
Abstract -- The increasing test data volume needed for the
testing of System-on-Chips (SOCs) leads to high Automatic
Test Equipment (ATE) memory requirement and long test
application times. Scheduling techniques where testing can
be terminated as soon as a fault appears (abort-on-fail) as
well as efficient compression schemes to reduce the ATE
memory requirement have been proposed separately. Pre-
vious test data compression architectures often make use of
Multiple Input Signature Response Analyzers (MISRs) for
response compression. Therefore, abort-on-fail testing and
diagnostic capabilities are limited. In this paper, we pro-
pose an SOC test architecture that (1) allows test data com-
pression, (2) where clock cycle based as well as pattern-
based abort-on-fail testing are allowed and (3) diagnostic
capabilities are not reduced. We have performed experi-
ments on ISCAS designs.

I. INTRODUCTION1

It is due to the technology development becoming common
practice to design and test system-on-chips (SoCs) in a modu-
lar fashion. In a core-based design environment, pre-designed
and pre-verified blocks of logic, often called modules or cores,
are integrated to a system that is placed in a single chip, mak-
ing it a system chip. The advantage with modular-design is that
complex systems can be designed in a reasonable time. From a
test perspective, the advantage is that each module has its dedi-
cated test vectors, and can be tested as a separate unit. How-
ever, the test data volume needed to test these system chips is
increasing. It is therefore becoming difficult to make the test
data fit the memory of the Automatic Test Equipment (ATE),
and further, the high test data volume leads to long test applica-
tion times.

Several approaches to compress test data have therefore been
proposed [3], [4], [5], [6]. These schemes make use of the fact
that there is a high number of unspecified bits, so called don’t
care bits, in the test data volume; typically only 1%-5% of all
bits are specified. The compression schemes fill the don’t care
bits in a suitable manner and then make use of a compression
algorithm. Different compression schemes are used for test

stimuli compression. Chandra and Chakrabarty make use of
Golumb coding [3] and Frequency-Directed-Run-Length
(FDR) Codes [4]. Ichihara et al. explore the use of Statistical
Coding, Volkerink et al. investigate the use of Packet-based
techniques [6] and Li and Chakrabarty make use of dictionaries
with Fixed-Length Indices [8].

Common for the approaches is that test stimuli is com-
pressed off-chip and decompressed on-chip while test
responses are compressed on-chip and analyzed off-chip. A
common solution to on-chip test response compression is the
usage of Multiple Input Signature Response Analyzer (MISR).
A MISR merges each produced response with the previous
responses and the final result is shifted out when all test stimuli
have been applied.

The main disadvantage with a MISR-based architecture is
that the whole test sequence has to be applied before it is
known if a fault is present or not. If the first vector detects a
fault, it is not known until the whole sequence has been
applied. Also, diagnostic capability is limited as only a signa-
ture that contains the signature is produced. If a fault is
detected it is difficult to backtrack to find which vector
detected the fault.

Iyengar et al. [9], Goel and Marinissen [11], Larsson et
al.[10] have all proposed test scheduling techniques to mini-
mize the test application time. Larsson et al. [2] showed that
abort-on-fail testing (termination as soon as a fault appears) on
module-level can save significant in test application time.
Ingelsson et al. [1] showed that even further test time reduction
can be achieved if testing is allowed to be aborted on clock-
cycle and pattern basis. However, clock-cycle and pattern
based abort-on-fail testing is not applicable when a MISR com-
presses the test response.

In this paper we propose an SOC test architecture that allows
combined test data compression and abort-on-fail testing. The
architecture allows off-line compression of test stimuli and
expected test response. The advantage is that compression
schemes with high compression capability can be used both for
test stimuli and test response while using abort-on-fail testing.

II. TEST ARCHITECTURES FOR TEST DATA COMPRESSION

Given are a system consisting of a set of modules and test
data for each module. The test data consists of test stimuli and
expected test responses. Traditionally, the test stimuli and the
expected test responses are stored in the ATE. The test stimuli

1. The research is partially supported by the Strategic
Integrated Electronic Systems Research (STRIN-
GENT) programme.

Combined Test Data Compression and Abort-on-Fail Testing

Erik Larsson
Embedded Systems Laboratory

Department of Computer Science
Linköpings Universitet

Sweden
contact: erila@ida.liu.se

are applied to the system under test and the produced test
responses are compared with the expected test responses.

