ci=true (false).

The true condition scope, cst(c1), for condition c1 in Figure 7.3
is the set {l1, l2} and the false condition scope, csf(c1), for condi-
tion c1 is the set {l3, l4}.

Definition 7.8: The Statement Reachability, SR(l), is given by:

where C is the set of conditions in the specification and the effec-
tive probability, epl(ci), for a condition ci at line l is defined as:

where pt(ci) is the probability of condition ci being true and pf(ci)
is the probability of ci being false. The probabilities pt(ci) and
pf(ci) can be obtained by analyzing the value range of the varia-
bles involved in the conditions or simulating the specification.

For some conditions the variable range leads to some extreme
values for the probability of a condition. For instance for an IF
statement where the condition is A=10, this condition will only
be true in 1 out of 65536 times if A is a 16-bit integer. In such sit-
uations, instead of using the real probability value in calculating
the effective probability, we use pmin and pmax which define the

(1) IF A<10 THEN condition c1 true scope c1
(2) A:=A+1; -//-

(3) ELSE false scope c1
(4) A:=A-10; -//-

(5) END IF;

Figure 7.3: Condition scope.

SR l() epl ci()
ci C∈
∏=

epl ci()

pt ci() l cst ci()∈

p f ci() l csf ci()∈

1 otherwise

=

183

CHAPTER 7
lower bound and the upper bound probability of a condition.
Based on experiments we set pmax=0.75 and pmin=0.25.

7.3 Application of the Behavioral Testability
Metrics

The behavioral testability metrics defined above are not tar-
geted at any particular DFT improvement technique. In this sec-
tion we will show how the behavioral testability metrics can be
used when the partial scan technique is used.

The variables in the behavioral VHDL can be implemented as
registers at the structural level and as flip-flops at the gate level.
In high-level synthesis the variables are mapped to registers,
and several techniques have been developed to minimize the
number of these registers. However, here we conceptually
assume that each variable is implemented as a dedicated regis-
ter. Our objective is to identify already in the behavioral level
which variables should be selected as scan variables and eventu-
ally mapped to scan registers.

The flip-flops in the controller, the state variable, does not cor-
respond to any variable in the behavioral specification. However,
the flip-flops in the state variable are often the cause of problems
in test generation and test application and must be considered.

The state variable is indirectly used at every line in the behav-
ioral specification and it can only have one value at each state. If
we assume that each line corresponds to one state, then the
value range of the state variable at each line is 1/|L|. We can
then use definition 7.3 to get its RVR [Lar97].

For partial scan selection we need a metric for variables which
reflects all testability features of the variables.

Definition 7.9: The Testability, T(v), for a variable v in the be-
havioral specification is given by:

T v() m
n
---- α(×

1
R× VR l(v) α2 LOT l()× α3 SR l())×+ +,

l L∈
∑=
184

TESTABILITY ANALYSIS
where n is the number of times variable v occurs in the behavio-
ral specification and m is 1 if variable v occurs at line l, other-
wise m is 0. α1, α2 and α3 are three user-defined coefficients
which are used to reflect the importance of the three metrics for
different test strategies.

One feature of our technique is that it allows the scan variable
selection procedure to be performed in an iterative manner.
After one iteration of analysis and testability insertion we can
analyze the testability of the modified design and further
improve the testability.

Since any value can be stored and observed in a scanned reg-
ister we let the value range for a variable v be equal to defVR(v)
when it is scanned. The Relative Value Range for a scanned var-
iable is therefore 1.

Scanning a variable v reduces the Test Hardness to:

where i is the number of variables and j the number of variables
at line l which are selected to be included in the scan path in this
iteration. Note that the state variable affects every line and that
we consider it as a variable which appears in each line.

7.4 Behavioral Testability Analysis Algorithm
The behavioral testability analysis algorithm calculates the
testability metrics, value range, operation testability and state-
ment reachability for all lines in the behavioral specification.

The pseudo-code for the algorithm is given in Figure 7.4,
where L is the set of lines in the behavioral specification, V is the
set of variables, and Opl is the set of operations at a line l.

The algorithm consists mainly of two iterations over the lines
in the behavioral specification. After initialization, the first iter-
ation summarizes the operation testabilities for all arithmetic
operations at a line. For each variable at the line the relative

TH l() TH l() i j–()⋅
i

----------------------------------= (7.2)
185

CHAPTER 7
variable range is computed and the statement reachability for
the line is calculated. In the second iteration the three metrics
are combined into one testability metric.

7.5 Experimental Results
In this section we present our experimental results. We use

the Differential Equation benchmark, Diff, to show the effi-
ciency of using our testability metrics for partial scan selection.
We also compare the efficiency of the testability prediction on
the behavioral level with those of the gate level, using a set of
benchmarks.

We use the CAMAD high-level synthesis tool [Pen94] and
Mentor Graphics logic synthesis and test generation tools from

Figure 7.4: The testability analysis algorithm.

THmax=0;
for l =1 to | L| do begin

for op = 1 to | Opl | do begin
TH(l)= TH(l)+(1- get_opt (op));

end ;
if TH (l)> THmax then TH max=TH(l);
for i =1 to | V| do begin

VR(vi)= get_variable_range (v i);
RVR(l,v i)=| VR(l,v i)|/| defVR (vi)|;
ni =ni +#times v i is used at line l ;
mi,l =1 if v i is used at line l otherwise 0;

end ;
if l in { if, while, for } then

calculate SR (l);
SR(l)= probability for condition scope (l);

end ;
for l = 1 to | L| do begin

T(v i)= T(v i)+ mi,l / ni *(α1* RVR(l , v)+
α2*(1- TH(l)/ THmax+α3* SR(l));

end ;
186

TESTABILITY ANALYSIS
release A.4 as the experimental platform, see Figure 7.5. The
behavioral VHDL specification is given as input to the CAMAD
high-level synthesis tool, which produces a structural VHDL
description. Logic synthesis of the structural description is per-
formed by Autologic which generates a netlist [Me93a], [Me93b].

For partial scan insertion we use DFTAdvisor [Me93d] and for
test vector generation we use FlexTest [Me93c] with default set-
tings, see Figure 7.5. The benchmarks we use are Diff [Pau89],
Sqrt [Tri85], Mag [Tri85], Dct [Kri92] and Tseng [Tse83].

The behavioral specification for the Diff benchmark is given in
behavioral VHDL, shown in Figure 7.6. The statement reacha-
bility, line operation testability and the relative variable range
for the Diff benchmark are found in Table 7.2. The test hard-
ness, TH(l) at line l is given by all operations used at that line.
For instance at line 7, TH(7)=(1-OpT(adder))+(1-OpT(multi-
plier))= (1-0.29)+(1-0.19)=1.52. Then the Line Operation Testa-
bility at line 7 is LOT(7)=1-TH(7)/THmax=1-1.52/5.47=0.72
where THmax comes from line 5 which has the highest test hard-
ness.

Behavioral Specification

High-Level Synthesis

Structural Description

Logic Synthesis

Gate Level Description

Partial Scan Insertion

Test Generation

VHDL

VHDL

netlist

Figure 7.5: The design flow.

CAMAD

Autologic

FlexTest

DFTAdvisor
187

CHAPTER 7
ENTITY diff IS
PORT(x_in : IN INTEGER RANGE 0 TO 255;

y_in : IN INTEGER RANGE 0 TO 255;
u_in : IN INTEGER RANGE 0 TO 255;
x_out : OUT INTEGER RANGE 0 TO 255;
y_out : OUT INTEGER RANGE 0 TO 255;
u_out : OUT INTEGER RANGE 0 TO 255);

END;

ARCHITECTURE behavior OF diff IS
BEGIN

PROCESS
CONST

a = 38;
dx = 1;

VARIABLE
x,y,u : INTEGER RANGE 0 TO 255;
x1,y1,u1 : INTEGER RANGE 0 TO 255;

BEGIN Line
x:=x_in; (1)
y:=y_in; (2)
u:=u_in; (3)
WHILE x<a LOOP (4)

x1:=x+dx; (5)
u1:=u-(3*x)*(u*dx)-3*y*dx; (6)
y1:=y+u*dx; (7)
x:=x1; (8)
y:=y1; (9)
u:=u1; (10)

END LOOP; (11)
xout<=x; (12)
yout<=y; (13)
uout<=u; (14)

END PROCESS;
END behavior;

Figure 7.6: The behavioral description of the Diff
benchmark.
188

TESTABILITY ANALYSIS
In Table 7.3 the three metrics are combined into one testabil-
ity metric. We let α1=1, α2=1 and α3=1, which gives equal impor-
tance to the three metrics. For instance, the testability, T(x), for
variable x at is then 0.25+1+0.15=1.4.

After the analysis of the Diff benchmark we performed exper-
iments to see whether the prediction for the testability of the
variables was correct. The results are given in Table 7.4. In the
table x1 is ranked as the hardest to test and by scanning it we
get the best fault coverage improvement, from 16.49% (no scan)
to 97.61%. On the other hand, register y, is not considered to be
difficult to test, so scanning it will not improve the design’s test-
ability very much; we get only 16.15% fault coverage as a result.
We actually get a reduction of the fault coverage when we scan
variable y or y1 compared with no scan. This is due to the fact
that variables y and y1 are easily tested without scan logic and
the introduction of scan logic for these variables increases the
complexity of the design, which leads to a small decrease in fault
coverage.

The comparison between analysis at behavioral and gate level
was performed as follows. First we performed a testability anal-
ysis on the behavioral VHDL to find hard-to-test variables and
rank them. The variables which are hardest to test are scanned.
Secondly, we let the Mentor Graphics gate-level DFT-tool select
the same number of flip-flops as was selected by our behavioral
analysis technique. The results are shown in Table 7.5 where
the fault coverage is almost the same for all benchmarks except
for the Diff benchmark where the behavioral analysis outper-
formed the gate-level analysis.

The behavioral testability analysis determined the number of
flip-flops to scan. However, the gate-level tool has the advantage
of selecting individual flip-flops from any register. The main
advantage of the behavioral testability analysis is that it takes
much less time to perform the testability analysis task, and
therefore speeds up the design process, as shown in Table 7.5.
189

CHAPTER 7
Line Statement
Reachability

Line
Operation
Testability

Relative
Variable
Range

1 1 1 x:1

2 1 1 y:1

3 1 1 u:1

4 0.25 1 x:0.15

5 0.25 0.87 x:0.15

x1:0.15

6 0.25 0 y:1

u:1

u1:1

x:0.15

7 0.25 0.72 y:1

y1:1

u:1

8 0.25 1 x:0.15

x1:0.15

9 0.25 1 y:1

y1:1

10 0.25 1 u:1

u1:1

11 0.25 1

12 1 1 x:0.85

13 1 1 y:1

14 1 1 u:1

Table 7.2: The variable range, operation testability and
statement reachability for the Diff benchmark.
190

TESTABILITY ANALYSIS
Line

Testability

x y u x1 y1 u1 state
var.

1 3 2.07

2 3 2.07

3 3 2.07

4 1.4 2.07

5 1.21 1.21 1.13

6 0.40 1.25 1.25 1.25 0.32

7 1.93 1.93 1.93 1.00

8 1.40 1.40 1.32

9 2.25 2.25 1.32

10 2.25 2.25 1.32

11 1.32

12 2.85 2.07

13 3 2.07

14 3 2.07

T(v) 1.71 2.29 1.91 1.30 2.09 1.75 1.57

Table 7.3: The variable range, operation testability and
statement reachability combined into one test hardness metric

for the Diff benchmark.
191

CHAPTER 7
Scanned
variable Testability Fault

coverage (%)

x1 1.30 97.61

state register 1.57 97.28

x 1.71 97.69

u1 1.75 91.78

u 1.91 92.33

y1 2.09 15.61

y 2.29 16.15

no scan not appl. 16.44

Table 7.4: Experimental results for the Diff benchmark.

D
es

ig
n

F
li

p
-fl

op
s

S
ca

n
n

ed
 fl

ip
-fl

op
s Fault coverage(%) CPU(sec)

Behavioral
level

analysis

Gate
level

analysis

Behavioral
level

analysis

Gate
level

analysis

Diff 100 16 97.3 19.7 2.3 18.8

Sqrt 86 70 99.0 99.0 5.0 19.4

Mag 52 36 95.9 94.9 2.1 5.2

Dct 164 4 98.8 99.1 2.3 7.53

Tseng 213 5 96.3 93.9 2.3 15.1

Table 7.5: Fault coverage comparison of testability analysis at
the behavioral and the gate level.
192

TESTABILITY ANALYSIS
7.6 Conclusions
In this chapter we have proposed a behavioral testability analy-
sis technique for early prediction of testability by analyzing the
behavioral VHDL specification. The technique is based on anal-
ysis of variable range, operation testability and statement
reachability. The testability for the design is predicted at a low
computational cost, since the analysis is performed on the
behavioral specification which is much less complex then its
gate-level implementation.

In experiments we have shown that the behavioral testability
analysis technique can predict the hard-to-test parts accurately
and efficiently and that the testability analysis results can be
used to guide the selection of partial scan registers. The testabil-
ity metrics also provide an indication of the test features of the
final design at a very early design stage. This information can be
used by the designer to select an appropriate test strategy and to
make an efficient test plan for the final design.
193

CHAPTER 7
194

Chapter 8
Testability Improvement

Transformations

In this chapter we define a behavioral level testability improve-
ment transformation technique for modifications applicable
directly in the behavioral VHDL specification. The transforma-
tions do not impose any restrictions on the high-level synthesis
process and we present an application where our behavioral
testability metrics are used to guide the testability improvement
transformations. Experimental results show the efficiency of our
approach.

8.1 Basic Transformations
In this section we will define a set of basic transformations
which are applicable directly on the behavioral VHDL specifica-
tion in order to improve its testability when implemented.

CHAPTER 8
8.1.1 READ-INSERTION

The ability to control the value of a variable in the behavioral
specification can be improved by the use of a READ-insertion
transformation. The idea is illustrated in Figure 8.1 where the
content of variable y is hard to control. In Figure 8.1(b) test, an
extra primary input, is added to determine whether the design
is in normal mode or test mode. In test mode the content of var-
iable y is easily controlled. PI is a primary input which can be an
existing one or an extra one added only for test purposes. The
penalty introduced by adding an extra primary input only for
test is usually too high. Here, we assume that an existing pri-
mary input can be used.

8.1.2 WRITE-INSERTION

The WRITE-insertion transformation improves the ability to
observe the contents of a variable. The idea is illustrated in
Figure 8.2. In Figure 8.2(a) variable x is hard to observe and by
applying WRITE-insertion we improve its observability as
shown in Figure 8.2(b, c). Here we distinguish two types of
WRITE-insertions. The first type writes a value direct on a pri-
mary output dedicated for test, Figure 8.2(b). In this case, we do

:
:

x:=y+5;
:
:

Figure 8.1: Example of READ-insertion.

:
:

IF test THEN
y:=PI;

END IF;
x:=y+5;

:

(a) before (b) after
transformation transformation
196

TESTABILITY IMPROVEMENT TRANSFORMATIONS
not have to check whether the output is produced during test
mode or normal mode. However, if we use WRITE-insertion and
use an existing primary output for observation, we have to add
an extra pin to check whether we are in test mode or normal
mode, which is illustrated in Figure 8.2(c).

Again, the cost of extra primary outputs which will only be
used for test is usually unacceptable. Therefore we usually
assume the case where an existing primary output is used.

8.1.3 BOOLEAN-INSERTION

When test point insertion for improving the controllability was
introduced, it was defined to be applicable on any wire in a gate-
level design by adding an extra AND-gate or an extra OR-gate.
For higher level design specifications it would be possible to use
the same strategy. However, improving the 1-controllability for
one 16 bit register would require 16 OR-gates and 16 extra pri-
mary inputs. The introduced over-head penalty, the extra pri-
mary inputs, is usually too high. However, for certain structures
in the behavioral specification, such as loops and branches,
which are known to cause major test problems, the test point
insertion, as it was originally defined, can be used.

Below we define three types of BOOLEAN-insertions: OR-
insertion, AND-insertion and AND/OR-insertion. They are used

:
:

x:=y+5;
:
:

Figure 8.2: Example of WRITE-insertion.

:
:

x:=y+5;
newPO:=x;

:

(a) before

:
:

x:=y+5;
IF test THEN

PO:=x;
END IF;

:

(b) after (c) after
transformation transformation transformation
197

CHAPTER 8
on the following VHDL constructs: IF, WHILE, FOR and CASE
statements.

We use the example in Figure 8.3 to illustrate the use of the
BOOLEAN-insertion technique. In Figure 8.3(a) there is a loop
construct using the WHILE statement. To improve the ability to
terminate the loop we use the AND-insertion, which adds an
extra primary input pin called test and an AND-gate, on the
WHILE condition, Figure 8.3(b). The result is that by setting the
added test pin to false, we can determine when to exit the loop.
The concept of OR-insertion is similar to the AND-insertion.

The OR-insertion and the AND-insertion require knowledge
about which outcome (true or false) of a condition is hard to
achieve. For instance in Figure 8.3(a) we have at the WHILE
statement a condition c (z<10) and in Figure 8.3(b) we use AND-
insertion with an extra primary input test to form the new con-
dition c’ which is: c and t. By using the AND-insertion we
increase the ability to force the condition c’ to false (c’ will be
false if t is false) which improves the controllability greatly if it
is hard to set condition c to false.

In the truth table for the OR-insertion and AND-insertion we
note that for OR-insertion the value TRUE (T) has a higher
probability of occurance than the value FALSE (F) and vice
versa when AND-insertion is used. We note that with the test

:
:

while z<10 loop
z:=z+1;

end loop;
:
:

Figure 8.3: Illustration of the use of AND-insertion.

:
:

while z<10 and test loop
z:=z+1;

end loop
:
:

(b) after(a) before
transformation transformation
198

TESTABILITY IMPROVEMENT TRANSFORMATIONS
point we can easily control the outcome of the condition. In the
OR-insertion case, a TRUE value can easily be obtained, and in
the AND-insertion case, a FALSE value can easily be obtained.

By using AND/OR-insertion as shown in Figure 8.4 (b) we
achieve full control of the outcome of condition c. When in test
mode, test is true, and we can set the condition to TRUE or
FALSE.

The difference between this insertion and READ-insertion is
that the former focuses on the condition while the latter focuses
on the content of a specific variable.

8.1.4 REACH-INSERTION

As discussed earlier, some statements in the behavioral VHDL
specification are harder to reach compared to other statements
due to the control flow. They tend to form hard-to-test parts. The
REACH-insertion transformation is used to make the hard-to-
reach statements easier to reach when the design is in the test
mode.

In Figure 8.5 we illustrate the REACH-Insertion on a small
VHDL example and a corresponding control-data-flow graph. By
adding an extra primary input pin to determine whether the
design is in normal mode or test mode, the hard-to-reach state-

Figure 8.4: Example of AND/OR-insertion.

:
if test then

c := PI;
end if;
while c loop

z:=z+1;
end loop;

:

:
:

while c loop
z:=z+1;

end loop;
:
:

(a) before
transformation

(b) after
transformation
199

CHAPTER 8
ments can be easily reached in the test mode. In the example,
Figure 8.5, the statement y:=x+4 can, in the test mode, be
reached without having to traverse the loop structure first.

8.2 Cost Function for DFT Selection
When a hard-to-test part has been identified, its testability can
be improved by applying some DFT technique. Usually, there
exist several DFT techniques which can be applied and it is up to
the designer to select an appropriate technique for a certain
hard-to-test part.

Traditionally the design space has been simplified to a two-
dimensional space over area and performance, which is illus-
trated in Figure 8.6(a). If the design is optimized towards small
delay (improved performance), it usually means that the

:
:

if not test then
while x<10 loop

x:=x+1;
end loop;

end if;
y:=x+4

:
:

Figure 8.5: Example of REACH-insertion.

test?

true

true
x<10?

x:= x+1;

false

false

y:=x+4;
200

TESTABILITY IMPROVEMENT TRANSFORMATIONS
required area is increased and on the other hand, if the area is
minimized, it usually means reduced performance of the design.
Today, the design space is multi-dimensional, consisting not only
of traditional costs such as area and performance but also costs
such as power consumption and testability.

Our aim is to achieve a testable design at a low degradation
which is illustrated in Figure 8.6(b) where we have kept the two-
dimensional view. We combine all degradation into one compo-
nent on one axis and the testability on the other. The problem is
to find a trade-off between testability and degradation.

An advantage of the general cost function T is that it makes
the improvement and degradation a two-dimensional problem.
The degradation using a transformation could be a combination
based on penalty introduced during normal mode and test mode.
During normal mode the area, power consumption and perform-
ance degradation may be changed and during test mode the
power consumption, test generation and test application time
may be changed due to the transformation.

delay(1/performance)

area

1/degradation

testability

Figure 8.6: Illustration of the design space.

(a) (b)
201

CHAPTER 8
8.3 Application of the Testability Improvement
Transformations

In this section we will show how the testability improvement
transformations can be used to improve the testability of a
behavioral VHDL specification.

8.3.1 SELECTION BASED ON LOOP BREAKING

As discussed earlier, loops in a design are known to cause major
test problems and several approaches have been proposed where
all loops, except self-loops are broken [Che90], [Chi91], [Lee90].
A design synthesized from a behavioral specification may con-
tain different types of loops. Some of the loops can not be traced
in the behavioral VHDL specification. For instance, a loop intro-
duced due to hardware sharing is not predictable in the behavio-
ral specification.

However, some loops may be identified straight from the
behavioral VHDL specification. For instance, statements such
as WHILE and FOR will form control loops and feed-back loops
and a statement such as A:=A+B will also form a loop. By an
analysis of the behavioral VHDL specification it is possible to
identify and break these loops in order to reduce the test prob-
lem.

The loop-breaking approach is simple and straightforward.
However, for large designs where the number of loops may be
large it might not be feasible to break all loops. In this case a
method must be used to select a subset of the loops.

8.3.2 SELECTION BASED ON TESTABILITY METRICS

In Chapter 7 we used the scan technique to show the correlation
between our metrics and fault coverage. The scan technique
improves both the controllability and the observability by mak-
ing it possible to store any value directly in the register and to
observe any value of the register directly on a primary output.
The READ-insertion improves the controllability of a variable
202

TESTABILITY IMPROVEMENT TRANSFORMATIONS
since any value can easily be assigned to the variable from a pri-
mary input and the WRITE-insertion improves the observability
of a variable since any contents of the variable can easily be pro-
duced on a primary output.

If we assume that a READ-insertion and a WRITE-insertion
on a variable correspond to scanning the corresponding register,
we can use the same approach as in Chapter 7 with minor mod-
ifications to fit READ and WRITE-insertion.

As in the case of partial scan selection we need metrics for var-
iables which reflect all testability features of the variables. We
use the same Testability metrics, T(v), as defined in Section 7.3.

The main drawback with this approach is that we do not use
the BOOLEAN-insertion, which has a low penalty. The testabil-
ity flow for the approach without BOOLEAN-insertion is shown
in Figure 8.7(a) and in Figure 8.7(b) we have extended the test-
ability flow to include BOOLEAN-insertion. Since the penalty
for using a BOOLEAN-insertion is low and it is targeted
towards a well-known problem, we give high priority to selecting
it. In our approach we select BOOLEAN-insertion for a variable
if it is among the k hardest variables according to a test metric,
where k is defined by the designer. The BOOLEAN-insertion is
targeted towards branches detectable in the behavioral VHDL
specification and these branches are formed by the statements
IF, WHILE, FOR and CASE.

The BOOLEAN-insertion affects the ability to control the con-
dition and for a given condition we have to select which
BOOLEAN-insertion to use. The OR-insertion improves the
ability to set the condition to true, while using the AND-inser-
tion it is easier to set the condition to false. The AND/OR-inser-
tion makes it easier to set the condition to any value, true or
false.

The BOOLEAN-insertions affect the statement reachability
and the variable range. To guide the selection of BOOLEAN-
insertion, we define a relative improvement metric.
203

CHAPTER 8
Note, that the testability selection is based on selecting varia-
bles and not specific lines in the behavioral VHDL specification.
Furthermore, there is no guidance on which lines in the specifi-
cation a transformation should be applied. The reason is
explained with an example. Assume a READ-insertion on a var-
iable which after synthesis corresponds register r, see
Figure 8.8. The added test controls the added multiplexer and
can be incooperated in the controller. However, we assume that
the test control is added as an extra primary input and doing so
makes it possible to set test at any time when executing. The
result is that the selection of where (which line) in the behavio-

rank hard-to-test parts

measure testability

apply READ-insertion
and WRITE-insertion

rank hard-to-test parts

measure testability

apply READ-insertion
and WRITE-insertion

is BOOLEAN-insertion
applicable on any of
the k first variables?

(a)

(b)

select and apply

Figure 8.7: Extension of the transformation selection
to include BOOLEAN-insertion.

yes

no
boolean-insertion
204

TESTABILITY IMPROVEMENT TRANSFORMATIONS
ral specification the transformation is inserted is not important.
What is important is the selection of which variables to modify.

The set of lines affected by a condition c is captured cst(c) and
csf(c), defined by Definition 7.7 in Chapter 7.

Definition 8.1: Let the Condition Testability, CT(c), for a con-
dition c be defined as:

where n is the number of times a variable v occurs at the lines in
the condition scope and i is 0 when no insertion is used, 1 for
AND-insertion, 2 for OR-insertion and 3 for AND/OR-insertion.

The CT is not calculated for variables not occurring, i.e. n>0 in
the definition above.

Definition 8.2: Let the Relative Condition Testability, RTCi(c),
for a condition c be defined as:

where i is 1 for AND-insertion, 2 for OR-insertion and 3 for
AND/OR-insertion.

In Figure 8.9(a) a sample of VHDL code is shown as well as
the variable range for the variables. In Figure 8.9(b) we have

Figure 8.8: The behavioral testability transformations
at register-transfer level.

test

register r
register r

mux

CTi c() 1
n
--- RVR l v,() SR l v,()+()×

l cst c() csf c()∪∈
∑=

RCTi c() CTi c() CT0 c()–=
205

CHAPTER 8
used the OR-insertion and we see how the variable range for the
variables is changed, in Figure 8.9(c) we use AND-insertion and
in Figure 8.9(c) AND/OR-insertion.

In the above approach we used READ-insertion in combina-
tion with WRITE-insertion. For each variable we want to
improve we apply both a READ-insertion and a WRITE-inser-
tion. These transformations could be used independently on
each other. For instance, the READ-insertion could be applied on

:
A:0..31, B:10..20
WHILE A<10 LOOP

B:=B+A;
A:0..9, B:10..29

:
END LOOP;
A:10..31, B:10..29

:

:
A:0..31, B:10..20
WHILE A<10 OR T LOOP

B:=B+A;
A:0.. 31 , B:10.. 31

:
END LOOP;
A:10..31, B:10.. 31

:

:
A:0..31, B:10..20
WHILE A<10 AND T LOOP

B:=B+A;
A:0..9, B:10..29

:
END LOOP;
A: 0..31, B:10.. 30

:

Figure 8.9: Illustration of how the variable range
changes when BOOLEAN-insertion is used.

(a) original (b) OR-insertion

(c) AND-insertion

:
A:0..31, B:10..20
IF T THEN C:=PI;
WHILE C LOOP

B:=B+A;
A:0.. 31 , B:10.. 31

:
END LOOP;
A: 0..31, B:10.. 31

:

(d) AND/OR-insertion
206

TESTABILITY IMPROVEMENT TRANSFORMATIONS
a variable without using the WRITE-insertion and vice versa.
We extend the testability flow to distinguish between READ-
insertion and WRITE-insertion, Figure 8.10.

Until now we have used the behavioral testability metric as it
was defined when partial scan selection was used. We will
extend it to make it possible to select either READ-insertion or
WRITE-insertion for a variable. We first use the testability met-

rank hard-to-test parts

measure testability

apply WRITE-insertion

is BOOLEAN-insertion
applicable on any of

select and apply

Figure 8.10: Extension of the transformation selection to
distinguish between READ-insertion or WRITE-insertion.

yes

no

apply READ-insertion

select READ or

read

write

the k first variables?

BOOLEAN-insertion

WRITE-insertion?
207

CHAPTER 8
ric as it was defined for partial scan to rank the variables and we
define then a strategy to determine whether we should apply a
READ-insertion or a WRITE-insertion. We note that, the READ-
insertion and the WRITE-insertion are applicable on lines with
assignments and arithmetic operations.

Definition 8.3: If variable v is the left-hand variable in a state-
ment consisting of an assignment and arithmetic operations, it
affects the observability, or otherwise the controllability.

If, for instance, we want to improve the observability of a state-
ment a:=b+c, the use of a WRITE-insertion which improves the
observability is best placed on the output of the adder, i.e. on var-
iable a. On the other hand, to increase the controllability of the
adder, a read statement is best placed on either variable b or c.

For the statement a:=b+c Definition 8.3 will let the testability
metric for variable a affect the observability for variable a, while
for variable b and c the metric will affect the controllability part.

8.4 Experimental Results
In this section we present our experimental results on the testa-
bility transformations and we use the experimental platform
described in Section 7.5. We have used the Counter example
(Cnt) and the Differential Equation benchmark (Diff) [Pau89].
The behavioral specification for the Diff benchmark is given in
behavioral VHDL, in Figure 8.11 and the behavioral specifica-
tion for the Counter is shown in Figure 8.12.

In our first experiment we want to test whether partial scan
on a register corresponds to applying a READ and a WRITE-
insertion on the corresponding variable. The results of the
experiments for Diff are shown in Table 8.1. We have the varia-
bles/register ordered according to our testability metrics. We see
that variable x1 is ranked as the hardest to test variable and
when partial scan is applied on it, we get a fault coverage of
97.61%. If instead we apply a READ and WRITE-insertion on
208

TESTABILITY IMPROVEMENT TRANSFORMATIONS
ENTITY diff IS
PORT(x_in : IN INTEGER RANGE 0 TO 255;

y_in : IN INTEGER RANGE 0 TO 255;
u_in : IN INTEGER RANGE 0 TO 255;
x_out : OUT INTEGER RANGE 0 TO 255;
y_out : OUT INTEGER RANGE 0 TO 255;
u_out : OUT INTEGER RANGE 0 TO 255);

END;

ARCHITECTURE behavior OF diff IS
BEGIN

PROCESS
CONST

a = 38;
dx = 1;

VARIABLE
x, y, u : INTEGER RANGE 0 TO 255;
x1, y1, u1 : INTEGER RANGE 0 TO 255;

BEGIN Line
x:=x_in; (1)
y:=y_in; (2)
u:=u_in; (3)
WHILE x<a LOOP (4)

x1:=x+dx; (5)
u1:=u-(3*x)*(u*dx)-3*y*dx; (6)
y1:=y+u*dx; (7)
x:=x1; (8)
y:=y1; (9)
u:=u1; (10)

END LOOP; (11)
xout<=x; (12)
yout<=y; (13)
uout<=u; (14)

END PROCESS;
END behavior;

Figure 8.11: The behavioral specification of the Diff
benchmark.
209

CHAPTER 8
Selected
register Testability

Fault coverage(%)

Scan READ/WRITE-
insertion

x1 1.30 97.6% 96.3%

x 1.71 97.7% 97.3%

u1 1.75 91.8% 96.1%

u 1.91 92.3% 94.6%

y1 2.09 15.6% 17.5%

y 2.29 16.2% 16.8%

Table 8.1: Experiments to show the correlation between our
testability metrics, partial scan and READ/WRITE-insertion.

ENTITY counter IS
PORT(x : IN INTEGER;

y : OUT INTEGER);
END;
ARCHITECTURE behave OF counter IS
BEGIN

VARIABLE z : INTEGER;
PROCESS BEGIN Line

z:=x; (1)
WHILE z>0 LOOP (2)

z:=z-1; (3)
END LOOP; (4)
y<=z; (5)

END PROCESS;
END;

Figure 8.12: The behavioral specification of the
Counter benchmark.
210

TESTABILITY IMPROVEMENT TRANSFORMATIONS
variable x1 (which is the corresponding variable in the behavio-
ral specification), we get a fault coverage of 96.3%.

When partial scan is used on variable y1 we only get 15.61% in
fault coverage. Applying a READ and WRITE-insertion on the
corresponding variable in the behavioral specification provides a
fault coverage of 16.8%.

For all registers/variables we see that we have a small differ-
ence in fault coverage when we compare partial scan with apply-
ing a READ-insertion and a WRITE-insertion. The largest
difference is found on register/variable u1. When it is scanned
we achieve a fault coverage of 91.78% but when READ/WRITE-
insertion is used, the fault coverage is 96.1%. However, even in
this case, the difference is only 4.7%. In the next experiment we
want to test our strategy for selecting READ-insertion or
WRITE-insertion for a variable. The testability analysis of the
design is performed and the variables are ranked according to
their testability. For each ranked variable we will use our strat-
egy to determine if READ-insertion or WRITE-insertion is
appropriate. On lines in the behavioral VHDL specification
where READ-insertion and WRITE-insertion can be considered
we compare the ratio c/o. Lines where we have conditions, IF,
FOR, WHILE and CASE, are not considered; nor a line directly
connected to a primary input or primary output. A high value
indicates that a WRITE-insertion is preferable, while a low
value indicates that a READ-insertion is to be preferred. In
Table 8.2 the testability metric for the Diff benchmark is divided
into a controllability part and an observability part and in
Table 8.3 the experimental results from the transformation
selection are shown.

We have the ranked variables according to our testability met-
ric. For instance, variable x1 is ranked as the hardest to test var-
iable with testability of 1.30. The c/o ratio is 0.87 which,
compared to the c/o ratio for all other variables, is high. This
indicates that we should use a READ-insertion. By using a
READ-insertion on variable x1 we achieve a fault coverage of
211

CHAPTER 8
94.5%. We performed experiments where we applied the non-
recommended insertion. For variable x1 we performed experi-
ments where the WRITE-insertion was used and the achieved
fault coverage was only 15.7%.

L
in

e

Testability

x y u x1 y1 u1

c o c o c o c o c o c o

1

2

3

4

5 1.21 1.21

6 0.40 1.25 1.25 1.25

7 1.93 1.93 1.93

8 1.40 1.40

9 2.25 2.25

10 2.25 2.25

11

12

13

14

Σ 1.61 1.40 3.18 2.25 4.43 2.25 1.40 1.21 2.25 1.93 2.25 1.25

c/o 0.87 0.71 0.51 0.86 0.86 0.56

Table 8.2: The testability metric divided into a
controllability(c) part and an observability(o) part for each line

(l) in the Diff benchmark.
212

TESTABILITY IMPROVEMENT TRANSFORMATIONS
In the experiments above we have only used the READ-inser-
tion and the WRITE-insertion; the BOOLEAN-insertion tech-
nique was not used. However, since the cost of BOOLEAN-
insertion is low and it is targeted towards known test problems
it must also be considered.

The experiment using the approach when BOOLEAN-inser-
tion, READ-insertion and WRITE-insertion are considered is as
follows. The variables are ranked according to their testability
using our testability metrics. If BOOLEAN-insertion is applica-
ble on any of the k hardest variables, it is selected for
BOOLEAN-insertion. If not, we select READ-insertion or
WRITE-insertion for the hardest to test variable. The size of the
set k is determined by the designer. Here we let k be 50% of the
variables, which for the Diff-benchmark is 3.

Variable x1 is ranked as the hardest variable to test and the c/o
ratio indicates that a READ-insertion should be used. By using
READ-insertion on variable x1, we achieve a fault coverage of
94.5%, while when we use a WRITE-insertion we only achieve a

V
ar

ia
b

le

T
es

ta
b

il
it

y
c/o Selected

transform f.c(%)
Not

recommended
transform

f.c(%)

x1 1.30 0.87 read 94.5 write 15.7

x 1.71 0.86 read 94.5 write 15.7

u1 1.75 0.56 write 95.2 read 14.1

u 1.91 0.51 write 94.7 read 16.9

y1 2.09 0.86 read 12.7 write 70.7

y 2.29 0.71 read 13.1 write 16.5

Table 8.3: Experiments to show the correlation between our
strategy to selecting READ or WRITE-insertion and the fault

coverage.
213

CHAPTER 8
fault coverage of 15.7%. However, on variable y1 our heuristic
indicates that a READ-insertion should be used. But using the
READ-insertion provides a fault coverage of 12.7%, while using
a WRITE-insertion we achieve a fault coverage of 70.7%. This
indicates that our heuristic makes a correct transformation
selection regarding variable x1 but a mistake for variable y1.
However, since candidates for transformation are selected based
on their ranked test difficulties, meaning that a hard-to-test var-
iable is a better candidate than a variable ranked at lower test
hardness. In the example, this means that x1 will be selected
since it is the hardest-to-test variable and variable y1which is
ranked low is in the first place is not a good candidate for trans-
formation selection.