An example system with three cores tested with an ATE is
shown in Figure 1. The ATE feeds test stimuli to the SoC and
the produced test responses are compared with the expected
test response in the ATE.

A. MISR-based Compression Architecture

The problem with testing as in Figure 1 is that the test data
volume is increasing rapidly; hence it is becoming problematic
to make the test data volume fit the ATE. Compression tech-
niques take advantage of the fact that the test data volume con-
tains a high number of don’t care bits (the bit can be either 1 or
0 as it does not affect the outcome of the test). The don’t care
bits are set in a way that favor high test data compression.
Actually, as the test architecture used in these approaches is
based on MISRs, only test stimuli are compressed off-line. The
produced test responses are compressed on-chip in a dedicated
MISR. Figure 2 shows the conceptual view for the example
system (Figure 1) in a compression-based approach, and Figure
3 highlights Core2. Figure 3 shows that compressed test stim-
uli stored in the ATE are sent to the SoC and decompressed by
decompression logic. The decompressed test stimuli are
applied to the core and the produced test responses are com-
pressed into the MISR. At the end of the test application, the
signature in the MISR is shifted out and after analysis it comes
clear if the module is faulty or fault-free.

The major advantage with a MISR for test response com-
pression is that expected test responses can be compressed on-
chip; hence the responses do not have to be stored in the ATE.

Among the disadvantages are that simulation is required to
design the MISR, and once the MISR is designed, the test data
volume is fixed, the order test stimuli are applied is fixed, the
outcome of the test is only known at the end of the testing.
And, diagnostic capability is limited.

MISR-design requires simulation in order to fill the don’t
care bits in the expected test response. Assume that core 2
(Figure 3) is a module with 3 scan-chains each of length 3. The
test stimuli and the expected test responses are then of 12 bits
each. Assume that Core 2 is tested with three vectors only,
given as follows:

vector, {test stimuli}, {expected test response}
1, { 1xx xx0 xxx} { x0x xxx x11}
2, { xx1 xx1 xxx} { 1xx 0xx xxx}
3, { 0x0 xxx xxx} { xxx 1xx xxx}
The don’t care bits (x) in the test stimuli can be filled in an

arbitrary way. Two valid examples for vector 1 are {111 110
000} and {100 000 000}. However, the two different fills result
most likely in different expected test response. And, the
expected test response is needed in order to design the MISR;
hence, after the x-filling of the test stimuli, simulation must be
used.

The MISR is designed in such a way that it in operation col-
lects and merges the produced test response with the current
contents in the MISR. The order in which the MISR is
designed for must be kept; it is not possible to change the order
in which the stimuli are applied and the whole sequence must
be applied in order to get the final response. This prevents
abort-on-fail testing where the testing is terminated as soon as
a fault is detected. Further, as the whole sequence must be
applied, diagnostics is problematic. The signature is shifted out
and to trace the fault, back-tracking must be used, which is
problematic.

B. Proposed SOC test architecture

The proposed SOC test architecture is shown in Figure 4.
Figure 4 highlights, for the design in Figure 1, the decompres-
sion logic and the output logic for core 2. In the architecture,
the test stimuli are compressed off-line and stored in the ATE
as in previous compression approaches. The proposed scheme
shows similarities with the technique proposed by Nahvi and
Ivanov [7]. However, in the technique by Nahvi and Ivanov
test stimuli and expected test responses are sent to the system
but no compression is allowed and no masking scheme is used.
Ollivierre et al. [12] explore sending test stimuli and expected
responses to the system. A masking register is used to unmask
the responses. The focus is to finding a minimal number of re-
loads of the masking register. In current proposal, a dedicated
mask is used for each response.

Different from previous approaches are that the expected test
responses and mask data are also compressed off-line and
stored in the ATE. For test application, compressed test stimuli,
compressed expected test responses and the compressed mask

Figure 1: Example system.

Core1

test stimuli

Core2 Core3test responses
ATE

SoC

Figure 2: Conceptual view of a MISR-based test compres-
sion architecture.