In Table 8.4 the variables in the Diff benchmark are ranked
according to their testability. We test whether any of the k (=3)
first variables is a candidate for BOOLEAN-insertion starting
by checking the hardest to test variable. Variable x1 is not, but x
is. We stop the search and select a BOOLEAN-insertion on x.

We also performed experiments on the counter and the results
are presented in Table 8.5, where we see that in both cases the
BOOLEAN-insertion is used and that a high fault coverage is
achieved at a very low area penalty.

8.5 Variable Dependency
Much research has focused on testability analysis where the aim
is to determine the hard-to-test parts in a design. When the
hard-to-test parts are ranked, only one part is selected for testa-
bility improvement. The drawback with this strategy is that the
heuristics for selecting hard-to-test parts select only one part in
each design iteration. Therefore after each analysis, only one
hard-to-test part is improved and then the design is re-analyzed
and its testability is improved again if necessary. A different way
to keep the DFT overhead small and reduce the number of
214

TESTABILITY IMPROVEMENT TRANSFORMATIONS
design iterations is to group the hard-to-test parts according to
how they depend on each other. In each iteration, hard-to-test
parts from different groups can then be selected and improved
without affecting each other. The number of design iterations
can be reduced if more than one hard-to-test part is selected and
improved in each iteration. The aim of variable dependency
analysis is to group the variables based on their dependency.

The testing problem is mainly a problem of justifying values
from a primary input to a variable and then propagating values
from a variable to a primary output. The controllable paths for a

Variable Testability
BOOLEAN-
insertion
possible?

BOOLEAN-
insertion

and or and/or

x1 1.30 no - - -

x 1.71 yes 95.7 96.8 96.8

u1 1.75 no - - -

u 1.91 no - - -

y1 2.09 no - - -

y 2.29 no - - -

Table 8.4: Experiments to show the correlation between our
strategy to select testability insertion and the fault coverage.

Design Transformation

Fault coverage
(%)

Area overhead
(mm2)

No dft Dft No dft Dft

Cnt 1 OR-insertion 39.7 96.3 0.5525 0.5539

Diff 1 OR-insertion 13.5 96.8 7.3596 7.3674

Table 8.5: Experimental results for selection of testability
transformation.
215

CHAPTER 8
variable v are used to justify a value for variable v and the
observable paths are used to propagate the value of the variable
to a primary output. Any path from a primary input to a varia-
ble can be used for the justification process, and any path from a
variable to a primary output can be used for the propagation
process. However, we assume that the justification process will
mainly use the shortest path from some primary input to the
variable and the propagating process the shortest path from the
variable to a primary output.

Let G(V,E) be a directed graph where a vertex v in V corre-
sponds to a variable in the behavioral specification (the state
variable is not considered).

Definition 8.4: A start vertex is a vertex which gets its value
directly from a primary input and an end vertex is either a vari-
able which is connected to a primary output or a variable which
is not used later.

A variable which is not used later comes from statements such
as FOR statements where an index variable is used to keep
track of the number of loops. Such a variable might not be used
later in the design.

Definition 8.5: For a statement of the form vi = vj op vk, where
vi, vj and vk are variables and op is an operation, there exists an
edge (vj, vi) in E from vertex vj to vi and an edge (vk, vi) in E from
vertex vk to vi.

Definition 8.6: A path, Pi, is a sequence of edges {(vo, v1), (v1,
v2),..., (vn-1, vn)} where v0 is a start vertex and vn is an end vertex.

Definition 8.7: The Shortest Controllable Path, SCP(v), for a
variable v, is the shortest path from a start vertex to variable v,
and the Shortest Observable Paths, SOP(v), is the shortest path
from variable v to a primary output.

For instance in Figure 8.13, the shortest controllable path for
variable C is the path PI->A->B->C, SCP(C)={A,B}, and the
shortest observable path is the path C->E->PO, SOP(C)={E}.
216

TESTABILITY IMPROVEMENT TRANSFORMATIONS
The SCP and SOP information will be used to group variables
together in such a way that only one variable will be selected for
testability improvement from a group during a design iteration.

An algorithm for grouping variables is given in pseudo-code in
Figure 8.14. First the testabilities for all variables are ranged so
that T1 is the hardest to test and TV is the easiest to test (V is
the total number of variables). The hardest variable, T1, is
always selected for DFT improvement. Then the algorithm
checks that variables that use parts of the same shortest observ-
able path and parts of the same shortest controllable path are
grouped together. If a variable does not use a previously used
path, it is also selected for DFT improvement. The iteration is
terminated when all variables are checked.

To illustrate the algorithm we use the example in Figure 8.13.
First the variables are sorted and ranked according to their test-
ability. Let us say we have the ranking: C, F, B, D, G, E, A. Var-
iable C is selected for DFT improvement since it is the hardest-
to-test variable. The algorithm checks whether the second hard-
est variable, variable F, can be selected for DFT improvement.

If variable F does not use any of the paths used by C, it can be
selected for DFT improvement. For variable C we have
SCP(C)={A,B} and SOP(C)={E} and for variable F we have

Figure 8.13: Example of Variable Dependency.

PI
PI

A

C

F

G

D
B

E

PO PO
217

CHAPTER 8
SCP(F)={D} and SOP(F)={G}. Variable F can be selected since
the intersections between SCP(C) and SCP(F) and SOP(C) and
SOP(F) respectively are empty.

In the next iteration the algorithm checks whether variable B
uses any of the paths previously used. In our example we com-
pare the paths used by variable C and F with the paths used by
variable B. The algorithm terminates when it has checked all
variables.

8.6 Conclusions
In this chapter we have proposed several testability improve-
ment transformation techniques which improve the testability
of a behavioral VHDL specification without imposing any
restrictions on high-level synthesis. We have also proposed a
general technique to select an appropriate DFT technique given
a hard-to-test part. We have shown the efficiency of our
approach by experiments.

In this chapter we have also proposed a variable grouping
scheme, based on the dependency of variables, which can be
used to reduce the number of design iterations since several var-
iables can be selected and improved in each iteration.

Sort the testabilities T(v) so that
T1 is the hardest and TV is the
easiest to test.
Select T1 for DFT improvement.
for i = 2 to | V|

Diff = ∅;
for j = 1 to i - 1

Diff=Diff+SOP(vi) ∩SOP(vj)+
SCP(vi) ∩SCP(vj);

if Diff = ∅ then
select Ti for DFT improvement

Figure 8.14: Algorithm for grouping variables.
218

Chapter 9
Testability Analysis and

Enhancement of the
Controller

This chapter presents a testability analysis and improvement
technique for the controller of an RT level design. It detects
hard-to-reach states by analyzing both the data path and the
controller of a design. The controller is modified using register
initialization, branch control, and loop termination methods to
enhance its state reachability. This technique complements the
data path scan method and can be used to avoid scanning regis-
ters involved in the critical paths. Experimental results show
the improvement of fault coverage with a very low area over-
head.

9.1 Introduction
As discussed before, many DFT techniques require large area
overhead and may degrade the performance of a circuit. Several
approaches have been proposed to reduce these drawbacks by

CHAPTER 9
using techniques which have low area and performance impact,
such as partial scan design [Che94], [Dey93], [Gu94], [Le93b],
[Tho94].

Recently Dey et al. proposed a DFT technique to improve the
controller testability for designs which consists of a controller
and a data path [Dey95]. A technique has been developed to
identify the control signal conflicts due to control signal correla-
tion imposed by the controller specification. The controller is re-
designed in such a way that the identified implications are elim-
inated by adding extra control vectors.

A synthesis-for-testability approach that uses control points
at the conditional branches to improve testability was also pro-
posed by Hsu et al. [Hsu96a], [Hsu96b]. An analysis of the con-
trollability of branch conditions in the control-data flow graph
identifies hard-to-control loops. The controllability of the hard-
to-control loops is enhanced by inserting control points at the
exit conditions of these loops. Test statements are also added if
necessary to allow hard-to-control variables to be directly con-
trollable from existing primary inputs.

In this chapter, we propose a general testability analysis and
enhancement technique for the controller of a design. It meas-
ures the combinational and sequential hardness to reach any
state in the controller. The register initialization, branch control
and loop termination methods are developed to improve the
state reachability of hard-to-reach states.

9.2 Preliminaries
In this section, we first introduce our design representation and
testability analysis technique for data path. Our design environ-
ment allows designers to specify their designs in behavioral
VHDL. The specification is translated into an internal represen-
tation, called ETPN [Pen94], which consists of two parts: a data
path and a controller. Figure 9.1 presents an example of a
220

TESTABILITY ANALYSIS AND ENHANCEMENT OF THE CONTROLLER
behavioral VHDL specification and the corresponding ETPN
representation. To simplify the example we assume that the
VHDL process is only executed once. The data path is a directed
graph with nodes and lines (arcs) where a node represents stor-
age or manipulation of data and a line connecting two nodes rep-
resents the flow of data. The controller is modelled as a timed
Petri net. The two parts are related through the states (Petri net
places) in the controller controlling the data transfers in the
data path, and the condition signals in the data path controlling
some transition(s) in the controller.

As an example, in Figure 9.1 state S4 in the controller is used
to control the data transfer from input port P1 to register Y in
the data path. When S4 holds a token [Pet81], this transfer will
take place. Condition nodes C1 and C1 in the data path control
the transitions from S3 to S6 and the transition from S3 to S4 in
the controller respectively. State S0 initially holds a token. The
token will be transferred to the consequent state(s) in the next
clock cycle. The execution will terminate when all tokens in the
controller are consumed. For example, in Figure 9.1, when the
token in state S1 is consumed, the execution will stop.

The testability analysis of the data path [Gu94] is defined by
the measurements of controllability and observability as dis-
cussed in Section 6.1.2. The testability analysis takes into
account the structure of a design, the depth from I/O ports and
the characteristics of the components used. It reflects the test
generation complexity and test application time for achieving
high fault coverage. Improving testability in the data path can
be made by transforming some registers with the worst testabil-
ity analysis measurements to scan registers [Gu94].
221

CHAPTER 9
Figure 9.1: A design example in VHDL and ETPN.

+

C1

X

S5

 S7

 S5 S3 S3

 S3

C1

 S6

 S3

C1

 S0

 S2 S7

 S3

 S6 S4

 S1 S5

C1

 P2

 >

 Y
S5

(b) controller (c) data path

“0” “0” P1

 “0”

S2 S4

(a) behavioral VHDL

ENTITY counter IS
PORT(P1 : IN INTEGER;

P2 : OUT INTEGER);
END;

ARCHITECTURE behave OF counter IS
BEGIN

PROCESS(P1)
VARIABLE X, Y : INTEGER;

BEGIN
X:=0; Y:=0;
WHILE NOT (Y>0) LOOP

Y:=P1;
X:=X+Y;

END LOOP;
P2<=X;

END PROCESS;
END;
222

TESTABILITY ANALYSIS AND ENHANCEMENT OF THE CONTROLLER
9.3 Controller Testability Analysis
The controller testability is measured in terms of the state
reachability for each state (Petri net place) of the controller. The
state reachability is defined by the difficulty of reaching the
state from an initial state. It consists of two measurements:
combinational state reachability (CSRi) and sequential state
reachability (SSRi), for a given state Si.

Initial State: The initial state, S0, as illustrated in
Figure 9.2, has the best state reachability:

(9.1)

(9.2)

CSR0 is assigned to 1 because the probability of reaching this
state is 1 and SSR0 is assigned to 0 because no clock cycles are
required to reach this state.

Simple Construct: A simple construct consists of one transi-
tion with a single input place (Si) and a single output place (Sj)
as illustrated in Figure 9.3. The state reachability will be calcu-
lated as:

(9.3)

(9.4)

The combinational state reachability for state Sj is the same
as that of state Si. The sequential state reachability of Sj is the
state reachability of Si plus one since one more clock cycle is
required to reach state Sj.

CSR0 1=

SSR0 0=

Figure 9.2: Initial state.

S0

CSRj CSRi=

SSRj SSRi 1+=
223

CHAPTER 9
Here we assume that each state will hold for one clock cycle
time. For advanced treatment of clock cycle time refer to
[Pen94].

OR-Construct: An OR-construct consists of a set of transi-
tions connected to a state such that a state can be reached by
any of the transitions in this set. For example, in Figure 9.4,
state Sk can be reached either by the transition between state Si
and state Sk or by the transition between state Sj and state Sk.
The state reachability is calculated based on the assumption
that we can always reach state Sk from a state with the best
state reachability. Therefore, we have:

(9.5)

(9.6)

where SSRL is the largest sequential state reachability in the
design, which is an estimation of the longest path from the ini-
tial state to the terminating state.

Si

Sj

Figure 9.3: Simple construct.

CSRk

CSRi if CSRi

SSRL
SSRi
--------------+ CSRj

SSRL
SSRj
--------------+>

CSRj otherwise.

=

SSRk

SSRi 1+ if CSRk CSRi=

SSRj 1+ if CSRk CSRj=

=

224

TESTABILITY ANALYSIS AND ENHANCEMENT OF THE CONTROLLER
Conditional Construct: In a conditional construct, a state
can be reached through a transition only if the condition
attached to the transition is true. In Figure 9.5, state Si can be
reached from state Sk only if condition C is true. Otherwise, C is
true and state Sj will be reached from state Sk. The state reach-
ability is calculated by considering the combinational controlla-
bility (CCc) and the sequential controllability (SCc) of the
condition node in the data path:

(9.7)

(9.8)

(9.9)

(9.10)

where CCc is the combinational controllability of the condition
attached on the state transition [Gu95b]. The SCc is the sequen-
tial controllability of the condition, i.e., the number of clock
cycles required to control the condition [Gu95b]. If the condition
is used to control the exit from a loop which has a very large rep-
etition count, we will have a large SCc which reflects the impli-
cation of this loop construct.

AND-Construct: An AND-construct consists of a transition
such that a state is reachable through the transition when all
input states to the transition are reached (hold a token). In

Si

Sk

Sj

Figure 9.4: OR-construct.

CSRi CSRk CCc×=

SSRi max SSRk SCc,{ } 1+=

CSRj CSRk CCc×=

SSRj max SSRk SCc,{ } 1+=
225

CHAPTER 9
Figure 9.6, Sk is reachable only when both state Si and state Sj
are reached. The state reachability of state Sk is calculated by:

(9.11)

(9.12)

Parallel Construct: In a parallel construct, a set of states
will be reached by firing a transition. Figure 9.7 shows a parallel
construct. The state reachability of states Si and Sj in the figure
is calculated by the same formula as in the simple construct.

9.4 State Reachability Analysis Algorithm
The state reachability analysis algorithm calculates the combi-
national state reachability and the sequential state reachability
for all states in a controller. It starts by assigning the state
reachability to all initial states and putting these states in a

Sk

Si

C C

Sj

Figure 9.5: Conditional construct.

CSRk CSRi CSRj×=

SSRk Max SSRi SSRj,{ } 1+=

Si Sj

Sk

Figure 9.6: AND-construct.
226

TESTABILITY ANALYSIS AND ENHANCEMENT OF THE CONTROLLER
FIFO queue, Q. A breadth-first search strategy is used during
the selection of states for calculation. In the next step, one state
S is taken out from Q. The construct type of the transition from
S to its consequent state(s), for example AND-construct, is
checked and the appropriate formulas are used for calculating
its CSR and SSR. This procedure is repeated until Q is empty.

A basic sketch of the algorithm is given in Figure 9.8. The cal-
culation of reachability measurements for states included in
loops is difficult. Their reachabilities depend not only on some
reachabilities already computed but also on reachabilities not
yet computed for the states involved in the loop. Our algorithm
deals with this problem by first assigning to each state the worst
reachability and then updating the reachability only when it is
better than the previously assigned value (step 7 in the algo-
rithm in Figure 9.8).

It must be noted that a loop consists of both conditional and
OR-constructs and formulas 9.5-9.10 are used to compute their
reachabilities. These computations involve calculation of con-
trollability factors for the conditions controlling the loop execu-
tion and thus our reachability calculation takes into account the
additional difficulty of controlling the loop exit. The controllabil-
ity factor calculation for conditions is carried out separately dur-
ing the data path testability analysis process [Gu95b].

Si Sj

Sk

Figure 9.7: Parallel construct.
227

CHAPTER 9
1. Assign all initial states (use formulas 9.1 and 9.2).
2. Put all initial states into queue Q.
3. Assign the rest of the states with the worst

CSR and SSR:
CSR := 0; SSR := SSRL;

4. If Q is empty, then go to 9; else assign the first
state in Q to Sprev, and remove it from Q.

5. Check the output transition(s) type from Sprev:

a) if it is a simple construct:
go to 6 (use formulas 9.3 and 9.4).
b) if it is an AND-construct:
check if all the other input state(s) have been calculated.
if “yes”, go to 6 (use formulas 9.11 and 9.12).
if “no”, then put Sprev to Q and go to 4.

c) if it is an OR-construct: go to 6 (use formulas 9.5 and 9.6).
d) if it is a conditional construct or parallel construct:
go to 6 (use formulas 9.7, 9.8, 9.9 and 9.10 or
formulas 9.1 and 9.2).
e) if it is a terminating transition (leading to an empty state):
go to 4.

6. Reach the consequent state(s) Scons and

calculate its CSR and SSR by the corresponding
formulas.

7. If the newly calculated CSR and SSR are better than
stored ones for Scons, replace the stored CSR and SSR

by the newly calculated ones and put Scons into Q.

8. Go to 4.
9. End.

Figure 9.8: State reachability analysis algorithm.
228

TESTABILITY ANALYSIS AND ENHANCEMENT OF THE CONTROLLER
The algorithm produces two reachability measurements for
every state Si, CSRi and SSRi. To evaluate the total state reach-
ability we combine these two measurements using the following
formula:

(9.13)

where SSRL is the largest SSR in the design and k is the ratio
between CSR and SSR given by designers. This formula is used
in selecting the difficult-to-reach states for improvement.

9.5 Controller Testability Enhancements
After analyzing and evaluating the state reachability for all
states in the controller, we can identify the hard-to-reach states.
Different techniques are then used to make these states easy to
reach. In the following, we will discuss several of these tech-
niques.

9.5.1 REGISTER INITIALIZATION

When a register in the data path is hard to initialize due to the
hard-to-reach state in the controller, the register initialization/
setting technique can be used to improve this situation.
Figure 9.9 illustrates the method of enhancing the controllabil-
ity of setting/initializing register Regj through register Regi.

This method finds an accessible point in the data path (either
a scan register or an input port, such as scan register Regi in the
figure) which has a short “distance” to the input of the register to
be initialized (such as register Regj in Figure 9.9) and a short
“distance” from the state controlling the accessible point to the
state controlling the register in the controller. The distance in
the data path is measured by the number of components
between the accessible point and the register. The distance in
the controller is measured by the number of transitions between

CSRi k
SSRL
SSRi
--------------×+
229

CHAPTER 9
the state controlling the accessible point and the state control-
ling the register.

In the controller, we improve the state reachability of setting/
initializing the register by introducing an extra conditional
transition from an initial state to the state controlling the acces-
sible point directly. The condition is controlled by a test signal,
T1. Thus, the transition can be fired when the T1 signal is true
and we can easily set/initialize a register through the closest
accessible point to the register. This method has another more
important feature, namely that the start execution point of a cir-
cuit can be controlled by transferring token(s) from the initial
state(s) directly to the state(s) where we want to start the execu-
tion and getting the input value(s) from the input port(s) and/or
scan register(s). This feature can significantly improve the effi-
ciency of test generation.

9.5.2 BRANCH CONTROL

The state reachability enhancement for a state which is reached
through a transition controlled by a condition is required when
the controllability of the condition is poor. We assume that the
controllability of condition C in Figure 9.9 is poor. To enhance
the state reachability of state Si, we modify condition C to C∨T2
and C to C∧T2, where T2 is a test signal. When T2 is true, the
transition controlled by the new condition C∨T2 will be fired, no
matter what value C has. If we only need to enhance the reach-

Figure 9.9: Initialize or set Regj through Regi.

Regi

 S0

 Si

T1
SI SO

Regj

Si
T1
230

TESTABILITY ANALYSIS AND ENHANCEMENT OF THE CONTROLLER
ability of state Si, i.e., state Sk and other previous states are not
required during test, we can use the same method as the control
enhancement for register setting/initialization to enhance the
reachability of state Si.

9.5.3 LOOP TERMINATION

Feedbacks usually take huge computing time in test generation.
The control of feedback termination can not only simplify test
generation and shorten test application, but more importantly it
can increase the fault coverage by making fault detection easier.
Assume a loop running from 10 down to 0. The register holding
the loop variable will contain 0 at the end of the loop. It will facil-
itate testing if we can get other values in the register at the end
of the loop. By adding a test point, we make other values possi-
ble. In the example we may terminate the loop at any value from
0 to 10. Thus, we will achieve higher fault coverage.

We assume that the controllability of condition C in Figure 9.9
is poor. To enhance the state reachability of state Si, we modify
condition C to C∨T3 and C to C∧T3, where T3 is a test signal.
When T3 is true, the transition controlled by the new condition
C∨T3 will be fired, no matter what value C has.

Figure 9.10: Select branch by T2.

 Sk

 Sj Si

C ∨T2 C∧ T2
231

CHAPTER 9
9.6 Experimental Results
We used the Mentor Graphics synthesis and test generation
tools as an experimental platform with the default setting used
in its test generation process.

We first performed experiments on a simple counter, which
consists of a controller and a data path, to show the importance
of considering the whole design. The results are presented in
Table 9.1. When only the data path is considered, we achieve a
fault coverage of 98.8% and when only the controller is consid-
ered, we achieve a fault coverage of 98.0%. However, we only
achieve a fault coverage of 39.7% when the whole design, both
the data path and the controller, is considered.

Design Fault coverage (%)

Only data path 98.8

Only controller 98.0

Data path+controller 39.7

Table 9.1: Example to illustrate the importance of considering
both the controller and the data path.

Figure 9.11: Terminate feedback by T3.

 Sk

 Sj Si

C ∨T3 C∧T3
232

TESTABILITY ANALYSIS AND ENHANCEMENT OF THE CONTROLLER
The second group of experiments was performed on several
benchmarks, a Counter, a differential equation (Diff) [Pau89],
and Mag [Tri85]. The results are presented in Table 9.2, where
the area is measured in mm2. We applied the loop termination
technique to two benchmarks, Counter and Diff. In the Counter
benchmark, the fault coverage with no DFT technique is 25.23%
and the fault coverage with the loop termination technique is
increased to 84.67%, an improvement of 235.63%. The area over-
head is only 0.25%. In general, the loop termination technique
has very low area overhead and is efficient when a design has
complicated control loop(s). In benchmark Mag, there is no loop.
We used the branch control technique instead. The fault cover-
age increased from 51.17% to 65.23% and the area overhead is
0.5%. When the register initialization method is used, consider-
able improvement in terms of fault coverage has also been
achieved. For example, with Diff, the fault coverage is increased
from 13.20% to 98.06%, with a overhead of 1.27%.

Design DFT technique Fault coverage
(%)

Area
(mm2)

Counter
no DFT 25.23 0.5525

loop termination 84.67 0.5539

Diff

no DFT 13.20 7.3596

loop termination 96.33 7.3674

register initialization 98.06 7.4534

Mag

no DFT 51.17 1.6435

branch control 65.23 1.6528

register initialization 77.73 1.6989

Table 9.2: Summary of experimental results.
233

CHAPTER 9
9.7 Summary
In this chapter, we have presented a method to analyze the test-
ability of a controller. It measures the combinational and
sequential hardness to reach each state in the controller. Based
on this result, hard-to-reach states are detected and three testa-
bility enhancement techniques have then developed to improve
state reachability.

The proposed technique has the advantage that it does not
suffer from the timing penalty which data path scan technique
usually does. It can be used as complement to data path scan in
order to achieve better test quality and smaller area and timing
penalties.

Experimental results show that this method can effectively
improve fault coverage with a very limited area overhead.
234

Conclusions and
Future Work

PART IV

Chapter 10
Conclusions

10.1 Thesis Summery
The aim of the work presented in this thesis is to develop useful
methods to give the designer an early feeling for the test prob-
lems and a guidance in the search for an efficient test solution.
The methods are developed mainly at the system level since we
believe that it is important for the designer to have an overall
perspective of the system and its test problems as early as possi-
ble. Further, by considering the test problems at high abstrac-
tion level, the test problems can be reduced at production and
operation and maintenance.

This thesis consists of two major contributions. The first one is
the development of the test scheduling and test access mecha-
nism design technique. Our proposed technique minimizes the
test application time and the test access mechanism cost while
considering several issues and constraints. The second contribu-
tion deals with testability analysis of the behavioral level VHDL
specification and several testability improvement transforma-
tions. Furthermore, a testability analysis of the controller at a

CHAPTER 10
register-transfer level design and transformations to enhance
its testability have also been developed.

10.1.1 TEST SCHEDULING AND TEST ACCESS MECHANISM

The testing of SOC is sometimes compared to the testing of PCB.
However, when developing a PCB the components are assumed
to be tested before mounting. This is not the case with SOC. This
means that much more testing is required for a SOC compared
to a PCB and more test vectors and test response have to be
transported in SOC designs than in PCB designs.

A SOC consists of several cores where each core may consist of
several blocks. A sequential testing of such a system leads to an
unacceptably long test time. Several tests must be applied con-
current. However, concurrent testing can lead to high test power
consumption which can damage the system. Furthermore, sev-
eral constraints limit concurrent testing.

In this thesis, a methodology for the testing of SOC has been
developed. The methodology consists of several integrated and
efficient algorithms for test scheduling, test access mechanism
design, test parallelization, test set selection and test resource
placement. Furthermore, the test resources may have limited
memory and bandwidth which are also considered in our
approach. Optimization techniques where the test application
time and the test access mechanism are minimized, while con-
sidering test conflicts, test power consumption and test
resources, have been developed.

The methodology considers both test scheduling and test par-
allelization which is an advantage since it can reduce the test
application time.

We have performed several experiments on academic bench-
marks and on industrial designs and we have compared our
approach with several other approaches. We have demonstrated
that the proposed technique is useful for large industrial
designs.
238

CONCLUSIONS
10.1.2 TESTABILITY ANALYSIS AND ENHANCEMENT TECHNIQUES

The modification of a design to make it more testable usually
leads to some design degradation in terms of implementation
cost and/or performance. To minimize the design degradation
and maximize the testability, it is common to use an analysis
technique to find the best trade-off between testability and
design degradation.

In this thesis we propose a technique for analyzing the testa-
bility of a behavioral-level specification. Based on the analysis
result, we perform testability improvement transformations
directly on the specification. Our behavioral level testability
analysis technique is based on variable range, operation testa-
bility and statement reachability, and it has a low computational
cost. We have shown the correlation between our testability met-
rics and the fault coverage by experiments, where the results
from the testability analysis is used to guide the partial scan
selection. By experiments where we compare partial scan selec-
tion using our behavioral-level testability metrics with a com-
mercial gate-level tool, we show that the testability can be
predicted efficiently and accurately at the behavioral level.

We have also proposed a technique for modifying the behavio-
ral specification to make it more testable and by experiments we
have shown the efficiency of the approach. Traditionally only
one hard-to-test part has been improved in each design itera-
tion, which is justified since it keeps the degradation at a mini-
mum. However, for large designs the number of design
iterations can be numerous. In this thesis we propose a tech-
nique for reducing the number of design iterations by selecting
several hard-to-test parts in each design step.

A register-transfer level design typically consists of a control-
ler and a data path, where the controller controls the flow of
data in the data path. Much research in design for testability
has focused on the data path. We propose a testability analysis
of the controller and a technique for enhancing its testability.
239

CHAPTER 10
The controller testability analysis is based on statement reacha-
bility and the result from the controller testability analysis can
be used to guide testability transformations of the controller.
The transformations are loop termination, register initialization
and branch control and by experiments we have shown the effi-
ciency of our approach.

10.2 Conclusions
In this thesis we have developed methods which help and guide
the designer in the search for an efficient test solution. The
methods are developed mainly at the system-level which is
important in order to get an early feeling for the test problems of
the whole system.

The high complexity of SOC, which requires extensive testing
and high amount of test data to be transported, has led to the
need for a systematic test methodology. We have developed such
a methodology and shown the efficiency of our approach by per-
forming extensive experiments on academic benchmarks and
industrial designs.

We have also developed a behavioral level testability analysis
technique and shown that it detects the hard-to-test parts. We
have defined a set of testability improvement transformations
and a selection strategy for them. We have also developed a tech-
nique to analyze the testability of the controller and testability
enhancement transformations of the controller.

The main conclusions we have drawn from this research is as
follows:

 • By considering testability at the early design stages, efficient
test solutions can be developed, which leads to the reduction
of the total test cost.

 • It is important to integrate test scheduling and test access
mechanism design in order to generate optimal solutions for
SOC testing.
240

CONCLUSIONS
 • The complexity of testability analysis at the behavioral and
RT levels is much smaller than that at the gate level. A care-
fully designed testability analysis algorithm at the high lev-
els of abstraction can produce the same quality of analysis
results, which can be used to guide testability enhancement
transformations.

 • It is important to consider the testability of the controller
together with the data path in order to generate highly testa-
ble designs at the RT level.
241

CHAPTER 10
242

Chapter 11
Future Work

In this chapter we discuss possible future work. In Section 11.1
general estimation techniques are discussed. Possible future
work regarding test scheduling and test access mechanism are
given in Section 11.2, and some open issues for testability anal-
ysis and enhancement techniques in Section 11.3.

11.1 Estimation of Test Parameters
The techniques and algorithms proposed in this thesis require
some characteristics data about the system such as test time
and test power consumption for each test. It is assumed that this
data is given and fixed, which is the case for certain applica-
tions. An estimation technique for these parameters would be
desirable. For instance, knowing the test vector set it would be
possible to define an estimation on the switch activity resulting
in an estimate of the test power consumption.

Another problem to consider is test parallelization and its
effect on test time and test power consumption where the main
question would be estimations on test time and test power con-
sumption at different degrees of parallelization.

CHAPTER 11
11.2 Test Scheduling and Test Access Mechanism
Several important issues for test scheduling and test access
mechanism design have been described in this thesis. An impor-
tant continuation of the work would be to grade these factors on
their importance.

In the algorithm on test parallelization the degree of paralleli-
zation for each block was selected. For the finial optimization
using Simulated annealing no changing of degree in test paral-
lelization was allowed. It would be interesting to explore the
possibility of selecting different degrees of parallelization and
different test sets during the optimization process.

There is usually a limitation of the testers memory which has
been covered by our approach. However, no experiments were
performed on testers memory. It would be interesting to perform
such experiments. Furthermore, the test bandwidth which has
its origin at several places in the system is included in the algo-
rithms but no experiments have been performed.

Even if the heuristics presented in this thesis gives good
results, in each design step only one factor is minimized at a
time. It would be interesting to develop an efficient heuristic
considering a cost function dealing with several factors simulta-
neously which still has low computational cost.

The test access mechanism is becoming more and more impor-
tant. The amount of test data to be transported in a microelec-
tronic system tend to increase especially in SOC where the cores
have to be tested extensively. Due to the increasing performance
of the systems where the timing is becoming critical, it is also
likely that delay faults must be considered for more and more
parts in the system. The result is that even more test data is to
be transported.

A wrapper around a core efficiently eases test access and iso-
lates the core under test. However, the wrappers currently avail-
able only allow a limited bandwidth. Flexible test access and
244

FUTURE WORK
bypass structures for wrappers are important issues to be con-
sidered in the future.

11.3 Testability Analysis and Testability
Enhancements

Much research has focused on testability analysis where gate-
level designs or RT-level designs have been analyzed and then
their testability improved. Some work has been defined for
behavioral level specifications such as the one presented in this
thesis. For SOC testability analysis there is very little work
done.

Regarding testability enhancement techniques, most work is
done at gate-level while at behavioral level there is also very lit-
tle work done.

Extensions of the testability analysis

The behavioral level testability analysis defined in this thesis is
limited to a subset in VHDL. For instance, only one process is
allowed. It would be desirable to extend it to include the whole
VHDL.

Furthermore, a testability analysis of a complete SOC is
needed. Such approach should consider SOC characteristics
which has not been included in previous testability analysis
techniques, such as multiple clock domains. Furthermore, as
design complexity increase, design parts are reused and/or com-
plete intellectual property (IP) blocks are incooperated in the
design. These parts can be described at different abstraction lev-
els. Analyzing the testability for a design which consists of parts
described at different abstraction levels has not been done.
245

CHAPTER 11
Termination condition for the testability analyzing/improving
process

A termination condition decides when to stop the testability
analysis and improvement iterations. The normal approach is to
analyze the testability and then improve the testability of one-
hard-to test part. After that the testability is re-analyzed and a
new hard-to-test part is selected. The process will then continue.
The question is when to stop this iteration process. The current
practice is usually based on trial-and-error. Future work might
address a termination condition which can be used in a fully
automated approach.

Combine the proposed controller metrics with the data path
metrics proposed by Gu et al.

In this thesis we have defined a testability metrics for the con-
troller and Gu et al. [Gu95b] have proposed a metric for the data
path. The controller metrics depend on the data path metrics
and the data path metrics depend on the controller metrics.
Future work would be to combine the two metrics in order to
achieve a global testability metrics.

Selection of DFT-technique

Much work in defining testability analysis techniques has
focused on detecting the hard-to-test parts. By experiment using
some known DFT technique the efficiency of the metrics is
shown. However, several DFT techniques exist and they have
different advantages and disadvantages. Future work will be to
define a heuristic which guides the selection of DFT technique.

Furthermore, as test application time for systems increase,
there is a need of developing DFT techniques based on test-per-
clock instead of test-per-scan. As these techniques are devel-
oped, new selection strategies must also follow. From a system-
level perspective, it is not obvious that test-per-clock may always
be the optimum for all cores or blocks in the system. Strategies
246

FUTURE WORK
combining test-per-scan and test-per-clock considering the sys-
tems total test time effect is important.

Experiments on larger benchmarks

The experiments using the testability analysis and testability
improvement technique were performed on rather small bench-
marks. It would be desirable to apply the testability technique
on larger design examples.
247

CHAPTER 11
248

Appendix

PART V

Appendix A

BENCHMARKS AND INDUSTRIAL DESIGNS used to illustrate
approaches in the thesis are described in this appendix. The
benchmark examples are a design presented by Kime and Saluja
[Kim82], System S defined by Chakrabaraty [Cha99] and a
design presented by Muresan et al. [Mur00] The industrial
designs are ASIC Z presented by Zorian [Zor93] with added data
by Chou et al. [Cho97], an extended version of ASIC Z, the Sys-
tem L and the Ericsson design [Eri00].

A.1 Design Kime
The test compatibility graph of a design with six tests is taken
from Kime and Saluja [Kim82], see Figure A.1. Test t1 and t6
may be scheduled concurrently since an arc exists between node
t1 and node t6. On the other hand, test t1 and t2 may not be
scheduled concurrently since no arc exists between the node t1
and node t2. Each node has its test time attached to it. For
instance, test t1 requires 255 time units.

APPENDIX A
A.2 System S
System S is defined by Chakrabaraty [Cha99] and it consists of
six cores where each core is an ISCAS benchmark (core), see
Figure A.2. Data for the system is given in Table A.1 where i is
the core and for each core i the number of external test cycles, ei,
and number of BIST cycles, bi are specified.

Each core is tested by two test sets, one BIST test set and one
deterministic test set. The deterministic test vector set is
applied using an external tester and the test bus. Only one core
at the time can use the test bus and the external tester. The
BIST patterns take one clock cycle to apply while the external
tester is ten times slower.

We have added placement for the cores in the system, see
Table A.1.

Figure A.1: Test compatibility graph.

t2
63

t3
63

t4 31

t5
127

t1
255

t6

15
252

APPENDIX
A.3 Design Muresan
Muresan et al. present a design with the design data presented
in Table A.2 [Mur00]. For instance, test t2 requires 8 time units
and 4 power units and it is test compatible with the following
tests: {t1, t3, t7, t9}. For instance, it means that test t2 can be
scheduled at the same time as test t3.

The power limit for the design is 12 power units.

Circuit Core i
Number of

external
test cycles, ei.

Number of
BIST cycles, bi.