Core1

compressed
test stimuli

Core2 Core3
pass/fail

ATE

SoC

Figure 3: Core 2 high-lighted in the MISR-based architec-
ture (Figure 2).

dc:decompression

Core2

dc(ts)

scan-chain

scan-chain

scan-chain

ATE
misr

data are all transported into the system under test. The test
stimuli are decompressed and applied to the system. The
expected test responses are decompressed and compared with
the produced test responses. The mask data are decompressed,
and used to determine which bits in the expected test responses
and the produced test responses that should be compared. After
any shift-out clock cycle, produced test stimuli and expected
test stimuli are compared, and a pass/fail signal is generated.
The pass/fail bit is generated immediately, in contrast to the
MISR-based architecture; hence time saving abort-on-fail test-
ing can be used.

Assume that core 2 (Figure 3) is a module with 3 scan-chains
each of length 3. The test stimuli and the expected test
responses are then of 12 bits each. Assume that core 2 is tested
with three vectors only, given as follows:

vector, {test stimuli}, {expected test response}
1, {1xx xx0 xxx} {x0x xxx x11}
2, {xx1 xx1 xxx} {1xx 0xx xxx}
3, {0x0 xxx xxx} {xxx 1xx xxx}
In the proposed scheme, test stimuli and test response are

filled according to any filling scheme. The mask data are used
to determine where care bits in the expected response are
placed. A “1” in the mask data means that the bit is a care bit
(not a don’t care bit) and a “0” indicate that the bit is a don’t
care bit. The following is the result to be compressed according
to an arbitrary filling scheme:

vector, {stimuli}, {expected response} {mask data}
1, {111 110 000} {000 000 011} {010 000 011}
2, {111 111 111} {111 000 000} {100 100 000}
3, {000 000 000} {000 111 111} {000 100 000}

1) The output logic
The input to the output logic are the produced test response

(pr), the decompressed expected test response (er), and the
decompressed mask (m) (see Figure 4).

For example, assume that: pr = {100 010 111}, er = {000
000 011}, m = {010 000 011}.

Note, that pr and er are different; hence one could assume a
fault. However, there is no fault as the original expected test
response is {x0x xxx x11}. The mask (m) determines which of
the bits that should be compared. In the example above, bit 2
(counting from left-side), 8 and 9 should be compared. Exclud-
ing all other bits than these three gives the following:

pr = {-0- --- -11}, er = {-0- --- -11}, and then pr=er.
If er=pr and m=1 the output should be 1 to indicate fault-

free. However, if er≠pr and m=1 the output should be “0” to
indicate a fault. In all cases when m=0, the output should be
“1”. It indicates that the bit is not important. The function is:

The implementation of the logic function is shown for one
bit in Figure 5, and for each of the four output bits at core 2 in
Figure 6. Note that the evaluation chain can be chained, which
means that only a single output is needed. Furthermore, scan-
elements can be inserted at each bit-output to ease diagnostic.
If a fault is detected, the contents in added scan-elements can
be shifted out and analyzed.

III. EXPERIMENTAL RESULTS

We have taken ISCAS design and implemented a compres-
sion technique based on the Fixed-Length Indices proposed by
Li and Chakrabarty [8]. We have compressed the test data vol-
ume assuming that the above proposed architecture is used.
The results are presented in Table 1. For each module, we list
the compression ratio on the test stimuli, test responses, and the
mask data. We have not compared our scheme with MISR-
based approaches as these approaches only compress the test

Figure 4: Proposed Test Architecture.

ATE

Core2

dc(ts):decompression of test stimuli
dc(er):decompression of expected test responses
dc(m):decompression of mask

dc(ts)compressed test stimuli

compressed expected
test responses

compressed mask
dc(er)

dc(m)

scan-chain

scan-chain

scan-chain

pass/fail

output
logic

Core 1

Core 3

output m er pr⋅ er pr⋅+()⋅=

Figure 5: Logic for evaluation of one bit.

pr

er

m

output

stimuli.

IV. 8.CONCLUSIONS

The increasing test data volume is becoming a major obsta-
cle in System-on-Chip (SOC) test design as it leads to long test
application times and high Automatic Test Equipment (ATE)
memory requirements. Test scheduling techniques and test
compression schemes have been proposed in order to solve the
test time minimization problem respectively the test data vol-
ume problem separately. The test time can be efficiently
reduced by using an abort-on-fail scheme where testing is ter-
minated as soon as a fault is detected. It has been shown that
allowing test termination on clock-cycle and pattern-base are
efficient for test time reduction. However, compression archi-
tectures are generally based on Multiple Input Signature Ana-
lyzers (MISR) for on-chip compression of the test response;

hence per pattern and per cycle termination is not possible as
the response is shifted out from the MISR only at the end of the
testing when all test stimuli have been applied. A further disad-
vantage with a MISR-based architecture is that diagnostics is
cumbersome. A key factor in order to combine test scheduling
and test data volume compression is the SOC test architecture.
In this paper, we propose an SOC test architecture that allows
abort-on-fail testing with termination per clock-cycle or per
pattern. As the architecture allows such termination, it is suit-
able for diagnostics as well. We have performed illustrative
experiments on the ISCAS designs.