Placement

x y

c880 1 377 4096 10 10

c2670 2 15958 64000 20 10

c7552 3 8448 64000 10 30

s953 4 28959 217140 20 30

s5378 5 60698 389210 30 30

s1196 6 778 135200 30 10

Table A.1: Test data for the cores in System S.

Core 2
(e2, b2)

Core 6
(e6, b6)

Core 5
(e5, b5)

Core 4
(e4, b4)

Core 3
(e3, b3)

External test bus

Figure A.2: System S.

Core 1
(e1, b1)

BIST BIST BIST

BISTBISTBIST
253

APPENDIX A
A.4 ASIC Z
The ASIC Z design presented by Zorian [Zor93] with the estima-
tions on test length made by Chou et al. is in Figure A.3 and
Table A.3. The power consumption for each block when it is in
idle mode and for each test when it is in test mode is given by
Zorian. The test lengths for each test is computed by Chou et al.
with an assumption of linear dependency between test length
and block size, see Table A.3 [Cho97].

The design originally consists of 10 cores. However, no data is
available for one block therefore it is excluded from the design.
The maximal allowed power dissipation of the system is 900
mW. All blocks have their own dedicated BIST which means that
all tests can be scheduled concurrently.

We have added the placement, see Table A.3, where each block
is given an x-placement and a y-placement.

Test Test time Test power Test Compatibility

t1 9 9 t2, t3, t5, t6, t8, t9

t2 8 4 t1, t3, t7, t8

t3 8 1 t1, t2, t4, t7, t9, t10

t4 6 6 t3, t5, t7, t8

t5 5 5 t1, t4, t9, t10

t6 4 2 t1, t7, t8, t9

t7 3 1 t2, t3, t4, t6, t8, t9

t8 2 4 t1, t2, t4, t6, t7, t9, t10

t9 1 12 t1, t3, t5, t6, t7, t8, t10

t10 1 7 t3, t5, t8, t9

Table A.2: Design data for design Muresan.
254

APPENDIX
Block Size Test Time Idle
Power

Test
Power

Placement

x y

RL1 13400 gates 134 0 295 40 30

RL2 16000 gates 160 0 352 40 20

RF 64 × 17 bits 10 19 95 50 10

RAM1 768 × 9 bits 69 20 282 40 10

RAM2 768 × 8 bits 61 17 241 10 20

RAM3 768 × 5 bits 38 11 213 20 20

RAM4 768 × 3 bits 23 7 96 30 10

ROM1 1024 × 10 bits 102 23 279 10 10

ROM2 1024 × 10 bits 102 23 279 20 10

Table A.3: ASIC Z characteristics.

Figure A.3: ASIC Z floor-plan.

RAM 2 RAM 3 RL 1

RL 2

ROM 1 ROM 2 RAM 4 RFRAM 1
255

APPENDIX A
A.5 Extended ASIC Z
The Extended ASIC Z design is an extended version of ASIC Z,
see Appendix A.4. For each core three tests are defined:

 • an interconnection test,
 • an BIST test, and
 • an external test.

In total there are 27 tests spread over the 9 cores. The maximal
power consumption and placement is assumed to be the same as
for ASIC Z, Appendix A.4.

The characteristics for Extended ASIC Z are in Table A.4. For
instance, a BIST test at RL1 require test generator TGrl1 and
test analyser TArl1. The test takes 67 time units and consumes
295 mW and when it is applied no other tests at RL1 can be per-
formed.

The interconnection tests are performed between two cores.
For instance core RL1 performs an interconnection test with
RL2 which requires 10 time units and 10 mW. When this test is
applied it is assumed that no other test can be performed at RL1
and RL2 (specified under block constraint in Table A.4).

In this design the BIST resources are shared and each BIST
resources can be used by one test at a time. For instance when
RAM1 is tested using TGram and TAram no other tests can be
performed using these test resources.

The external tests are connected through TAP and several
tests can be applied concurrently using the external tester.

For Extended ASIC Z all tests at a core are at one block which
means that the BIST and the external test may not be scheduled
concurrently.
256

APPENDIX
Core Test
time

Test
power

Test
source

Test
sink

Block
constraint

RL1

67 295 TAP TAP RL1

67 295 TGrl1 TArl1 RL1

10 10 TAP TAP RL1, RL2

RL2

80 352 TAP TAP RL2

80 352 TGrl2 TArl2 RL2

10 10 TAP TAP RL2, RAM3

RF

5 95 TAP TAP RF

5 95 TGrf TArf RF

10 10 TAP TAP RF,RL1

RAM1

35 282 TAP TAP RAM1

35 282 TGram TAram RAM1

10 10 TAP TAP RAM1,RF

RAM2

31 241 TAP TAP RAM2

31 241 TGram TAram RAM2

10 10 TAP TAP RAM2, ROM1

RAM3

19 213 TAP TAP RAM3

19 213 TGram TAram RAM3

10 10 TAP TAP RAM3, RAM2

RAM4

12 96 TAP TAP RAM4

12 96 TGram TAram RAM4

10 10 TAP TAP RAM4, RAM1

ROM1

51 279 TAP TAP ROM1

51 279 TGrom TArom ROM1

10 10 TAP TAP ROM1, ROM2

ROM2

51 279 TAP TAP ROM2

51 279 TGrom TArom ROM2

10 10 TAP TAP ROM2, RAM4

Table A.4: Extended ASIC Z characteristics.
257

APPENDIX A
A.6 System L
System L is an industrial design consisting of 14 cores named A
through N, see Table A.5. It is tested by 17 tests distributed over
the system as block-level tests and top-level tests. The block-
level tests and the top-level tests can not be executed simultane-
ously. Furthermore, all block-level using the test bus can not be
executed concurrently. The top-level tests are using the func-
tional pins which makes concurrent scheduling among them
impossible.

All tests are using external test resources and the total power
limit for the system is 1200 mW.

A.7 Ericsson design
The Ericsson design, see Figure A.4, consists of 8 digital signal
processor (DSP) cores: a block for DSP control (DSPIOC); 2
memory banks, a common program memory (CPM) and common
data memory (CDM); a control unit for each memory bank, com-
mon data memory controller (CDMC) and common program
memory controller (CPMC); and five other blocks, RX1C, RX0C,
DMAIOC, CKReg and TXC. In total there are 18 cores.

Each of the DSP cores in the Ericsson design in Figure A.4
consists of four banks of local data memory (LDM), one bank of
local program memory and two banks of other memory (LZM)
and five logic blocks, see Figure A.5. The memory banks of the
CPM block and the CDM block in Figure A.4 are shown in
Figure A.6 respectively in Figure A.7.

The characteristics for each of the blocks in the design are in
Table A.6 where the test time, test power and test resource is
specified for each block in the system. The idle power is zero for
all blocks. The DSPs are numbered by n in range 0 to 7 which
results in total 170 (17 × 7+ 51) tests.
258

APPENDIX
The maximal allowed power consumption is limited to 5125
mW. For each logic block two test sets are applied. One using an
external tester and one on-chip tester. These tests can not be
applied at the same time since they test the same logic. All logic
blocks within a DSP core share one test source and test sink for
the on-chip test. The connection to the external tester is named
TAP and several tests may use the external tester concurrently.

All memory blocks of the same type have their own test
resources. For instance, the blocks within the CPM have one test

Test Block Test Test time Idle
power

Test
power Test port

B
lo

ck
-l

ev
el

 t
es

ts

A Test A 515 1 379 scan

B Test B 160 1 205 test-bus

C Test C 110 1 23 test-bus

D Test D Tested as part of other top-level test

E Test E 61 1 57 test-bus

F Test F 38 1 27 test-bus

G Test G Tested as part of other top-level test

H Test H Tested as part of other top-level test

I Test I 29 1 120 test-bus

J Test J 6 1 13 test-bus

K Test K 3 1 9 test-bus

L Test L 3 1 9 test-bus

M Test M 218 1 5 test-bus

T
op

-l
ev

el
 t

es
ts

A Test N 232 1 379
functional

pins

N Test O 41 1 50
functional

pins

B Test P 72 1 205
functional

pins

D Test Q 104 1 39
functional

pins

Table A.5: System L characteristics.
259

APPENDIX A
generator and one test response analyser. The placement of all
blocks are in Table A.7.

Figure A.4: The Ericsson design.

DSP6 DSP7 DSP0 DSP1

DSP4 DSP5 DSP2 DSP3

RX1C

RX0C

CPM CDMDSPIOC

DMAIOC

CKReg

CDMC

CPMC TXC

Figure A.5: The blocks within each DSPn.

LDM0 LDM1

LDM2

Logic0 Logic1

LDM3

LPM

Logic2 Logic3 Logic4

LZM1LZM0
260

APPENDIX
Figure A.6: The blocks within CPM.

CPM0

CPM3

CPM5

CPM1

CPM4

CPM6

CPM2

CPM7

Figure A.7: The common data memory bank.

CDM0 CDM1 CDM2 CDM3 CDM4

CDM5 CDM6 CDM8CDM7 CDM9
261

APPENDIX A

D

D

D
S

P

Block Test Test time Test power Test source Test sink

RX0C
1 970 375 TAP TAP

2 970 375 TG0 TRA0

RX1C
3 970 375 TAP TAP

4 970 375 TG0 TRA0

SPIOC
5 1592 710 TAP TAP

6 1592 710 TG0 TRA0

CPMC
7 480 172 TAP TAP

8 480 172 TG0 TRA0

MAIOC
9 3325 207 TAP TAP

10 3325 207 TG0 TRA0

CKReg
11 505 118 TAP TAP

12 505 118 TG0 TRA0

CDMC
13 224 86 TAP TAP

14 224 86 TG0 TRA0

TXC
15 364 140 TAP TAP

16 364 140 TG0 TRA0

CPMi 17+i 239 80 TG1 TRA1

CDMj 25+j 369 64 TG1 TRA1

n

LPM 17×n+35 46 16 TGn,0 TRAn,0

LDMl 17×n+l+36 92 8 TGn,0 TRAn,0

LZMm 17×n+m+40 23 2 TGn,0 TRAn,0

Logic0
17×n+42 4435 152 TAP TAP

17×n+43 4435 152 TGn,1 TRAn,1

Logic1
17×n+44 4435 152 TAP TAP

17×n+45 4435 152 TGn,1 TRAn,1

Logic2
17×n+46 7009 230 TAP TAP

17×n+47 7009 230 TGn,1 TRAn,1

Logic3
17×n+48 7224 250 TAP TAP

17×n+49 7224 250 TGn,1 TRAn,1

Logic4
17×n+50 7796 270 TAP TAP

17×n+51 7796 270 TGn,1 TRAn,1

Table A.6: Design characteristics Ericsson.
262

APPENDIX
Block X Y Block X Y

TG6 0 0 TG0 80 0

TG6L 10 0 TG0L 90 0

DSP6LDM1 20 0 DSP0LDM1 100 0

DSP6LDM2 30 0 DSP0LDM2 110 0

DSP6LDM3 0 10 DSP0LDM3 80 10

DSP6LDM4 10 10 DSP0LDM4 90 10

DSP6LPM 20 10 DSP0LPM 100 10

DSP6LZM1 30 10 DSP0LZM1 110 10

DSP6LZM2 0 20 DSP0LZM2 80 20

DSP6L1 10 20 DSP0L1 90 20

DSP6L2 20 20 DSP0L2 100 20

DSP6L3 30 20 DSP0L3 110 20

DSP6L4 0 30 DSP0L4 80 30

DSP6L5 10 30 DSP0L5 90 30

SA6 20 30 SA0 100 30

SA6L 30 30 SA0L 110 30

TG7 40 0 TG1 120 0

TG7L 50 0 TG1L 130 0

DSP7LDM1 60 0 DSP1LDM1 140 0

DSP7LDM2 70 0 DSP1LDM2 150 0

DSP7LDM3 40 10 DSP1LDM3 120 10

DSP7LDM4 50 10 DSP1LDM4 130 10

DS7LPM 60 10 DSP1LPM 140 10

DSP7LZM1 70 10 DSP1LZM1 150 10

DSP7LZM2 40 20 DSP1LZM2 120 20

DSP7L1 50 20 DSP1L1 130 20

DSP7L2 60 20 DSP1L2 140 20

DSP7L3 70 20 DSP1L3 150 20

DSP7L4 40 30 DSP1L4 120 30

DSP7L5 50 30 DSP1L5 130 30

SA7 60 30 SA1 140 30

SA7L 70 30 SA1L 150 30

Table A.7: Placement characteristics Ericsson.
263

APPENDIX A
TG4 0 60 TG2 80 60

TG4L 10 60 TG2L 90 60

DSP4LDM1 20 60 DSP2LDM1 100 60

DSP4LDM2 30 60 DSP2LDM2 110 60

DSP4LDM3 0 70 DSP2LDM3 80 70

DSP4LDM4 10 70 DSP2LDM4 90 70

DSP4LPM 20 70 DSP2LPM 100 70

DSP4LZM1 30 70 DSP2LZM1 110 70

DSP4LZM2 0 80 DSP2LZM2 80 80

DSP4L1 10 80 DSP2L1 90 80

DSP4L2 20 80 DSP2L2 100 80

DSP4L3 30 80 DSP2L3 110 80

DSP4L4 0 90 DSP2L4 80 90

DSP4L5 10 90 DSP2L5 90 90

SA4 20 90 SA2 100 90

SA4L 30 90 SA2L 110 90

TG5 40 60 TG3 120 60

TG5L 50 60 TG3L 130 60

DSP5LDM1 60 60 DSP3LDM1 140 60

DSP5LDM2 70 60 DSP3LDM2 150 60

DSP5LDM3 40 70 DSP3LDM3 120 70

DSP5LDM4 50 70 DSP3LDM4 130 70

DS5LPM 60 70 DSP3LPM 140 70

DSP5LZM1 70 70 DSP3LZM1 150 70

DSP5LZM2 40 80 DSP3LZM2 120 80

DSP5L1 50 80 DSP3L1 130 80

DSP5L2 60 80 DSP3L2 140 80

DSP5L3 70 80 DSP3L3 150 80

DSP5L4 40 90 DSP3L4 120 90

DSP5L5 50 90 DSP3L5 130 90

SA5 60 90 SA3 140 90

SA5L 70 90 SA3L 150 90

Block X Y Block X Y

Table A.7: Placement characteristics Ericsson.
264

APPENDIX
TG8b 0 40 CDM4 0 50

TG9b 10 40 CDM5 10 50

TG10 20 40 CDM6 20 50

CPM0 30 40 CDM7 30 50

CPM1 40 40 CDM8 40 50

CPM2 50 40 RX0C 50 50

CPM3 60 40 RX1C 60 50

CPM4 70 40 CPMC 70 50

CPM5 80 40 DSPIOC 80 50

CPM6 90 40 DMAIOC 90 50

CPM7 100 40 CDMC 100 50

CPM8 110 40 TXC 110 50

CPM9 120 40 CKREG 120 50

CDM1 130 40 SA8b 130 50

CDM2 140 40 SA10 140 50

CDM3 150 40 TAP 150 50

Block X Y Block X Y

Table A.7: Placement characteristics Ericsson.
265

APPENDIX A
266

Bibliography

[Abr90] Miron Abramovici, Melvin A. Breuer, and Arthur D.
Friedman, Digital Systems Testing and Testable
Design, IEEE Press, ISBN 0-7803-1062-4, 1990

[Abr91] Miron Abramovici, J. J. Kulikowski, and R. K. Roy,
The Best Flip-Flops to Scan, Proceedings of the
International Test Conference, pp. 166-173, Nash-
ville, 1991.

[Abr93] Miron Abramovici, Prashant S. Parikh, Ben
Mathew, Daniel G. Saab, and Melvin Breuer, On
Selecting Flip-Flops for Partial Reset, Proceedings of
the International Test Conference, pp. 1008-1012,
Baltimore, 1993.

[Aer98] Joep Aerts and Erik Jan Marinissen, Scan Chain
Design for Test Time Reduction in Core-Based ICs,
Proceedings of the International Test Conference, pp.
448-457, Washington D.C. , 1998.

[Aho87] Alfred V. Aho, John E. Hopcroft and Jeffery D. Ull-
man, Data Structures and Algorithms, Addison-
Wesley, ISBN 0-201-00023-7, 1983.

BIBLIOGRAPHY
[Bar93] Jon Barwise and John Etchemendy, The Language
of First-Order Logic, CSLI Publications, ISBN 0-
937073-99-7, 1993.

[Ben00] Alfredo Benso, Silvia Cataldo, Silvia Chiusano,
Paolo Prinetto, and Yervant Zorian, A High-Level
EDA Environment for Automatic Insertion of HD-
BIST Structures, Journal of Electronic Testing: The-
ory and Applications, Vol. 16, No. 3, pp. 179-184,
June 2000.

[Ble93] Harry Bleeker, Peter van den Eijnden and Frans de
Jong, Boundary-Scan Test: A Practical Approach,
Kluwer Academic Publishers, ISBN 0-7923-9296-5,
1993.

[Car97] Joan E. Carletta and Christos A. Papachristou,
Behavioral Testability Insertion for Datapath/Con-
troller Circuits, Journal of Electronic Testing: The-
ory and Applications 11, pp. 9-28, 1997.

[Cha99] Krishnendu Chakrabarty, Test Scheduling for Core-
Based Systems, Proceedings of the International
Conference on Computer-Aided Design, pp. 391-394,
1999.

[Ch00a] Krishnendu Chakrabarty, Design of System-on-a-
Chip Test Access Architecture under Place-and-
Route and Power Constraints, Proceedings of the
Design Automation Conference, pp. 432-437, 2000.

[Ch00b] Krishnendu Chakrabarty, Test Scheduling for Core-
Based Systems using Mixed-Integer Linear Pro-
gramming, Transactions on Computer-Aided Design
of Integrated Circuits and Systems, October 2000.
268

BIBLIOGRAPHY
[Che85] Ting-Huai Chen and Melvin Breuer, Automatic
Design for Testability Via Testability Measures,
Transactions on Computer-Aided Design, Vol. CAD-
4, No. 1, pp. 3-11, January 1985.

[Che89] C. H. Chen and P. R. Menon, An Approach to Func-
tional Level Testability Analysis, Proceedings of the
International Test Conference, pp. 373-380, Wash-
ington, 1989.

[Che90] Kwang-Ting Chen and Vishwani D. Agrawal, A Par-
tial Scan Method for Sequential Circuits with Feed-
back, Transactions on Computers, Vol. 39., No. 4, pp.
544-548, 1990.

[Che92] Chung-Hsing Chen, BETA: Behavioral Testability
Analyzer and its Application to High-Level Test
Generation and Synthesis for Testability, Ph.D. Dis-
sertation, Department of Electrical Engineering,
University of Illinois at Urbana-Chapaign, 1992.

[Che93] Chung-Hsing Chen and Daniel G. Saab, A Novel
Behavioral Testability Measure, Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, pp. 1960-1993, Vol. 12, No. 12, December
1993.

[Che94] Chung-Hsing Chen, Tanay Karnik, and Daniel G.
Saab, Structural and Behavioral Synthesis for Test-
ability Techniques, Transactions on Computer-Aided
Design of Integrated Circuits and Systems, pp. 777-
785, Vol. 13, No. 16, June 1994.

[Chi91] Vivek Chickermane and Janak H. Patel, A Fault
Oriented Partial Scan Design Approach, Proceed-
ings of the International Conference on Computer-
Aided Design, pp. 400-403, Santa Clara, 1991.
269

BIBLIOGRAPHY
[Chi92] Vivek Chickermane, Jaushin Lee, and Janak H.
Patel, A Comparative Study of Design for Testability
Methods Using High-Level and Gate-Level Descrip-
tions, Proceedings of the International Conference on
Computer-Aided Design, pp. 620-624, Santa Clara,
November 1992.

[Cho97] R. Chou, K. Saluja, V. Agrawal, Scheduling Tests for
VLSI Systems Under Power Constraints, Transac-
tions on VLSI Systems, Vol. 5, No. 2, pp. 175-185,
June 1997.

[Cor00] Luis A. Cortés, Petru Eles, and Zebo Peng, Verifica-
tion of Embedded Systems using a Petri Net based
Representation, Proceedings of the International
Symposium on System Synthesis, pp. 149-155,
Madrid, Spain, September 20-22, 2000.

[Cra88] G. L. Craig, C. R. Kime, and K. K. Saluja, Test
SchedulingandControlforVLSIbuilt-in-self-test,IEEE
Transactions on Computers, Vol. 37, No. 9, pp. 1099-
1109, September 1988.

[Dey93] Sujit Dey, Miodrag Potkonjak and Rabindra Roy,
Exploiting Hardware Sharing in High Level Synthe-
sis for Partial Scan Optimization, Proceedings of the
International Conference on Computer-Aided
Design, pp. 20-25, Santa Clara, November 1993.

[Dey94] Sujit Dey and Miodrag Potkonjak, Transforming
Behavioral Specifications to Facilitate Synthesis of
Testable Designs, Proceedings of the International
Test Conference, pp. 184-193, Washington, October
1994.
270

BIBLIOGRAPHY
[Dey95] Sujit Dey, Vijay Gangaram, and Miodrag Potkonjak,
A Controller-Based Design-for-Testability Technique
for Controller-Data Path Circuits, Proceedings of the
International Conference on Computer-Aided
Design, pp. 640-645, San Jose, November 1995.

[Ele92] Petru Eles, Krzysztof Kuchcinski, Zebo Peng, and
Marius Minea, Compiling VHDL into a High-Level
Synthesis Design Representation, Proceedings of the
EURO-DAC, pp. 604-609, Hamburg, September 7-
10, 1992.

[Eri00] Ericsson, Design document, 2000.

[Flo97] Marie-Lise Flottes, R. Pires, and Bruno Rouzeyre,
Analyzing Testability from Behavioral to RT level,
Proceedings of the European Design & Test Confer-
ence, pp. 158-165, Paris, March 1997.

[Fje92] Björn Fjellborg, Pipeline Extraction for VLSI Data
Path Synthesis, Ph.D. Dissertation No. 273, Depart-
ment of Computer and Information Science,
Linköping University, 1992.

[Gaj92] Daniel Gajski, Nikil Dutt, Allen Wu, and Steve Lin,
High-Level Synthesis, Introduction to Chip and Sys-
tem Design, Kluwer Academic Publisher, ISBN 0-
7923-9194-2, 1992.

[Gar91] M. Garg, A. Basu, T.C. Wilson, D.K. Banerji, J.C.
Majithia, A New Test Scheduling Algorithm for
VLSI Systems, , Proceddings of the Symposium on
VLSI Design, pp. 148-153, January 1991.

[Gar79] M. R. Garey and, D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-Com-
pleteness, W. H. Freeman, San Fransisco, 1979.
271

BIBLIOGRAPHY
[Gho95] Indradeep Ghosh, Anand Raghunathan, and Niraj K.
Jha, Design of Hierarchical Testability of RTL Cir-
cuits Obtained by Behavioral Synthesis, Proceedings
of the International Conference on Computer Design,
Austin, October 1995.

[Gir98] Patrick Girard, Christian Landrault, Serge Pravos-
soudovitch, and Daniel Severac, Reducing Power
Consumption During Test Application By Test Vec-
tor Ordering, Proceedings of the International Sym-
posium on Circuits and Systems, pp. 296-299, Vol. 2,
Austin, May 31- June 3, 1998.

[Glo86] Fred Glover, Future paths for integer programming
and links to artificial intelligence, Computer and
Ops. Res., 5, pp. 533-549 1986.

[Gol79] Lawrence H. Goldstein, SCOAP: Sandia Controlla-
bility/Observability Analysis Program, Transactions
on Circuits and Systems, Vol. CAS-26, No. 9, pp.
685-693, September 1979.

[Gol80] Lawrence H. Goldstein and Evelyn L. Thigpen, Con-
trollability/Observability Analysis of Digital Cir-
cuits, Proceedings of the Computer-Aided Design, pp.
190-196, Minneapolis, June 1980.

[Gon76] T. Gonzales and S. Sahni, Open shop scheduling to
minimize finish time, Journal of the ACM, Vol. 23,
pp. 665-679, October 1976.

[Gru00] Flavius Gruian, Energy-Aware Design of Digital
Systems , Licentiate Thesis No. 809, Department of
Computer and Information Science, Linköpings Uni-
versitet, 2000.
272

BIBLIOGRAPHY
[Gup90] Rajesh Gupta, Rajiv Gupta, and Melvin A. Breuer,
The BALLAST Methodology for Structured Partial
Scan Design, Transactions on Computers, Vol. 39,
No. 4, April 1990, pp. 538-544.

[Gu91] Xinli Gu, Krzysztof Kuchinski, and Zebo Peng Testa-
bility Measure with Reconvergent Fanout Analysis
and Its Applications, The Euromicro Journal, Micro-
processing and Microprogramming, Vol. 32, No. 1-5,
pp. 835-842, August 1991.

[Gu92] Xinli Gu, Krzysztof Kuchinski, and Zebo Peng, An
Approach to Testability Analysis and Improvement
for VLSI Systems, The Euromicro Journal, Micro-
processing and Microprogramming, Vol. 35, No. 1-5,
pp. 485-492, September 1992.

[Gu94] Xinli Gu, Krzysztof Kuchinski, and Zebo Peng, Test-
ability Analysis and Improvement from VHDL
Behavioral Specifications, Proceedings of EURO-
DAC, pp. 644-649, Grenoble, September 1994.

[Gu95a] Xinli Gu, Krzysztof Kuchinski, and Zebo Peng, An
Efficient and Economic Partitioning Approach for
Testability, Proceedings of the International Test
Conference, Washington D. C., October 1995.

[Gu95b] Xinli Gu, RT Level Testability Improvement by
Testability Analysis and Transformations, Ph.D.
Dissertation No. 414, Department of Computer and
Information Science, Linköping University, Swe-
den, 1996.

[Gu97] Xinli Gu, Erik Larsson, Krzysztof Kuchcinski, and
Zebo Peng, A Controller Testability Analysis and
Control Enhancement Technique, Proceedings of the
European Design and Test Conference, pp. 153-157,
Paris, March 1997.
273

BIBLIOGRAPHY
[Her98] A. Hertwig and H-J Wunderlich, Low Power Serial
Built-In Self-Test, Compendium of Papers of Euro-
pean Test Workshop, pp. 49-53, Sitges, Spain, May
1998.

[Het99] Graham Hetherington, Tony Fryars, Nagesh Tamar-
apalli, Mark Kassab, Abu Hassan, and Janusz
Rajski, Logic BIST for Large Industrial Designs:
Real Issues and Case Studies, Proceedings of the
International Test Conference, pp. 358-367, Septem-
ber 1999.

[Hsu96a] Frank F. Hsu, Elizabeth M. Rudnick, and Janak
Patel, Testability Insertion in Behavioral Descrip-
tions, Proceedings of the International Symposium
on System Synthesis, pp. 139-144, La Jolla, Novem-
ber 1996.

[Hsu96b] Frank F. Hsu, Elizabeth M. Rudnick, and Janak
Patel, Enhancing High-Level Control-Flow for
Improved Testability, Proceedings of the Interna-
tional Conference on Computer-Aided Design, San
Jose, November 1996.

[Hal98] Jonas Hallberg, Timing Issues in High-Level Syn-
thesis, Ph. D. Dissertation No. 555, Department of
Computer and Information Science, Linköpings Uni-
versitet, 1998.

[Håk98] Jan Håkegård, Hierarchical Test Architecture and
Board-Level Test Controller Synthesis, Licentiate
Thesis No. 676, Department of Computer and Infor-
mation Science, Linköpings Universitet, 1998.
274

BIBLIOGRAPHY
[Jer00] Gert Jervan, Zebo Peng and Raimund Ubar, Test
Cost Minimization for Hybrid BIST, Proceedings of
the International Symposium on Defect and Fault
Tolerance in VLSI, pp 283-291, Yamanashi, Japan,
October 25-27, 2000.

[Jig00] Razvan Jigorea, Sorin Manolache, Petru Eles, and
Zebo Peng, Modeling of Real-Time Embedded Sys-
tems in an Object-Oriented Design Environment
with UML, Proccedings of the International Sympo-
sium on Object-oriented Real-time distributed Com-
puting, pp. 210-213, Newport Beach, March 2000.

[Jon89] Wen Ben Jone, C. A. Papachrisou, and M. Perieria, A
Scheme for Overlaying Concurrent Testing of VLSI
Circuits, Proceedings of the Design Automation Con-
ference, pp. 531-536, 1989.

[Kim82] C. R. Kime and K. K. Saluja, Test Scheduling in
Testable VLSI Circuits, Proceedings of the Interna-
tional Symposium on Fault-Tolerant Computing, pp.
406-412, 1982.

[Kim90] K. Kim and C. Kime, Partial Scan by Use of Empiri-
cal Testability, Proceedings of the International Con-
ference on Computer-Aided Design, pp. 314-317,
Santa Clara 1990.

[Kim93] Taewhan Kim, Scheduling and Allocation Problems
in High-Level Synthesis, Ph.D. Dissertation,
Department of Computer Science, University of Illi-
nois at Urbana-Champaign, 1993.

[Kir83] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Opti-
mization by Simulated Annealing, Science, Vol. 220,
No. 4598, pp. 671-680, 1983.
275

BIBLIOGRAPHY
[Kri92] Ganesh Krishnamoorthy and John A. Nestor, Data
Path Allocation using an Extended Binding Model,
Proceedings of the Design Automation Conference,
pp. 279-284, Anaheim, June 1992.

[Kuc90] Krzysztof Kuchcinski and Zebo Peng, Testability
Analysis in a VLSI High-Level Synthesis System,
The Euromicro Journal, Microprocessing and Micro-
programming, pp. 295-300, Vol. 28, No. 1-5, March
1990.

[Lai97] Kowen Lai, Christos A. Papachrisou, and Mikhail
Baklashov, High Level Test Synthesis Across the
Boundary of Behavioral and Structural Domains,
Proceedings of the International Conference on Com-
puter Design, pp. 636-641, Austin 1997.

[Lar97] Erik Larsson and Zebo Peng, Early Prediction of
Testability by Analyzing Behavioral VHDL Specifi-
cations, Proceedings of the NORCHIP Conference,
pp. 259-266, Tallinn, November 1997.

[Lar98a] Erik Larsson and Zebo Peng, Testability Analysis of
Behavioral-Level VHDL Specifications, Compen-
dium of Papers of the European Test Workshop, pp.
143-144, Sitges, Spain, May, 1998.

[Lar98b] Erik Larsson, High-Level Testability Analysis and
Enhancement Technique, Licentiate Thesis No. 725,
Department of Computer and Information Science,
Linköping University, Sweden 1998.

[Lar99a] Erik Larsson and Zebo Peng, A Behavioral-Level
Testability Enhancement Technique, Compendium
of Papers of the European Test Workshop, Con-
stance, Germany, May, 1999.
276

BIBLIOGRAPHY
[Lar99b] Erik Larsson and Zebo Peng, An Estimation-based
Technique for Test Scheduling, Proceedings of the
Electronic Circuits and Systems Conference, pp. 25-
28, Bratislava, September, 1999.

[Lar00a] Erik Larsson and Zebo Peng, System-on-Chip Test
Bus Design and Test Scheduling, International Test
Synthesis Workshop, Santa Barbara, March, 2000.

[Lar00b] Erik Larsson and Zebo Peng, A Technique for Test
Infrastructure Design and Test Scheduling, Proceed-
ings of the Design and Diagnostics of Electronic Cir-
cuits and Systems Workshop, Smolenice Castle,
Slovakia, April 2000.

[Lar00c] Erik Larsson and Zebo Peng, Test Infrastructure
Design and Test Scheduling Optimization, Informal
Digest of the European Test Workshop, Cascais, Por-
tugal, May 2000.

[Lar00d] Erik Larsson and Zebo Peng, An Integrated System-
on-Chip Test Framework, Accepted for the Design,
Automation and Test in Europe Conference, 2001.

[Lar00e] Erik Larsson and Zebo Peng, An Efficient Test
Scheduling Technique for System-on-Chip, Submit-
ted for publication.

[Lee90] D. H. Lee and Sudhakar M. Reddy, On Determining
Scan Flip-Flops in Partial-Scan Designs, Proceed-
ings of the International Conference on Computer-
Aided Design, pp. 322-325, Santa Clara, 1990.

[Lee92] Tien-Chien Lee, Wayne H. Wolf, and Niraj K. Jha,
Behavioral Synthesis of Easily Testable Data Path
Scheduling, Proceedings of the International Confer-
ence on Computer-Aided Design, pp. 616-619, Santa
Clara, November 1992.
277

BIBLIOGRAPHY
[Le93a] Jaushin Lee and Janak H. Patel, Testability Analy-
sis Based on Structural and Behavioral Information,
Proceedings of the VLSI Test Symposium, pp. 139-
145, Atlantic City, April 1993.

[Le93b] Tien-Chien Lee, Niraj K. Jha and Wayne H. Wolf,
Behavioral Synthesis of Highly Testable Data Paths
under Non-Scan and Partial Scan Environments,
Proceedings of the Design Automation Conference,
pp. 292-297, Dallas, June 1993.

[Le93c] Tien-Chien Lee, Behavioral Synthesis of Highly
Testable Data Paths in VLSI digital Circuits, Ph.D.
Dissertation, Department of Electrical Engineering,
Princeton Unversity, 1993.

[Mar98] Erik Jan Marinissen, Robert Arendsen, Gerard Bos,
A Structured and Scalable Mechanism for Test
Access to Embedded Reusable Cores, Proceedings of
the International Test Conference, pp. 284-293, Octo-
ber 18-23, 1998.

[Mar00] Erik Jan Marinissen, Sandeep Kumar Goel, and
Maurice Lousberg, Wrapper Design for Embedded
Core Test, Proceedings of the International Test Con-
ference, paper 34.3, pp. 911-920, Atlantic City, Octo-
ber 3-5, 2000.

[Me93a] Mentor Graphics, Autologic VHDL Synthesis Guide,
Mentor Graphics, February, 1993.

[Me93b] Mentor Graphics, Autologic VHDL Optimizer Guide,
Mentor Graphics, February, 1993.

[Me93c] Mentor Graphics, FlexTest User’s and Reference
Manual, Mentor Graphics, December, 1993.

[Me93d] Mentor Graphics, DFTAdvisor User’s and Reference
Manual, Mentor Graphics, December, 1993.
278

BIBLIOGRAPHY
[Muj92] Ashutosh Mujumdar, Kewal Saluja, and Rajiv Jain,
Incorporating Testability Considerations in High-
Level Synthesis, Proceedings of the International
Symposium on Fault-Tolerant Computing 22, Bos-
ton, July 8-10, 1992.

[Mur00] Valentin Muresan, Xiaojun Wang, Valentina Mure-
san, and Mirecea Vladutiu, A Comparison of Classi-
cal Scheduling Approaches in Power-Constrained
Block-Test Scheduling, Proceedings of the Interna-
tional Test Conference, pp. 882-891, Atlantic City,
October 3-5, 2000.

[Nor96] Robert B. Norwood and Edward J. McCluskey, Syn-
thesis-for-Scan and Scan Chain Ordering, Proceed-
ings of the VLSI Test Symposium, pp. 87-92, New
Jersey, April 28 - May 1, 1996.

[P1500] IEEE P1500 Web site: http://grouper.ieee.org/
groups/1500/.

[Par93] Prashant Parikh and Miron Abramovici, A Cost-
Based Approach to Partial Scan, Proceedings of the
Design Automation Conference, pp. 255-259, Dallas,
June 1993.

[Par95] Prashant Parikh and Miron Abramovici, Testability-
Based Partial Scan Analysis, Journal of Electronic
Testing: Theory and Applications, 7, pp. 61-70, 1995.

[Pau89] Pierre G. Paulin and John P. Knight, Force-directed
scheduling for behavioral synthesis of ASIC’s,
Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, Vol. 8, pp. 661-679,
June 1989.
279

BIBLIOGRAPHY
[Pen94] Zebo Peng and Krzysztof Kuchcinski, Automated
Transformation of Algorithms into Register-Trans-
fer Level Implementations, Transactions on Compu-
ter-Aided Design of Integrated Circuits and Systems,
Vol. 13, No. 2, pp. 150-166, February 1994.

[Pet81] James Lyle Peterson, Petri net theory and the mode-
ling of systems, Prentice-Hall, Inc., ISBN 0-13-
661983-5, 1981.