REFERENCES

[1] U. Ingelsson, S. Goel, E. Larsson, and E. J. Marinissen, “Test
Scheduling for Modular SOCs in an Abort-on-Fail Environ-
ment”, Proceedings of European Test Symposium (ETS’05),
Tallinn, Estonia on May 22-25, 2005.

[2] E. Larsson, J. Pouget, and Z. Peng, “Defect-Aware SOC Test
Scheduling”, Proceedings of VLSI Test Symposium (VTS’04),
Napa, CA, USA, April 2004.

[3] A. Chandra and K. Chakrabarty, “System-on-a-Chip Test Data
Compression and Decompression Architectures Based on
Golomb Codes”, Transactions on CAD of IC and Systems, pp.
355-367, Vol. 20, No. 3, 2001.

[4] A. Chandra and K. Chakrabarty, “Frequency -Directed-Run-
Length (FDR) Codes with Application to System-on-a-Chip
Test Data Compression”, Proceedings of VLSI Test Symposium
(VTS), pp. 42-47, 2001.

[5] H. Ichihara, A. Ogawa, T. Inoue, and A. Tamura, “Dynamic
Test Compression Using Statistical Coding”, Proceedings of
Asian Test Symposium (ATS), pp. 143-148, Kyoto, Japan, No-
vember 2001.

[6] E. H. Volkerink, A. Khoche, and S. Mitra, “Packet-based Input
Test Data Compression Techniques”, Proceedings of Interna-
tional Test Conference (ITC), pp. 154-163, Baltimore, MD,
USA, October 2002.

[7] Mohsen Nahvi and Andre Ivanov, "Indirect Test Architecture
for SoC Testing", Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 23 , Issue 7, July 2004, pp.
1128 - 1142.

[8] L. Li and K. Chakrabarty, “Test Data Compression Using Dic-
tionaries with Fixed-Length Indices”, VLSI Test Symposium
(VTS), 27 April - 1 May 2003, Napa Valley, CA, USA, pp. 219-
224.

[9] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Co-Optimi-
zation of Test Wrapper and Test Access Architecture for Em-
bedded Cores”, Journal of Electronic Testing: Theory and
Applications (JETTA), 18(2):213-230, April 2002.

[10] E. Larsson, K. Arvidsson, H. Fujiwara and Z. Peng, “Efficient
Test Solutions for Core-based Designs”, Transaction on Com-
puter-Aided Design of Integrated Circuits and Systems.Vol-
ume: 23, Issue:5, May 2004, pages:758 - 775.

[11] S. K. Goel and E. J. Marinissen, “SOC Test Architecture Design
for Efficient Utilization of Test Bandwidth”, ACM Transactions
on Design Automation of Electronic Systems (TODAES),
8(4):399-429, October 2003.

[12] S. Ollivierre, A. B. Kinsman, and N. Nicolici, “Compressed
Embedded Diagnosis of Logic Cores”, International Confer-
ence on Computer Design (ICCD’04), 11-13 October 2004, San
Jose, CA, USA, pages 534-539.

TABLE 1. Compression ratio for the ISCAS designs.

Designs
Compression ratio (%)

 test stimuli test responses mask data

c7552 36.6 26.5 8.4

s838 59.0 57.7 55.5

s9234 55.9 56.5 29.6

s38584 64.0 62.8 34.4

s13207 80.2 76.5 56.0

s15850 60.5 60.0 39.4

s5378 60.6 58.7 39.4

s35932 46.6 89.8 86.0

s38417 62.4 58.9 6.7

Figure 6: Logic for evaluation at core 2 in Figure 4.

pr1

er1

m1

One-bit
evaluation
logic (Figure 5)

from core 1

pr3

er3

m3

One-bit
evaluation
logic (Figure 5)

to core 3

pr2

er2

m2

One-bit
evaluation
logic (Figure 5)