[Pop00] Paul Pop, Petru Eles, and Zebo Peng, Bus Access
Optimization for Distributed Embedded Systems
Based on Schedulability Analysis, Proceedings of
Design, Automation and Test in Europe Conference,
pp. 567-574, Paris, March 27-30, 2000,

[Ram94] Champaka Ramachandran and Fadi J. Kurdahi,
Incorporating the Controller Effects During Regis-
ter Transfer Level Synthesis, Proceedings of the
European Design and Test Conference, pp. 308-313,
Paris 1994.

[Ree93] Colin R. Reeves, Modern Heuristic Techniques for
Combinatorial Problems, Blackwell Scientific Publi-
cations, ISBN 0-632-03238-3, 1993.

[Rut72] R. A. Rutman, Fault detection test generation for
sequential logic by heuristic tree search, IEEE Com-
puter Group Repository, pp. 172-187, 1972.

[Ses00] Sandhya Seshadri and Michael S. Hsiao, Formal
Value-Range and Variable Testability Technique,
Journal of Electronic Testing, Theory and Applica-
tions, pp. 131-145, Vol. 16, No.1/2, February/April
2000.

[Ste00] Andreas Steiningerl, Testing and Built-In Self-Test -
A Survey, Journal of System Architecture, ISSN-
1383-7621, pp. 721-747, Vol. 46, No. 9, July 2000.
280

BIBLIOGRAPHY
[Syn96] Synthesia, The Synthesia VHDL Design System,
User’s Guide, 1996.

[Sug98] Makoto Sugihara, Hiroshi Date and Hiroto Yasuura,
A Test Methodology for Core-Based System LSIs,
IEICE Transactions on Fundamentals, pp. 2640-
2645, Vol. E81-A, No. 12, December 1998.

[Tho94] Thomas Thomas, Praveen Vishakantaiah and Jacob
A. Abraham, Impact of Behavioral Modifications for
Testability, Proceedings of the VLSI Test Sympo-
sium, pp. 427-432, New Jersey, April 1994.

[Tri85] Howard Trickey, Compiling Pascal Programs into
Silicon, Ph.D. Dissertation, Deptartment of Compu-
ter Science, Stanford University, 1985.

[Tse83] Chia-Jeng Tseng and Daniel P. Siewiorek, A Proce-
dure for the Automated Synthesis of Bus Style Sys-
tems, Proceedings of the Design Automation
Conference, pp. 490-496, Maimi 1983.

[Tsu88] Frank. F. Tsui, LSI/VLSI Testability Design,
McGraw-Hill Book Company, ISBN 0-07-100356-8,
1988.

[Var93] Kamal K. Varma, Praveen Vishakantaiah, and
Jacob A. Abraham, Generation of Testable Designs
from Behavioral Descriptions using High Level Syn-
thesis Tools, Proceedings of the VLSI Test Sympo-
sium, pp. 124-130, Atlantic City, April 1993.

[Var98] Prab Varma and Sandeep Bhatia, A Structured Test
Re-Use Methodology for Core-Based System Chips,
Proceedings of the International Test Conference, pp.
294-302, Washington DC, October 1998.
281

BIBLIOGRAPHY
[Wag96] Kenneth D. Wagner and Sujit Dey, High-Level Syn-
thesis for Testability: A Survey and Perspective,
Proceedings of the Design Automation Conference,
pp. 131-136, Las Vegas, June 1996.

[Wes92] Neil H. E.Weste and Kamran Eshraghian, Princi-
ples of CMOS VLSI Design, Addison-Wesley, ISBN
0-201-53376-6, 1992.

[Yan98] Tianruo Yang and Zebo Peng, An Efficient Algo-
rithm to Integrate Scheduling and Allocation in
High-Level Synthesis, Proceedings of the Design
Automation and Test in Europe Conference, pp. 74-
81, Paris, February 1998.

[Zor93] Yervant Zorian, A distributed BIST control scheme
for complex VLSI devices, Proceedings of the VLSI
Test Symposium, pp. 4-9, April 1993.
282

	Dissertation No. 660
	An Integrated System-Level Design for Testability Methodology
	by
	Erik Larsson
	Linköping 2000
	To Eva and Knut
	Abstract
	Hardware testing
	It has been

	Contents
	I Preliminaries 1
	1 Introduction 3
	1.1 Motivation 4
	1.2 Problem Formulation 6
	1.3 Contributions 7
	1.4 Thesis Overview 9
	2 Background 11

	2.1 Introduction 11
	2.2 Design Representations 14
	2.3 High-Level Synthesis 17
	2.4 Testing and Design for Testability 18
	II Test Scheduling and Test Access Mechanism Design 27
	3 Introduction and Related Work 29

	3.1 Introduction 29
	3.2 Test Access Mechanism Design 35
	3.3 Test Isolation and Test Access 40
	3.4 Test Scheduling 53
	3.5 Test Set Selection 64
	4 Test Scheduling and Test Access Mechanism Design 67

	4.1 Introduction 67
	4.2 System Modelling 69
	4.3 Test Scheduling 71
	4.4 Test Floor-planning 76
	4.5 Test Set 76
	4.6 Test Access Mechanism 77
	4.7 The System Test Algorithm 84
	4.8 Simulated Annealing 100
	4.9 Tabu Search 102
	4.10 Conclusions 103
	5 Experimental Results 105

	5.1 Introduction 105
	5.2 Test Scheduling 106
	5.3 Test Access Mechanism Design 121
	5.4 Test Scheduling and Test Access Mechanism Design 122
	5.5 Test Parallelization 136
	5.6 Test Resource Placement 138
	5.7 Summary 142
	III Testability Analysis and Enhancement Technique 143
	6 Introduction and Related Work 145

	6.1 Testability Analysis 146
	6.2 Testability Improvement 164
	6.3 Summary 170
	7 Testability Analysis 177

	7.1 Preliminaries 178
	7.2 Behavioral Testability Metrics 178
	7.3 Application of the Behavioral Testability Metrics 184
	7.4 Behavioral Testability Analysis Algorithm 185
	7.5 Experimental Results 186
	7.6 Conclusions 193
	8 Testability Improvement Transformations 195

	8.1 Basic Transformations 195
	8.2 Cost Function for DFT Selection 200
	8.3 Application of the Testability Improvement Transformations 202
	8.4 Experimental Results 208
	8.5 Variable Dependency 214
	8.6 Conclusions 218
	9 Testability Analysis and Enhancement of the Controller 219

	9.1 Introduction 219
	9.2 Preliminaries 220
	9.3 Controller Testability Analysis 223
	9.4 State Reachability Analysis Algorithm 226
	9.5 Controller Testability Enhancements 229
	9.6 Experimental Results 232
	9.7 Summary 234
	IV Conclusions and Future Work 235
	10 Conclusions 237

	10.1 Thesis Summery 237
	10.2 Conclusions 240
	11 Future Work 243

	11.1 Estimation of Test Parameters 243
	11.2 Test Scheduling and Test Access Mechanism 244
	11.3 Testability Analysis and Testability Enhancements 245
	V Appendix 249

	Preliminaries

	Chapter 1 Introduction
	This thesis deals
	1.1 Motivation
	1.1.1 Test Scheduling and Test Access Mechanism Design
	1.1.2 Testability Analysis and Enhancement

	1.2 Problem Formulation
	• Test scheduling, which is an ordering of the tests.

	1.3 Contributions
	1.3.1 A framework for the testing of system-on-chip
	1.3.2 testability analysis and Enhancement

	1.4 Thesis Overview
	• Preliminaries. A general background to hardware testing is described where the focus is on synt...

	Chapter 2 Background
	Testability has a large
	2.1 Introduction
	Figure 2.1: High-level design for digital systems.
	Figure 2.2: An example of a system partitioned into sub-systems.
	Figure 2.3: The synthesis flow for basic blocks.

	2.2 Design Representations
	2.2.1 Behavioral Representation
	2.2.2 Structural representation
	2.2.3 Intermediate Representation
	Figure 2.4: An example of ETPN.

	2.3 High-Level Synthesis
	2.4 Testing and Design for Testability
	2.4.1 Faults and Fault Models
	(2.1)

	2.4.2 Test Generation
	Figure 2.5: General view of a circuit under test.
	Figure 2.6: General view of a circuit under test.

	2.4.3 Testability Improvement Techniques
	Figure 2.7: Test points for control and observation enhancement.
	Figure 2.8: The basic idea for scan technique.
	Figure 2.9: Testers for Scan Paths.
	Test Scheduling and Test Access Mechanism Design

	Chapter 3 Introduction and Related Work
	The system-on-chip technique
	3.1 Introduction
	• Power consumption,
	3.1.1 Power consumption
	(3.1)
	(3.2)

	3.1.2 Test Resources
	• exhaustive,
	Figure 3.1: A 4-input AND-gate.
	Figure 3.2: Example of 3-stage linear feedback shift register based on x3+x+1 and generated seque...

	• Scan usually operates at a maximum frequency of 50 MHz,
	Figure 3.3: Fault coverage function of test patterns.

	3.1.3 Test conflicts

	3.2 Test Access Mechanism Design
	Figure 3.4: Test sources and sinks.
	Figure 3.5: Example of the multiplexer architecture.
	(3.3)
	(3.4)

	Figure 3.6: Example of the daisychain architecture.
	(3.5)

	Figure 3.7: Example of the distribution architecture.
	(3.6)
	(3.7)

	Figure 3.8: Algorithm for scan chain distribution.

	3.3 Test Isolation and Test Access
	3.3.1 The Boundary-scan Standards
	Figure 3.9: An example of chip architecture for IEEE 1149.1.

	3.3.2 The TestShell and P1500 Approach
	Figure 3.10: Three hierachy layers: core, TestShell and host.
	• the core or the IP module,
	Figure 3.11: Host-TestShell interface.

	• Function input/output corresponds one-to-one to the normal inputs and outputs of the core.
	• Function mode, where the TestShell is transparent and the core is in normal mode, i.e. not test...
	Figure 3.12: Conceptual view of the Test Cell.
	Figure 3.13: The TestShell approach.

	• Host pins available for test form an important limiting factor with respect to the maximal Test...
	Figure 3.14: Example of possible host-level TestRail connections.
	Figure 3.15: The core-level TestRail connections.

	• Parallel connection means that the TestRail is a one-to-one connected to the terminal of the core.
	Figure 3.16: The P1500 approach.
	Figure 3.17: Proposed bypass structures where optional items are dashed [Mar00].
	Figure 3.18: Test bus usage example.

	3.4 Test Scheduling
	• Nonpartitioned testing,
	Figure 3.19: Scheduling approaches.
	Figure 3.20: A resource graph.
	Figure 3.21: The test scheduling approach proposed by Garg et al. [Gar91].
	(3.8)

	Figure 3.22: A test compatibility graph.
	Figure 3.23: The shortest-task-first procedure [Ch00b].
	Figure 3.24: ASIC Z floor-plan and test partitioning.
	(3.9)
	(3.10)

	Figure 3.25: ASIC Z test schedule using the approach proposed by Zorian [Zor93].
	Table 3.1: ASIC Z characteristics.
	Figure 3.26: TCG with added power constraint and test length for each test.

	1. All possible cliques are identified: G1={t1, t3, t5}, G2={t1, t3, t4}, G3={t1, t6}, G4={t2, t5...
	2. All possible PCLs are: (t1, t3), (t1, t5), (t3, t5) obtained from G1, (t1, t3, t4) from G2, (t...
	3. The reduced DPCLs are: (t1, t5), (t5), (t3, t5), (t1, t3, t4), (t3, t4), (t4), (t1, t6), (t2, ...
	4. Using a minimum cover table, see Table�3.2, to find an optimum schedule over the compatible te...
	Figure 3.27: ASIC Z schedule using the approach proposed by Chou et al. [Cho97].
	Figure 3.28: Merging example by Muresan et al. [Mur00].
	Table 3.2: Covering table.

	3.5 Test Set Selection
	Figure 3.29: Example of test time.
	(3.11)
	(3.12)
	(3.13)

	Chapter 4 Test Scheduling and Test Access Mechanism Design
	4.1 Introduction
	Figure 4.1: System test design flow.

	4.2 System Modelling
	Figure 4.2: An illustrative example.
	Figure 4.3: A graph representation of the system illustrated in Figure�4.2.

	4.3 Test Scheduling
	Figure 4.4: Example of test scheduling.
	(4.1)
	(4.2)
	(4.3)
	(4.4)
	(4.5)
	(4.6)
	Figure 4.5: The function scheduled.
	4.3.1 Test Conflicts
	4.3.2 Power Dissipation
	(4.7)
	Figure 4.6: Scheduled power.

	4.4 Test Floor-planning
	4.5 Test Set
	4.6 Test Access Mechanism
	4.6.1 Test Access Mechanism Design
	• A test access mechanism has to be added for transportation of test vectors from the test source...
	Figure 4.7: Design of the test access mechanism.

	1. through the logic of the core c1, see Figure�4.7(a), using the transparent mode of the core, f...
	2. through an optional bypass structure of core c1, see Figure�4.7(a), and
	3. around the core c1, see Figure�4.7(b), where the access mechanism is not connected to the core.
	Figure 4.8: Bypass with no delay.
	4.6.2 Test Parallelization
	(4.8)
	(4.9)
	Definition 4.10: A test bus wi is a path of edges {(v0,v1), (v1,v2),...,(vn-1,vn)} where v0ŒRsour...
	Definition 4.11: Dyi,j is defined as: and Dxi,j is defined as: where x(vi) and y(vi) are the phys...
	(4.12)
	Figure 4.9: North, east, south and west orientation.
	(4.13)
	(4.14)
	(4.15)
	(4.16)
	(4.17)
	(4.18)
	(4.19)
	(4.20)

	4.6.3 Test Source Limitations
	(4.21)
	(4.22)

	4.7 The System Test Algorithm
	(4.23)
	(4.24)
	(4.25)
	(4.26)
	(4.27)
	(4.28)
	4.7.1 The Algorithm
	• the system test algorithm,
	1: Sort all tests in P based on time, power or time¥power;
	2: S=Æ;
	3: t=0;
	4: until "bp,q$BTp,q,r"tsŒBTp,q,r Ÿ tsŒS do begin
	Figure 4.10: The system test algorithm.

	5: for all cur in P do begin
	6: bi,j = block(cur);
	7: va=source(cur);
	8: vb=ci;
	9: vc=sink(cur);

	• parallelization at the block,
	10: if (parallelization(bi,j)=•) then begin
	11: par=min{parmax(bi,j), Î(pmax-psch(t, tend)) /ptest(cur)˚, (bandwidth(va, t, tend)-bandwidthal...
	12: end else
	13: par=parallelization(bi,j);
	14: tend=t+Èttest(cur)/par˘;
	15: ptest’(cur)=ptest(cur)¥par;

	• Ø$tf (tfŒBTi,j,kŸtf ŒSŸcurœBTi,j,k) checks that there does not exist any scheduled test where t...
	16: if (Ø$tf (tfŒBTi,j,kŸ tf ŒSŸcurœBTi,j,k)Ÿ (parë ³ parmin(bi,j))Ÿ Øscheduled(cur, t, tend)Ÿ Øs...
	17: if (parallelization(bi,j)=•) then
	18: parallelization(bi,j)=par;
	19: call floor-planning procedure;
	20: call test access mechanism procedure;
	21: tstart(cur)=t;
	22: tend(cur)=tend;
	23: S=S»{cur};
	24: P=P-{cur};
	25: end;
	26: end;
	27: t=nexttime(t);
	28: end;
	1: if Øscheduled(va, 0, tend) then begin
	2: y(va)=y(cur);
	3: x(va)=x(cur);
	4: end;
	5: if Øscheduled(vc, 0, tend) then begin
	6: y(vc)=y(cur);
	7: x(vc)=x(cur);
	8: end;
	Figure 4.11: The test resource floor-planning algorithm.

	9: for all required test resources begin
	10: new=dist(va, vb)+dist(vb, vc);
	11: $!uwu Øscheduled(wu, t, tend) Ÿ vaŒwu ŸvbŒwu ŸvcŒwu ŸwuŒA
	12: $!v’ vaŒwv ŸvcŒwv ŸwvŒA
	13: v=v’-u;
	14: extend = 0;
	15: for all min(par, v) wl such Øscheduled(wl, t, tend), vmŒwl, vnŒwl, voŒwl, wlŒA do begin
	16: extend=extend+min{new, dist(vm, va)+dist(va, vm)+ dist(vn, vb)+dist(vb, vn)+dist(vo, vc)+dist...
	17: end;
	18: if (par>v) then
	19: extend=extend+new¥(par-u);
	20: if dist(va,vb)>0 Ÿ dist(vb,vc)>0 then
	21: move=v¥min{dist(va, vb), dist(vb, vc)}
	22: else
	23: move=v¥max{dist(va, vb), dist(vb, vc)}
	24: if (move<min{extend, new¥par}) then begin
	25: Dx,y=min{dist(va,vb),dist(vc,vb)|dist(va,vb)>0 dist(vc,vb)>0}
	26: for g= 1 to v+u
	27: add(vx, vb);
	28: y(vx)=y(vb);
	29: x(vx)=x(vb);
	30: end;
	31: end;
	Figure 4.12: Example to illustrate the test resource floor-planning algorithm.
	Figure 4.13: Example used to illustrate the test resource floor-planning algorithm.
	Figure 4.14: Test access mechanism design algorithm.

	1: for g= 1 to par begin
	2: extend=•;
	3: if $wl{vaŒwlŸvbŒwlŸvcŒwl Ÿ Øscheduled(wl, t, tend)}
	4: else
	5: begin
	6: new=dist(va, vb)+dist(vb, vc);
	7: if $wl"vm"vn"vomin{dist(vm, va)+ dist(va, vm)+dist(vn, vb)+dist(vb, vn)+ dist(vo,vc)+ dist(vc...
	8: extend=dist(vm, va)+dist(va, vm)+ dist(vn, vb)+ dist(vb, vn)+ dist(vo, vc)+dist(vc, vo);
	9: if (new<extend)
	10: wl=add(va, vb)+add(vb, vc);
	11: else begin
	12: Da,b=0; Dc,d=0; De,f=0;
	13: while Da,b ¹ • Ÿ Dc,d ¹ • Ÿ De,f ¹ • begin
	14: if Da,b ¹ • then
	15: Da,b = min{dist(vm, va)| vmŒwl}
	16: if Dc,d ¹ • then
	17: Dc,d = min{dist(vn, vb)| vnŒwl}
	18: if De,f ¹ • then
	19: De,f = min{dist(vo, vc)| voŒwl}
	20: Dx,y=min(Dab, Dcd, Def);
	21: wl=wl » add(vx, vy)+add(vx, vy);
	22: Dx,y=•;
	23: end;
	24: end;
	25: end;
	26: tbus(cur)=tbus(cur)»wl;
	27: end;
	Figure 4.15: Test access mechanism design.
	Figure 4.16: Extending a wire.

	4.7.2 Computational Complexity
	(4.29)
	Figure 4.17: Computational complexity analysis of the test scheduling technique.

	4.8 Simulated Annealing
	4.8.1 The Simulated Annealing Algorithm
	Figure 4.18: Simulated annealing.

	4.8.2 Cost function
	(4.30)
	(4.31)
	(4.32)

	4.9 Tabu Search
	Figure 4.19: Tabu search algorithm.

	4.10 Conclusions
	• test sets selection for each block,
	• general test conflicts,

	Chapter 5 Experimental Results
	In this chapter
	5.1 Introduction
	5.2 Test Scheduling
	5.2.1 Experiment on Design Kime
	Figure 5.1: Test schedule using our heuristic on design Kime.
	Table 5.1: Experimental results on design Kime.

	5.2.2 Experiment on System S
	Figure 5.2: Test schedule using our heuristic on System S.
	Table 5.2: Experimental results on System S.

	5.2.3 Experiment on Design Muresan
	Figure 5.3: Test scheduling solution produced by Muresan et al. on design Muresan.
	Figure 5.4: Test scheduling solution produced by our Simulated annealing implementation on design...
	Figure 5.5: Test schedule using our heuristic with initial sorting based on power (a), time (b) a...
	Table 5.3: Experimental results on design Muresan.

	5.2.4 Experiment one on ASIC Z
	• maximal power dissipation is limited to 900 mW,
	Figure 5.6: Test schedule achieved using our heuristic on ASIC Z.
	Table 5.4: A comparison of different test scheduling approaches on ASIC Z.
	Table 5.5: Experimental results on ASIC Z.

	5.2.5 Experiment two on ASIC Z
	• maximal power dissipation is limited to 900 mW,
	Table 5.6: Experimental results on ASIC Z.
	Figure 5.7: Test schedule achieved using our heuristic on ASIC Z using initial sorting based on p...

	5.2.6 Experiment three on ASIC Z
	• maximal power dissipation limited to 900 mW,
	Figure 5.8: Test schedule achieved using our heuristic on ASIC Z using initial sorting based on p...
	Figure 5.9: Test schedule achieved using our Simulated annealing implementation on ASIC Z.
	Table 5.7: Results on ASIC Z.

	5.2.7 Experiment on Extended ASIC Z
	Table 5.8: . Results on Extended ASIC Z.

	5.2.8 Experiments on System L
	Figure 5.10: Designer’s test schedule on System L.
	Figure 5.11: Test schedule achieved using our heuristic with sorting based on power on System L.
	Table 5.9: Experimental results on System L.

	5.2.9 Experiments on Ericsson design
	Table 5.10: Experimental results on design Ericsson.
	Figure 5.12: Simulated annealing optimization on Ericsson.

	5.3 Test Access Mechanism Design
	5.3.1 Experiment on System S
	Figure 5.13: Test access design using our heuristic on System S.

	5.4 Test Scheduling and Test Access Mechanism Design
	5.4.1 Experiment on System S
	Figure 5.14: Our test schedule on System S.
	Figure 5.15: Test access mechanism design using our heuristic on System S.
	Figure 5.16: Test bus schedule using Simulated annealing on System S.
	Figure 5.17: Test access mechanism design using Simulated annealing on System S.
	Table 5.11: Results on System S.

	5.4.2 Experiment one on ASIC Z
	Figure 5.18: Test bus schedule achieved using our heuristic on ASIC Z using initial sorting based...
	Figure 5.19: Test access mechanism design using our heuristic with initial sorting based on power.
	Figure 5.20: Test bus schedule achieved using our heuristic on ASIC Z using initial sorting based...
	Figure 5.21: Test access mechanism design using our heuristic with initial sorting based on time ...
	Figure 5.22: Test bus schedule achieved using Simulated annealing.
	Figure 5.23: Test access mechanism design using Simulated annealing.
	Table 5.12: Results on ASIC Z.
	Table 5.13: Comparing the balance factor between test time and test access mechanism cost.

	5.4.3 Experiment two on ASIC Z
	Figure 5.24: Test bus schedule achieved using our heuristic on ASIC Z using initial sorting based...
	Figure 5.25: Test access mechanism design using our heuristic with initial sorting based on power.
	Figure 5.26: Test bus schedule using our heuristic on ASIC Z using sorting based on time and on p...
	Figure 5.27: Test access mechanism design using our heuristic with sorting based on time and on p...
	Figure 5.28: Test bus schedule achieved from SA.
	Figure 5.29: Test access mechanism design produced by Simulated annealing.
	Table 5.14: Experimental results on ASIC Z.

	5.4.4 Experiments on Extended ASIC Z
	Table 5.15: Results on Extended ASIC Z.

	5.4.5 Experiments on Ericsson
	Table 5.16: Results on Ericsson.
	Table 5.17: Computational cost for the experiments on Ericsson.

	5.5 Test Parallelization
	Figure 5.30: Test schedule using our heuristic with initial sorting based on power and allowing t...
	Table 5.18: Experimental results on System L.

	5.6 Test Resource Placement
	5.6.1 Experiment on ASIC Z
	Figure 5.31: TAP placement in ASIC Z.

	5.6.2 Experiment on Extended ASIC Z
	Table 5.19: Experimental results on ASIC Z.
	Table 5.20: Experimental results on Extended ASIC Z.
	Table 5.21: Experimental results on Extended ASIC Z.

	5.7 Summary
	Testability Analysis and Enhancement Technique

	Chapter 6 Introduction and Related Work
	6.1 Testability Analysis
	6.1.1 Gate Level Testability Analysis
	Figure 6.1: A 2-input AND-gate.
	(6.1)
	(6.2)
	(6.3)
	(6.4)
	(6.5)

	Figure 6.2: Problems in controlling line X.
	(6.6)

	Figure 6.3: Calculating the 1-controllability of a NAND-gate.
	(6.7)
	(6.8)
	(6.9)
	(6.10)
	(6.11)
	(6.12)

	6.1.2 Register-Transfer Level Testability Analysis
	(6.13)
	Figure 6.4: Example where p=0 and p=n using the metric proposed by Flottes et al.
	(6.14)
	(6.15)

	Figure 6.5: Propagation of values from inputs to outputs.

	6.1.3 Behavioral-Level Testability Analysis
	(6.16)
	• N is an NCC variable,
	Figure 6.6: A behavioral VHDL description.
	Figure 6.7: The SSA representation of the example in Figure�6.6.

	1. Each definition of a variable, which occurs at places where the variable receives a new value,...
	2. A F-function is used to combine results at points in a program. For instance, x=F(p,q,...) whe...
	3. Each use of a variable makes use of exactly one name generated from the rules above. Use of a ...
	(6.17)

	Table 6.1: SSA variables and weighted vaule ranges.
	(6.18)

	1. Assignment inside a loop structure
	(6.19)
	(6.20)
	(6.21)
	(6.22)
	(6.23)
	2. Assignment Outside a Loop Structure
	(6.24)

	3. Loop Structure

	1. Fan-outs of a branch structure with f fan-outs: where k=1, 2,..., f.
	(6.25)
	2. Inside a loop structure with a probability Ploop of staying in the loop:
	(6.26)

	3. In a basic block with q in-edges each with the probability Pq:
	(6.27)
	(6.28)
	(6.29)
	(6.30)

	6.2 Testability Improvement
	6.2.1 Post-Synthesis Transformations
	Figure 6.8: Example using a multiplexer to reduce the number of primary outputs.
	Figure 6.9: Multiplexing with a constant.

	6.2.2 Synthesis Transformations
	• whenever possible, allocate a register to at least one primary input or primary output variable...
	DC=a¥DE+b¥DH (6.31)
	H=Âi Area(Vi)+Âi Len(Aj)¥Wid(Aj) (6.32)

	• Area(Vi) is the area cost of the module corresponding to data path node Vi,

	6.2.3 Pre-Synthesis Transformations
	Figure 6.10: An example of test statement insertion.
	Figure 6.11: An example of design-and-test behavior.

	6.3 Summary
	Figure 6.12: Scheduled data flow graph for the design- and-test behavior of Figure�6.11.
	Figure 6.13: The data path for the testable behavior, with inserted elements in bold.
	Figure 6.14: Controller with the embedded test controller.
	Figure 6.15: Four types of controllability insertion in the high-level description.

	Chapter 7 Testability Analysis
	7.1 Preliminaries
	7.2 Behavioral Testability Metrics
	7.2.1 Variable Range
	Definition 7.1: VR(l, v) denotes the value range of variable v at line l in the behavioral specif...
	Definition 7.2: defVR(v) is the defined value range for a variable v.
	Definition 7.3: Let the relative value range, RVR, for a variable v at line l, where lŒL, be:
	Figure 7.1: An example of Variable Range and Relative Value Range.

	7.2.2 Operation Testability
	Figure 7.2: Output value (3-bit) distribution for a 2-bit addition.
	(7.1)

	Definition 7.4: The Operation Testability, OpT, of an operation is defined as:
	Table 7.1: Q and OpT values for arithmetic operations.
	Definition 7.5: The Test Hardness, TH(l), at a line l is:
	Definition 7.6: The Line Operation Testability, LOT(l), at line l in the behavioral specification...

	7.2.3 Statement Reachability
	Definition 7.7: The true (false) condition scope, cst(ci) (csf(ci)), of a condition, ci, is the s...
	Figure 7.3: Condition scope.
	Definition 7.8: The Statement Reachability, SR(l), is given by:

	7.3 Application of the Behavioral Testability Metrics
	Definition 7.9: The Testability, T(v), for a variable v in the behavioral specification is given by:
	(7.2)

	7.4 Behavioral Testability Analysis Algorithm
	Figure 7.4: The testability analysis algorithm.

	7.5 Experimental Results
	Figure 7.5: The design flow.
	Figure 7.6: The behavioral description of the Diff benchmark.
	Table 7.2: The variable range, operation testability and statement reachability for the Diff benc...
	Table 7.3: The variable range, operation testability and statement reachability combined into one...
	Table 7.4: Experimental results for the Diff benchmark.
	Table 7.5: Fault coverage comparison of testability analysis at the behavioral and the gate level.

	7.6 Conclusions

	Chapter 8 Testability Improvement Transformations
	8.1 Basic Transformations
	8.1.1 READ-Insertion
	Figure 8.1: Example of READ-insertion.

	8.1.2 WRITE-Insertion
	Figure 8.2: Example of WRITE-insertion.

	8.1.3 Boolean-Insertion
	Figure 8.3: Illustration of the use of AND-insertion.
	Figure 8.4: Example of AND/OR-insertion.

	8.1.4 REACH-Insertion
	Figure 8.5: Example of REACH-insertion.

	8.2 Cost Function for DFT Selection
	Figure 8.6: Illustration of the design space.

	8.3 Application of the Testability Improvement Transformations
	8.3.1 Selection based on Loop Breaking
	8.3.2 Selection based on Testability Metrics
	Figure 8.7: Extension of the transformation selection to include BOOLEAN-insertion.
	Figure 8.8: The behavioral testability transformations at register-transfer level.
	Definition 8.1: Let the Condition Testability, CT(c), for a condition c be defined as:
	Definition 8.2: Let the Relative Condition Testability, RTCi(c), for a condition c be defined as:

	Figure 8.9: Illustration of how the variable range changes when BOOLEAN-insertion is used.
	Figure 8.10: Extension of the transformation selection to distinguish between READ-insertion or W...
	Definition 8.3: If variable v is the left-hand variable in a statement consisting of an assignmen...

	8.4 Experimental Results
	Figure 8.11: The behavioral specification of the Diff benchmark.
	Figure 8.12: The behavioral specification of the Counter benchmark.
	Table 8.1: Experiments to show the correlation between our testability metrics, partial scan and ...
	Table 8.2: The testability metric divided into a controllability(c) part and an observability(o) ...
	Table 8.3: Experiments to show the correlation between our strategy to selecting READ or WRITE-in...

	8.5 Variable Dependency
	Table 8.4: Experiments to show the correlation between our strategy to select testability inserti...
	Table 8.5: Experimental results for selection of testability transformation.
	Definition 8.4: A start vertex is a vertex which gets its value directly from a primary input and...
	Definition 8.5: For a statement of the form vi = vj op vk, where vi, vj and vk are variables and ...
	Definition 8.6: A path, Pi, is a sequence of edges {(vo, v1), (v1, v2),..., (vn-1, vn)} where v0 ...
	Definition 8.7: The Shortest Controllable Path, SCP(v), for a variable v, is the shortest path fr...
	Figure 8.13: Example of Variable Dependency.
	Figure 8.14: Algorithm for grouping variables.

	8.6 Conclusions

	Chapter 9 Testability Analysis and Enhancement of the Controller
	9.1 Introduction
	9.2 Preliminaries
	Figure 9.1: A design example in VHDL and ETPN.

	9.3 Controller Testability Analysis
	(9.1)
	(9.2)
	Figure 9.2: Initial state.
	(9.3)
	(9.4)
	Figure 9.3: Simple construct.
	(9.5)
	(9.6)

	Figure 9.4: OR-construct.
	(9.7)
	(9.8)
	(9.9)
	(9.10)
	Figure 9.5: Conditional construct.
	(9.11)
	(9.12)
	Figure 9.6: AND-construct.
	Figure 9.7: Parallel construct.

	9.4 State Reachability Analysis Algorithm
	1. Assign all initial states (use formulas 9.1 and 9.2).
	2. Put all initial states into queue Q.
	3. Assign the rest of the states with the worst CSR and SSR: CSR := 0; SSR := SSRL;
	4. If Q is empty, then go to 9; else assign the first state in Q to Sprev, and remove it from Q.
	5. Check the output transition(s) type from Sprev: a) if it is a simple construct: go to 6 (use f...
	6. Reach the consequent state(s) Scons and calculate its CSR and SSR by the corresponding formulas.
	7. If the newly calculated CSR and SSR are better than stored ones for Scons, replace the stored ...
	8. Go to 4.
	9. End.
	Figure 9.8: State reachability analysis algorithm.
	(9.13)

	9.5 Controller Testability Enhancements
	9.5.1 Register Initialization
	Figure 9.9: Initialize or set Regj through Regi.

	9.5.2 Branch Control
	Figure 9.10: Select branch by T2.

	9.5.3 Loop Termination
	Figure 9.11: Terminate feedback by T3.

	9.6 Experimental Results
	Table 9.1: Example to illustrate the importance of considering both the controller and the data p...
	Table 9.2: Summary of experimental results.

	9.7 Summary
	Conclusions and Future Work

	Chapter 10 Conclusions
	10.1 Thesis Summery
	10.1.1 Test Scheduling and Test Access Mechanism
	10.1.2 Testability Analysis and Enhancement Techniques

	10.2 Conclusions
	• By considering testability at the early design stages, efficient test solutions can be develope...

	Chapter 11 Future Work
	11.1 Estimation of Test Parameters
	11.2 Test Scheduling and Test Access Mechanism
	11.3 Testability Analysis and Testability Enhancements
	Appendix
	Appendix A
	Benchmarks and Industrial designs
	A.1 Design Kime
	Figure A.1: Test compatibility graph.

	A.2 System S
	Figure A.2: System S.
	Table A.1: Test data for the cores in System S.

	A.3 Design Muresan
	Table A.2: Design data for design Muresan.

	A.4 ASIC Z
	Figure A.3: ASIC Z floor-plan.
	Table A.3: ASIC Z characteristics.

	A.5 Extended ASIC Z
	• an interconnection test,
	Table A.4: Extended ASIC Z characteristics.

	A.6 System L
	A.7 Ericsson design
	Table A.5: System L characteristics.
	Figure A.4: The Ericsson design.
	Figure A.5: The blocks within each DSPn.
	Figure A.6: The blocks within CPM.
	Figure A.7: The common data memory bank.
	Table A.6: Design characteristics Ericsson.
	Table A.7: Placement characteristics Ericsson.

	Bibliography
	[Abr90]
	[Abr91]
	[Abr93]
	[Aer98]
	[Aho87]
	[Bar93]
	[Ben00]
	[Ble93]
	[Car97]
	[Cha99]
	[Ch00a]
	[Ch00b]
	[Che85]
	[Che89]
	[Che90]
	[Che92]
	[Che93]
	[Che94]
	[Chi91]
	[Chi92]
	[Cho97]
	[Cor00]
	[Cra88]
	[Dey93]
	[Dey94]
	[Dey95]
	[Ele92]
	[Eri00]
	[Flo97]
	[Fje92]
	[Gaj92]
	[Gar91]
	[Gar79]
	[Gho95]
	[Gir98]
	[Glo86]
	[Gol79]
	[Gol80]
	[Gon76]
	[Gru00]
	[Gup90]
	[Gu91]
	[Gu92]
	[Gu94]
	[Gu95a]
	[Gu95b]
	[Gu97]
	[Her98]
	[Het99]
	[Hsu96a]
	[Hsu96b]
	[Hal98]
	[Håk98]
	[Jer00]
	[Jig00]
	[Jon89]
	[Kim82]
	[Kim90]
	[Kim93]
	[Kir83]
	[Kri92]
	[Kuc90]
	[Lai97]
	[Lar97]
	[Lar98a]
	[Lar98b]
	[Lar99a]
	[Lar99b]
	[Lar00a]
	[Lar00b]
	[Lar00c]
	[Lar00d]
	[Lar00e]
	[Lee90]
	[Lee92]
	[Le93a]
	[Le93b]
	[Le93c]
	[Mar98]
	[Mar00]
	[Me93a]
	[Me93b]
	[Me93c]
	[Me93d]
	[Muj92]
	[Mur00]
	[Nor96]
	[P1500]
	[Par93]
	[Par95]
	[Pau89]
	[Pen94]
	[Pet81]
	[Pop00]
	[Ram94]
	[Ree93]
	[Rut72]
	[Ses00]
	[Ste00]
	[Syn96]
	[Sug98]
	[Tho94]
	[Tri85]
	[Tse83]
	[Tsu88]
	[Var93]
	[Var98]
	[Wag96]
	[Wes92]
	[Yan98]
	[Zor93]

